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Abstract. In image retrieval, global features related to color or texture
are commonly used to describe the image content. The problem with
this approach is that these global features cannot capture all parts of
the image having different characteristics. Therefore, local computation
of image information is necessary. By using salient points to represent
local information, more discriminative features can be computed. In this
paper we compare a wavelet-based salient point extraction algorithm
with two corner detectors using the criteria: repeatability rate and in-
formation content. We also show that extracting color and texture infor-
mation in the locations given by our salient points provides significantly
improved results in terms of retrieval accuracy, computational complex-
ity, and storage space of feature vectors as compared to global feature
approaches.

1 Introduction
Haralick and Shapiro [1] consider a point in an image interesting if it has two main
properties: distinctiveness and invariance. This means that a point should be distin-
guishable from its immediate neighbors and the position as well as the selection of
the interesting point should be invariant with respect to the expected geometric and
radiometric distortions. Considering these properties, Schmid and Mohr [2] proposed
the use of corners as interest points in image retrieval. Different corner detectors are
evaluated and compared in [3] and the authors show that the best results are provided
by the Harris corner detector [4].

Corner detectors, however, were designated for robotics and shape recognition
and they have drawbacks when are applied to natural images. Visual focus points do
not need to be corners: when looking at a picture, we are attracted by some parts
of the image, which are the most meaningful for us. We cannot assume them to be
located only in corner points, as is mathematically defined in most corner detectors.
For instance, a smoothed edge may have visual focus points and they are usually not
detected by a corner detector. Corners also gather in textured regions. The problem is
that due to efficiency reasons only a preset number of points per image can be used in
the indexing process. Since in this case most of the detected points will be in a small
region, the other parts of the image may not be described in the index at all.

We aim for a set of interesting points called salient points that are related to any
visual interesting part of the image whether it is smoothed or corner-like. Moreover,
to describe different parts of the image, the set of salient points should not be clus-
tered in few regions. We believe multi-resolution representation is interesting to detect
salient points. Our wavelet-based salient points [5] are detected for smoothed edges
and are not gathered in texture regions. Hence, they lead to a more complete image
representation than corner detectors.
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We also compare our wavelet-based salient point detector with the Harris corner
detectors used by Schmid and Mohr [3]. In order to evaluate the “interestingness” of
the points obtained with these detectors (as was introduced by Haralick and Shapiro
[1]) we compute the repeatability rate and the information content. We are also in-
terested in using the salient points in a retrieval scenario. Therefore, in a small neigh-
borhood around the location of each point we extract local color and texture features
and use only this information in retrieval. It is quite easy to understand that using a
small amount of such points instead of all image pixels reduces the amount of data
to be processed. Moreover, local information extracted in the neighborhood of these
particular points is assumed to be more robust to classic transformations (additive
noise, affine transformations including translation, rotation, and scale effects, partial
visibility).

2 Wavelet-Based Salient Points

A wavelet-based salient point detector has been presented in our previous work [6].
Here we briefly present the outline of the algorithm and we show some examples of
detected salient points.

A wavelet is an oscillating and attenuated function with zero integral. We study
the image f at the scales (or resolutions) 1/2, 1/4, . . ., 2j , j ∈ Z and j ≤ −1.
The wavelet detail image W2jf is obtained as the convolution of the image with
the wavelet function dilated at different scales. We consider orthogonal wavelets with
compact support. First, this assures that we have a complete and non-redundant
representation of the image. Second, we know from which signal points each wavelet
coefficient at the scale 2j was computed. We can further study the wavelet coefficients
for the same points at the finer scale 2j+1. There is a set of coefficients at the scale
2j+1 computed with the same points as a coefficient W2jf(n) at the scale 2j . We
call this set of coefficients the children C(W2jf(n)) of the coefficient W2jf(n). The
children set in one dimension is:

C(W2jf(n)) = {W2j+1f(k), 2n ≤ k ≤ 2n+ 2p− 1} (1)

where p is the wavelet regularity, 0≤n<2jN , and N the length of the signal.
Each wavelet coefficient W2jf(n) is computed with 2−jp signal points. It repre-

sents their variation at the scale 2j . Its children coefficients give the variations of
some particular subsets of these points (with the number of subsets depending on the
wavelet). The most salient subset is the one with the highest wavelet coefficient at
the scale 2j+1, that is the maximum in absolute value of C(W2jf(n)). In our salient
point extraction algorithm, we consider this maximum and look at his highest child.
Applying recursively this process, we select a coefficient W2−1f(n) at the finer resolu-
tion 1/2. Hence, this coefficient represents 2p signal points. To select a salient point

