Efficient Interpolant Generation
in Satisfiability Modulo Theories *

Alessandro Cimatti!, Alberto Griggioz, and Roberto SebastianiZ

1 FBK-IRST, Povo, Trento, Italy. cimatti@fbk.eu
2 DISI, Universita di Trento, Italy. {griggio, rseba}@disi.unitn.it

Abstract. The problem of computing Craig Interpolants for propositional (SAT)
formulas has recently received a lot of interest, mainly for its applications in for-
mal verification. However, propositional logic is often not expressive enough for
representing many interesting verification problems, which can be more naturally
addressed in the framework of Satisfiability Modulo Theories, SMT.

Although some works have addressed the topic of generating interpolants in SMT,
the techniques and tools that are currently available have some limitations, and
their performace still does not exploit the full power of current state-of-the-art
SMT solvers.

In this paper we try to close this gap. We present several techniques for interpolant
generation in SMT which overcome the limitations of the current generators men-
tioned above, and which take full advantage of state-of-the-art SMT technology.
These novel techniques can lead to substantial performance improvements wrt.
the currently available tools.

We support our claims with an extensive experimental evaluation of our imple-
mentation of the proposed techniques in the MathSAT SMT solver.

1 Introduction

Since the seminal paper of McMillan [19], interpolation has been recognized to be a
substantial tool for verification in the case of boolean systems [7, 17, 18]. The tremen-
dous improvements of Satisfiability Modulo Theory (SMT) solvers in the recent years
have enabled the lifting of SAT-based verification algorithms to the non-boolean case [2,
1], and made it practical the implementation of other approaches such as CEGAR [21].

However, the research on interpolation for SMT has not kept the pace of the SMT
solvers. In fact, the current approaches to producing interpolants for SMT [20, 30, 27,
16, 15] all suffer from a number of limitations. Some of the approaches are severely
limited in terms of their expressiveness. For instance, the tool described in [27] can
only deal with conjunctions of literals, whilst the recent work described in [16] can
not deal with many useful theories. Furthermore, very few tools are available [27,20],
and these tools do not seem to scale particularly well. More than to naive implemen-
tation, this appears to be due to the underlying algorithms, that substantially deviate
from or ignore choices common in state-of-the-art SMT. For instance, in the domain

* This work has been partly supported by ORCHID, a project sponsored by Provincia Autonoma
di Trento, and by a grant from Intel Corporation.

of linear arithmetic over the rationals (LA(Q)), strict inequalities are encoded in [20]
as the conjunction of a weak inequality and a disequality; although sound, this choice
destroys the structure of the constraints, requires additional splitting, and ultimately re-
sults in a larger search space. Similarly, the fragment of Difference Logic (DL(Q)) is
dealt with by means of a general-purpose algorithm for full £A(Q), rather than one
of the well-known and much faster specialized algorithms. An even more fundamen-
tal example is the fact that state-of-the-art SMT reasoners use dedicated algorithms for
Linear Arithmetic [10].

In this paper, we tackle the problem of generating interpolants within a state of the
art SMT solver. We present a fully general approach that can generate interpolants for
the most effective algorithms in SMT, most notably the algorithm for deciding £.A(Q)
presented in [10] and those for DL(Q) in [9, 23]. Our approach is also applicable to the
combination of theories, based on the Delayed Theory Combination (DTC) method [5,
6], as an alternative to the traditional Nelson-Oppen method.

We carried out an extensive experimental evaluation on a wide range of benchmarks.
The proposed techniques substantially advance the state of the art: our interpolator can
deal with problems that can not be expressed in other solvers; furthermore, a compari-
son on problems that can be dealt with by other tools shows dramatic improvements in
performance, often by orders of magnitude.

The paper is structured as follows. In §2 we present some background on interpo-
lation in SMT. In §3 and §4 we show how to efficiently interpolate £A(Q) and the
subcase of DL(Q). In §5 we discuss interpolation for combined theories. In §6 we an-
alyze the experimental evaluation, whilst in §7 we draw some conclusions. For lack of
space, we omit the proofs of the theorems. They can be found in the extended technical
report [8].

2 Background

2.1 Satisfiability Modulo Theory — SMT

Our setting is standard first order logic. A 0-ary function symbol is called a constant. A
term is a first-order term built out of function symbols and variables. A linear term is
either a linear combination c¢;x1 +. . . + ¢, x,, + ¢, where ¢ and ¢; are numeric constants
and x; are variables. When doing arithmetic on terms, simplifications are performed
where needed. We write ¢; = t5 when the two terms ¢; and ¢, are syntactically identi-
cal. If ¢1, ..., t, are terms and p is a predicate symbol, then p(ty,...,t,) is an atom.
A literal is either an atom or its negation. A (quantifier-free) formula ¢ is an arbitrary
boolean combination of atoms. We use the standard notions of theory, satisfiability,
validity, logical consequence. We consider only theories with equality. We call Satisfi-
ability Modulo (the) Theory T, SMT(T), the problem of deciding the satisfiability of
quantifier-free formulas wrt. a background theory 7. 3

We denote formulas with ¢, 1, A, B, C, I, variables with x, ¥, z, and numeric con-
stants with a, b, ¢, [, u. Given a theory 7, we write ¢ =7 v (or simply ¢ =) to denote

3 The general definition of SMT deals also with quantified formulas. Nevertheless, in this paper
we restrict our interest to quantifier-free formulas.

that the formula ¢ is a logical consequence of ¢ in the theory 7. With ¢ < 1 we denote
that all uninterpreted (in 7°) symbols of ¢ appear in . Without loss of generality, we
also assume that the formulas are in Conjunctive Normal Form (CNF). If C is a clause,
C | B is the clause obtained by removing all the literals whose atoms do not occur
in B, and C' \ B that obtained by removing all the literals whose atoms do occur in
B. With a little abuse of notation, we might sometimes denote conjunctions of literals
LGN ANl assets {l1,...,l,} and vice versa. If n = {l4, ..., [, }, we might write -
tomean =l V...V —l,.

