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Abstract Local features have been widely used in the area of image-based localization.
However, large-scale 2D-to-3D matching problems still involve massive memory consump-
tion, which is mainly caused by the high dimensionality of the features (e.g. 128 dimensions
of SIFT feature). This paper introduces a new method that decreases local features’ high
dimensionality for reducing memory capacity and accelerating the descriptor matching pro-
cess. With this new method, all descriptors are projected into a lower dimensional space
through the new learned matrices that are able to reduce the curse of dimensionality in
the large scale image-based localization. The low dimensional descriptors are then mapped
into a Hamming space for further reducing the memory requirement. This study also pro-
poses an image-based localization pipeline based on the new learned Hamming descriptors.
The new learned descriptor and the localization pipeline are applied to two challenging
datasets. The experimental results show that the proposed method achieves extraordinary
image registration performance compared with the published results from state-of-the-art
methods.
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1 Introduction

Image-based localization is one of the dominant localization methods used in mobile
devices. Given an image captured by a mobile phone, an image-based localization system
can provide the users their position information. Compared with GPS or cell tower trian-
gulation, the image-based localization system could provide more precise information and
work more reliably in the areas of large buildings [43, 49]. This method [37, 43, 57] origi-
nally achieves the localization by searching through an image database to find out the best
matched image to the query image. Current image-based localization methods [19, 27, 38]
match a 2D query image to a 3D model built by Structure-from-Motion reconstruction.
By allowing further camera orientation estimation, this localization method achieves higher
accuracy. In this localization process, local features such as SIFT feature [28] are now
widely used for image-based localization. SIFT is invariant to scaling, rotation and partly
illumination change, and it has been successfully applied to object recognition, 3D recon-
struction, motion tracking and many other computer vision tasks. Due to these beneficial
properties, SIFT feature is also widely used in the image-based localization problems. How-
ever, caused by the high dimensionality of SIFT features, a large memory is still required
to store all the descriptors and points’ information of a 3D Structure-from-Motion recon-
struction model for the large-scale 2D-to-3D matching problems. This is especially critical
for mobile devices whose available memory is limited. Due to the fact that SIFT contains
128 dimension real-value numbers and in addition a 3D model obtained by Structure-
from-Motion reconstruction usually contains at least several million SIFT descriptors, the
required memory for image-based localization is extremely large. Because the whole local-
ization process consumes a large space to store all the descriptors, we want to find a way
to save the space for storing the descriptors. Also, the lower dimensionality of SIFT feature
will make the computation in localizing a query image faster. Because of these reasons, it
would be ideal to learn a low dimensional binary code to represent the local feature.

In this paper, we present an image-based localization pipeline that uses LDAHash [44]
and TRRF [54] to project the original SIFT descriptor into a low dimensional Hamming
space and adopt the new learned descriptor into the adjusted localization pipeline. LDAHash
and TRRF are methods for learning small descriptors that are applied to image retrieval
problems. By learning new projection matrices, LDAHash and TRRF project the descrip-
tors into a lower dimensional space to accelerate the matching process with the use of less
memory. This method improves the matching performance through learning a new projec-
tion matrix that reduces the curse of dimensionality in fast matching application. In the
process of learning projection matrices, we introduce the nearest neighbor negative descrip-
tor pairs to make our projection matrix separate better positive and negative descriptor pairs.
For reducing the memory requirement, we will further map the low dimensional descriptors
into a Hamming space, which reduces the size for storage and simplifies the similarity com-
putation. We employ LDAHash and TRRF in a more challenging localization task instead
of image retrieval problems, for the descriptors belonging to the same 3D point are much
denser than the descriptors belonging to the 2D points in common image retrieval prob-
lems. The tests on 2 challenging datasets show that our localization pipeline uses less than
10 % memory (for our 96 dimensional Hamming descriptor) to achieve similar accuracy as
the state-of-the-art methods. For the Hamming descriptor, we quantize the descriptor to as
low as 64 dimensions. For the real-value projected descriptor, we reduce the dimensionality
to 32 dimensions (25 % memory compared to the original method), which still yields high
accuracy.
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We learn different dimensional projection functions and thresholds that can achieve
lower dimensional Hamming descriptors for the 2 datasets. By assigning descriptors in the
projected space to different visual words, we also learn the threshold for each visual word.

In the practical image-based localization task, we test the new learned descriptors from
several different approaches. We test the descriptors in both Hamming space and the pro-
jected space using nearest neighbor search. For Hamming space, we also learn an individual
threshold for each visual word and search the matching point through the visual word.

The paper is organized as follows. Section 2 briefly introduces the related work of
image-based localization and the techniques for learning descriptors. Section 3 discusses
the LDAHash and TRRF methods, including our adjustment of the two methods. Section 4
introduces the image-based localization method we use. Section 5 presents our localization
results and the analysis corresponding to each experiment. Finally, Section 6 concludes the
paper.

2 Related work

Image-based localization is widely used in localization problems. Different from GPS solu-
tions, image-based localization solution can still be employed in weak GPS signal area.
Image localization was introduced by Robertson et al. [37]. They utilize a database of build-
ing facades views to calculate the pose of the query image provided by the users. The
images in the database are associated with a 3D coordinate system. Similar work is done
by Shao et al. on urban scene image retrieval problems [40]. Zhang et al. [57] provide the
localization information in the urban area by directly searching in an image database for the
closest image in the descriptor space. Steinhoff et al. [43] build their localization model on
a vocabulary tree [33] to achieve real-time pose estimation with a high accuracy. Similarly,
Schindler et al. [39] select the vocabulary using the most informative features to improve
the image retrieval performance on a large street side image database. Xiao et al. [51]
improve the object localization accuracy by using a bag-of-words method together with the
geometric verification. Beltran et al. [3] present a virtual globe tool for searching and visu-
alizing geo-referenced media resources based on the combination of search technologies,
description languages of geo-referenced media annotations and visualization techniques.
By computing the solar zenith angle to the image intensity, Jacobs et al. [20] realize the
coarse geo-localization based on the global network of outdoor webcams. [52] designs a
weighted network Voronoi diagram and a multilevel range search query processing system
that retrieves a set of objects located in some specified region within the searching range.
With the development of Structure-from-Motion (SfM) techniques for reconstructing 3D
scene cloud points [8, 11, 42], the 3D SfM model was used for image-based localization in
improving localization accuracy. Irschara et al. [19] propose to retrieve images containing
most descriptors matching the 3D points and Li et al. [27] realize the 3D-to-2D match-
ing through the mutual visibility information. By generating virtual views in 3D space,
Wendel et al. [49] introduce an algorithm of monocular visual localization for the micro
aerial vehicles. Methods proposed in [9] and [7] estimate the camera pose based on the
online-build 3D model based on the Simultaneous Localization and Mapping (SLAM) algo-
rithm [26, 41], which is limited to small scenes. Sattler et al. [38] propose a framework
to directly match the descriptors extracted from 2D images to the descriptors from the 3D
model in order to improve the localization accuracy. The proposed localization framework
accelerates the matching process and achieves a high image registration rate. Yu et al. [56]



