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ABSTRACT
The paper addresses the problem of learning features that can ac-
count for temporal dynamics present in videos. Although deep con-
volutional learning methods revolutionized several areas of multi-
media and computer vision, there have been relatively few propos-
als dealing with ways in which these methods can be enabled to
make use of motion information, critical to the extraction of use-
ful information from video. We propose a temporal dropout of
changes approach for this, which allows us to consider temporal
information over a series of frames without increasing the number
of training parameters of the network.

To illustrate the potential of the proposed methodology, we focus
on the problem of dynamic texture classification. Dynamic textures
represent an important form of dynamics present in video data, so
far not considered within the framework of deep learning.

Initial results presented in the paper show that the proposed ap-
proach, based on a well-known deep convolutional neural network,
can achieve state-of-the-art performance on two well-known and
challenging dynamic texture classification data sets (DynTex++ and
UCLA dynamic texture).

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications—computer vision
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1. INTRODUCTION
The dominant methodology for visual recognition from images

and video until recently relied on hand-crafted features [17][7]. To-
day, we are witnessing a paradigm shift and a growing interest in
methods that learn features in both unsupervised and supervised
settings.

Current research on deep learning suggests that there is signif-
icant potential in using large-scale Neural Networks (NNs) to ad-
dress machine learning and, in particular, computer vision prob-
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lems. The Google Brain project showed how an unsupervised Au-
toEncoder NN with 1 billion connections was able to learn to recog-
nize common objects just by looking at a week’s worth of YouTube
videos [12]. In 2012, Krizhevsky et al. [11] showed how a Convo-
lutional NN (CNN) with 650,000 neurons can be used to classify
1.2M images in the ImageNet Large Scale Visual Recognition data
set into 1,000 classes [3], significantly advancing the state of the art.
Their approach has recently been successfully extended to object
detection achieving beyond-state-of-the-art results on the PASCAL
VOC challenge data [7]. Deep learning has also seen several suc-
cessful applications in the domain of image classification [23][21]
and content-based retrieval [19].

When it comes to learning from video data, using deep (convo-
lutional) NNs, few approaches exist [17][12]. However, arguably
the most prominent, 3D CNN [9], achieved the best performance in
three human action recognition tasks of the TRECVID 2009 Eval-
uation for Surveillance Event Detection challenge [16], showing
the significant potential for such approaches, when large amount of
labeled data is available.

Dynamic Textures (DT) represent a set of phenomena occurring
in nature, where the perceived changes in the appearance of a sys-
tem of large number elements are consistent, although the individ-
ual elements undergo stochastic changes in theirs. Typically the
changes are due to motion (e.g. turbulent water, smoke, vegetation
in the wind, insect swarms), but may be the result of the changing
intensity of light emitted (e.g. fire). Zhao and Pietikäinen consider
such phenomena extensions of the static texture to the temporal do-
main [22], since the effect is that of a textured object undergoing
transformations. Derpanis and Wildes [4], however, point out that
the term can apply equally well to simpler phenomena when ana-
lyzed in terms of aggregate regional properties (e.g., orderly pedes-
trian crowds and vehicular traffic).

The ability to recognize DTs based on visual processing is of
significance to a number of applications, including, video index-
ing/retrieval, surveillance and environmental monitoring where they
can serve as keys, isolate background clutter (e.g., fluttering vege-
tation) from activities of interest and detect various critical condi-
tions (e.g., fires), respectively. It comes as no surprise that a sig-
nificant amount of research effort has been directed toward solving
this problem [2][22][13][4][5][20][6]. So far, to the best of our
knowledge, no one has attempted to solve the problem of learning
high-level features and recognizing DTs using deep NN architec-
tures. Although, as a stochastic spatio-temporal phenomenon, DTs
represent a basic domain for testing and evaluating spatio-temporal
features.

In this paper we make several contributions: Dynamic texture
classification using CNNs is considered for the first time. The
proposed methodology exploits changes due to motion to extract



dynamic-texture related temporal features and introduces a novel
approach to taking into account sequences of frames, without in-
creasing the number of training parameters. We evaluated the pro-
posed methodology on two public, widely used and challenging
data sets: DynTex++ [6] and UCLA [5] dynamic texture datasets.
The results presented show that we can achieve state of the art clas-
sification results.

The rest of the paper is organized as follows: Section 2 deals
with the relevant published work. Section 3 describes the proposed
methodology. Section 4 discusses experiments performed and re-
sults achieved. Section 5 is dedicated to our conclusions.

2. RELATED WORK

2.1 Dynamic Texture Classification
The research into the classification and recognition of dynamic

textures continues unabated [4][22][20][6]. A large number of ap-
proaches have been proposed over the last ten years. In their 2005
survey Chetverikov and Péteri [2] divided the existing approaches
into five classes: methods based on optical flow, methods com-
puting geometric properties in the spatio-temporal domain, meth-
ods based on local spatio-temporal filtering, methods using global
spatio-temporal transforms and model-based methods that use es-
timated model parameters as features. Regardless of the type of
the approach, they attempt to extract features descriptive of the dy-
namic texture and classify them by either defining a suitable dis-
tance measure and creating a simple distance-based algorithm for
comparison or training a machine learning algorithm to achieve the
task.