We call 7 -solver a procedure that decides the consistency of a conjunction of literals
in7.IfS = {ly,...,1,} is a set of literals in 7, we call (7)-conflict set any subset 1
of S which is inconsistent in 7. * We call =1 a 7-lemma (notice that —7 is a 7 -valid
clause). Given a set of clauses S = {C4, ..., C,} and a clause C, we call a resolution
proof that A\, C; =7 C a DAG P such that:

1. C'is the root of P;

2. the leaves of P are either elements of S or 7 -lemmas;

3. each non-leaf node C’ has two parents C,,, and C), such that C,, = p V ¢,
Cp, =V ¢, and C’ = ¢ V ¢o. The atom p is called the pivot of C},, and Cp,.

If C is the empty clause (denoted with L), then P is a resolution proof of unsatisfiability
for A\, C;.

A standard technique for solving the SMT(7") problem is to integrate a DPLL-based
SAT solver and a 7 -solver in a lazy manner (see, e.g., [28] for a detailed description).
DPLL is used as an enumerator of truth assignments for the propositional abstraction of
the input formula. At each step, the set of 7 -literals S corresponding to the current as-
signment is sent to the 7 -solver to be checked for consistency in 7. If S is inconsistent,
the 7 -solver returns a conflict set 7, and the corresponding 7 -lemma — is added as
a blocking clause in DPLL, and used to drive the backjump mechanism. With a small
modification of the embedded DPLL engine, a lazy SMT solver can also be used to
generate a resolution proof of unsatisfiability.

2.2 Interpolation in SMT

We consider the SMT(7") problem for some background theory 7 . Given an ordered
pair (A, B) of formulas such that A A B =7 L, a Craig interpolant (simply “inter-
polant” hereafter) is a formula [s.t.:

a) A):TI,
b) INBEr L,
¢c) [AandI < B.

The use of interpolation in formal verification has been introduced by McMillan
in [19] for purely-propositional formulas, and it was subsequently extended to han-
dle SMT(EUF U LA(Q)) formulas in [20], EUF being the theory of equality and
uninterpreted functions. The technique is based on earlier work by Pudlak [25], where

* In the next sections, as we are in an SMT(7") context, we often omit specifying “in the theory
T when speaking of consistency, validity, etc.

two interpolant-generation algorithms are described: one for computing interpolants for
propositional formulas from resolution proofs of unsatisfiability, and one for generating
interpolants for conjunctions of (weak) linear inequalities in £.4(Q). An interpolant for
(A, B) is constructed from a resolution proof of unsatisfiability of A A B, generated as
outlined in §2.1. The algorithm can be described as follows:

Algorithm 1: Interpolant generation for SMT(7)

. Generate a proof of unsatisfiability P for A A B.

. For every 7-lemma —n occurring in P, generate an interpolant I, for (n \ B,n | B).

. For every input clause C'in P,set [c =C | Bif C € A,and I = T if C € B.

. For every inner node C' of P obtained by resolution from C; = p V ¢ and Cy =
—pVpa,setIc = Ic, Vg, if pdoes not occurin B, and I = I, Alc, otherwise.

5. Output I, as an interpolant for (A, B).

AW N —

Notice that Step 2. of the algorithm is the only part which depends on the theory
7, so that the problem of interpolant generation in SMT(7") reduces to that of finding
interpolants for 7 -lemmas. To this extent, in [20] McMillan gives a set of rules for
constructing interpolants for 7 -lemmas in the theory of EUF, that of weak linear in-
equalities (0 < t) in LA(Q), and their combination. Linear equalities (0 = ¢) can be
reduced to conjunctions (0 < ¢) A (0 < —t) of inequalities. Thanks to the combination
of theories, also strict linear inequalities (0 < t) can be handled in EUF U LA(Q) by
replacing them with the conjunction (0 < ¢) A (0 # t),> but this solution can be very
inefficient. The combination EUF U LA(Q) can also be used to compute interpolants
for other theories, such as those of lists, arrays, sets and multisets [15].

In [20], interpolants in the combined theory EU FULA(Q) are obtained by means of
ad-hoc combination rules. The work in [30], instead, presents a method for generating
interpolants for 7; U 75 using the interpolant-generation procedures of 7; and 75 as
black-boxes, using the Nelson-Oppen approach [22].

Also the method of [27] allows to compute interpolants in EUF U LA(Q). Its pecu-
liarity is that it is not based on unsatisfiability proofs. Instead, it generates interpolants in
LA(Q) by solving a system of constraints using an off-the-shelf Linear Programming
(LP) solver. The method allows both weak and strict inequalities. Extension to unin-
terpreted functions is achieved by means of reduction to £LA(Q) using a hierarchical
calculus. The algorithm works only with conjunctions of atoms, although in principle
it could be integrated in Algorithm 1 to generate interpolants for 7 -lemmas in LA(Q).
As an alternative, the authors show in [27] how to generate interpolants for formulas
that are in Disjunctive Normal Form (DNF).

Another different approach is explored in [16]. There, the authors use the eager
SMT approach to encode the original SMT problem into an equisatisfiable propositional
problem, for which a propositional proof of unsatisfiability is generated. This proof is
later “lifted” to the original theory, and used to generate an interpolant in a way similar
to Algorithm 1. At the moment, the approach is however limited to the theory of equality
only (without uninterpreted functions).

