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Chapter 25

SAT Techniques for Modal

and Description Logics
Roberto Sebastiani and Armando Tacchella

25.1. Introduction

In a nutshell, modal logics are propositional logics enriched with modal opera-
tors, —like 2, 3, 2i— which are able to represent complex facts like necessity,
possibility, knowledge and belief. For instance, “2ϕ” and “3ϕ” may represent
“necessarily ϕ” and “possibly ϕ” respectively, whilst “2122ϕ” may represent the
fact that agent 1 knows that agent 2 knows the fact ϕ. Description logics are
extensions of propositional logic which build on top of entities, concepts (unary
relations) and roles (binary relations), which allow for representing complex con-
cepts. For instance, the concept “male ∧ ∃ Children (¬ male ∧ teen)”,
represents the set of fathers which have at least one teenager daughter.

The research in modal and description logics had followed two parallel routes
until the seminal work by Schild [Sch91], who showed that the core modal logic
Km and the core description logic ALC are notational variants one of the other,
and that analogous frameworks, results and algorithms had been conceived in
parallel in the two communities. Since then, analogous results have been pro-
duced for a bunch of other logics, so that nowadays the two communities have
substantially merged into one research flow.

In the last two decades, modal and description logics have provided a theo-
retical framework for important applications in many areas of computer science,
including artificial intelligence, formal verification, database theory, distributed
computing and, more recently, semantic web. For this reason, the problem of
automated reasoning in modal and description logics has been thoroughly inves-
tigated (see, e.g., [Fit83, Lad77, HM92, BH91, Mas00]), and many approaches
have been proposed for (efficiently) handling the satisfiability of modal and de-
scription logics, with a particular interest for the core logics Km and ALC (see,
e.g., [Fit83, BH91, GS00, HPS99, HS99, BGdR03, PSV02, SV06]). Moreover, a
significant amount of benchmarks formulas have been produced for testing the
effectiveness of the different techniques [HM92, GRS96, HS96, HPSS00, Mas99,
PSS01, PSS03].
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782 Chapter 25. SAT Techniques for Modal and Description Logics

We briefly overview the main approaches for the satisfiability of modal and
description logics which have been proposed in the literature. The “classic”
tableau-based approach [Fit83, Lad77, HM92, Mas00] is based on the construc-
tion of propositional-tableau branches, which are recursively expanded on demand
by generating successor nodes in a candidate Kripke model. In the DPLL-based
approach [GS96a, SV98, GS00] a DPLL procedure, which treats the modal subfor-
mulas as propositions, is used as Boolean engine at each nesting level of the modal
operators: when a satisfying assignment is found, the corresponding set of modal
subformulas is recursively checked for modal consistency. Among the tools em-
ploying (and extending) this approach, we recall Ksat[GS96a, GGST00], *SAT
[Tac99], Fact [Hor98b], Dlp [PS98], and Racer [HM01]. 1 This approach has
lately been exported into the context of Satisfiability Modulo Theories - SMT
[ACG00, ABC+02], giving rise the so-called on-line lazy approach to SMT de-
scribed in §26.4 (see also [Seb07]). The CSP-based approach [BGdR03] differs
from the tableaux-based and DPLL-based ones mostly in the fact that a CSP
engine is used instead of a tableaux/DPLL engine. KCSP is the representa-
tive tool of this approach. In the translational approach [HS99, AGHd00] the
modal formula is encoded into first-order logic (FOL), and the encoded formula
is then fed to a FOL theorem prover [AGHd00]. MSpass [HSW99] is the most
representative tool of this approach. In the Inverse-method approach, a search
procedure is based on the inverted version of a sequent calculus [Vor99, Vor01]
(which can be seen as a modalized version of propositional resolution [PSV02]).
K Kis the representative tool of this approach. In the Automata-theoretic ap-
proach, or OBDD-based approach, (a OBDD-based symbolic representation of) a
tree automaton accepting all the tree models of the input formula is implicitly
built and checked for emptiness [PSV02, PV03]. KBDD [PV03] is the represen-
tative tool of this approach. [PV03] presents also an encoding of K-satisfiability
into QBF-satisfiability – another PSPACE-complete problem – combined with the
use of a state-of-the-art QBF solver Finally, in the eager approach [SV06, SV08]
Km/ALC-formulas are encoded into SAT and then fed to a state-of-the-art SAT
solver. Km2SAT is the representative tool of this approach.