Multimed Tools Appl

propose an indoor localization method by detecting and tracking people that combines the
information of color, person detection, face recognition and non-background information.
As for the 3D object retrieval problem, [13] proposes an interactive 3D object retrieval
scheme to fast and accurately retrieve the 2D views of 3D objects. They point out that,
instead of using the whole set of 2D views, using query views that are judged to be the
most discriminant ones based on the labeling information can give faster and more accurate
result. Wang et al. [47] further improved the retrieval accuracy by building the probabilis-
tic models for each object based on the distribution of its views. The distance between
two objects is determined by the upper bound of the Kullback-Leibler divergence of the
corresponding probabilistic models. Recent research [12] on image retrieval proposes that
simultaneously utilizing both visual and textual information to estimate the relevance of user
tagged images can retrieve relevant images more effectively. The visual and textual infor-
mation are represented by bag-of-visual words and bag-of-texture words. The relevance
estimation is determined by a hypergraph, where vertices represent images and hyperedges
represent visual or textual terms. The weights of the hyperedges are updated by a learn-
ing process with the use of a set of pseudo-positive images. Different from the cross media
retrieval (like using audio to query images) [55] where the different modalities are captured
by different devices though various methods, the 3D model is reconstructed from the 2D
images, either by Structure-from-Motion reconstruction or stereo reconstruction.

Descriptors of local features usually have high dimensionality, such as 128 dimensions
for SIFT feature [28] and 64 dimensions for SURF feature [2, 22]. When dealing with
small number of images, the high feature dimensionality may not be an issue. However, for
large-scale image retrieval problems, it would consume quite a lot of space to store all the
descriptors. Large amount of research has been conducted to compact the high dimensional
descriptors. Based on Principal Component Analysis [21], Yan et al. [23] reduce the descrip-
tors’ dimensionality and demonstrate that PCA-SIFT is more robust to image deformation.
Hua et al. [18] adopt a discriminative approach from labeled matching and non-matching
pairs to learn a lower dimensional embedding. Similar work is done by [50] to learn descrip-
tors that can utilize the DAISY [45] configuration. Making use of Linear Discriminates
Analysis [31] and Powell minimization [35], Brown et al. [6] reduce the descriptors’ dimen-
sionality by both linear and nonlinear transforms. Philbin et al. [34] distinguish the original
descriptor pairs into three groups which are positive pairs, nearest neighbor negative pairs
and random negative pairs. A margin-based cost function is built according to these three
groups of pairs. The projection matrix is learned by minimizing the cost function. Yang
et al. [54] formulate a trace ratio optimization problem and propose an efficient algorithm
to solve the problem, by realizing a lower dimension data projection. Han et al. [14] pro-
pose a framework of sparse unsupervised dimensionality reduction for multiple view data
to search a low-dimensional optimal consensus representation from multiple heterogeneous
features by multiview learning. As in many cases, positive examples in supervised learning
is limited, Ma et al. [29, 30] infer knowledge from other multimedia resources in the appli-
cation of event detection using few positive examples. Han et al. [15] add a joint l2,1-norm
on multiple feature selection matrices to ensemble different classifiers loss function into a
joint optimization framework to overcome the overfitting problem during feature selection
process when only a few labeled data per class are available.

Through hashing method, descriptors could be projected from Euclidean space to
Hamming space. In this way, the space for storing descriptors can be greatly reduced. Kulis
& Grauman [25] generate locality-sensitive hashing for arbitrary kernel functions and show
how one can use local patch descriptors such as SIFT in indexing. [24] introduces a scalable
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coordinate-descent algorithm to learn functions based on minimizing the error caused by the
binary embedding, which reduces the lost information between the original space and the
Hamming space. Just by selecting a subset of eigenvectors of graph Laplacian, Weiss et al.
[48] propose Spectral Hashing to compute a binary code for a new data point. Raginsky &
Lazebnik [36] propose a distribution-free encoding scheme for random projections. Through
this scheme, the Hamming distance between the vectors could be related to the vectors’ shift
invariant kernel value. Yagnik et al. [53] present an embedding method (WTAHash) based
on the partial order statistics. Their embedding method can be extended to the case of poly-
nomial kernels. They also show the simplicity in the implementation of their algorithm and
the effectiveness in the distance computation. The well-known MinHash [4, 5] method is
the special case of their Hashing method when applied to binary vectors. Strecha et al. [44]
combine both projecting and hashing functions together to propose LDAHash method, with
the purpose of learning lower dimensional binary descriptors.

Our method is employing a 2D-to-3D matching and image registration approach similar
to [38]. But our method is more efficient in memory and storage consumption, as all the
descriptors are projected into a lower dimensional Euclidean space and further mapped to
the Hamming space. Based on our new distance calculation methods, the image registra-
tion performance can outperform most of the state-of-the-art methods with much smaller
memory usage.

3 Descriptor learning

3.1 Feature dimensionality reduction

One of the main issues for the large memory requirement is the high dimensionality of
the SIFT feature. To address this problem, we learn a new projection function to convert
the SIFT descriptor’s dimensionality into a lower dimensional Euclidean space, followed
by mapping the low dimensional real-value descriptors into a binary space. In projecting
SIFT features, we use two kinds of projection functions. One is derived from the orig-
inal LDAHash method, namely NNLDAHash (nearest neighbor negative LDAHash) and
another one is the Trace Ratio Relevance Feedback method [54]. Additionally, through the
learned projection matrix, the distance of the descriptors belonging to the same point (posi-
tive descriptor pair) is minimized, and the distance of the descriptors belonging to different
points (negative descriptor pair) is maximized.

