EEEAEROSPACE CONFERENCE Yellowstone conference center, big sky, montana, Mar 4 – 11, 2017

UNIVERSITY OF TRENTO - Italy Information Engineering and Computer Science Department

An SDR-based Reconfigurable Multicarrier Transceiver for Terrestrial and Satellite Communications

Enrico Mioso, Mattia Bonomi, Fabrizio Granelli, <u>Claudio Sacchi</u>

University of Trento, Dept. of Information Engineering and Computer Science (DISI), Trento (ITALY)

E-mail: claudio.sacchi@unitn.it

E. Mioso, M. Bonomi, C. Sacchi, F. Granelli

Outline

- Introduction and motivations;
- Innovation with respect to the state-of-the-art;
- SC-OFDM vs. OFDM: similarities and differences;
- GNU Radio SDR tools;
- Implementation of the SDR-based reconfigurable multicarrier transceiver;
- Experimental results;
- Conclusion and future work.

Introduction and motivations (1)

- Orthogonal Frequency Division Multiplexing (OFDM) and, more in general multicarrier modulations represent the cornerstone of modern mobile communication standards (4G LTE, IEEE 802.11n, DVB-T, etc.);
- OFDM is a viable transmission solution for broadband mobile transmissions (at least, since 1981, when digital I-FFT based implementation was discovered by B. Hirosaki) and provides <u>flexible</u> <u>multi-user transmission thanks to OFDMA</u>;
- Well known disadvantages are: power inefficiency due to nonlinear distortion vulnerability and <u>low diversity gain</u> when used over frequency-selective fading channels;
- To solve the aforesaid issues, modifications of OFDM have been proposed in the literature targeted at improving efficiency and resilience (sometimes the term "OFDM-inspired waveforms" is used¹).

¹B. Farhang-Boroujeny and H. Moradi, "OFDM-inspired waveforms for 5g," *IEEE Communications Surveys Tutorials*, vol. PP, no. 99, pp. 1–1, 2016.

Introduction and motivations (2)

- One of these improvement is the so-called Single-Carrier OFDM (SC-OFDM), known also as <u>DFT-precoded OFDM</u> or <u>DFT-spread OFDM</u>;
- SC-OFDM exhibits reduced peak-to-average power ratio (PAPR) and increased diversity gain in the frequency domain with respect to conventional OFDM;
- SC-OFDM (and the multi-user version known as SC-FDMA) is used in terrestrial LTE for the uplink, and in satellite DBV-NGH standard, despite its higher computational complexity;
- In this work, we propose a reconfigurable transceiver based on Software Defined Radio (SDR) technology enabling both OFDM and SC-OFDM transmission modes in uplink and downlink;
- The claimed objective is to seamlessly switch from OFDM to SC-OFDM (and vice-versa), when multi-mode transmission is required by link situation, power availability, computational resource constraints, etc.

E. Mioso, M. Bonomi, C. Sacchi, F. Granelli

Innovation with respect to state-of-the-art

 The underlying picture can highlight at a glance the step-ahead of this work with respect to the state-of-the-art framework:

SDR-based OFDM implementations

Implementation on WARP SDR open-source platform² Direct implementation on FPGA³ SDR-based "OFDMinspired" transceiver implementations

Implementation of filter-bank multicarrier (FBMC): test with Ettus USRP boards⁴ SDR-based SC-OFDM/ SC-FDMA transceiver implementations