Volume local binary patterns (VLBP) have been proposed by
Zhao and Pietikäinen as features to describe dynamic textures [22].
The VLBPs are an extension of the LBP operator widely used in or-
dinary texture analysis, that combine motion and appearance. They
tested their approach using videos generated by extracting parts of
the sequences in the DynTex database [13], creating a data set that
had 10 examples of a certain class derived from single DynTex se-
quences. Their classifier is a simple nearest neighbor classifier,
based on the log-likelihood statistic that allows them to compare
VLBPs, and they used leave-one-group-out (i.e. n/m fold cross-
validation [18]) to measure performance, where m corresponds to
the number of examples extracted for a single dynamic texture and
n is the total number of examples. Various classification rates were
achieved depending of whether or not the features used were shift-
invariant and how long the feature vector was. Their best result
is an accurate classification rate of 95.71%, achieved for a shift-
invariant VLBP and a fairly large feature vector (4, 176 bins) .

Chan and Vasconcelos [1] model the dynamic texture as a lin-
ear dynamic system (LDS) and achieve good classification using
the Martin distance to compare the models. They evaluated both
nearest neighbor and support vector machine (SVM) classifiers and
showed that the use of a machine learning algorithm such as SVM
can improve the classification significantly. Through the use of the
SVM classifier they achieved accurate classification rate of 97.5%
on the UCLA database [15]. More recently (2009) their work has
been extended by Ravichandran et al. [14] to use bags of LDSs to
achieve improved view-invariant texture classification, when eight
classes of textures are concerned.

Derpanis and Wildes [4] proposed new features based on spatio-
temporal oriented energy filters to describe dynamic textures and
classify them. They identified 7 semantic categories in the UCLA
database (flames, fountain, smoke, turbulence, waves, waterfall,
vegetation) and achieved a comparatively low classification rate of
92.3%, on sequences derived from this database. However, they

specifically considered shift-invariant recognition, and report im-
proved performance under these conditions.

Recently, an approach based on Dynamic Fractal Spectrum (DFS)
of temporal gradient (changes) and intensity, derived from a se-
quence of DT images, has been proposed [20]. Once the features
are extracted, an SVM classifier is used to perform DT classifi-
cation. To the best of our knowledge, the DFS approach achieves
state-of-the-art results on the UCLA and DynTex++ public databases,
achieving 100% accuracy on the UCLA for 50-class problem and
89.9% for DynTex++.

As far as we are aware no one has considered the problem of us-
ing deep neural networks to learn high-level features and use them
as basis for dynamic texture classification/recognition.

2.2 Spatio-Temporal Features for Deep Learn-
ing

Several approaches have been prosed that attempt to learn the
spatio-temporal features using deep CNNs. The focus of these ap-
proaches has been mainly on human action recognition.

The approach proposed by Taylor et al. [17] can be viewed as
a convolutional extension of the Gated Restricted Boltzmann Ma-
chine. The authors showed that the architecture proposed is able to
learn correspondences between pairs of images. Based on such fea-
tures they build a multistage neural network classifier that achieved
performance comparable to the state of the art in the domain of
human action recognition.

More recently, Le et al. [12] proposed another approach that uses
unsupervised learning of basic features using independent subspace
analysis. They stacked Independent Subspace Analysis networks as
subunits to form the final convolutional network. Replacing hand-
crafted features with the learned ones yielded state-of-the-art per-
formance on human action recognition. The training is done on 3D
blocks of (10) (16× 16 pixel) patches from consecutive frames fed
as input to the net. They trained on 200,000 video blocks. It is
interesting to note that the performance of their approach drops by
10% when only two frames were considered instead of 10.

The 3D CNN [9] is a supervised approach. In contrast with the
two previously discussed approaches, the input to the network are
not just raw frames. Instead, the input is comprised of greyscale
frames, the gradient and optical flow in x and y directions. Buffers
of 7 frames centered on the current frame are used as input to 3D
convolution kernels. The authors state that blocks of 5-7 frames
have empirically been shown to yield the same performance as tak-
ing into account the whole sequence. The size of the patches used
for the TRECVID data set was 60× 40.

In the proposed approach we also consider the grayscale raw in-
formation of the frames, the temporal gradient instead of optical
flow, but represent the block of frames of interest with a single
randomly selected frame. In contrast to other approaches, our ap-
proach does not suffer from the increase in the number of training
parameters with the expansion of the block (time-interval) consid-
ered.

3. TEMPORAL DROPOUT OF CHANGES
APPROACH

The proposed approach, shown in Fig. 1 is simple. Similar to the
DFS [20] we use greyscale images and temporal gradient (change)
information. However, rather than considering only the temporal
gradient between the current and previous frame, we would like to
consider longer-term motion across a larger block of frames (Group
of Pictures - GOP), as typically done in other deep learning ap-
proaches [9]. To do so without increasing the number of train-
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Figure 1: Proposed change detection and temporal dropout ap-
proach: The input to the convolutional network is comprised
of the greyscale frame, temporal gradient and the gradient be-
tween the current frame and a frame randomly selected from a
preceding block of frames - Group of Pictures (GOP).