3.1.1 NNLDAHash method

LDAHash introduces 2 projection functions, Differences of Covariance (DIF) and Linear
Discriminant Analysis (LDA) to distinguish the positive and negative descriptors; here LDA
is not the classical LDA method. Since the final projection function resembles the classi-
cal LDA method, the authors named their proposed approach as LDA. DIF is claimed to
achieve higher image retrieval accuracy. However, we found that the performance obtained
by DIF is heavily dependent on the appropriate choice of the relevant parameters used
for the weights’ assignment. Inappropriate weights’ values may result in the failure of the
eigen-decomposition for the real-value scope, which will make the projection matrix con-
tain complex number entries. This would result in a significant issue for generating the
projection matrix. Thus, the DIF method is under the risk of failing to learn new descriptors
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through the projection matrix. Nevertheless, the LDA method can better separate positive
and negative pairs without the dependence of parameters, where negative descriptors are
randomly selected. However, the distance between the positive descriptors and the ran-
dom selected descriptors is relatively large. In most cases, the mismatched descriptors are
coming from the nearest neighbor negative descriptors to the query descriptors, which are
defined as the retrieved descriptors not fitting the RANSAC verification in [34]. Meanwhile,
the matching descriptors fitting RANSAC are considered as positive descriptors. So our
goal is to distinguish the positive descriptors and the negative nearest neighbor descriptors.
Nonetheless, we cannot throw away the random negative descriptors when learning the pro-
jection function as they may overlap with the nearest neighbor descriptors after projection.
The learning process is illustrated in the following equations.

A loss function is used in the proposed projection function to reduce the mismatching
between positive and negative descriptor pairs in (1).

L = αE
{
||P ∗XPos − P ∗X′

Pos ||2|Pos
}

− βE
{
||P ∗XNNeg − P ∗X′

NNeg ||2|NNeg
}

− E

{
||P ∗XRNeg − P ∗X′

RNeg ||2|RNeg
}

(1)

where:

XPos,X
′
Pos are two descriptors’ vectors, which form a positive descriptor pair;

XNNeg, X
′
NNeg are two descriptors’ vectors forming a nearest neighbor negative

descriptor pair;
XRNeg,X

′
RNeg are two descriptors’ vectors forming a random negative descriptor pair;

Pos and Neg represent the positive pairs and negative pairs respectively;
α and β are the weight parameters for positive pairs and nearest neighbor negative pairs;
E is the operation for calculating the expectation for the projected descriptor pairs’
distance;
P is a projection matrix.

Take SIFT descriptor as an example. After 3D SfM reconstruction, all the points in the
3D space will have at least 2 associated SIFT descriptors. Here XPos and X′

Pos are two
128 dimensional vectors from the same point (positive). XNNeg and X′

NNeg are two SIFT
descriptor vectors from different points, which are the nearest neighbors in the Euclidean
searching space (nearest neighbor negative). XRNeg and X′

RNeg are two descriptors from
two different points and not the nearest neighbor in the searching space (random negative).
If our goal is to achieve 64 dimensional quantized descriptors, the projection matrix P will

be a 64 ∗ 128 dimensional matrix. Here, we denote E

{
||X −X′||2|·

}
with a covariance

matrix by
∑

and substitute (1) as:

L = α tr
{
P

∑
Pos

P T
}
− β tr

{
P

∑
NNeg

P T
}
− tr

{
P

∑
RNeg

P T
}

= α tr
{
P

∑
Pos

P T
}
− tr

{
P (β

∑
NNeg

+
∑

RNeg
)P T

}
(2)

where
∑

Pos ,
∑

NNeg and
∑

RNeg are respectively the covariance matrix of positive descrip-
tors, the covariance matrix of nearest neighbor negative descriptors and the covariance
matrix of random negative descriptors. To utilize the conjunctive closure [17] formed by



Multimed Tools Appl

the descriptors belonging to the same point, we use the points with more than 4 descrip-
tors to generate the positive descriptor pairs. We use descriptor pairs that are the nearest
neighbors in the searching space but from different points as the nearest neighbor negative
descriptor pairs. The random negative descriptor pairs are selected randomly from different
points’ descriptors but not the nearest neighbors. After randomly taking enough negative
samples (not less than the positive descriptor pairs), the negative descriptors’ distance will
be much larger than positive descriptors’ distance (around 10 times larger). After the inverse
operation on the negative covariance matrix (we will describe this later), the effect on the
random selection of negative descriptor pairs will be pretty small, which will not affect the
experiment result in localization.

To avoid the overfitting problem, here
∑

Pos ,
∑

NNeg and
∑

RNeg are covariance matri-
ces for all the positive descriptor pairs and the selected negative descriptor pairs instead of
each descriptor pair’s covariance matrix. In computing

∑
Pos ,

∑
NNeg and

∑
RNeg , we sum

up each descriptor pair’s covariance matrix and then divide the sum value by the descriptor
pair number. Since this process is performed iteratively for each descriptor pair, it will not
increase the memory cost. Correspondingly, P is also a global projection matrix rather than
each descriptor pair’s projection matrix. Then storing P ’s memory will also not cause the
memory burden.

We denote
(
β
∑

NNeg +
∑

RNeg

)
as

∑
SNeg to represent the sum of the two kinds of

negative descriptor pairs’ covariance matrix. β = 2 in our experiments. And (2) will
became:

L = αtr
{
P

∑
Pos

P T
}
− tr

{
P

∑
SNeg

P T
}

(3)

The coordinates are transformed by pre-multiplying
∑

SNeg
(−1/2) and

∑
SNeg

(−T/2), so
that the second term of (2) turns into a constant.

