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ABSTRACT
In image retrieval scenarios, many methods use interest point
detection at an early stage to find regions in which descrip-
tors are calculated. Finding salient locations in image data is
crucial for these tasks. Observing that most current methods
use only the luminance information of the images, we investi-
gate the use of colour information in interest point detection.
A way to use multi-channel information in the Harris corner
detector is explored and different colour spaces are evaluated.
To determine the characteristic scale of an interest point, a
new colour scale selection method is presented. We show that
using colour information and boosting salient colours results
in improved performance in retrieval tasks.

Index Terms— Colour image analysis, Colour interest
points, Image retrieval, Object recognition

1. INTRODUCTION

Interest points in images are useful in a wide variety of ap-
plications, including stereo matching and object recognition.
Corners have long been considered as useful interest points.
The classical corner detector [1] was used in combination
with a rotational invariant descriptor in [2] to extend local
feature matching to general object recognition. Lindeberg [3]
used the Laplacian-of-Gaussian (LoG) function for building
the scale space in his “interesting scale level” detector. Miko-
lajczyk [4] showed that this function is very suitable for auto-
matic scale selection of structures.

The original Harris detector [1] is robust to noise and
lighting variations, but only to a small extent to scale changes.
To deal with this, Dufournoud et al. [5] proposed the scale
adapted Harris operator. Mikolajczyk [4] proposed the Harris-
Laplace detector that merges the scale-adapted Harris corner
detector and the Laplacian based scale selection.

All the approaches presented above are intensity based.
The distinctiveness of colour based interest points is however
much larger, and therefore colour can be of great importance
when matching images. Very relevant to our work is that of
van de Weijer [6], who aims at incorporating colour distinc-
tiveness into the design of interest point detectors.

The main contribution of this paper is a new colour-based
method for the automatic selection of the characteristic scale
of an image region. We also investigate the use of various
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colour spaces for interest point detection and scale determi-
nation. The shifting of interest points towards colour differ-
ences can be useful in colorful images and natural, cluttered
scenes. We provide a detailed evaluation of the use of these
techniques in image retrieval.

2. COLOUR CORNER DETECTION

In this section, we discuss the extension of the Harris corner
detector to colour images, making use of colour spaces that
are quasi-invariant to some variations in imaging conditions.

2.1. Colour Harris Corner Detector
The Harris corner detector [1] provides a cornerness measure
for image data, calculated based on a second moment matrix
M describing the gradient distribution in the local neighbour-
hood of a point as CH(M) = det(M) − αtrace2(M) where
α indicates the slope of the “zero line”.

An extension of the Harris detector to colour is proposed
in [7]. Their second moment matrix is defined as
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where ⊗ indicates convolution and the subscripts x and y in-
dicate Gaussian derivatives at scale σD in these directions.
σI is the integration scale. The second moment matrix can be
computed using different colour models. The first step is to
determine the gradients of each color component and then the
gradients are transformed into the desired colour system.

Because of common photometric variations in imaging
conditions such as shading, shadows, specularities and ob-
ject reflectance, the components of the RGB colour system
are correlated and therefore sensitive to illumination changes.
However, in natural images, high contrast changes may ap-
pear. Therefore, a colour Harris detector in RGB space does
not dramatically change the position of the corners compared
to a luminance based approach (see Figs. 1(a) and 2(a)). No-
malized rgb overcomes the correlation of RGB and favours
colour changes. The main drawback, however, is its instabil-
ity in dark regions (see lower right region of Fig. 2(b)). We
can overcome this by using quasi invariant colour spaces.

2.2. Quasi Invariant Colour Spaces
By transforming the RGB colour coordinates to other sys-
tems, photometric alterations of features in images can be
distinguished. For this purpose, we investigate: (1) the op-
ponent colour space OCS (Eq. 2); and (2) the HSI colour
space (Eq. 3) [6].



(a) RGB (b) OCS

(c) HSI (d) colour boosted OCS

Fig. 1. Harris energy in different colour spaces for the parrot image
in Fig. 2. From (a) to (d), salient colors become more favoured.
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Focusing more on colour differences, Figs. 1(b) and 2(c)
show a higher Harris energy inside the parrot, even at dark
blue/brown edges. The HSI colour space overcomes shad-
ing, shadows, specularities and object reflectance, therefore
only colour differences are taken into account (see Figs. 1(c)
and 2(d)).

2.3. Colour Statistics and Boosting
As proposed in [9], colours have different occurrence proba-
bilities p(v) and therefore different information content I(v):

I(v) = −log(p(v)) (4)

We wish to find a boosting function so that colour vectors
having equal information content have equal impact on the
saliency function. This is a colour saliency boosting transfor-
mation g : R3 → R3 such that

p(fx) = p(f ′x)↔ ‖g(fx)‖ = ‖g(f ′x)‖ (5)

where fx and f ′x are the spatial derivatives of two arbitrary
colour coordinate vectors f and f ′.