> The details are not given in [20]. One possible way of doing this is to rewrite (0 # t) as
(y=1t) A (z=0) A (z # y), z and y being fresh variables.

o=t rro<t, TFO0<t
I LEQEQ = Y=1 coms = =
rro?€ QT o<y TFO0<cit+ cato

Hyp ci1,c2 >0

Fig. 1. Proof rules for £LA(Q) (without strict inequalities).

All the above techniques construct one interpolant for (A, B). In general, however,
interpolants are not unique. In particular, some of them can be better than others, de-
pending on the particular application domain. In [12], it is shown how to manipulate
proofs in order to obtain stronger interpolants. In [13, 14], instead, a technique to re-
strict the language used in interpolants is presented and shown to be useful in preventing
divergence of techniques based on predicate abstraction.

3 Interpolation for Linear Arithmetic with a state-of-the-art solver

Traditionally, SMT solvers used some kind of incremental simplex algorithm [29] as
T -solver for the £A(Q) theory. Recently, Dutertre and de Moura [10] have proposed
a new simplex-based algorithm, specifically designed for integration in a lazy SMT
solver. The algorithm is extremely efficient and was shown to significantly outperform
(often by orders of magnitude) the traditional ones. It has now been integrated in several
SMT solvers, including ARGOL1B, CVC3, MATHSAT, YICES, and Z3. Remarkably,
this algorithm allows for handling also strict inequalities.

In this Section, we show how to exploit this algorithm to efficiently generate inter-
polants for £LA(Q) formulas. In §3.1 we begin by considering the case in which the
input atoms are only equalities and non-strict inequalities. In this case, we only need to
show how to generate a proof of unsatisfiability, since then we can use the interpolation
rules defined in [20]. Then, in §3.2 we show how to generate interpolants for problems
containing also strict inequalities and disequalities.

3.1 Interpolation with non-strict inequalities

Similarly to [20], we use the proof rules of Figure 1: HYP for introducing hypothe-
ses, LEQEQ for deriving inequalities from equalities, and COMB for performing linear
combinations.® As in [20], we consider an atom “0 < ¢, ¢ being a negative numerical
constant, as a synonym of L.

The original Dutertre-de Moura algorithm. In its original formulation, the Dutertre-
de Moura algorithm assumes that the variables x; are partitioned a priori in two sets,
hereafter denoted as 3 (“initially basic”) and N (“initially non-basic”), and that the
algorithm receives as inputs two kinds of atomic formulas: ’

®1In [20] the LEQEQ rule is not used in £A(Q), because the input is assumed to consist only of
inequalities.
7 Notationally, we use the hat symbol ~ to denote the initial value of the generic symbol.

— aset of equations eq;, one for each x; € B of the form Zz N GijTj + G325 = 0
J
s.t. all a;;’s are numerical constants;
— elementary atoms of the form x; > I; or v; < uj s.t. [, u; are numerical constants.

The initial equations eq; are then used to build a tableau 7"
{zi =220, en aijz; | wi € B}, (1)

where B (“basic”), N (“non-basic”) and a;; are such that initially B = B,N = N and
Q5 = 7&,']'/&“.

In order to decide the satisfiability of the input problem, the algorithm performs
manipulations of the tableau that change the sets B and A and the values of the co-
efficients a;;, always keeping the tableau 7" in (1) equivalent to its initial version. An
inconsistency is detected when it is not possible to satisfy all the bounds on the vari-
ables introduced by the elementary atoms: as the algorithm ensures that the bounds on
the variables in A are always satisfied, then there is a variable x; € B such that the
inconsistency is caused either by the elementary atom x; > [; or by the atom x; < u;
[10]. In the first case, 8 a conflict set 7 is generated as follows:

n:{xjguﬂxj €N+}U{$jle|$j€./\[_}u{$i2li}, (2)

where x; = ij e GijT; is the row of the current version of the tableau 7' (1) corre-
sponding to z;, N is {z; € Nla;; > 0} and N~ is {z; € Na;; < 0}.

Notice that 7 is a conflict set in the sense that it is made inconsistent by (some of)
the equations in the tableau 7" (1), i.e. T Un £ a(q) L.

In order to handle problems that are not in the above form, a satisfiability-preserving
preprocessing step is applied upfront, before invoking the algorithm.

Our variant. In our variant of the algorithm, instead, the input is an arbitrary set of
inequalities I, < >, Gwp yn O up > Zh akh Yn, and the preprocessing step is ap-
plied internally. In particular, we introduce a “slack” variable sy, for each distinct term
> Gkh Yn occurring in the input inequalities. Then, we replace such term with sy, (thus
obtaining l;, < si or ug > sg) and add an equation s, = Zh axn Yn. Notice that we
introduce a slack variable even for “elementary” inequalities (I, < yy). With this trans-
formation, the initial tableau 71" (1) is:

{sk =), Gkh Yn}k, €))

s.t. B is made of all the slack variables Sk’S, N is made of all the original variables yy,’s,
and the elementary atoms contain only slack variables si’s.

In our variant, we can use 7) to generate a conflict set 7', thanks to the following
lemma.

8 Here we do not consider the second case x; < u; as it is analogous to the first one.

Lemma 1. In the set 1) of (2), x; and all the x;’s are slack variables introduced by our
preprocessing step. Moreover, the set ' = nar+ U na— U is a conflict set, where

v+ = {ug >3, akn ynlsk = x; and z; € N},
NS {lk Szh&khyh|5kzx]‘ andacj GNi},
ni = {le <D, kn Ynlsk = @i}

We construct a proof of inconsistency as follows. From the set 7 of (2) we build a
conflict set n) by replacing each elementary atom in it with the corresponding original
atom, as shown in Lemma 1. Using the HYP rule, we introduce all the atoms in nar+,
and combine them with repeated applications of the COMB rule: if uy > >, arn yn is
the atom corresponding to sy, we use as coefficient for the COMB the a;; (in the i-th
row of the current tableau) such that s;; = x;. Then, we introduce each of the atoms in
na— with HYP, and add them to the previous combination, again using COMB. In this
case, the coefficient to use is —a;;. Finally, we introduce the atom in 7); and add it to
the combination with coefficient 1.