L̃ ∝ tr
{
P

∑−1/2
SNeg

∑
Pos

∑−T/2
SNegP

T
}

= tr
{
P

∑
Pos

∑−1
SNegP

T
}

= tr
{
P

∑
RP

T
}

(4)

∑
R
=

∑
Pos

∑−1

SNeg
(5)

∑
R is the ratio between the positive descriptor pairs’ covariance and the negative descrip-

tor pairs’ covariance. Since
∑

Pos and
∑

SNeg are both symmetric positive semi-definite
matrices,

∑
R is also a symmetric positive semi-definite matrix, which allows for eigen-

decomposition:

∑
R
= USUT (6)

S is the non-negative diagonal matrix composed by the eigenvalues of the covariance matrix
R and U is the corresponding eigenvectors for each eigenvalue. The projection matrix is
composed by the m eigenvectors with the smallest corresponding eigenvalues, which min-
imizes the loss function. m is the dimensionality of the descriptors after projection. The
results of the positive, nearest neighbor negative and random negative descriptor pairs’ dis-
tance before and after the projection are plotted in Fig. 1. The descriptor pairs are projected
into a 64-dimensional space.
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(a)The original pair distance before the projection.
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Fig. 1 Descriptor pairs’ distance histogram before and after they are projected into a new space, where
X-axis is the distance of the descriptor pairs while Y-axis represents the percentage

As shown in Fig. 1, the distribution of positive descriptor pairs becomes much more com-
pact after the projection, compared to the nearest neighbor negative pairs and the random
negative pairs. Meanwhile, negative descriptor pairs are distributed more sparsely. More
importantly, the distribution distance between positive and negative descriptors is enlarged.
This result indicates that the projection function will certainly improve the matching per-
formance in a low dimensional space. In the whole process of computing projection matrix
P , the time complexity is O(n), where n is the descriptor pair number and the space com-
plexity is O(1), as we only keep one descriptor pair in the memory when computing the
covariance matrix.

3.1.2 Trace ratio relevance feedback method

Wang et al. [46] showed that trace ratio outperforms ratio trace in dimensionality reduction.
For this reason, we want to use trace ratio to further improve the image retrieval accuracy
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using the projected descriptors. Trace Ratio Relevance Feedback method (TRRF) [54] is
making use of the relevance feedback, positive and negative examples marked by the user,
to refine the multimedia representation. The basic idea is to minimize the positive examples’
distance and maximize the negative examples’ distance. The positive examples’ distance is
defined by (7).

∑
(x,x ′)∈Pos

(
WT x −WT x ′

)T (
WT x −WT x ′

)

= ∑
(x,x ′)∈Pos

T r
[
WT (x − x ′)(x − x ′)T W

]

= T r(WTDPosW) (7)

where Dpos equals to
∑

(x,x ′)∈Pos(x− x ′)(x− x ′)T and T r is the trace operator. (x, x ′) is a
positive descriptor pair and W is the projection matrix. In our method, we separate negative
examples into two parts, nearest neighbor negative descriptor pairs and random negative
descriptor pairs. The negative examples’ distance is defined as (8).

β
∑

(x,x ′)∈NNeg

(
WT x −WT x ′

)T (
WT x −WT x ′

)

+ ∑
(x,x ′)∈RNeg

(
WT x −WT x ′

)T (
WT x −WT x ′

)

= β
∑

(x,x ′)∈NNeg

T r
[
WT (x − x ′)(x − x ′)TW

]

+ ∑
(x,x ′)∈RNeg

T r[WT (x − x ′)(x − x ′)T W ]

= T r
[
WT βDNNegW

] + T r
[
WTDRNegW

]

= T r
[
WT (βDNNeg +DRNeg)W

]

= T r
(
WTDSNegW

)
(8)

∑
(x,x ′)∈NNeg and

∑
(x,x ′)∈RNeg are separately representing the nearest neighbor negative

examples’ distance and random negative examples’ distance. β is the weight between the
nearest neighbor negative examples and the random negative examples. We set β = 2 in our
experiments. DSNeg = βDNNeg+DRNeg is the sum of the nearest neighbor negative exam-
ples’ distance and the random negative examples’ distance. The trace ratio optimization
problem is proposed by (9)

max
WTW=I

T r(WTDSNegW)

T r(WTDPosW)
(9)

Wang et al. [46] proposes to perform eigen-decomposition of (DSNeg−λDPos) and select
d eigenvectors as the projection matrix W to achieve the maximization effect proposed by
(9), where d is the dimensionality we want to achieve and W is initialized as an arbitrary
orthogonal matrix. λ is defined in (10).

λ = T r(WTDSNegW)

T r(WTDPosW)
(10)

The eigen-decomposition operation is interactively repeated until W converges. As the
eigen-decomposition is relatively time-consuming for repeating many times, Yang et al. [54]
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propose to use the following two steps to substitute the iterative eigen-decomposition
operation.

η = T r(WTDSNegW)

T r(WTDPosW)
(11)

W = eT (DSNeg − ηDPos)e (12)

e is the eigen-vector by the first time eigen-decomposition of (DNeg−λDPos). This process
stops until W converges. As this method avoids repeating the eigen-decomposition opera-
tion, computing W is much faster than the method proposed by [46]. Trace ratio relevance
feedback is used in parallel with NNLDAHash. After our derivation, the final projection
matrix is presented in (12). DSNeg and DP are two matrices of descriptors’ distance. We
sum up all the square distance of positive descriptor pairs and then divide the positive
descriptor pair number to get the covariance matrix of positive descriptor pairs. In this way,
we generate DP . DSNeg is composed by another two Distance matrices, DNNeg and DRNeg .
DNNeg is given the weight of β while summing up the matrices of DNNeg and DRNeg .
DNNeg and DRNeg are calculated in the same way of DP . Our NNLDAHash is a ratio
trace method, which is learned by the idea of decreasing the distance of positive descriptor
pairs and increasing the distance of negative descriptor pairs. Compared with NNLDAHash,
TRRF method’s image registration number can increase dramatically with the increase of
descriptor’s dimensionality, as shown in Table 5.

Different from our learning methods, principal component analysis (PCA) is an unsuper-
vised learning approach, which cannot take advantages of our learned positive and negative
descriptor pairs. Meanwhile, PCA takes a lot of memory during the learning process. The
classic Linear Discriminant Analysis (LDA) assumes that the variance in each group is
approximately equal. However, the difference of covariance matrices for our positive and
negative descriptor pairs is large (negative pairs covariance matrix is one order of magni-
tude larger). That makes our learning method better than the classic LDA. Meanwhile, both
PCA and LDA are formulated in the form of ratio trace maxW(T r(WT BW)−1(WT AW)),
whose refined multimedia vector representations are worse than TRRF method due to the
the deviation from the original objectives [46]. We compare the experiment results of trace
ratio and ratio trace in Table 7 of Section 5.