The derivative histograms can then be approximated by
ellipsoids having the definition

(αh1
x)2 + (βh2

x)2 + (γh3
x)2 = R2 (6)

where h
[1..3]
x is the transformation of a colour derivative to

one of the colour spaces given in Eqs. (2)–(3) followed by
the rotation to align the axes with those of the ellipsoid in
the corresponding colour space. To find the transformation in
Eq. (5), the ellipsoid is transformed to a sphere, so that vectors
of equal saliency lead to vectors of equal length. The function
g is therefore defined as

g(fx) = Λh(fx) (7)

which leads to a saliency boosting factor for each component
of the corresponding colour space. For the opponent colour
space, the diagonal matrix Λ is chosen as in [9]. Figs. 1(d) and
2(e) show the Harris energy and the corresponding corners
obtained by using the color boosting transformation.

3. SCALE INVARIANT CORNER DETECTION

Using a fixed scale has the drawback that structures which are
“too small” or “too large” are not taken into account. Hence,
our aim is to develop a scale invariant description of corners
in an image. In our retrieval context, this gives the same inter-
est point locations, regardless of the size of the object in the
image.

3.1. Scale Invariant Harris Corner Detection
The scale space of the Harris function is built by iteratively
calculating the cornerness measurement E, where

E(x, y, s) = (x, y)M
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under varying σD and σI . As shown in several experiments
[4], the relation σD = 3σI performs best. We use scale steps
s = 1, 2, . . . determining the iterations of the algorithm (typ-
ically between 8 and 20) with a factor t from 1.2 to

√
2. The

amount of scale change is chosen by the need for preciseness
of the corner location.

The next step is to choose the characteristic structure. In
this research, the LoG function Λ (see [4]) is used to select
the characteristic structure automatically. Extending it to the
scale space chosen previously, the scale decision measure-
ment Λ is

Λ(x, y, σD) = −
1

π(tsσD)4
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e
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To make the maxima more stable, a raised cosine kernel
is used to smooth the resulting data

cu,v =
1 + (( 1

2
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2
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3
(10)

As suggested in [8], this kernel gives smoother borders than
the Gaussian Kernel for scale decision.

A characteristic scale of a possible region is found if both
the Harris Energy and the LoG are extrema

∇Λ(x, y, s(σD)) = ∇M(x, y, σI , σD) = 0 (11)

where 0 is the null vector.
With this non-maxima suppression, the majority of data is

discarded leaving Ê and Λ̂ for which Eq. (11) holds. Aiming
for just one region per location and a reasonable distribution
of regions over the input image, the following decision crite-
rion was shown to perform best

R̂(x, y) =

(
max (Ê(x, y, ∗))

3targ max (Λ̂(x,y,∗))σD

)
(12)

This leads to the function R̂(x, y) defining all interest point
candidates and the corresponding region size.



(a) RGB (b) rgb (c) OCS (d) HSI (e) cb OCS (f) Illumination (g) HSI
Fig. 2. (a) – (e): The 30 highest maxima of the Harris energy extracted for different color spaces. (f) – (g): 30 extracted regions based on
(f) luminance and (g) HSI , with t = 1, 2; s = 10; σI = 0.7. The regions shift towards colour differences. Specular and shading changes are
not regarded. The parrot is therefore highly prioritized.

3.2. Colored Scale Invariant Harris Corner Detection
In this section, we propose a method for including colour in-
formation in the scale decision. The input image is trans-
formed to the same colour space as is used for the extraction
of the Harris energy. After that, a principal component anal-
ysis (PCA) takes place to reduce the three colour dimensions
of the input image to a one dimensional dataset Î(x, y) by
calculating the dot product of the colour information I(x, y)
and the eigenvector νλ with the largest eigenvalue:

Î(x, y) =
√

3νλI(x, y)T ⊗ cu,v (13)

This analysis leads to a transformed one dimensional func-
tion which includes many of the advantages of the correspond-
ing colour space. Based on Î(x, y), Eq. (9) can be applied and
the characteristic scale can be chosen using the procedure de-
scribed in Sec. 3.1.

Considering that the discrimination vector is chosen as the
maximum of the sum of the distances between the values, the
PCA, as the basis for the scale decision criterion, ensures that
a trade-off between favouring rare colours and retaining in-
formation on similar colours is realized. Figs. 2(f) and (g)
give a comparison of extracted regions using intensity only
and colour information. Hence it can be seen as a relaxed
colour boosting function within the dimension reduction. If
salient values have larger distances than many others, less
salient colours are disregarded and get similar values. If the
distance to the rarest colours is not large enough, the transfor-
mation favours common colours. This transformation tends
to lose less distance information than other transformations
f : R3 → R1 e.g. the one usually used by the luminance
transform.