Lemma 2. The result of the linear combination described above is the atom 0 < c,
such that c is a numerical constant strictly lower than zero.

Besides the case just described (and its dual when the inconsistency is due to an elemen-
tary atom x; < u;), another case in which an inconsistency can be detected is when two
contradictory atoms are asserted: I, < >, arp yn and up > >, Arn Yn, With I, > .
In this case, the proof is simply the combination of the two atoms with coefficient 1.

The extension for handling also equalities like by, = > 5, Gxn Yn 18 straightforward:
we simply introduce two elementary atoms by, < s and by, > sj and, in the construc-
tion of the proof, we use the LEQEQ rule to introduce the proper inequality.

Finally, notice that the current implementation in MATHSAT (see §6) is slightly
different from what presented here, and significantly more efficient. In practice, 1, i’
are not constructed in sequence; rather, they are built simultaneously. Moreover, some
optimizations are applied to eliminate some slack variables when they are not needed.

3.2 Interpolation with strict inequalities and disequalities

Another benefit of the Dutertre-de Moura algorithm is that it can handle strict inequali-
ties directly. Its method is based on the following lemma.

Lemma 3 (Lemma 1 in [10]). A set of linear arithmetic atoms I' containing strict
inequalities S = {0 < p1,...,0 < p,} is satisfiable iff there exists a rational number
e > 0 such that I'. = (I"U S¢) \ S is satisfiable, where S: = {e¢ < p1,...,€ < pn}.

The idea of [10] is that of treating the infinitesimal parameter ¢ symbolically instead
of explicitly computing its value. Strict bounds (z < b) are replaced with weak ones
(x < b — ¢€), and the operations on bounds are adjusted to take ¢ into account.

We use the same idea also for computing interpolants. We transform every atom
(0 < t;) occurring in the proof of unsatisfiability into (0 < ¢; —). Then we compute
an interpolant /. in the usual way. As a consequence of the rules of [20], I. is always a
single atom. As shown by the following lemma, if /. contains ¢, then it must be in the
form (0 <t — ce) with ¢ > 0, and we can rewrite I, into (0 < ¢).

Lemma 4 (Interpolation with strict inequalities). Let I', S, I. and S. be defined
as in Lemma 3. Let I' be partitioned into A and B, and let A. and B. be obtained
from A and B by replacing atoms in S with the corresponding ones in S.. Let 1. be an
interpolant for (A, B:). Then:

— Ife A I, then I, is an interpolant for (A, B).
- Ife X I, thenl. = (0 < t—ceg) forsome c > 0, and I = (0 < t) is an interpolant
for (A, B).

Thanks to Lemma 4, we can handle also negated equalities (0 # ¢) directly. Suppose
our set S of input atoms (partitioned into A and B) is the union of a set S’ of equalities
and inequalities (both weak and strict) and a set S# of disequalities, and suppose that
S’ is consistent. (If not so, an interpolant can be computed from S’.) Since LA(Q) is
convex, S is inconsistent iff exists (0 #) € S7 such that S’U{(0 # t)} is inconsistent,
that is, such that both S U {(0 < ¢)} and S’ U {(0 > ¢)} are inconsistent.

Therefore, we pick one element (0 # t) of S7 at a time, and check the satisfiability
of S"U{(0 <)} and S” U {(0 > t)}. If both are inconsistent, from the two proofs
we can generate two interpolants 1~ and I™. We combine I and I~ to obtain an
interpolant [for (A, B):if (0 #¢) € A, then I 'is IT VvV I~;if (0 # ¢) € B, then I is
I A I, as shown by the following lemma.

Lemma 5 (Interpolation for negated equalities). Let A and B two conjunctions of
LA(Q) atoms, and let n = (0 # t) be one such atom. Let g = (0 < t) and I = (0 > t).
Ifn € A thenlet At = A\ {n}U{g}, A= = A\ {n}U{l}, and Bt =B~ = B.
Ifn € B, thenlet At = A~ = A, BT =B\ {n}U{g}, and B- =B\ {n}U{l}.
Assume that AT N Bt =4 4q) L and that A~ N B~ =, aq) L. and let I and I~
be two interpolants for (A™, B™) and (A~ , B™) respectively, and let

[TV ifneA
=\I*AI-ifneB.

Then I is an interpolant for (A, B).

4 Graph-based Interpolation for Difference Logic

Several interesting verification problems can be encoded using only a subset of LA(Q),
the theory of Difference Logic (DL(Q)), in which all atoms are inequalities of the form
(0 <y — x+ ¢), where x and y are variables and c is a numerical constant. Equalities
can be handled as conjunctions of inequalities. Here we do not consider the case when
we also have strict inequalities (0 < y —x + ¢), because in DL(Q) they can be handled
in a way which is similar to that described in §3.2 for LA(Q). Moreover, we believe
that our method may be extended straightforwardly to DL(Z) because the graph-based
algorithm described in this section applies also to DL(Z); in DL(Z) a strict inequality
(0 < y — x4+ ¢) can be safely rewritten a priori into the inequality (0 <y —z+c—1).

DL(Q) is simpler than full linear arithmetic. Many SMT solvers use dedicated,
graph-based algorithms for checking the consistency of a set of DL(Q) atoms [9, 23].

Intuitively, a set S of DL(Q) atoms induces a graph whose vertexes are the variables

of the atoms, and there exists an edge x 5y for every (0 <y—x+c¢) €S Sis
inconsistent if and only if the induced graph has a cycle of negative weight.

