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Abstract 

 
This letter1 aims at proposing the utilization of evolutionary computation methodologies (i.e., 

Genetic Algorithms – GAs) in order to solve the problem of the Maximum Likelihood estimation of 

OFDM symbols in the presence of nonlinear distortions. Experimental results can prove the 

effectiveness of the proposed detection algorithm achieved with a reasonable computational load. 

 
INDEX TERMS: Multicarrier Modulation (MCM), Orthogonal Frequency Division 
Multiplexing (OFDM), Genetic Algorithms, Nonlinear distortion, Maximum-Likelihood (ML) 
detection. 
 
Corresponding author: 
 
CLAUDIO SACCHI, Ph.D.  
Assistant professor 
University of Trento  
Department of Information and Communication Technology  
Via Sommarive 14, I-38050 Trento (ITALY) 
Phone: +39-0461-883907, Fax: +39-0461-882093 
E-mail: claudio.sacchi@dit.unitn.it 
                                                 
1 This work has been partially supported by Italian Ministry on Research and University under the framework of the 
research projects: “Integrated Communication and Navigation” (ICONA) and “Study and Development of Innovative 
Smart Systems for Highly Reconfigurable Mobile Networks” (project codes: COFIN 2005095303_002 and COFIN 
2005099984_001). 



 

  

1. Introduction 

Multicarrier modulations [1] are regarded as emerging technologies for new-generation networking 

applications. In particular, Orthogonal Frequency Division Multiplexing (OFDM) can profit by full-digital 

FFT-based implementation and is intrinsically resilient against frequency-selective channel distortions [1]. 

At present, two open problems limit the efficiency of OFDM techniques when employed in real-world 

application testbeds: non-linear distortions involved by power amplifiers [2] and channel estimation errors 

occurring in time-varying multipath fading channels [3]. In this letter, we are focusing on the problem of 

the optimum OFDM symbol recovery in the presence of non-linear distortions.  

In wireless networks deployment, tight requirements in terms of power efficiency generally impose the 

utilization of saturating RF power amplifiers. It has been shown (see, e.g., [2], [4], and [5]) that a saturating 

non-linearity produces a sort of self-interference (namely: clipping noise) depending on the transmitted 

symbols and the in-out characteristics of nonlinear blocks. Various methodologies have been proposed in 

literature in order to reduce the negative impact of clipping noise on OFDM performances. All such 

methodologies are sub-optimum or quasi-optimum (in fact, the theoretically-optimum reception of 

nonlinearly distorted OFDM symbols based on Maximum-Likelihood (ML) estimation is computationally 

unsustainable). In [4] and [5], decision-directed iterative algorithms have been adopted in order to sharply 

reduce the computational burden of OFDM receivers to a polynomial order with respect to the subcarrier 

number. Such methodologies are very attractive from a computational point of view, but they are not 

designed for severe clipping. An alternative methodology for clipped OFDM symbol recovery has been 

proposed in [6] that is based on the recursive application of Bayesian inference. As compared with 

decision-directed approaches, the algorithm of [6] is characterized by a consistently increased 

computational complexity, but results in terms of Symbol-Error-Rate seem to be better in case of severe 

clipping. A completely different approach aimed at reducing the effects of clipping on OFDM signals has 

been proposed by Li and Cimini in [7] and Dinis and Gusmão in [8]. A deliberate clipping is introduced in 

order to obtain an OFDM signal characterized by an “almost constant” envelope. In such a way, linear 

amplifiers might be still employed without decrease of power efficiency. Unfortunately, the deliberate 

clipping is itself a nonlinear distortion that may involve a spectral regrowth of the transmitted signal. For 

this reason, it is necessary to filter the OFDM signal in the frequency domain. The impact of “clipping and 



 

  

filtering” (C&F) operation is relevant on OFDM performances, as shown in [7]. For this reason, efficient 

symbol recovery techniques are also required when “clipping and filtering” is adopted. In this specific 

context, iterative methodologies based on decision feedback have been proposed in [9] for residual clipping 

noise removal, and in [10] for sub-optimum iterative ML symbol estimation. Algorithms described in [9] 

and [10] are rather general in their mathematical formulations. So, they can be applied not only to the C&F 

case, but also to recover OFDM symbols clipped by non-linear amplifiers.  

In such a framework, the exploitation of Genetic Algorithms (GAs) [11] may represent an interesting 

alternative solution to OFDM symbol recovery in the presence of non-linear distortions. The exploitation of 

GAs in telecommunications, electromagnetism and signal processing is dated since about ten years. 