Fig. 1. Salient points extraction: spatial support of tracked coefficients
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Fig. 2. Salient points examples. For Daubechies4 and Haar salient points are detected
for smooth edges (fox image) and are not gathered in textured regions (girl image).

from this tracking, we choose among these 2p points the one with the highest gradient
(Figure 1). We set its saliency value as the sum of the absolute value of the wavelet
coefficients in the track:

saliency =

−j∑
k=1

|C(k)(W2jf(n))|,− log2 N ≤ j ≤ −1 (2)

The tracked point and its saliency value are computed for every wavelet coefficient.
A point related to a global variation has a high saliency value, since the coarse wavelet
coefficients contribute to it. A finer variation also leads to an extracted point, but with
a lower saliency value. We then need to threshold the saliency value, in relation to the
desired number of salient points. We first obtain the points related to global variations;
local variations also appear if enough salient points are requested.

The salient points extracted by this process depend on the wavelet we use. Haar
is the simplest wavelet function, so is the fastest for execution. The larger the spatial
support of the wavelet, the more the number of computations. Nevertheless, some
localization drawbacks can appear with Haar due to its non-overlapping wavelets at a
given scale. This can be avoided with the simplest overlapping wavelet, Daubechies4.
Examples of salient points extracted using Daubechies4, Haar, and Harris detectors are
shown in Figure 2. Note that while for Harris the salient points lead to an incomplete
image representation, for the other two detectors the salient points are detected for
smooth edges (as can be seen in the fox image) and are not gathered in texture
regions (as can be seen in the girl image). Hence, they lead to a more complete image
representation.

3 Repeatability and Information Content

Repeatability is defined by the image geometry. Given a 3D point P and two projection
matrices M1 and M2, the projections of P into two images I1 and I2 are p1 = M1P
and p2 = M2P . The point p1 detected in image I1 is repeated in image I2 if the
corresponding point p2 is detected in image I2. To measure the repeatability, a unique
relation between p1 and p2 has to be established. In the case of a planar scene this
relation is defined by an homography: p2 = H21p1.

The percentage of detected points which are repeated is the repeatability rate. A
repeated point is not in general detected exactly at position p2, but rather in some
neighborhood of p2. The size of this neighborhood is denoted by ε and repeatabil-
ity within this neighborhood is called ε-repeatability. The set of point pairs (p2, p1)
which correspond within an ε-neighborhood is P (ε) = {(p2, p1)|dist(p2, H21p1) < ε}.
Considering N , the total number of points detected, the repeatability rate is:

r(ε) =
|D(ε)|
N

, 0 ≤ r(ε) ≤ 1 (3)

We would also like to know how much average information content a salient point
”has” as measured by its greylevel pattern. The more distinctive the greylevel pat-
terns are, the larger the entropy is. In order to have rotation invariant descriptors
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for the patterns, we chose to characterize salient points by local greyvalue rotation
invariants which are combinations of derivatives. We computed the ”local jet” [7]
which is consisted of the set of derivatives up to N th order. These derivatives describe
the intensity function locally and are computed stably by convolution with Gaussian
derivatives. The local jet of order N at a point x = (x, y) for an image I and a scale
σ is defined by: JN [I](x, σ) = {Li1...in(x, σ)|(x, σ) ∈ I × R+}, where Li1...in(x, σ) is
the convolution of image I with the Gaussian derivatives Gi1...in(x, σ), ik ∈ {x, y}.

In order to obtain invariance under the group SO(2) (2D image rotation), Koen-
derink and van Doorn [7] computed differential invariants from the local jet:

ν[0 . . . 3] =


LxLx + LyLy

LxxLxLx + 2LxyLxLy + LyyLyLy
Lxx + Lyy

LxxLxx + 2LxyLxy + 2LyyLyy

 (4)

The computation of entropy requires a partitioning of the space of ν. Partitioning
is dependent on the distance measure between descriptors and we consider the
approach described by Schmid, et al. [3]. The distance we used is the Mahalanobis
distance given by: dM (ν1,ν2) =

√
(ν1 − ν2)TΛ−1(ν1 − ν2), where ν1 and ν2

are two descriptors and Λ is the covariance of ν. The covariance matrix Λ is sym-
metric and positive definite. Its inverse can be decomposed into Λ−1 = PTDP
where D is diagonal and P an orthogonal matrix. Furthermore, we can define
the square root of Λ−1 as Λ−1/2 = D1/2P where D1/2 is a diagonal matrix
whose coefficients are the square roots of the coefficients of D. The Mahalanobis
distance can then be rewritten as: dM (ν1,ν2) = ||D1/2P (ν1 − ν2)||. The dis-
tance dM is the norm of difference of the normalized vectors: νnorm = D1/2Pν.
This normalization allows us to use equally sized cells in all dimensions. This
is important since the entropy is directly dependent on the partition used. The
probability of each cell of this partition is used to compute the entropy of a set
of vectors ν.