We now extend the graph-based approach to generate interpolants. Consider the
interpolation problem (A, B) where A and B are sets of inequalities as above, and let
C be (the set of atoms in) a negative cycle in the graph corresponding to A U B.

If C C A, then A is inconsistent, in which case the interpolant is L. Similarly,
when C' C B, the interpolant is T. If neither of these occurs, then the edges in the
cycle can be partitioned in subsets of A and B. We call maximal A-paths of C' a path

> Cn — 7 . ’
1 2 ... 225 g, such that (1) z; =5 Tiy1 € A, and (11) C contains 2/ <~ 1 and

&, — x" that are in B. Clearly, the end-point variables ', z,, of the maximal A-path
are such z1,x,, < Aand x1,z, < B.

Let the summary constraint of a maximal A-path z; — ... Lnod, z, be the in-
equality 0 < z,, —z1+ Z?':_ll ¢;. We claim that the conjunction of summary constraints
of the A-paths of C'is an interpolant. In fact, using the rules for LA(Q) it is easy to see
that a maximal A-path entails its summary constraint. Hence, A entails the conjunction
of the summary constraints of maximal A-paths. Then, we notice that the conjunction of
the summary constraints is inconsistent with B. In fact, the weight of a maximal A-path
and the weight of its summary constraint are the same. Thus the cycle obtained from C'
by replacing each maximal A-path with the corresponding summary constraint is also a
negative cycle. Finally, we notice that every variable x occurring in the conjunction of
the summary constraints is an end-point variable, and thus z < A and z < B.

A final remark is in order. In principle, to generate a proof of unsatisfiability for
a conjunction of DL(Q) atoms, the same rules used for LA(Q) [20] could be used.
However, the interpolants generated from such proofs are in general not DL(Q) formu-
las anymore and, if computed starting from the same inconsistent set C|, they are either
identical or weaker than those generated with our method. In fact, due to the interpola-
tion rules in [20], it is easy to see that the interpolant obtained is in the form (0 < 3" ¢;)
s.t. \;(0 < t;) is the interpolant generated with our method.

Example 1. Consider the following sets of DL(Q) atoms:

A— Xl X5
B—>/§ 0 XL
1
A:{(ngl—$2+1),(0§$L’2—$3),(0§$4—$5—1)} o 1 A
-1

B={(0<z5—121),(0<ax3—24—1)}. 0

x3
corresponding to the negative cycle on the right. It is straightforward to see from the

graph that the resulting interpolant is (0 < 21 — 23+ 1) A (0 < 24 — x5 — 1), because
the first conjunct is the summary constraint of the first two conjuncts in A.

Applying instead the rules of Figure 1, the proof of unsatisfiability is:

Hyp Hyp

(0§$1—$2+1) (0§$2—$3) Hyp
CoMB (0<z; —xz3+1) (0< 2y —a5—1) Hyp
COMB (OS 1 —$3+$4—$5) (0 < x5 —ml) Hyp
CoMB (0 < —z3 + x4) (0<zg—x4—1)

ComB (0<—1)

By using the interpolation rules for £A(Q) (see [20]), the interpolant we obtain is
(0 < 1 — g + x4 — w5), which is not in DL(Q), and is weaker than that computed
above.

5 Computing interpolants for combined theories via DTC

One of the typical approaches to the SMT problem in combined theories, SM T (7; U
T5), is that of combining the solvers for 7; and for 75 with the Nelson-Oppen (NO)
integration schema [22].

The NO framework works for combinations of stably-infinite and signature-disjoint
theories 7; with equality. Moreover, it requires the input formula to be pure (i.e., s.t. all
the atoms contain only symbols in one theory): if not, a purification step is performed,
which might introduce some additional variables but preserves satisfiability. In this set-
ting, the two decision procedures for 77 and 75 cooperate by exchanging (disjunctions
of) implied interface equalities, that is, equalities between variables appearing in atoms
of different theories (interface variables).

The work in [30] gives a method for generating an interpolant for a pair (A, B)
of 77 U 7>-formulas using the NO schema. Besides the requirements on 7; and 75
needed to use NO, it requires also that 77 and 75 are equality-interpolating. A theory
7 is said to be equality-interpolating when for all pairs of formulas (A, B) in 7 and
for all equalities x, = =z} such that (i) x, Z B and z;, A A (i.e. z, = xp 1S an
AB-mixed equality), and (ii) A A B =17 x, = y, there exists a term ¢ such that
AANB Er 24 =t ANt = a3, t 2 Aand ¢t < B. E.g., both EUF and LA(Q) are
equality-interpolating.

Recently, an alternative approach for combining theories in SMT has been proposed,
called Delayed Theory Combination (DTC) [5, 6]. With DTC, the solvers for 7; and
75 do not communicate directly. The integration is performed by the SAT solver, by
augmenting the boolean search space with up to all the possible interface equalities.
DTC has several advantages wrt. NO, both in terms of ease of implementation and in
reduction of search space [5, 6], so that many current SMT tools implement variants of
DTC. In this Section, we give a method for generating interpolants for a pair of 7; U73-
formulas (A, B) when 77 and 75 are combined using DTC. As in [30], we assume that
A and B have been purified using disjoint sets of auxiliary variables.

5.1 Combination without A B-mixed interface equalities

Let Eq be the set of all interface equalities introduced by DTC. We first consider the
case in which Eq does not contain A B-mixed equalities. That is, Fq can be partitioned

into two sets (Fg\ B) = {(x = y)|(x = y) X Aand (x = y) £ B} and (Eq |
B) = {(z = y)|(z = y) < B}. In this restricted case, nothing special needs to be
done, despite the fact that the interface equalities in £'q do not occur neither in A nor
in B, but might be introduced in the resolution proof P by 7 -lemmas. This is because
—as observed in [20]— as long as for an atom p either p < A or p < B holds, it is
possible to consider it part of A (resp. of B) simply by assuming the tautology clause
p V —p to be part of A (resp. of B). Therefore, we can treat the interface equalities in
(Eq\ B) as if they appeared in A, and those in (Eq | B) as if they appeared in B.