Applications are currently ranging (among the others) from antenna array optimization [12], DS/CDMA 

multi-user detection (MUD) [13], allocation of power resources in cellular DS/CDMA networks [14], 

interference cancellation in MC-CDMA systems [15], etc. More in general, GAs can provide reliable and 

affordable solutions to optimization problems that cannot be solved by full-space search due to 

computational reasons. Recently, GAs have recently found some interesting applications also in OFDM 

transmissions. Alias, Chen and Hanzo proposed in [16] a GA-based approach in order to find the optimal 

weight vector of the Minimum-BER MUD receiver in the context of a multiple-antenna aided multi-user 

OFDM system. Hong, Dong and Yuan employed in [17] a GA in order to derive the optimal distance 

spectrum (i.e., the codeword difference matrix considering all possible event error paths) in space-time 

trellis-coded OFDM. Finally, in [18], a GA-based approach is proposed in order to search for low Peak 

Average to Power Ratio (PAPR) near-optimum training sequences for OFDM systems.  

In the present work, we propose the adoption of a GA-based approach in order to find a near-optimum 

solution to the ML estimation of OFDM symbols distorted in a nonlinear way. We shall demonstrate that 

the proposed GA-based approach clearly outperforms state-of-the-art solutions even in the presence of 

heavy nonlinear distortions. Moreover, such good results are achieved by spending an affordable 

computational effort. The test case considered here is related to an OFDM signal distorted by a nonlinear 

power amplifier. Nevertheless, the proposed analysis might be extended without conceptual difficulties also 

to the C&F case. The letter is structured as follows: Section 2 is aimed at describing the system model. 

Section 3 details the proposed GA-based symbol estimation methodology. Section 4 presents some selected 

experimental results. Finally, in Section 5, the letter conclusions are drawn.   



 

  

2. System model 

The analytical expression for a generic multi-carrier OFDM symbol transmitted during the generic 

signaling interval i of duration T is given as follows [1]: 
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where sA is the carrier amplitude, { }1,..,0 ,ˆ , −== Nkss iki  is the vector of the M-level complex symbols 

transmitted over the N subcarriers (in the present letter, we consider a 16-QAM modulation; therefore, 

M=16), and )(tΠ is the rectangular waveform of unit amplitude. As known from the literature (see, e.g., 

[1]), the practical realization of OFDM modulation is feasible in the digital domain by applying an Inverse 

Fast Fourier Transform (IFFT) to the symbol vector is  and, therefore, by passing the discrete-time signal 

achieved to a Digital-to-Analog converter. The discrete sequence produced by the IFFT block (sample 

duration equal to NT ) can be expressed by the following equation: 
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Let us now introduce a nonlinear memoriless block into the transmission system. In particular, Solid State 

Power Amplifier (SSPA) nonlinearity is considered that introduces an amplitude distortion whose 

mathematical expression is given below (the normalized Rapp model [19] has been chosen): 
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The amount of distortion can be measured (in dB) in terms of Clip Level (CL) defined 

as: ( )xCL σα10log20=̂  where 2
xσ  is the variance of the input signal. The precise mathematical dealing 

of [4] allows us to express the baseband output of the memoriless nonlinearity in useful compact form: 
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where: ( )•g  is the nonlinear distortion function, and gλ is a constant chosen in order to minimize the MSE 

between ( ))(nwg i  and in
gw ,λ . Therefore, the discrete sequence ),( gsinΩ  is the minimum distortion 

energy sequence [4]. It has been shown in [20] that, in case of SSPA nonlinearities, 1≅gλ  for CL>7dB, 

and 99.09.0 << gλ  for dBCLdB 75.2 ≤< . The exact calculation of the term gλ  is theoretically 



 

  

allowed (see e.g. [8]). Nevertheless, for a wide range of meaningful CL values, the approximation 1≅gλ  

holds well. This assumption, already considered in [4], allows us to rewrite Eq.4 in the conveniently 

approximated form: 
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The coherent OFDM demodulator performs an FFT over the received baseband discrete-time sequence. 

Such an operation, applied to the distorted input sequence of Eq.5, provides the following output: 

10  ),()(ˆ ,,, −=Φ+== ,..,NkgsswFFTr ikik
D

in
D
ik    (6) 

where ( ) ),(ˆ),( gsFFTgs inik Ω=Φ  is the k-th sample of the out-of-band distortion sequence or clipping 

noise resulting at the output of the OFDM demodulator [4]. In this work, we adopt the idea of estimating 

the symbol vector is  in the presence of clipping noise, as illustrated in the following section. 