In the experiments we used a set of 1000 images taken from the Corel
database and we compared 4 salient point detectors. In Section 2 we introduced
two salient point detectors using wavelets: Haar and Daubechies4. For bench-
marking purposes we also considered the Harris corner detector [4] and a variant
of it called PreciseHarris, introduced by Schmid, et al. [3].

3.1 Results for Repeatability
Before we can measure the repeatability of a particular detector we first had to
consider typical image alterations such as image rotation and image scaling. In
both cases, for each image we extracted the salient points and then we computed
the average repeatability rate over the database for each detector.

In the case of image rotation, the rotation angle varied between 0◦ and 180◦.
The repeatability rate in a ε=1 neighborhood for the rotation sequence is dis-
played in Figure 3.

The detectors using wavelet transform (Haar and Daubechies4) give better
results compared with the other ones. Note that the results for all detectors
are not very dependent on image rotation. The best results are provided by
Daubechies4 detector.
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Fig. 3. Repeatability rate for image rotation (left) and scale change (right) (ε=1)

In the case of scale changes, for each image we considered a sequence of
images obtained from the original image by reducing the image size so that the
image was aspect-ratio preserved. The largest scale factor used was 4.

The repeatability rate for scale change is presented in Figure 3. All detectors
are very sensitive to scale changes. The repeatability is low for a scale factor
above 2 especially for Harris and PreciseHarris detectors. The detectors based
on wavelet transform provide better results compared with the other ones.

3.2 Results for Information Content

For each detector we computed the salient points for the set of images and char-
acterized each point by a vector of local greyvalue invariants (cf. Eq. (4)). The
invariants were normalized and the entropy of the distribution was computed.
The cell size in the partitioning was the same in all dimensions and it was set to
20. The σ used for computing the greylevel invariants was 3. We also considered
random points in our comparison. For each image in the database we computed
the mean number m of salient points extracted by different detectors and then
we selected m random points using a uniform distribution.

The results are given in Table 1. The detector using the Daubechies4 wavelet
transform has the highest entropy and thus the salient points obtained are the
most distinctive. The results obtained for Haar wavelet transform are almost
as good. The results obtained with PreciseHarris detector are better than the
ones obtained with Harris but worse than the ones obtained using the wavelet
transform. Moreover, the results obtained for all of the salient points detectors
are significantly better than those obtained for random points. The difference
between the results of Daubechies4 and random points is about a factor of two.

Detector Entropy

Haar 6.0653

Daubechies4 6.1956

Harris 5.4337

PreciseHarris 5.6975

Random 3.124

Table 1. The information content for different detectors

In summary, the most “interesting” salient points were detected using the
Daubechies4 detector. These points have the highest information content and
proved to be the most robust to rotation and scale changes. Therefore, in our next
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experiments we will consider this detector and as benchmark the PreciseHarris
corner detector.

4 Content-Based Retrieval

Our next goal is to use the salient points in a content-based retrieval scenario. We
consider a modular approach: the salient points are first detected for each image
in the database and then feature vectors are extracted from a small neighborhood
around each salient point. This approach assures the independence of the salient
point extraction techniques and the feature extraction procedure and gives the
user the liberty to use any features he wants for a specific application [8]. In
our experiments in constructing the feature vectors we used color moments be-
cause they provide a compact characterization of color information and they are
more robust and efficient in content-based retrieval than the well-known color
histograms [9] and Gabor texture features because they are extensively used for
texture characterization [10, 11]. Of course the wavelet coefficients used during
the salient point detection can be also used in constructing the feature vectors.

The number of salient points extracted will clearly influence the retrieval
results. We performed experiments (not presented here due to space limitation)
in which the number of salient points varied from 10 to several hundreds and
found out that when using more than 50 points, the improvement in accuracy
we obtained did not justify the computational effort involved. Therefore, in the
experiments, 50 salient points were extracted for each image.