3.2 Hamming descriptor projection

To reduce the computational cost, we further map the low dimensional descriptors into
the Hamming space. The computation in Hamming space is much easier and faster than
in the Euclidean space. Most importantly, the memory required for storing descriptors can
be significantly reduced if real-value descriptors are transformed into a Hamming space.
Hereby, the projection from a real-value space to a Hamming space is formulated as:

y =
{

0, x <= T

1, x > T
(13)

where x is the projected real number descriptor, y is the descriptor mapped into a Hamming
space, and T is the threshold to be learned to ensure that the projected Hamming descriptors
in the greatest extent keep the original real-value descriptors’ property.

The idea used here for optimizing T is to either minimize the false matching rate or
maximize the true matching rate. In this study, we choose to optimize T by minimizing the
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false matching rate. The false negative (FN) rate after mapping descriptors to the Hamming
space can be calculated by the following equation:

FN(T ) = Pr
{
min

(
xPos, x

′
Pos

)
< T ≤ max

(
xPos, x

′
Pos

) |Pos
}

= Pr
{
(min(xPos, x

′
Pos < T )|Pos

}+ 1

− Pr
{
(max(xPos, x

′
Pos) < T )|Pos

}

= cdf
{
min(xPos, x

′
Pos)|Pos

}

− cdf
{
max(xPos, x

′
Pos)|Pos

}
(14)

Here, xPos and x ′Pos are descriptors after projecting in a lower dimensional Euclidean
space. min and max correspond to selecting the smaller and larger value between xPos and
x ′Pos . cdf is a cumulative distribution function with regard to each T value, representing
the probability density accumulation. As xPos and x ′Pos are from the positive descriptor
pairs, the value in the same dimension should be mapped to the same Hamming value
after comparing with the threshold. However, since the smaller value between xPos and
x ′Pos (obtained by the min operation) is smaller than the threshold T and the larger value
(obtained by max operation) is larger the T , the corresponding value in Hamming space
is different, which forms false negative pairs in Hamming space. Our goal is to reduce the
number of false negative pairs.

False positive pairs are separated into the nearest neighbor false positive descriptor and
the random false positive descriptor as well. The nearest neighbor false positive rate is
computed by (15):

NFP(T ) = Pr
{

min(xNNeg, x
′
NNeg) ≥ T

∪max
(
xNNeg, x

′
NNeg

)
< T

)
|NNeg

}

= 1 − cdf
(

min
(
xNNeg, x

′
NNeg

)
|NNeg

)

+ cdf
(

max
(
xNNeg, x

′
NNeg

)
|NNeg

)
(15)

Similarly, the random false positive rate is computed in (16):

RFP(T ) = Pr
{

min
(
xRNeg, x

′
RNeg

)
≥ T

∪max
(
xRNeg, x

′
RNeg

)
< T

)
|RNeg

}

= 1 − cdf
(

min
(
xRNeg, x

′
RNeg

)
|RNeg

)

+ cdf
(

max
(
xRNeg, x

′
RNeg

)
|RNeg

)
(16)

The overall false matching rate is given by:

F(T ) = FN + NFP + RFP (17)

We want to find the T that minimizes the value of F . The distance between three classes
of descriptor pairs after mapping to the Hamming space is shown in Fig. 2.

Figure 2 clearly shows that the Hamming descriptors maintain the property of the lower
dimensional projected descriptors whose positive descriptors’ distance is reduced and neg-
ative descriptors’ distance is enlarged. Previously in Fig. 1, the histograms display the
original SIFT descriptor pairs distance distribution and the projected real-value descriptor
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Fig. 2 The descriptor pair distance after projecting into a Hamming space

pairs distance distribution. Compared with original SIFT descriptor pairs distance distribu-
tion in Fig. 1, the positive Hamming descriptor pairs distance distribution gets denser and
the nearest neighbor negative descriptor pairs distance and the random negative descriptor
pairs distance are getting sparser in Fig. 2. This effect is the same as lower dimensional
projected descriptors.

4 Image-based localization

Image-based localization is used to provide users the navigation information according to
the query image provided by them. Just using a mobile phone, the users can take a photo of
their surroundings and transmit it to the image-based localization system. The user receives
the feedback with the navigation information from the image-based localization system, as
shown in Fig. 3.

Fig. 3 2D-to-3D image matching
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Originally, the image-based localization method is based on searching for the best can-
didate within an image database. The response image contains the most correspondences
to the query image. To achieve higher accuracy, a 3D model obtained by reconstruction is
utilized, which allows for orientation estimation. Compared with descriptors extracted from
image database, descriptors from a 3D reconstruction model are much denser.

Our image-based localization method uses the direct 2D-to-3D matching [38]. The basic
idea is to find the correspondences between 2D features and 3D points. These corre-
spondences are built by searching for the 2D descriptor’s nearest neighbors from all the
descriptors in a 3D space.

We use a kd-tree based approach to find the approximate nearest neighbor descriptors,
which is supported by FLANN library [32]. Each 3D point is represented by the mean value
of all descriptors belonging to this point. The 2D-to-3D correspondence is accepted if it
passes the SIFT ratio test. When more than one 2D feature matches the same 3D point, the
2D feature with the smallest distance in Euclidean space will be accepted as the matching
feature. Finally, only the images consisting of at least 12 inliers will be registered. A regis-
tered image means that the image is correctly matched to the 3D model and the camera pose
estimation based on the matching points is successful. The inliers are found by the Ran-
dom Sample Consensus (RANSAC) algorithm [10]. A 6-point-direct-linear-transformation
(6-point DLT) [16] is used in the RANSAC loop to estimate the camera 3D pose.

As suggested in [1], using the Hellinger distance instead of Euclidean distance in his-
togram local features (like SIFT) can largely increase the image retrieval performance. For
this reason, we use (18) to compute the descriptor distance.

D =
N∑
i=1

√
xix

′
i (18)

where D is the final distance between two descriptors. xi and x ′i are the corresponding
entries of two N dimensional descriptors.