Most such approaches combine propositional reasoning with various tech-
niques/encodings for handling the modalities, and thus are based on, or have
largely benefited from, efficient propositional reasoning techniques. In particular,
the usage of DPLL as a core Boolean reasoning technique produced a boost in
the performance of the tools when it was adopted [GS96a, GS96b, Hor98b, PS98,
HPS99, GGST00, HPSS00].

In this chapter we show how efficient Boolean reasoning techniques have been
imported, used and integrated into reasoning tools for modal and description
logics. To this extent, we focus on modal logics, and in particular mainly on
Km. Importantly, this chapter does not address the much more general issue of
satisfiability in modal and description logics, because the reasoning techniques

1 Notice that there is not an universal agreement on the terminology “tableau-based” and
“DPLL-based”. E.g., tools like Fact, Dlp, and Racer are often called “tableau-based”, al-
though they use a DPLL-like algorithm instead of propositional tableaux for handling the
propositional component of reasoning [Hor98b, PS98, HPS99, HM01], because many scientists
in these communities consider DPLL as an optimized version of propositional tableaux. The
same issue holds for the Boolean system KE [DM94] and its derived systems.
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Chapter 25. SAT Techniques for Modal and Description Logics 783

which are specific for the different modal and description logics are orthogonal to
the issue of Boolean reasoning. We refer the reader to the bibliography presented
above and to [BCM+03] for a detailed description of those topics.

The chapter is organized as follows. In §25.2 we provide some background in
modal logics. In §25.3 we describe a basic theoretical framework and we present
and analyze the basic tableau-based and DPLL-based techniques. In §25.4 we
present optimizations and extensions of the DPLL-based procedures. In §25.5
we present the automata-theoretic/OBDD-based approach. Finally, in §25.6 we
present the eager approach.

25.2. Background

In this section we provide some background in modal logics. We refer the reader
to, e.g., [Che80, Fit83, HM92] for a more detailed introduction.

25.2.1. The Modal Logic Km

We start with some basic notions and notation (see, e.g., [Che80, Fit83, HM92] for
more details). Given a non-empty set of primitive propositions A = {A1, A2, . . .}
and a set of m modal operators B = {21, . . . ,2m}, let the language Λm be the
least set of formulas containing A, closed under the set of propositional connec-
tives {¬,∧} and the set of modal operators in B. Notationally, we use capital
letters Ai, Bi, ... to denote primitive propositions and Greek letters αi, βi, ϕi, ψi
to denote formulas in Λm. We use the standard abbreviations, that is: “3rϕ1”
for ‘¬2r¬ϕ1”, “ϕ1 ∨ ϕ2” for “¬(¬ϕ1 ∧ ¬ϕ2)”, “ϕ1 → ϕ2” for “¬(ϕ1 ∧ ¬ϕ2)”,
“ϕ1 ↔ ϕ2” for “¬(ϕ1 ∧ ¬ϕ2) ∧ ¬(ϕ2 ∧ ¬ϕ1)”, “⊤” and ⊥ for the true and false
constants respectively. Formulas like ¬¬ψ are implicitly assumed to be sim-
plified into ψ; thus, if ψ is ¬φ, then by “¬ψ” we mean “φ”. We often write
“(

∧

i li) →
∨

j lj” for the clause “
∨

j ¬li ∨
∨

j lj”, and “(
∧

i li) → (
∧

j lj)” for the
conjunction of clauses “

∧

j(
∨

i ¬li ∨ lj)”. We call depth of ϕ, written depth(ϕ),
the maximum degree of nesting of modal operators in ϕ.

A Km-formula is said to be in Negative Normal Form (NNF) if it is written
in terms of the symbols 2r, 3r, ∧, ∨ and propositional literals Ai, ¬Ai (i.e., if
all negations occur only before propositional atoms in A). Every Km-formula
ϕ can be converted into an equivalent one NNF (ϕ) by recursively applying
the rewriting rules: ¬2rϕ=⇒3r¬ϕ, ¬3rϕ=⇒2r¬ϕ, ¬(ϕ1 ∧ϕ2)=⇒(¬ϕ1 ∨¬ϕ2),
¬(ϕ1 ∨ ϕ2)=⇒(¬ϕ1 ∧ ¬ϕ2), ¬¬ϕ=⇒ϕ.