3. The proposed GA-assisted ML symbol estimation 

The optimum symbol estimation in the presence of nonlinear distortion and additive Gaussian noise is the 

Maximum Likelihood (ML) estimation. It consists in the computation of the symbol vector 
opt
iŝ  

minimizing the following metric: 
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where η+= D
ii

ry ˆ is the received signal sample vector, η  being the AWGN noise sample vector. The 

nonlinear distortion is deterministic and completely known; therefore, the ML-based computation of 
opt
iŝ  is 

theoretically feasible. The price to be paid is a computational load exponentially growing with the 

dimension of the symbol vector N. The number of subcarrier employed in OFDM commercial systems 

ranges from 64 (e.g. HYPERLAN 2 system [21]) to 256 (ADSL-DMT system shown in [4]), up to 2048 

(VDSL-DMT standard [4]). For this reason, theoretical ML detection cannot be adopted in real-world 

applications and sub-optimum detection strategies should be investigated. A feasible solution has been 

proposed by Tellado, Loo and Cioffi in [4]: it is based on the iterative estimation of the symbol vector 
)(ˆ ν

is  

(ν is the number of the iteration) obtained by the metric of Eq.7. The term ),ˆ( gsiΦ  is replaced by its 

iterative estimation ),ˆ( )1( gsi
−Φ νν

, computed on the basis of the symbol vector estimation obtained at the 



 

  

previous iteration. The first iteration of the algorithm is the hard decision made by the conventional OFDM 

demodulation. Other sub-optimum algorithms have been proposed in literature. The decision-aided 

reconstruction (DAR) iterative approach shown in [5] assumes that, at the first iteration, the frequency-

domain sample in
D

inin wZ ,,
)0(

, ˆˆ Ν+=  is an estimation of the clipped signal Dinw ,  (being in,Ν  the additive 

Gaussian noise sample in the frequency domain). At generic iteration ν, a symbol decision 
)(~ ν

is  is taken in 

the frequency domain on the basis of the estimation of the clipped signal )(
,

ˆ ν
inZ  by minimizing an absolute 

error metric [5]. The clipped sequence is then reconstructed in the time domain using the symbol 

decision
)(~ ν

is . Finally, the IFFT-transformed sequence )(
,ˆ νD
inw  becomes the estimation of the clipped signal 

at the successive iteration, i.e.: )1(
,

ˆ +ν
inZ . The Bayesian inference has been proposed by Declercq and 

Giannakis in [6] in order to iteratively recover clipped OFDM symbols. At the generic iteration ν, the full-

conditional posterior distribution function of the information symbols,
)(ν

is , is computed on the basis of the 

estimated symbols at the previous iteration, 
)1(ˆ −ν

is , and of the received signal samples
i

y . The symbol 

estimation is made on the basis of a recursive MAP criterion. Practically 
)(ˆ ν

is  is the symbol vector that 

maximizes the full-conditional posterior distribution [6]. In [9], a decision feedback-based interference 

cancellation procedure is shown for OFDM symbols affected by clipping. The iterative symbol decision 

)1(~ −ν
is  is employed here to estimate the out-of-band distortion in the frequency domain ),~( )1()1( gs in

−−Ω νν  

and to remove it from the received signal. Finally, Ochiai [10] analysed the performances of optimum and 

sub-optimum detection for clipped OFDM signals. The sub-optimum iterative ML detection proposed in 

[10] initially considers the vector of bit decision provided by the conventional OFDM demodulator
)0(ˆ

ib . At 

the iteration ν, a list of candidate bit vectors is generated by the XOR operation ebi ⊕
− )1(

ˆ
ν

, where eis an 

error pattern with Hamming weight ranging from 1 to Imax. The candidate bit vectors are therefore turned on 

candidate symbol vectors 
)(ˆ ν

is  and the best one is selected by minimizing the metric of Eq.7.  



 

  

Our solution is based on the use of Genetic Algorithms. Genetic Algorithms are robust, stochastic search 

methods modelled on the principles of natural selection and evolution [11]. GAs differ from conventional 

optimisation techniques in that: 

a) They operate on a group (namely: population) of trial solutions (namely: individuals) in parallel. A 

positive number, namely: fitness, is assigned to each individual representing a measure of goodness; 

b) They normally operate on a coding of the function parameters (namely: chromosome) rather than on the 

parameter themselves; 

c) They use stochastic operators (selection, crossover, and mutation) to explore the solution domain. 