This is the localization framework for our learned low dimensional projected descriptor
in L1 normalized space. For the new learned Hamming descriptors, we also need to adjust
the localization pipeline according to the Hamming descriptor properties. Different from
SIFT descriptors, for Hamming descriptors, if the value of the corresponding dimension in
two Hamming descriptors coincides, we consider the distance for this dimension of the two
descriptors as 0. Otherwise, the distance of the two descriptors’ corresponding dimension
is 1. The final distance of the two descriptors is the sum of each dimension’s distance. The
distance computation in Hamming space is shown in (19).

DH =
∑

XOR(desc1, desc2) (19)

where desc1 and desc2 are the two descriptors whose distance needs to be computed.XOR

is the exclusive disjunction operation.
In the Hellinger space, a correspondence between a 2D feature and a 3D point (2df, 3dp)

is accepted if the distance of the 2d feature’s two nearest neighbor descriptors meets the
following equation:

H(2df,3dp1)/H(2df,3dp2) < 0.8 (20)
In (20), 2df and 3dp denote the descriptors belonging to the 2d feature and the 3d point.

H(2df,3dp) is the Hellinger distance between the two descriptors. Equation 20 represents
the ratio threshold between the first nearest neighbor 3D point descriptor to the 2D fea-
ture query descriptor and the second nearest neighbor 3D point descriptor to the 2D feature
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query descriptor. This threshold is set in the way similar to the SIFT Euclidean distance
threshold. The threshold is generated from the experiments result. From our experiments,
the thresholds between 0.64 (0.8*0.8) to 0.81 (0.9*0.9) provide the highest image registra-
tion number. Out of this scope, the image registration number is decreased. If we set the
threshold too low, there will be many correct feature correspondences rejected. If we set the
threshold too high, the number of false positive correspondences will be increased. Both of
these two kinds of settings result in lower image registration rate. Section 5 contains the
experiment results of the image registration number based on different thresholds.

In Hamming space, the two nearest neighbor descriptors are quite likely to have the same
distance to the query descriptor. Thus, we cannot set a ratio to reject the 2D-to-3D cor-
respondences. Instead, in order to reject the descriptors that are less likely to be the true
positive descriptor pairs, we set a maximum distance to accept the possible correspondences.
If two Hamming descriptors’ distance is smaller than the maximum distance, the descrip-
tor will be accepted as a matching candidate. Otherwise, the descriptor will be rejected
directly. We will evaluate the maximum distance threshold’s effect on the number of images
registered in the testing part.

Usually, for a query descriptor in the Hamming space, there will be several points’
descriptors having the distance smaller than the maximum distance threshold. Thus, the first
descriptor does not guarantee that the corresponding point is most likely to be the correct
point. In dealing with this problem, we take a majority vote in this process. We set the near-
est neighbor number as n. For these n nearest neighbors, we check if the descriptors exceed
a maximum distance threshold. For all the nearest neighbor descriptors with smaller dis-
tance than the maximum distance threshold, we count each 3D point’s descriptor number.
The point with the most descriptors passing the maximum distance test will be selected as
the matching point. Usually, assigning n the value of 10 can achieve the best result in our
test. If there are two points having the same number of descriptors, we will reject these two
points, since it does not provide a trusted choice. Meanwhile, this query will be ignored. We
refer the number of descriptors belonging to one point as Nbp. The majority vote is further
improved by checking the ratio of the second largest Nbp divided by the largest Nbp as in
(21):

Nbp second/Nbp most < 0.8 (21)

where Nbp second is the second largest number that the descriptors associated to the same
3D point,Nbp most is the largest number of the descriptors from the same 3D point. We set
the ratio threshold as 0.8. If this equation holds, we accept the point with the most descrip-
tors. Otherwise, we will reject this point. This threshold is to restrict the ratio between the
second largest descriptor number of a 3D point and the largest number of the descriptors
from the same 3D point. This threshold is set up from the experiments’ results. Generally,
the ratio from 0.6 to 0.9 can provide good image registration number result. If the threshold
is set too low, the 3D point certainly has high confidence to be the correct corresponding 3D
point of the 2D query descriptor. However, this would potentiality reject many other correct
corresponding 3D points, as the largest descriptor number of the correct 3D point may not
be so much higher than the second largest descriptor number of another 3D point. If we set
the threshold too high, like more than 0.9, the largest descriptor number of the 3D point is
not distinct enough to separate from the rest of the 3D points, resulting many false positive
correspondences. In the extreme case, when the largest and the second largest descriptor
number associated to two 3D points are the same, we disregard the 3D points instead of
randomly selecting one of the 3D points with largest descriptor number. We further give the
exepriment results for different thresholds in Section 5.



Multimed Tools Appl

5 Experimental results

To evaluate the performance of our new proposed method for image-based localization,
we present experiments using the new learned projected Hamming descriptors and the pro-
jected real-value descriptors on two challenging datasets, Dubrovnik [27] and Vienna [19].
Dubrovnik is a large dataset, reconstructed by using the photos from Flickr. Some images
are removed from the reconstruction together with their descriptors and 3D points that can
be seen in only one camera. The removed images are used for query images. Vienna dataset
is reconstructed by the landmark images taken by a single calibrated camera. The query
images of Vienna have a maximum dimension of 1,600 pixels in both width and height. The
266 query images for Vienna dataset are selected from the Panoramio website. The datasets
are representatives of different scenarios. The Vienna dataset images are from uniform inter-
vals of urban scenes. Dubrovnik depicts large clustered sets of views usually found on
Internet photo collection websites. Detailed information can be found in Table 1.

5.1 Experiments on Hamming descriptor

We first test our new learned Hamming descriptors on the localization pipeline. Dimension-
ality plays a critical role in the descriptor’s size. Since our purpose is to largely reduce the
memory consumption for storing all the descriptors, the performance of different dimen-
sional descriptors is essential to be tested. We give the number of images registered on the
use of Hamming descriptors from 64 dimensions to 128 dimensions in Table 2. The reg-
istered image number shown in Table 2 tells us the number of 2D images that correctly
matched to the 3D reconstruction model.