Implementation of SC-FDMAbased LTE uplink: test with Ettus N210 boards⁵

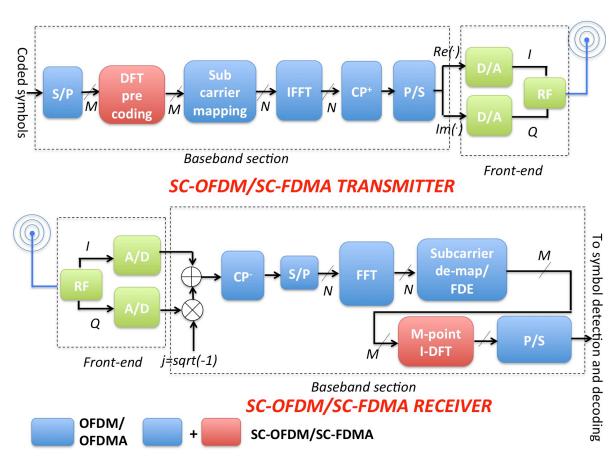
ALL THESE IMPLEMENTATIONS ARE SINGLE-MODE, MULTI-MODE MULTI-CARRIER TRANSMISSION HAS NOT YET BEEN CONSIDERED

Possible applications of multi-mode reconfigurable OFDM/SC-OFDM transceiver:

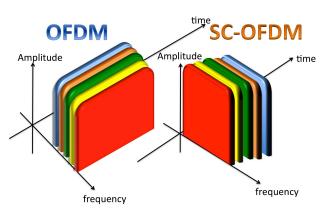
- Emergency communications (SC-OFDM is more robust in safety-critical data exchange);
- Satellite mobile communications (higher power efficiency, less dBs of OBO).

²T. Suryani, Suwadi, Hasan, and S. W. Yoga, "Implementation and performance evaluation of orthogonal frequency division multiplexing (OFDM) using warp," in Intelligent Technology and Its Applications (ISITIA), 2015 International Seminar on , May 2015, pp. 451–456.

³J. Vasani, T. Kumar, R. Nagpal, M. Naik, and R. Malik, "Baseband OFDM physical layer implementation on FPGA using systemvue," in 2016 WiSPNET Conf., March 2016, pp. 967–972.


⁴B. Horvth and P. Bakki, "Implementation of FBMC transmission link using SDR," in RADIOELEKTRONIKA 2013 Conf., Apr. 2013, pp. 320–323.

⁵P. B. JŁrgensen, T. L. Hansen, T. B. SŁrensen, and G. Berardinelli, "Implementation of Ite SC-FDMA on the USRP2 software defined radio platform," in Communication Technologies Workshop (Swe-CTW), 2011 IEEE Swedish , Oct. 2011, pp. 34–39.


E. Mioso, M. Bonomi, C. Sacchi, F. Granelli

SC-OFDM vs. OFDM: similarities and differences

 A block diagram of SC-OFDM is shown (the differences with respect to OFDM are highlighted in red):

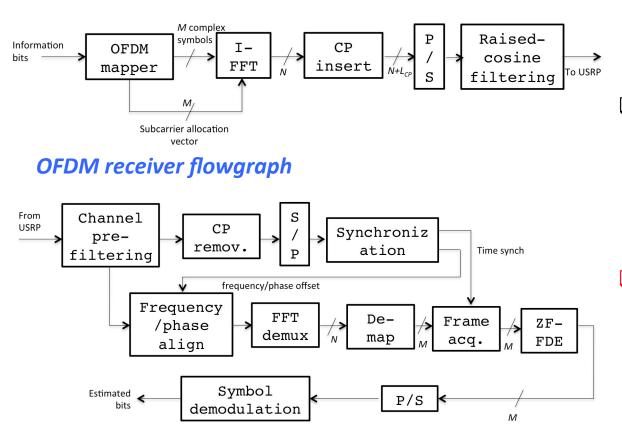
SIGNAL REPRESENTATION IN TIME-FREQUENCY DOMAIN

 Frequency-domain equalization (FDE) is more effective with SC-OFDM, because is applied to the single-carrier received signal;
Time synchronization of SC-OFDM signal is more critical (sampling time is reduced).