A Km-formula is said to be in Box Normal Form (BNF) [PSV02, PV03]
if it is written in terms of the symbols 2r, ¬2r, ∧, ∨, and propositional lit-
erals Ai, ¬Ai (i.e., if there are no diamonds, and if all negations occurs only
before boxes or before propositional atoms in A). Every Km-formula ϕ can be
converted into an equivalent one BNF (ϕ) by recursively applying the rewriting
rules: 3rϕ=⇒¬2r¬ϕ, ¬(ϕ1 ∧ ϕ2)=⇒(¬ϕ1 ∨ ¬ϕ2), ¬(ϕ1 ∨ ϕ2)=⇒(¬ϕ1 ∧ ¬ϕ2),
¬¬ϕ=⇒ϕ.

The basic normal modal logic Km can be defined axiomatically as follows. A
formula in Λm is a theorem in Km if it can be inferred from the following axiom
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784 Chapter 25. SAT Techniques for Modal and Description Logics

schema:

K. (2rϕ1 ∧ 2r(ϕ1 → ϕ2)) → 2rϕ2. (25.1)

by means of tautological inference and of the application of the following inference
rule:

ϕ
2rϕ

(Necessitation), (25.2)

for every formula ϕ, ϕ1, ϕ2 in Λm and for every 2r ∈ B. The rule Necessitation
characterizes most modal logics; the axiom K characterizes the normal modal
logics.

The semantics of modal logics is given by means of Kripke structures. A
Kripke structure for Km is a tuple M = 〈U , π,R1, . . . ,Rm〉, where U is a set of
states, π is a function π : A × U 7−→ {True, False}, and each Rr is a binary
relation on the states of U . With a little abuse of notation we write “u ∈ M”
instead of “u ∈ U”. We call a pair M,u, a situation. The binary relation |=
between a modal formula ϕ and a pair M,u s.t. u ∈M is defined as follows:

M,u |= Ai, Ai ∈ A ⇐⇒ π(Ai, u) = True;
M,u |= ¬ϕ1 ⇐⇒ M,u 6|= ϕ1;
M,u |= ϕ1 ∧ ϕ2 ⇐⇒ M,u |= ϕ1 and M, u |= ϕ2;
M,u |= 2rϕ1, 2r ∈ B ⇐⇒ M,v |= ϕ1 for every v ∈M s.t. Rr(u, v) holds in M .

We extend the definition of |= to formula sets µ = {ϕ1, ..., ϕn} as follows:

M,u |= µ ⇐⇒ M,u |= ϕi, for every ϕi ∈ µ.

“M,u |= ϕ” should be read as “M,u satisfy ϕ in Km” (alternatively, “M,u
Km-satisfy ϕ”). We say that a formula ϕ ∈ Λm is satisfiable in Km (Km-
satisfiable from now on) if and only if there exist M and u ∈M s.t. M,u |= ϕ. ϕ
is valid for M , written M |= ϕ, if M,u |= ϕ for every u ∈M . ϕ is valid for a class
of Kripke structures K if M |= ϕ for every M ∈ K. ϕ is said to be valid in Km

iff M |= ϕ for every Kripke structure M . It can be proved that a Λm-formula ϕ
is a theorem in Km if and only if it is valid in Km [Che80, Fit83, HM92].

When this causes no ambiguity we sometimes write “satisfiability” meaning
“Km-satisfiability”. If m = 1, we simply write “K” for “K1”.

The problem of determining the Km-satisfiability of a Km-formula ϕ is de-
cidable and PSPACE-complete [Lad77, HM92], even restricting the language to
a single Boolean atom (i.e., A = {A1}) [Hal95]; if we impose a bound on the
modal depth of the Km-formulas, the problem reduces to NP-complete [Hal95].
Intuitively, every satisfiable formula ϕ in Km can be satisfied by a Kripke struc-
ture M which is a finite tree and whose depth is given by depth(ϕ) + 1 (i.e., s.t.
|M | ≤ |ϕ|depth(ϕ)). Such a structure can be spanned by an alternating-and/or
search procedure, similarly to what is done with QBF. An encoding of Km-
satisfiability into QBF is presented in [Lad77, HM92]. For a detailed description
on Km, including complexity results, we refer the reader to [Lad77, HM92, Hal95].
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Table 25.1. Axiom schemata and corresponding properties of Rr for the normal modal logics.

Axiom Schema Property of Rr

B. ¬ϕ→ 2r¬2rϕ symmetric ∀ u v. [Rr(u, v) =⇒ Rr(v, u)]
D. ¬2r⊥ seriality ∀ u. ∃ v. [Rr(u, v)]
T. 2rϕ→ ϕ reflexive ∀ u. [Rr(u, u)]
4. 2rϕ→ 2r2rϕ transitive ∀ u v w. [Rr(u, v) e Rr(v, w) =⇒ Rr(u,w)]
5. ¬2rϕ→ 2r¬2rϕ euclidean ∀ u v w. [Rr(u, v) e Rr(u,w) =⇒ Rr(v, w)]

Table 25.2. Properties of Rr for the various normal modal logics. The names between paren-

theses denote the names each logic is commonly referred with. (For better readability, we omit

the pedex “ m” from the name of the logics.)