Note that there is a big boost for the number of the registered images from 64 dimen-
sions to 96 dimensions. However, from 96 dimensions to 128 dimensions, the improvement
is little. For the trade-off between memory consumption and accuracy, the 96 dimensional
Hamming descriptor has the best performance. For 96 dimension Hamming descriptors, the
memory is just 9.3 %(1/8 ∗ 96/128) of original SIFT descriptor’s memory consumption.
From the image registration number perspective, the 128 dimensional Hamming descriptor
has the best performance. However, the improvement of image registration number from 96
dimensional Hamming descriptor to 128 dimensional Hamming descriptor is not significant,
while it consumes another 32 descriptor dimensions memory cost. From 64 to 96 dimen-
sions, with the same memory consumption increase from 96 to 128 dimensions, the image
registration of Hamming descriptors has a considerable improvement. To make a trade-off
between the image registration number and the memory cost, we select 96 dimensional
descriptors.

We conduct a majority vote during the selection of the 3D points based on Hamming
descriptors. We set a threshold to select the 3D point containing the most nearest neighbor
descriptors to 2D query descriptor. This ratio threshold is to restrict the ratio between the

Table 1 The datasets used for evaluation

Dataset Number of 3D points Number of descriptors Size(MB) Number of query images

Dubrovnik 1,886,884 9,606,317 1419 800

Vienna 1,123,028 4,854,056 702 266

Size describes the binary .info file size with all descriptors and 3D points information
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Table 2 Performance of different dimensional Hamming descriptors for Vienna and Dubrovnik datasets

Dimensionality of Number of images Number of images

Hamming descriptor registered (Vienna Dataset) registered (Dubrovnik Dataset)

64 139 573

96 161 663

128 166 672

second largest descriptor number of a 3D point and the largest number of the descriptors
from another 3D point. We provide the experiment results of the different thresholds in
Table 3.

From the experiments, the thresholds of 0.7 and 0.8 provide the highest image registra-
tion number. When the threshold is too low, many correct descriptor correspondences are
rejected. On the contrary, many false positive descrioptors are accepted as correspondences
when the threshold is set too high.

In the last section, we talked about setting a maximum distance threshold to select
the matching point candidate. For different dimensional Hamming descriptors, the best
maximum distance thresholds also differ. Figure 4 illustrates the trend for the number of
registered image for each maximum distance threshold. Usually, the maximum distance 2
or 3 for 64 dimensions, 7 or 8 for 96 dimensions and 10 or 11 for 128 dimensions give the
best result.

To achieve Hamming descriptors, we need to use a threshold to map the real-value
descriptors into Hamming descriptors. As the same point’s descriptors are quite likely to
be clustered within each visual word, we conduct two experiments for searching within the
visual words. The first is using the global threshold on learning Hamming descriptors and
searching within each visual word. Another experiment is to learn the individual threshold
for each visual word and quantize the descriptors into the Hamming space with the use of
local thresholds.

By searching through the visual words, all the 3D descriptors are first clustered into
1000k visual words. Each visual word is represented by the mean value of all the 3D descrip-
tors within the visual word. Each 2D descriptor in an image is assigned to a visual word

Table 3 Performance of different thresholds between the second largest descriptor number of a 3D point and
the largest number of the descriptors from another 3D point based on 96 dimensional Hamming descriptors
for Vienna and Dubrovnik datasets

Threshold value Number of images registered Number of images registered

using 96 dimensional Hamming using 96 dimensional Hamming

descriptor (Vienna Dataset) descriptor (Dubrovnik Dataset)

0.4 138 582

0.5 151 633

0.6 159 657

0.7 161 662

0.8 161 663

0.9 157 650

1.0 151 628
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Fig. 4 The number of registered images according to each max distance threshold for Vienna(above) and
Dubrovnik(below) datasets, where X-axis is the max distance while Y-axis represents the registered image
number

decided by searching the nearest distance to the visual words. Furthermore, we project both
of the 2D and 3D descriptors into a lower dimensional Euclidean space. We further quan-
tize the lower dimensional descriptors into the Hamming space by both the global threshold
and the local threshold. The global threshold is learned from the whole 3D descriptor set,
and the local threshold is learned from each visual word. We present the image registration
performance using the global threshold and the local threshold in Table 4.

From Table 4, we can see that using the local threshold can improve the image registra-
tion rate. Also based on the different maximum distance, the result is also different. Based
on the maximum distance of 8, the image registration performance is also largely improved
compared with the maximum distance of 5. As we use the same kind of hashing method, the
image registration rate using the Hamming descriptors learned from both lower dimensional
descriptors by NNLDAHash and TRRF are basically the same.
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Table 4 Registered image number using the global and local thresholds for Vienna dataset’s 96 dimension
Hamming descriptor with different maximum distance

Dataset Number of registered Number of registered

images (Global threshold) images (Local threshold)

Vienna 96D with max distance 5 134 153

Vienna 96D with max distance 6 140 157

Vienna 96D with max distance 7 143 160

Vienna 96D with max distance 8 144 161

Vienna 96D with max distance 9 142 159

Vienna 96D with max distance 10 140 156

Vienna 96D with max distance 11 136 153

5.2 Experiments on low dimensional projected descriptor

Before mapping descriptors into the Hamming space, we also explore the low dimensional
projected descriptors in Euclidean space. This projected descriptor contains low dimension-
ality, which could be used for localization tasks. For using the low dimensional projected
descriptor, we need to pre-process the value after projection. In original SIFT descriptors,
the value for each dimension is limited to [0, 255]. However, after projection, this range
will become several times larger and the value for each dimension will contain decimal
component. As a result, the projected value is not an integer anymore. For storing this pro-
jected value, we have to use the float or double data format instead of integer or character
data. This potentially increases the memory requirement for the system. In dealing with this
problem, we scale the projected value into the range of [−128,127] followed by rounding
the decimal component into an integer. In this way, each dimension’s value can be stored
using the character data type. The number of registered images using the low dimensional
projected descriptor is given in Table 5.

From Table 5, we see that the TRRF 64 dimensional descriptor achieves a higher image
registration number compared with the other 64 dimensional descriptors. However, for
NNLDAHash, even in projecting 128 dimensions to 32 dimensions, the descriptor still
maintains a relatively high registered image number. The 32 dimensional projected descrip-
tor consumes only 25 % memory compared with the original SIFT descriptor. Comparing
TRRF with NNLDAHsh method, TRRF achieves lower registration performance using a
low dimensional descriptor, but the performance will increase dramatically when the dimen-
sionality is increased. NNLDAHash keeps the relatively high registration performance in a
certain range.