E. Mioso, M. Bonomi, C. Sacchi, F. Granelli

GNU-radio SDR tools

- The software implementation was done using <u>the GNU Radio platform</u> installed on commodity PCs running UBUNTU OS;
- The generation of the baseband waveform is <u>full-software</u> and performed by the PC. The Universal Software Radio Peripheral (USRP) boards (low-cost hardware components supplied by Ettus Research) transmit the RF signal onto the air;
- The open-source GNU Radio platform (www.gnuradio.org):
 - Incorporates <u>software-implemented signal</u> processing blocks.
 - For the software Implementation it uses:
 - C++ for the computationally intensive signal processing functions, e.g., filters, mixers;
 - Python for the flow graphs connecting one block to another and other operations that aren't computationally intensive.



E. Mioso, M. Bonomi, C. Sacchi, F. Granelli

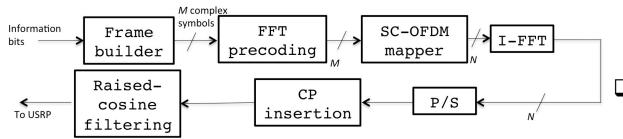
SDR implementation of the multicarrier transceiver (1)

Let's start from the flowgraphs of <u>baseline OFDM configuration</u>:

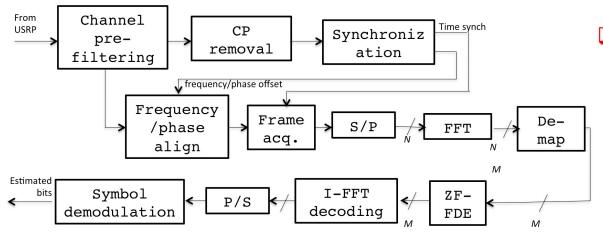
OFDM transmitter flowgraph

- Each block corresponds to a C++ function of the GNU Radio library;
- OFDM time/frequency synchronization is implemented by using the state-of-the-art algorithm of Schmidl and Cox shown in⁶;
- Raised cosine filtering is used to reduce sidelobe power level (such a solution is also adopted by "4G and beyond" standard⁷).

⁶T. M. Schmidl and D. C. Cox, "Robust frequency and timing synchronization for OFDM," *IEEE Transactions on Communications*, vol. 45, no. 12, pp. 1613–1621, Dec 1997.


⁷X. Zhang, M. Jia, L. Chen, J. Ma, and J. Qiu, "Filtered OFDM - enabler for flexible waveform in the 5th generation cellular networks," 2015 IEEE Global Communications Conference (GLOBECOM), Dec 2015, pp. 1–6.

E. Mioso, M. Bonomi, C. Sacchi, F. Granelli


SDR implementation of the multicarrier transceiver (2)

Now, let's focus on the SC-OFDM augmented flowgraph:

SC-OFDM transmitter flowgraph

SC-OFDM receiver flowgraph

Apart from FFT precoding (and decoding) the flowgraph is the same of OFDM ;

The same synchronization algorithm is used, BUT synchronization is performed before S/P conversion at higher sampling rate;

Zero-Forcing FDE is performed on the singlecarrier received signal converted in the frequency domain by the FFT and then reconverted in the time domain by the I-FFT.

E. Mioso, M. Bonomi, C. Sacchi, F. Granelli

Experimental results (1)

• HW/SW setup and open-field emulation scenarios:

COMPUTING MACHINES:

TRANSMITTER:

ACER Aspire notebook, with two 1.33 GHz AMD C-70 CPUs, 3.6 GB of RAM and UBUNTU 14.04 OS,

RECEIVER: HP Beats Studio laptop with 4 2GHz Intel Core I7-4510U CPUs, 7.6 GB of RAM, and ARCHLINUX 2016 OS.

COMMUNICATION INTERFACES:

USRP N210 boards. All the boards use XCVR2450 half-duplex RF daughterboards.