Figure 2: Features from sample frames: Left to right -
greyscale, gradient previous frame, gradient random frame.
Top - DynTex++ cloth class, bottom - UCLA plant-t-near class.

able parameters, which is a limiting factor in the other proposed
appoaches, we use a temporal dropout strategy, whereby a single
frame is selected at random from the GOP and a gradient is com-
puted between that frame and the current one.

Our approach is motivated by the dropout mechanism used to
reduce overfitting in deep NNs [8], by preventing co-adaptation. In
our experiments we used GOP size of 25 frames, as it is represents
a second of a 25 fps sequence. This enables us to handle 2.5 times
larger sequence of frames than the largest previously considered,
without increasing the size of the network.

Fig. 2 shows features extracted for sample frames from the Dyn-
Tex++ and UCLA data sets. The gradients were scaled to the
[0,255] range.

While the proposed approach can be used with any convolutional
network architecture, the convolutional neural network used in our
experiments is the Krizhevsky et al. 650,000 neurons architecture
[11], as adapted in [7]. The network contains eight layers, five
are convolutional and the remaining three are fully connected. The
output of the network is a 128 class softmax, allowing us to use
the same architecture to produce the distribution over the classes
from both DynTex++ and UCLA datasets (total of 86). The rest is
unused, but kept as it does not effect the computational efficiency.
The input to the network was reduced by 2 pixels when compared
to the original size of the sequences in the databases considered.
This allows us to to follow the standard training procedure where
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Figure 3: Accuracy during training over iterations: for UCLA
data set - dashed line and DynTex++ data set - solid line.

10 patches are created for each input frame. The size of the input
was therefore 48× 48 pixels in the DynTex++ case and 46× 46 in
the UCLA. We train our network on a NVIDIA Tesla K40 GPU.

4. EXPERIMENTS AND RESULTS
Three main public DT datasets exist that have been widely used

for DT analysis: the UCLA dataset [5], the DynTex dataset [13]
and the DynTex++ dataset [6]. Since the DynTex++ dataset is de-
rived from DynTex and seems to be the more challenging dataset of
the two, we test the proposed approach on DynTex++ and UCLA
datasets and compare with the state-of-the-art results for the DFS
method reported in [20].

The UCLA dynamic texture dataset consists of 50 DT classes,
each with four grayscale video sequences captured from different
viewpoints. Each sequence contains 75, 48 × 48 pixel frames. In
our experiments we used 25% of the data for testing, while the rest
was used for training. The split corresponds to the first fold as
provided with the dataset.

The DynTex++ dataset contains 36 classes of dynamic texture,
each of which contains 100 sequences of a fixed size 50 × 50 ×
50. In our experiments we use a random selection of 20% of the
sequences as a test set, while the rest form our training set.

We use a GOP of 25 frames and generate a single data instance
for each frame after the initial 25 frames. Thus, each sequence
of the DyntTex++ was represented with 25 instances per sequence
and each UCLA sequence with 50. Each instance is classified sep-
arately by the NN and the final classification for a sequence is done
by majority voting.

The initial training is done for 20,000 iterations on the larger
DynTex++ data set. We than continue training the network either
on DynTex++ or UCLA data for a subsequent 100,000 iterations.
The training procedure is the same as that used in [7]. The train-
ing for our approach takes 24 hours. The classifier accuracy over
the training iterations for both datasets is shown in Fig. 3. In all
the experiments we used the Caffe implementation of convolutional
neural networks [10].

We report two types of accuracy. The per-frame accuracy con-
siders all the frames of the sequence separately and assumes that
the decision about the type of the dynamic texture can be made
based on a single frame. The sequence-level refers to the accuracy
achieved by taking the mode of the per-frame labels as the label of
the whole sequence.

The sequence-level accuracy our approach achieved on the UCLA
dataset is 98% (a single sequence was misclassified). The top per-



Figure 4: Some of the first convolutional layer filters learned by
the network.

frame accuracy achieved over 100,000 iterations was 91.94%. The
proposed method’s sequence-level classification result is second
only to DFS features combined with an SVM classifier. Both the
per frame and sequence-level accuracy are above all other methods
reported in the literature.

The top per-frame accuracy achieved for the DynTex++ data set
is 90.37%, which, even though done at the level of single frames,
surpasses the state of the art reported in [20] for sequence-level.

The network is clearly able to learn the features that enable ef-
ficient classification of the different DT classes. This can also be
seen in Fig. 4, which shows some of the filters from the first layer of
the network. The colored information in the figure corresponds to
the temporal features learned, while the greyscale represents static
features.

5. CONCLUSION
Although the deep learning methods revolutionizes several areas

of computer vision, they have not, up to now, been considered for
the task of dynamic texture classification. In this paper we show
that a deep convolutional neural network can be efficiently used to
achieve state-of-the-art DT classification results.

Our approach to learning features relies on temporal gradients
and a novel temporal dropout technique, which allows us to con-
sider larger time intervals without increasing the number of learn-
ing parameters.
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