5.2 Combination with A B-mixed interface equalities

We can handle the case in which some of the equalities in Fq are A B-mixed under the
hypothesis that 77 and 75 are equality-interpolating. Currently, we also require that 73
and 75 are convex, although the extension of the approach to non-convex theories is
part of ongoing work.

The idea is similar to that used in [30] in the case of NO: using the fact that
the 7;’s are equality-interpolating, we reduce this case to the previous one by “split-
ting” every AB-mixed interface equality (z, =) into the conjunction of two parts
(xq = t) A (t = xp), such that (x, = t) < Aand (t = zp) = B. The main difference is
that we do this a posteriori, after the construction of the resolution proof of unsatisfia-
bility P. This makes it possible to compute different interpolants for different partitions
of the input problem into an A-part and a B-part from the same proof P. Besides the
advantage in performance of not having to recompute the proof every time, this is par-
ticularly important in some application domains like abstraction refinement [11], where
the relation between interpolants obtained from the same proof tree is exploited to prove
some properties of the refinement procedure. ° To do this, we traverse P and split every
AB-mixed equality in it, performing also the necessary manipulations to ensure that the
modified DAG is still a resolution proof of unsatisfiability (according to the definition
in §2.2). As long as this requirement is met, our technique is independent from the exact
procedure implementing it. In the rest of this Section, we describe the algorithm that
we have implemented, for the combination EUF U LA(Q). Due to lack of space, we
can not describe it in detail, rather we only provide the main intuitions.

First, we control the branching and learning heuristics of the SMT solver to ensure
that the generated resolution proof of unsatisfiability P has a property that we call
locality wrt. interface equalities. We say that P is local wrt. interface equalities (ie -
local) if the interface equalities occur only in subproofs i€ of P, in which both the root
and the leaves are 7; U 75-valid, the leaves of 731'!8 are also leaves of P, the root of P;e
does not contain any interface equality, and in 7€ all the pivots are interface equalities.

® In particular, the following relation: 14, guc(P) AC = Tauc,5(P) (where T4 5(P) is
an interpolant for (A, B) generated from the proof P) is used to show that for every spurious
counterexample found, the interpolation-based refinement procedure is able to rule-out the
counterexample in the refined abstraction [11]. It is possible to show that a similar relation
holds also for I4,puc(P1) and Tauc,B(P2), when Py and P» are obtained from the same
‘P by splitting A B-mixed interface equalities with the technique described here. However, for
lack of space we can not include such proof.

In order to generate ie -local proofs, we adopt a variant of the DTC Strategy 1 of [6].
We never select an interface equality for case splitting if there is some other unassigned
atom, and we always assign false to interface equalities first. Moreover, when splitting
on interface equalities, we restrict both the backjumping and the learning procedures
of the DPLL engine as follows. Let d be the depth in the DPLL tree at which the first
interface equality is selected for case splitting. If during the exploration of the current
DPLL branch we have to backjump above d, then we generate by resolution a conflict
clause that does not contain any interface equality, and “deactivate” all the 7 -lemmas
containing some interface equality, so that they can not be used elsewhere in the search
tree. Only when we start splitting on interface equalities again, we can re-activate such
T -lemmas.

The idea of the Strategy just described is that of “emulating” the NO combination
of the two 7;-solvers. The conflict clause generated by resolution plays the role of the
7T -lemma generated by the NO-based 77 U 75 solver, and the 7 -lemmas containing
positive interface equalities are used for exchanging implied equalities. The difference
is that the combination is performed by the DPLL engine, and encoded directly in the
ie -local subproofs Pi¢ of P.

Since A B-mixed equalities can only occur in P! subproofs, we can handle the rest
of P in the usual way. Therefore, we now describe only how to manipulate the P;*’s
such that all the A B-mixed equalities are split.

In order accomplish this task, we exploit the following fact: since we are considering
only convex theories, all the 7;-lemmas generated by the 7;-solvers contain at most one
positive interface equality (z = y).!° Let C = (z = y) V —n be one such 7;-lemma.
Then n =7, (x = y). Since 7; is equality-interpolating, if (x = y) is AB-mixed, we
can split C'into C; = (z = t) V-nand Cy = (¢t = y) V . (E.g. by using the
algorithms given in [30] for EUF and L.A(Q).) Then, we replace every occurrence of
—(z = y) in the leaves of P with the disjunction —(x = t) V =(t = y). Finally, we
replace the subproof

(z=t)v-mn ~(@@=t)volt=y Ve
(z=y)v- “(z=y)Ve with nMV-at=y)Ve
-nVe -nVe

(t=y)Vv-n

If this is done recursively, starting from 7;-lemmas —7n V (z = y) such that -
contains no negated AB-mixed equality, then the procedure terminates and the new
proof P!’ contains no AB-mixed equality.

Finally, we wish to remark that what just described is only one possible way of
splitting A B-mixed equalities in P. In particular, the restrictions on the branching and
learning heuristics needed to generate ie -local proofs might have a negative impact
in the performance of the SMT solver. In fact, we are currently investigating some
alternative strategies.

19 There is a further technical condition that must be satisfied by the 7;-solvers, i.e. they must not
generate conflict sets containing redundant disequalities. This is true for all the 7;-solvers on
EUF,DL(Q) and LA(Q) implemented in MATHSAT.