The metric ( )iŝΛ  is regarded as the fitness of the GA. A set of individuals is encoded with chromosome-

like bit strings (in our case the vectoriŝ ). The cardinality of the set of individuals is called population size 

[11]. At each iteration, called generation, the genetic operators of crossover and mutation are applied to 

selected chromosomes with probability PC and PM, respectively, in order to generate new solutions 

belonging to the search space. The population generation process terminates when a satisfactory solution is 

reached or when a fixed number of iterations (namely: generation number) are completed. 

Genetic algorithms have been successfully applied for a wide range of problems (see Section 1) 

characterized by a large number of unknown parameters and highly non-linear behavior [11]. The major 

advantages of the GAs with respect to the other optimization algorithms, such as gradient conjugate-based 

methods, are mainly related to their independence from the initialization and their ability to prevent local 

minima. Moreover it is well known from the scientific literature that it is possible to enhance the 

convergence ratio making a good choice of the algorithm parameters [11, 22]. In particular a proper choice 

of the population size and generation number is mandatory in order to avoid too high computational burden 

and to keep performances good. These characteristics make the GAs particularly attractive for the proposed 

application with respect the other methods proposed in literature. For the sake of comparisons the method 

proposed in [4], and other similar decision-aided recursive methods [5, 9, 10], are strongly dependent from 

the initial choice of the symbol vector that is based on the hard decision made by the conventional 

demodulator. If the initial choice is considerably affected by decision errors (this happens in case of severe 

clipping), these errors propagate iteration after iteration, leading to a nasty “floor” in the BER curve. The 

only method for OFDM clipped symbol recovery, which seems to be less sensitive to the effects of the 



 

  

initial hard decision, is the Bayesian inference proposed in [6]. Nevertheless, the computational burden 

required by this algorithm is very high, as compared with recursive algorithms (except than [10]), and also 

with the GA-based receiver (issues concerning computational complexity will be detailed in next section).  

The initialisation of the GA has been performed in random modality. In particular, at each generation, the 

population is initialised by individuals consisting of vectors collecting complex random symbols. Such an 

initialisation procedure is appropriate for the specific problem addressed in this letter. In fact the symbol 

source can be regarded, without losing generality, as a random process generating equiprobable and 

statistically independent complex numbers (i.e.: the 16-QAM symbols).  

To conclude this section, it should be said that the proposed GA-assisted ML symbol recovery could be 

applied, without any conceptual difficulty, also to the C&F case. In fact, a metric very similar to the one 

shown in Eq.7 can be computed for “clipped and filtered” OFDM signals as proven in [10].  

4. Experimental results 

In order to assess the performances of the proposed GA-based ML estimation approach, some intensive 

simulation trials have been performed. An OFDM transmission configuration has been considered with a 

bit-rate of 4Mb/s and number of subcarriers N equal to 32 and 64. The parameter setting of the SSPA 

distortion has been done by fixing β=2 and choosing two different values of α in order to achieve CL 

values equal to 5dB and 7dB respectively. As far as the parameterization of the genetic algorithm is 

concerned, we firstly selected crossover probability CP  and mutation probability MP  equal to 0.9 and 

0.01, respectively. This setting is reasonable because CP  is the index of the “evolutionary capability” of the 

GA, whereas a high value of MP  would turn the GA into a kind of random search [11]. In the absence of 

specific analytical selection criteria [11] [22], the generation number genδ  and the population size sizeΓ  of 

the GA optimizer have been chosen by means of preliminary experimental trials explicitly devoted to. 

Results have been summarized in Fig. 1. We have considered in these simulations the heuristic selection 

criteria enunciated in [22]: a) the population size should be sufficiently large in order to have a 

conveniently- dimensioned space search, b) the number of generations should be appropriately assigned in 

dependence of the population size. In fact, in case of large population, too strict limit for the search time 

can force algorithm to stop without having enough time to realize its search possibility [22]. The test was 



 

  

performed in the case of the heavier nonlinear distortion (CL=5dB) and for the highest number of 

subcarriers (N=64), considering a per-symbol SNR equal to 15dB. On the basis of the BER curves vs. 

population size for fixed generation numbers reported in Fig. 1, a reasonable choice considering the 

tradeoff between computational complexity and achieved performances is genδ =250 and sizeΓ =200. In 

Figs. 2-3-4, curves drawing BER results vs. per-symbol SNR are shown for different CL and N, and 

compared with results yielded by: 

• A conventional FFT-based OFDM demodulator in the presence of nonlinear distortion [1]. 