For feature extraction, we considered the set of pixels in a small neighborhood
around each salient point. In this neighborhood we computed the color moments
(in a 3 × 3 neighborhood) and the Gabor moments (in a 9 × 9 neighborhood).
For convenience, this approach is denoted as the Salient W (wavelet) approach
when Daubechies4 detector is used and as the Salient C (corner) approach when
the PreciseHarris corner detector is used. For benchmarking purposes we also
considered the results obtained using the color moments and the wavelet mo-
ments [10] extracted over the entire image (denoted as Global CW approach)
and the results obtained using the color moments and the Gabor moments [11]
extracted over the entire image (denoted as Global CG approach).

The overall similarity distance Dj for the jth image in the database is ob-
tained by linearly combining the similarity distance of each individual feature:

Dj =
∑
i

WiSj(fi), with Sj(fi) = (xi − qi)
T (xi − qi) and j = 1, . . . , N (5)

where N is the total number of images in the database and xi and qi are the ith

feature (e.g. i = 1 for color and i = 2 for texture) vector of the jth image in the
database and the query, respectively. The low-level feature weights Wi for color
and texture in Eq. (5) are set to be equal.

4.1 Results
In the first experiments we considered a database of 479 images (256×256 pixels
in size) of color objects such as domestic objects, tools, toys, food cans, etc [12].
As ground truth we used 48 images of 8 objects taken from different camera
viewpoints (6 images for a single object). Both color and texture information
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were used. The Salient approaches, the Global CW approach, and the Global
CG approach were compared. Color moments were extracted either globally (the
Global CW and Global CG) or locally (the Salient approaches). For wavelet
texture representation of the Global CW approach, each input image was first
fed into a wavelet filter bank and was decomposed into three wavelet levels, thus
10 de-correlated subbands. For each subband, the mean and standard deviation
of the wavelet coefficients were extracted. The total number of wavelet texture
features was 20. For the Salient approaches, we extracted Gabor texture features
from the 9× 9 neighborhood of each salient point. The dimension of the Gabor
filter was 7×7 and we used 2 scales and 6 orientations/scale. The first 12 features
represented the averages over the filter outputs and the last 12 features were the
corresponding variances. Note that these features were independent so that they
had different ranges. Therefore, each feature was then Gaussian normalized over
the entire image database. For the Global CG approach, the global Gabor texture
features were extracted. The dimension of the global Gabor filter was 61 × 61.
We extracted 36 Gabor features using 3 scales and 6 orientations/scale. The first
18 features were the averages over the filters outputs and the last 18 features
were the corresponding variances.

In Figure 4 we show an example of a query image and the similar images
from the database retrieved with various ranks. The Salient point approaches
outperform both the Global CW approach and the Global CG approach. Even
when the image was taken from a very different viewpoint, the salient points
captured the object details enough so the similar image was retrieved with a
good rank. The Salient W approach shows better retrieval performance than the
Salient C approach. The Global CG approach provides better performance than
the Global CW approach. This fact demonstrates that Gabor feature is a very
good feature for texture characterization. Moreover, it should also be noted that:
(1) the Salient point approaches only use the information from a very small part
of the image, but still achieve a good representation of the image. For example, in
our object database 9×9×50 pixels were used to represent the image. Compared
to the Global approaches (all 256×256 pixels were used), the Salient approaches
only use less than 1/16 of the whole image pixels. (2) Compared to the Global
CG approach, the Salient approaches have much less computational complexity.

Query

Salient W 1 2 4 15 21
Salient C 1 3 7 18 25
Global CW 2 7 12 25 33
Global CG 2 5 9 20 27

Fig. 4. Example of images of one object taken from different camera viewpoints and
the corresponding ranks of each individual image using different approaches
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Table 2 shows the retrieval accuracy for the object database. Each of the 6
images from the 8 classes was considered as query image and the average retrieval
accuracy was calculated.

Top 6 10 20

Salient W 61.2 75.2 85.7

Salient C 58.9 73.8 83.2

Global CW 47.3 62.4 71.7

Global CG 58.3 73.4 82.8

Table 2. Retrieval accuracy (%) using 48 images from 8 classes for object database

Results in Table 2 show that using the salient point information the re-
trieval results are significantly improved (>10%) compared to the Global CW
approach. When compared to the Global CG approach, the retrieval accuracy
of the Salient W approach is 2.9%, 2.8%, and 2.9% higher in the top 6, 10,
and 20 images, respectively. The Salient C approach has approximatively 2.5%
lower retrieval accuracy comparing with the Salient W approach. Additionally,
the Salient approaches have much lower computational complexity and 33.3%
less storage space of feature vectors than the Global CG approach. Although the
global wavelet texture features are fast to compute, their retrieval performance
is much worse than the other methods. Therefore, in terms of overall retrieval
accuracy, computational complexity, and storage space of feature vectors, the
Salient W approach is best among all the approaches.