Family |# of problems| MATHSAT-ITP|FOCI |CLP-PROVER

kbfiltr.i 64 0.16 0.36 1.47
diskperf.i 119 0.33 0.78 3.08

floppy.i 235 0.73 1.64 5.91
cdaudio.i 130 0.35 1.07 2.98

Fig. 2. Comparison of execution times of MATHS AT-ITP, FOCI and CLP-PROVER on problems
generated by BLAST.

6 Experimental evaluation

The techniques presented in previous sections have been implemented within MATH-
SAT 4 [4] (Hereafter, we will refer to such implementation as MATHS AT-ITP). MATH-
SAT is an SMT solver supporting a wide range of theories and their combinations. In
the last SMT solvers competition (SMT-COMP’07), it has proved to be competitive
with the other state-of-the-art solvers. In this Section, we experimentally evaluate our
approach.

6.1 Description of the benchmark sets

We have performed our experiments on two different sets of benchmarks. The first
is obtained by running the BLAST software model checker [11] on some Windows
device drivers; these are similar to those used in [27]. This is one of the most important
applications of interpolation in formal verification, namely abstraction refinement in
the context of CEGAR. The problem represents an abstract counterexample trace, and
consists of a conjunction of atoms. In this setting, the interpolant generator is called
very frequently, each time with a relatively simple input problem.

The second set of benchmarks originates from the SMT-LIB [26], and is composed
of a subset of the unsatisfiable problems used in the 2007 SMT solvers competition
(http://www.smtcomp.orqg). The instances have been converted to CNF and then
split in two consistent parts of approximately the same size. The set consists of problems
of varying difficulty and with a nontrivial boolean structure.

The experiments have been performed on a 3GHz Intel Xeon machine with 4GB
of RAM running Linux. All the tools were run with a timeout of 600 seconds and a
memory limit of 900 MB.

6.2 Comparison with the state-of-the-art tools available

In this section, we compare with the only other interpolant generators which are avail-
able: FocT [20, 13] and CLP-PROVER [27]. Other natural candidates for comparison
would have been ZAP [3] and LIFTER [16]; however, it was not possible to obtain them
from the authors.

The comparison had to be adapted to the limitations of FOCI and CLP-PROVER. In
fact, the current version of FOCI does not handle the full £LA(Q), but only the DL(Q)

Execution Time Size of the Interpolant

1e+06

1000
° o, ° oo o
8 o 100000 - s ® i
] o B g -
100 o o o @&° ° H
° o B ?°
o °8 & _bm® 10000 F a
— 8 ©) @oog
O ER-S & o o
Lo © o o 4 6 o @
QO wwpo ", o > § ° o @ @ °
[° B &2 1000 L
° & ° o o
oo o
o .08 N 2
1to 4
®8° 2x L
o 4x 00 o 2
S Single theary © ax
e Multiple theories o 5 Single theory o
o Multiple theories o
01 . . . 10 . ; . I
01 1 10 100 1000 10 100 1000 10000 100000 le+

Fig. 3. Comparison of MATHS AT-ITP and Foc1 on SMT-LIB
instances: execution time (left), and size of the interpolant
(right). In the left plot, points on the horizontal and vertical
lines are timeouts/failures.

Execution Time

o, =°
o 100 oy %
m
>]
QO °
=4
n
5 e
Q &

°
2

001 L L L L
0.01 0.1 1 10 100 1000

MATHSAT-ITP

Fig. 4. Comparison of MATH-
SAT-ITP and CLP-PROVER
on conjunctions of LA(Q)
atoms.

fragment!!. We also notice that the interpolants it generates are not always DL(Q)
formulas. (See, e.g., Example 1 of Section 4.) CLP-PROVER, on the other hand, does
handle the full £A(Q), but it accepts only conjunctions of atoms, rather than formulas
with arbitrary boolean structure. These limitations made it impossible to compare all
the three tools on all the instances of our benchmark sets. Therefore, we perform the

following comparisons:

— We compare all the three solvers on the problems generated by BLAST;

— We compare MATHS AT-ITP with Foct on SMT-LIB instances in the theories of
EUF, DL(Q) and their combination. In this case, we compare both the execution
times and the sizes of the generated interpolants (in terms of number of nodes in
the DAG representation of the formula). For computing interpolants in EUF, we
apply the algorithm of [20], using an extension of the algorithm of [24] to generate
EUF proof trees. The combination EUF U DL(Q) is handled with the technique

described in §5;

— We compare MATHS AT-ITP and CLP-PROVER on LA(Q) problems consisting of
conjunctions of atoms. These problems are single branches of the search trees ex-
plored by MATHSAT for some £.A(Q) instances in the SMT-LIB. We have col-
lected several problems that took more than 0.1 seconds to MATHSAT to solve,
and then randomly picked 50 of them. In this case, we do not compare the sizes of

the interpolants as they are always atomic formulas.

The results are collected in Figures 2, 3 and 4. We can observe the following facts:

— Interpolation problems generated by BLAST are trivial for all the tools. In fact, we
even had some difficulties in measuring the execution times reliably. Despite this,
MATHS AT-ITP seems to be a little faster than the others.

"' For example, it fails to detect the £.A(Q)-unsatisfiability of the following problem: (0 <

y—r+w)ANO0<r—2z-w)A(0<z—y—1).

— For problems with a nontrivial boolean structure, MATHS AT-ITP outperforms FOCI
in terms of execution time. This is true even for problems in the combined theory
EUFUDL(Q), despite the fact that the current implementation is still preliminary.

— In terms of size of the generated interpolants, the gap between MATHS AT-ITP and
Foct is smaller on average. However, the right plot of Figure 3 (which considers
only instances for which both tools were able to generate an interpolant) shows that
there are more cases in which MATHS AT-ITP produces a smaller interpolant.

— On conjunctions of £LA(Q) atoms, MATHS AT-ITP outperforms CLP-PROVER, some-
times by more than two orders of magnitude.