• Iterative decision-directed algorithms: iterative decoding proposed in [4], decision-aided reconstruction 

of [5], decision-directed clipping removal of [9]. The number of iterationsχ  has been limited to 3 for this 

class of algorithms, because no significant performance improvement has been noted by increasing it. 

These algorithms are characterized by quite analogous theoretical concepts. Their computational burden 

is almost the same. 

• Clipped symbol recovery of [6] obtained by means of the Bayesian inference. We fixed χ =5 as a 

reasonable tradeoff between the heavy computational load required by the algorithm and the performance 

improvement achievable by increasing χ . 

• Iterative sub-optimum ML detection of [10]. In this case, we fixed χ =10 as a good compromise between 

computational demand and reliability of the symbol estimation. Following the suggestions of [10], we set 

the maximum Hamming weight of the error pattern Imax=1. 

• A conventional FFT-based demodulator of an undistorted OFDM signal transmitted over a purely 

additive Gaussian channel. This last curve actually draws the lower bound on the achievable 

performances. In fact, the ML criterion becomes equivalent to the conventional detector in the case of 

AWGN without any distortion. The clipping noise added by a nonlinear distortion substantially reduces 

the average Euclidean distance between the OFDM signal generated by the correct bit sequence and other 

ones generated by error patterns [10]. Therefore, we can say that the pairwise error probability computed 

for the ML receiver in the presence of nonlinear distortion will be higher (or at least equal) to the error 

probability computed for the distortionless conventional receiver. 

 The first series of simulation results, obtained for N=32 and CL=5dB (see Fig. 2), prove that the GA-

assisted ML estimation provides a BER characteristic fairly close to ideal one, whereas conventional 



 

  

detection, iterative decoding [4], decision-aided reconstruction [5], and decision-feedback clipping removal 

[9] are very far from optimal performances. Bayesian inference [6] and iterative sub-optimum ML 

detection [10] works slightly better (their curves are almost coincident), but they both perform worse than 

GA-assisted ML detection especially for high SNRs. Fig. 3 shows another series of simulation results 

obtained by increasing the number of subcarriers (N=64 instead of 32) and keeping CL unaltered 

(CL=5dB). The SNR range has been increased up to 30dB to clearly prove the error-floor affecting the 

BER performances both of the conventional OFDM demodulation and of all the iterative decision-directed 

procedures ([4], [5], and [9]). In this case, also the iterative sub-optimum ML detection of [10] exhibits a 

severe error-floor. On the other hand, Bayesian inference seems to perform better than decision-directed 

iterative approaches, thus confirming its improved robustness for low CL values. But, the proposed GA-

assisted ML estimation provides much better results than all state-of-the-art algorithms used for 

comparison, with a dramatic BER decrease for high SNRs. Finally, the results given in Fig. 4 have been 

obtained by increasing CL up to 7dB and keeping the value of N unaltered with respect to the simulation in 

Fig. 3 (N=64). In this case, all receiver schemes can profit by the out-of-band distortion reduction and 

improve their performances. The BER curve of the GA-assisted ML estimation is very close the ideal one. 

All iterative detection algorithms work better (in particular Tellado’s iterative decoding [4]), though 

remaining a bit far from ideal performances. One can note from Fig.4 that Bayesian inference does not 

provide any significant performance improvement with respect to iterative decision-directed approaches. 

This confirms the considerations made in [6] about the opportunity of using highly complex Bayesian 

inference when clipping effects are reduced.  