4. RESULTS

We performed experiments on the ALOI database [10], which
provides images of 1000 objects under supervised, predefined
conditions on a dark background. The following algorithms
are tested: The Harris Laplacian corner detector is the scale
invariant approach from the Mikolajczyk implementation1.
DoG stands for the extraction of interest points with the dif-
ference of Gaussians using Lowe’s implementation2. Harris

1www.robots.ox.ac.uk/˜vgg/research/affine/
2www.cs.ubc.ca/˜lowe/keypoints/

Fig. 3. Repeatability experiment with ALOI database.

Affine is the extension of this approach, using the results of the
Harris Laplacian algorithm to detect the affine transformation
of the region (also using Mikolajczyk’s implementation). The
Quasi Invariant ScIv Harris uses our approach in the Quasi
Invariant HSI colour space, and Colour boosted ScIv Harris
uses the opponent colour space and colour statistics to boost
rare colours. RGB ScIv Harris uses RGB information only.

4.1. Repeatability Experiment
In this experiment, we consider the objects rotated in steps of
5◦ with a range of 50◦ in both directions. The performance
is measured by the repeatability, which is the percentage of
corresponding regions detected in two images. A match is
counted if the transformation of one image to the other with
the provided homography matrix leads to interest regions over-
lapping by more than 40% [11].

As shown in Fig. 3, the Harris Laplacian detector per-
forms steadily about 5% better than the Harris Affine detec-
tor, a result which is explainable by the repeatability crite-
ria. However, the result remains relatively stable around 70%.
When performing this experiment in the RGB colour space,
the results are quite similar to the luminance only approaches,
until the transformation reaches a level of 35◦. From this
point, all colour based approaches perform better than those
using only luminance information. Apparently, colour edges
remain more stable under these transformations.

Using colour statistics (Sec. 2.3) and the OCS colour
space, the salient colour differences become more distinct,
and therefore the results improve. A drawback of this method
is the instability due to aliasing effects of the transformation,



as seen in the 35◦ rotation. The quasi invariant colour space
performs best, as this approach takes only colour differences
into account. This leads to a 95% repeatability rate at a 30◦

rotation and an 85% rate after the full 50◦ rotation.

4.2. Image Retrieval

For the retrieval experiment, the impact of the extraction of
interest points in a retrieval scenario is examined. For ev-
ery object, 9 images are taken rotating the object 60◦ in both
directions. From 5◦ to 30◦ and 355◦ to 330◦ rotation, the
steps are taken in 5◦ increments. Up to 60◦ and 300◦, respec-
tively, the steps are carried out in 10◦ increments. This results
in a database of 18,000 images. Since the ALOI database
contains images of objects on a dark background and image
masks to completely disregard the background, the retrieval
is obtained by object characteristics only. Query images are
captured from the front view, the position which was omitted
in the database. Every query image is processed as described
above, except that no mask is applied to it. Therefore, it is
possible that descriptors located in the background can occur
in the query image.

All these scale invariant interest points provide the loca-
tions for the calculation of the SIFT descriptors (also obtained
using the implementation by Mikolajczyk). Therefore, the
only difference between the five different retrieval tests is in
the interest point extraction stage.

Image retrieval is performed by measuring the distance
between the query image and every other image in the
database. The difference between two images is determined
by first calculating the Euclidean distances between each pos-
sible pair of (normalised) SIFT descriptors. The mean of the
N smallest distances is taken to be the distance between the
images (we use N = 100). The images are then ranked ac-
cording to this distance. As the retrieval performance mea-
sure, the precision and recall values are calculated for subsets
of retrieved images containing the 1, 2, . . . , 30 best matches
to the query image.

Fig. 4 gives the precision recall graph of the overall re-
trieval rate. Colour based approaches outperform the illumi-
nation based methods, especially in low contrast, dark im-
ages, where illumination gets ambiguous and unstable. Be-
ginning with the OCS colour space (OCS ScIv Harris), it
can overcome this weakness resulting in more distinctive and
more stable interest points. Using the HSI ScIv Harris,
the colour only interest points outperform the OCS based
ones, but lack distinctive interest points on uni-colour ob-
jects. Colour boosted OCS showed to perform best in the
overall experiment. The prioritized salient colours and hence
prioritized corners give more stable interest points than other
approaches.

5. CONCLUSION
Using colour distances for corner measurement can shift the
interest points to more stable and distinct locations than lu-
minance based methods. A colour scale selection leads to a

Fig. 4. Precision recall graph of the retrieval experiment.

better stability under transformations. Both the corner mea-
surement and the scale selection can be transformed into var-
ious colour spaces, and we can take advantage of different
properties of these transformations. Using correlated colour,
boosted colour or colour invariant information, the method
gains performance over luminance based methods. In retrieval
scenarios, our approach was shown to be more distinct and
stable, which leads to a higher and more precise retrieval rate
than reference implementations.
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