7 Conclusions

In this paper, we have shown how to efficiently build interpolants using state-of-the-
art SMT solvers. Our methods encompass a wide range of theories (including EUF,
difference logic, and linear arithmetic), and their combination (based on the Delayed
Theory Combination schema). A thorough experimental evaluation shows that the pro-
posed methods are vastly superior to the state of the art interpolants, both in terms of
expressiveness, and in terms of efficiency.

In the future, we plan to investigate the following issues. First, we will improve
the implementation of the interpolation method for combined theories, that is currently
rather naive, and limited to the case of convex theories. Second, we will investigate
interpolation with other rules, in particular Ackermann’s expansion. Finally, we will
integrate our interpolator within a CEGAR loop based on decision procedures, such as
BLAST or the new version of NuSMV. In fact, such an integration raises interesting
problems related to controlling the structure of the generated interpolants [13, 14], e.g.
in order to limit the number or the size of constants occurring in the proof.

References

1. G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying industrial hybrid sys-
tems with mathsat. Electr. Notes Theor. Comput. Sci., 119(2), 2005.

2. G. Audemard, A. Cimatti, A. Kornilowicz, and R. Sebastiani. Bounded model checking for
timed systems. In Proc. FORTE, volume 2529 of LNCS. Springer, 2002.

3. T. Ball, S. K. Lahiri, and M. Musuvathi. Zap: Automated theorem proving for software
analysis. In Proc. LPAR, volume 3835 of LNCS. Springer, 2005.

4. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. Rossum, S. Schulz, and R. Sebastiani.
MathSAT: A Tight Integration of SAT and Mathematical Decision Procedure. Journal of
Automated Reasoning, 35(1-3), October 2005.

5. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Ranise, and R. Se-
bastiani. Efficient Theory Combination via Boolean Search. Information and Computation,
204(10), 2006.

6. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. Delayed Theory
Combination vs. Nelson-Oppen for Satisfiability Modulo Theories: A Comparative Analysis.
In Proc. LPAR, volume 4246 of LNCS. Springer, 2006.

7. G. Cabodi, M. Murciano, S. Nocco, and S. Quer. Stepping forward with interpolants in
unbounded model checking. In Proc. ICCAD’06,. ACM, 2006.

10.

11.

12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.
30.

. A. Cimatti, A. Griggio, and R. Sebastiani. Efficient Interpolant Generation in Satisfiability

Modulo Theories. Technical Report DIT-07-075, DISI - University of Trento, 2007.

. S. Cotton and O. Maler. Fast and Flexible Difference Constraint Propagation for DPLL(T).

In Proc. SAT, volume 4121 of LNCS. Springer, 2006.

B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In Proc .CAV,
volume 4144 of LNCS, 2006.

T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from proofs. In
N. D. Jones and X. Leroy, editors, POPL. ACM, 2004.

R. Jhala and K. McMillan. Interpolant-based transition relation approximation. In Proc.
CAV, volume 3576 of LNCS. Springer, 2005.

R. Jhala and K. L. McMillan. A Practical and Complete Approach to Predicate Refinement.
In H. Hermanns and J. Palsberg, editors, TACAS, volume 3920 of LNCS. Springer, 2006.

R. Jhala and K. L. McMillan. Array Abstractions from Proofs. In W. Damm and H. Her-
manns, editors, CAV, volume 4590 of LNCS. Springer, 2007.

D. Kapur, R. Majumdar, and C. G. Zarba. Interpolation for data structures. In M. Young and
P. T. Devanbu, editors, SIGSOFT FSE. ACM, 2006.

D. Kroening and G. Weissenbacher. Lifting Propositional Interpolants to the Word-Level. In
FMCAD, pages 85-89, Los Alamitos, CA, USA, 2007. IEEE Computer Society.

B. Li and F. Somenzi. Efficient Abstraction Refinement in Interpolation-Based Unbounded
Model Checking. In Proc. TACAS, volume 3920 of LNCS. Springer, 2006.

. J. Marques-Silva. Interpolant Learning and Reuse in SAT-Based Model Checking. Electr.

Notes Theor. Comput. Sci., 174(3):31-43, 2007.

K. McMillan. Interpolation and SAT-based model checking. In Proc. CAV, 2003.

K. L. McMillan. An interpolating theorem prover. Theor. Comput. Sci., 345(1), 2005.

K. L. McMillan. Lazy Abstraction with Interpolants. In Proc CAV, volume 4144 of LNCS.
Springer, 2006.

G. Nelson and D. Oppen. Simplification by Cooperating Decision Procedures. ACM Trans.
on Programming Languages and Systems, 1(2), 1979.

R. Nieuwenhuis and A. Oliveras. DPLL(T) with Exhaustive Theory Propagation and Its
Application to Difference Logic. In Proc. CAV, volume 3576 of LNCS. Springer, 2005.

R. Nieuwenhuis and A. Oliveras. Fast Congruence Closure and Extensions. Inf. Comput.,
2005(4):557-580, 2007.

P. Pudldk. Lower bounds for resolution and cutting planes proofs and monotone computa-
tions. J. of Symb. Logic, 62(3), 1997.

S. Ranise and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org, 2006.

A. Rybalchenko and V. Sofronie-Stokkermans. Constraint Solving for Interpolation. In
VMCAI, LNCS. Springer, 2007.

R. Sebastiani. Lazy Satisfiability Modulo Theories. Journal on Satisfiability, Boolean Mod-
eling and Computation, JSAT, Volume 3, 2007.

R. J. Vanderbei. Linear Programming: Foundations and Extensions. Springer, 2001.

G. Yorsh and M. Musuvathi. A combination method for generating interpolants. In
R. Nieuwenhuis, editor, CADE, volume 3632 of LNCS. Springer, 2005.