In our second experiments we considered a database consisted of 4013 vari-
ous images covering a wide range of natural scenes such as animals, buildings,
paintings, mountains, lakes, and roads. In order to perform quantitative analy-
sis, we randomly chose 15 images from a few categories, e.g., building, flower,
tiger, lion, road, forest, mountain, sunset and use each of them as queries. For
each category, we measured how many hits, i.e. how many similar images to the
query were returned in the top 20 retrieved images.

Figure 5 shows the average number of hits for each category using the Global
CW approach, the Global CG approach, and the Salient W approach. Clearly
the Salient approach has similar performance comparing with the Global CG
approach and outperforms the Global CW approach when the first five cate-
gories are considered. For the last three categories, which are forest, mountain,
and sunset, the global approaches (both Global CW and Global CG) perform
better than the Salient approach because now the images exhibit more global
characteristics and therefore, the global approaches can capture better the image
content.

As noted before, the Salient approach uses only a very small part of the
image to extract the features. Therefore, comparing with the global approaches
the Salient approach has much less computational complexity. Regarding the
storage space of feature vectors, the number of Gabor texture features used in
the Salient approach and the Global approach were 24 and 36, respectively. This
does not have a big effect for small database. However, for very large image
databases, the storage space used for these texture features will surely make big
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Fig. 5. The average number of hits for each category using the global color and wavelet
moments (Global CW), the global color and Gabor moments (Global CG) and the
Salient W approach (Salient)

difference. As to the color features, both approaches have the same number of
features.

5 Discussion

In this paper we compared a wavelet-based salient point extraction algorithm
with two corner detectors using the criteria: repeatability rate and information
content. Our points have more information content and better repeatability rate
than the Harris corner detector. Moreover, the detectors have significantly more
information content than randomly selected points.

We also show that extracting color and texture information in the locations
given by our salient points provides significantly improved results in terms of
retrieval accuracy, computational complexity, and storage space of feature vec-
tors as compared to global feature approaches. Our salient points are interesting
for image retrieval because they are located in visual focus points and therefore,
they capture the local image information.

For content-based retrieval, a fixed number of salient points (50 points in this
paper) were extracted for each image. Color moments and Gabor moments were
extracted from the 3 × 3 and the 9 × 9 neighborhood of the salient points, re-
spectively. For benchmark purpose, the Salient point approaches were compared
to the global color and wavelet moment (Global CW) approach and the global
color and Gabor moments (Global CG) approach.

Two experiments were conducted and the results show that: (1) the Salient
approaches have better performance than the Global CW approach. The Salient
approaches proved to be robust to the viewpoint change because the salient
points were located around the object boundaries and captured the details inside
the objects, neglecting the background influence; (2) The Salient approaches
have similar performance compared to the Global CG approach in terms of the
retrieval accuracy. However, the Salient approaches achieve the best performance
in the overall considerations of retrieval accuracy, computational complexity, and
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storage space of feature vectors. The last two factors will have very important
influence for very large image databases; (3) Better retrieval results are obtained
when Daubechies4 salient points are used compared with Harris corners. This
shows that our wavelet-based points can capture better the image content.

Our experimental results also show that the global Gabor features perform
much better than the global wavelet features. This fact is consistent with the
results of the other researchers in the field proving that Gabor features are very
good candidates for texture characterization.

In conclusion, the novel contribution of this paper is in showing that a
wavelet-based salient point technique beats the current leading method which
uses the PreciseHarris corner detector [3] with respect to the area of content-
based retrieval. In addition, we show that the wavelet-based salient point tech-
nique outperforms global feature methods, because the salient points are able
to capture the local feature information and therefore, they provide a better
characterization for the scene content. Moreover, the salient points are more
“interesting” (as defined by Haralick and Shapiro [1]) than the Harris corner
points since they are more distinctive and invariant.

In our future work, we plan to explore salient point extraction techniques
which mimic the way the humans extract information in an image. This will
hopefully lead to more semantically meaningful results. Moreover, we plan to
extract shape information in the location of the salient points making the re-
trieval more accurate. We also intend to automatically determine the optimal
number of the salient points needed to be extracted for each image.
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