17

Indoor LOS scenario

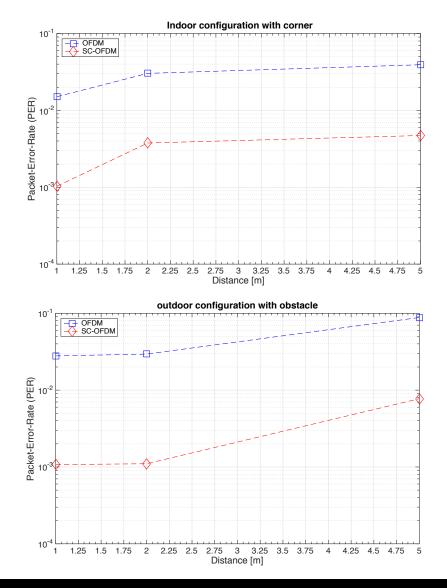
Outdoor LOS scenario Outdoor with obstacle

Indoor with corner

E. Mioso, M. Bonomi, C. Sacchi, F. Granelli

Experimental results (2)

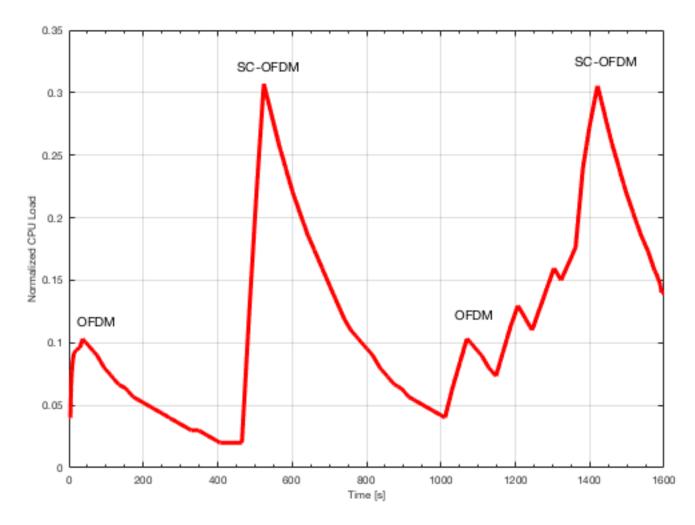

Transceiver parameters setting:


Parameter	Numerical value
Subcarrier number (N)	512
Subcarrier mapped per user (M)	256
Cyclic prefix length (symbols)	64
Frame length (Kbytes)	1.125
Size of trasmitted data per user (Kbytes)	125
Signal bandwidth (KHz)	500
Raised cosine filter roll-off	0.25
Modulation scheme	QPSK

E. Mioso, M. Bonomi, C. Sacchi, F. Granelli

Experimental results (2)

Packet-Error Rate results:



E. Mioso, M. Bonomi, C. Sacchi, F. Granelli

Experimental results (3)

• CPU load (measured at RX side):

COMMENT:

The dramatic link performance improvement yielded by SC-OFDM is paid by a noticeable increase of the computational complexity at the receiver side (<u>the CPU</u> <u>load is 3 times that of</u> <u>OFDM</u>)

E. Mioso, M. Bonomi, C. Sacchi, F. Granelli

Conclusion and future work

- This work has been focused on the implementation of a reconfigurable <u>SDR-based dual-mode OFDM/SC-OFDM transceiver</u> that can find applications both in terrestrial and satellite communications;
- The implementation has been carried out with GNU Radio tools and tested in open field by using Ettus USRP boards;
- <u>The main achievement of the work is that OFDM and SC-OFDM can</u> <u>coexist in the same transceiver</u>, provided that a computationally efficient hardware platform is employed, able at supporting SC-OFDM detection;
- Future work may concern with the introduction in the SDR chain of channel coding (turbo and/or LDPC coding, for instance) and the synthesis of further waveform formats like, e.g., constant-envelope OFDM (CE-OFDM) and CE-SCFDMA, already considered in literature, but not implemented with SDR and tested in open field.

E. Mioso, M. Bonomi, C. Sacchi, F. Granelli