Concerning computational issues, Tab.1 shows the order of computational complexity for each symbol- 

detection algorithm assessed (second column), the number of elementary operations required by each 

OFDM symbol during the signaling period T in the selected simulation scenarios (third column – this is 

actually the number of elementary operations required to derive a solution to the considered problem), and 

finally the average number of elementary operations per data symbol (obtained by dividing per N the 

content of the third column). The fundamentals for deriving mathematical expressions in Tab.1 have been 

taken by Hanzo’s book about single carrier and multicarrier modulations [1], by the referenced papers 

dealing with the algorithms tested for comparison ([4], [5], [6], [9], and [10]), and finally by Goldberg’s 

book about Genetic Algorithms [11]. The reader can note that the computational burden of the GA-assisted 



 

  

ML detection increases only by one order of magnitude with respect to iterative decision-directed 

algorithms ([4], [5], and [9]), while providing much better results in terms of BER reduction. On the other 

hand, the computational burden of GA-assisted ML detection is consistently reduced with respect to 

computationally demanding Bayesian inference [6] and iterative sub-optimum ML detection [10]. In 

addition, these last two algorithms perform worse than GA in terms of BER, as shown in Figs. 2-4. They 

have also been reported in Tab.1 both the computationally unsustainable ML symbol recovery and the 

conventional FFT-based OFDM receiver, regarded here as indicative upper and lower bounds on the 

computational complexity. 

5. Conclusion 

In this letter, a novel GA-assisted approach to ML symbol estimation of nonlinearly distorted OFDM 

symbols has been proposed and discussed. The obtained simulation results have proved a fair near-

optimum behavior of the proposed algorithm, clearly outperforming state-of-the-art methodologies for 

multicarrier symbol estimation based on iterative decision-directed reconstruction, iterative sub-optimum 

ML estimation, and Bayesian inference. The computational load required by the GA-based estimator 

slightly increases with respect to the most computationally-efficient iterative algorithms; nevertheless, it is 

still acceptable as compared with the unaffordable burden of theoretically-optimum ML detection. It should 

be said that other algorithms tested for comparison, like e.g. Bayesian inference and iterative ML 

estimation are more computationally demanding than the proposed GA-assisted methodology.  

Future work will consider other aspects, like the assessment of the proposed GA-based ML estimator in the 

presence of both nonlinear and linear distortions (e.g. multipath fading). For this last purpose, the impact of 

channel estimation errors on the symbol estimation accuracy should be carefully studied. 
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Figure captions 
 

Figure 1. BER values provided by the proposed GA-assisted ML detection algorithm plotted vs. population 

size ( sizeΓ ) for a fixed per-symbol SNR (15dB) and different values of the generation number ( genδ ). 

Figure 2. BER results vs. SNR provided by the different symbol estimation algorithms assessed (GA-

assisted ML detection, iterative algorithms, conventional OFDM detection, lower bound: ideal detection 

without distortions): CL=5dB, N=32, genδ =250, sizeΓ =200. 

Figure 3. BER results vs. SNR provided by the different symbol estimation algorithms assessed (GA-

assisted ML detection, iterative algorithms, conventional OFDM detection, lower bound: ideal detection 

without distortions): CL=5dB, N=64, genδ =250, sizeΓ =200. 

Figure 4. BER results vs. SNR provided by the different symbol estimation algorithms assessed (GA-

assisted ML detection, iterative algorithms, conventional OFDM detection, lower bound: ideal detection 

without distortions): CL=7dB, N=64, genδ =250, sizeΓ =200. 

 

Table captions 

Table 1. Analysis of computational complexity of the different OFDM symbol estimation algorithms. 
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Table 1  
 

 

 

 

 

 

SYMBOL ESTIMATION 

ALGORITHM 
ORDER OF 

COMPUTATIONAL COMPLEXITY 
# OF ELEMENTARY OPERATIONS 

PER OFDM SYMBOL  
# OF ELEMENTARY 

OPERATIONS PER 

DATA SYMBOL  
GA-assisted ML 

estimation (proposed) 
[11] 

( ) sizegenMC PP Γ+ δ  4.1x104 (N=64, 
genδ =250, 

sizeΓ =200) 

641 

Conventional OFDM 
demodulator [1] 

NN 2log  3.84x102 (N=64) 6 

Iterative decoding [4] ( )χNNN 2log2+  2.5x103 (N=64, χ =3) 39  

Decision-aided 
reconstruction [5] 

( )χNNN 2log22 +  2.7x103 (N=64, χ =3) 56 

Bayesian inference [6] χ2MN  3.27x105 (N=64, χ =5) 5109 

Decision-directed 
clipping removal [9] 

( )χNNN 2log2+  2.5x103 (N=64, χ =3) 39 

Sub-optimum iterative 
ML detection [10] NN

i

MNI

i
i 2

1

2 log
log

1
max

















+∑

=

χ  
2.95x105 (N=64, χ =3, Imax=1) 4609 

Theoretical ML 
estimation [10] 

( )NM2log2  1.2x1077 (M=16, N=64) 1.875x1075  