Table 5 Performance of different dimensional projected descriptors for Vienna and Dubrovnik datasets

Dimensionality of Number of images Number of images

projected descriptor registered (Vienna Dataset) registered (Dubrovnik Dataset)

32 (NNLDAHash) 185 737

64 (NNLDAHash) 195 771

32 (TRRF) 166 710

64 (TRRF) 204 780

SIFT (our pipeline) 214 785
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We also set a ratio threshold between the first nearest neighbor 3D point descriptor to the
2D feature query descriptor and the second nearest neighbor 3D point descriptor to the 2D
feature query descriptor when using Hellinger distance, which select the corresponding 3D
point when the descriptor distance meeting the threshold constraint. The experiment results
of different thresholds based on Hellinger distance are shown in Table 6.

From the experiments, thresholds from 0.6 to 0.9 can generally provide good results.
The threshold too low or too high adds false negative or false positive correspondences in
registering an image.

As the most time consuming parts in image registration are searching correspondences
and RANSAC, the time performance using the new pipeline and the projected descriptors do
not differ a lot (the descriptor projection time is made up by the speed-up part of the reduced
dimensionality). Basically, registering an image costs about 0.3 seconds and rejecting an
image costs around 0.9 to 1.2 seconds. We also compare our new learned descriptors and
the adjusted localization pipeline with the state-of-the-art methods, shown in Table 7.

From Table 7, our 96 dimensional Hamming descriptor using 9.3 % memory can achieve
similar result to the vocabulary tree based method [27]. The 128 dimensional Hamming
descriptor can achieve higher image registration number than both methods in [27] and [19]
with 12.5 % of the original memory consumption. The 32 dimensional projected descriptors
use 25 % memory to obtain 90 % of the image registration number of the best performance
method; our 64 dimensional projected descriptors outperform most of the state-of-the-art
methods. In our new pipeline, using the original SIFT feature can achieve the highest image
registration number.

5.3 Discussion

Our experiment results clearly show that the proposed method using the new learned low-
dimensional features (either real-value or binary) have consistently produced high qualified
matching accuracy on both Vienna and Dubrovnik data. Both new learned descriptors on the
adjusted localization framework can achieve similar accuracy as the state-of-the-art meth-
ods. In this study, we have also investigated the dependency of image-based localization
accuracy on the different number of Hamming descriptor dimensions and the correspond-
ing maximum distance values. In general, the higher the Hamming descriptor dimension
used, the better the matching accuracy. Although higher dimensionality results in higher

Table 6 Performance of different thresholds between the first nearest neighbor 3D point descriptor to the
2D feature query descriptor and the second nearest neighbor 3D point descriptor to the 2D feature query
descriptor for Vienna and Dubrovnik datasets based on Hellinger distance using original SIFT feature

Threshold value Number of images registered Number of images registered

using 96 dimensional Hamming using 96 dimensional Hamming

descriptor (Vienna Dataset) descriptor (Dubrovnik Dataset)

0.4 189 712

0.5 207 756

0.6 212 778

0.7 214 785

0.8 214 785

0.9 210 770

1.0 203 737
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Table 7 Comparison between our method and the different state-of-the-art methods

Method Number of images Number of images

registered (Dubrovnik) registered (Vienna)

P2F [27] (128D) 753 204

Voc.tree(all) [27] (128D) 668 –

Fast Direct 2D-to-3D [38] (128D) 781 205

Voc. tree GPU [19] (128D) – 165

Hamming descriptor (96D) 663 161

Hamming descriptor (128D) 672 166

Projected descriptor (LDAHash 64D) 771 195

Projected descriptor (TRRF 64D) 780 202

Projected descriptor (LDAHash 32D) 737 185

Projected descriptor (Classic LDA 32D) 704 160

Projected descriptor (Classic PCA 32D) 710 156

SIFT (our pipeline)(128D) 785 214

The red color is for comparing Hamming descriptor and the blue color is for comparing the projected real-
value descriptor

accuracy, the improvement in accuracy also slows with the higher dimensionality. After a
certain point, the gain in accuracy is not worth the drawbacks of the higher dimensionality,
such as higher memory usage and computation time. For instance, as shown in Table 2, the
obtained registered image number is 161 and 663 on Vienna and Dubrovnik data using 96-D
Hamming descriptors respectively, which is very similar to the results obtained by using
128-D Hamming descriptors. So depending on the task and the memory condition, choosing
a best trade-off of the dimensionality is critical. The performance of Fast Direct 2D-to-3D is
very similar to the method proposed in this paper. However, the memory cost of our method
is much smaller than the Fast Direct 2D-to-3D method. This is a substantial improvement.
Meanwhile, the learning procedure of the projection matrix and the threshold can be con-
ducted in off line time, which does not add the time cost during the localization process.
The time for projecting the features can be compensated by the reduced time of descriptor
distance calculation.

6 Conclusion

In this paper, we learn the Hamming descriptor and the low dimensional projected real-value
descriptor for the use of image-based localization. The current state-of-the-art image-based
localization frameworks use high dimensional descriptors in Euclidean space to provide
accurate localization result. The use of high dimensional descriptor in Euclidean space
causes high memory usage for the image-based localization task.

Based on this limitation, we learn a lower dimensional Hamming descriptor for the
image-based localization task. We tested different methods for improving the image regis-
tration performance in the localization pipeline. Besides the Hamming descriptor, we also
learned the lower dimensional projected descriptors for matching in Euclidean space. Using
each localization method, we did extensive tests on two large datasets.

We adjust the projection matrix learning process, making the learned projection matrix
better separate the positive and negative descriptor pairs. Meanwhile, the localization



Multimed Tools Appl

pipeline is also adjusted to achieve higher image registration number. Using the original
SIFT descriptor in the new pipeline could achieve higher accuracy than the original pipeline.
Our learned Hamming descriptor performs slightly worse than the state-of-the-art methods.
However, the memory we use is less than 10 percentage of their methods (considering 96
dimensional Hamming descriptor). Our method shows considerable potential for the utiliza-
tion in real world applications. The use of the lower dimensional projected descriptor can
outperform most state-of-the-art localization methods, with only one quarter dimensions of
their local descriptors.

Future work includes learning better binary descriptors for preserving the original
descriptors’ properties, which could further improve our descriptors in the use of image-
based localization.
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