Logic L ∈ N (Axiomatic Characteri-
zation)

Corresponding Properties of Rr (Semantic Charac-
terization)

K —
KB symmetric
KD serial
KT = KDT (T) reflexive
K4 transitive
K5 euclidean
KBD symmetric and serial
KBT = KBDT (B) symmetric and reflexive
KB4 = KB5 = KB45 symmetric and transitive
KD4 serial and transitive
KD5 serial and euclidean
KT4 = KDT4 (S4) reflexive and transitive
KT5 = KBD4 = KBD5 = KBT4 = reflexive, transitive and symmetric
KBT5 = KDT5 = KT45 = KBD45 = (equivalence)
KBT45 = KDT45 = KBDT4 =
KBDT5 =
KBDT45 (S5)
K45 transitive and euclidean
KD45 serial, transitive and euclidean

25.2.2. Normal Modal Logics

We consider the class N of the normal modal logics. We briefly recall some of the
standard definitions and results for these logics (see, e.g., [Che80, Fit83, HM92,
Hal95]).

Given the language Λm, the class of normal modal logics on Λm, N , can be
described axiomatically as follows. The set of theorems in a logic L in N is the
set of Λm-formulas which can be inferred by means of tautological inference and
of the application of the Necessitation rule from the axiom schema K, plus a
given subset of the axiom schemata {B,D, T, 4, 5} described in the left column
of Table 25.1. A list of normal modal logics built by combining such axiom
schemata is presented in the left column of Table 25.2. Notice that each logic
L is named after the list of its (modal) axiom schemata, and that many logics
are equivalent, so that we have only 15 distinct logics out of the 32 possible
combinations.
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786 Chapter 25. SAT Techniques for Modal and Description Logics

From the semantic point of view, the logics L ∈ N differ from one another
by imposing some restrictions on the relations Rr of the Kripke structures. As
described in Table 25.1, each axiom schema in {B,D, T, 4, 5} corresponds to a
property on Rr. In each logic L, a formula ϕ can be satisfied only by Kripke
structures whose relations Rr’s verify the properties corresponding to L, as de-
scribed in Table 25.2. (E.g., ϕ is satisfiable in KD4 only by Kripke structures
whose relations are both serial and transitive.) Consequently, ϕ is said to be valid
in L if it is valid in the corresponding class of Kripke structures. For every L in
N , it can be proved that a Λm-formula is a theorem in L if and only if it is valid
in L [Che80, Fit83].

The problem of determining the satisfiability in L in N (“L-satisfiability”
hereafter) of a Λm-formula ϕ is decidable for every L. The computational com-
plexity of the problem depends on the logic L and on many other factors, including
the maximum number m of distinct box operators, the maximum number |A| of
distinct primitive propositions, and the maximum modal depth of the formulas
(denoted by depth). In the general case, for most logics L ∈ N L-satisfiability is
PSPACE-complete; in some cases it may reduce to NP-complete, if m = 1 (e.g.,
with K45, KD45, S5), if depth is bounded (e.g., with Km, Tm, K45m, KD45m,
S5m); in some cases it may reduce even to PTIME-complete is some of the fea-
tures above combine with the fact that |A| is finite [Lad77, Hal95]. We refer the
reader to [Lad77, HM92, Hal95, Ngu05] for a detailed description of these issues.

A labeled formula is a pair σ : ϕ, where ϕ is a formula in Λ and σ is a label
(typically a sequence of integers) labeling a world in a Kripke structure for L.
If Γ = {ϕ1, . . . , ϕn}, we write σ : Γ for {σ : ϕ1, . . . , σ : ϕn}. Intuitively, σ : ϕ
means “the formula ϕ in the world σ”. For every L ∈ N , [Fit83, Mas94, Mas00]
give a notion of accessibility relation between labels and gives the properties for
these relations for the various logics L. Essentially, they mirror the accessibility
relation between the worlds they label.

25.2.3. Non-normal Modal Logics

We now consider the class of classical – also known as non-normal – modal logics.
We briefly recall some of the standard definitions and results for these logics (see,
e.g., [Che80, FHMV95]).

Given the language Λm, the basic classical modal logic on Λm, Em, can be
defined axiomatically as follows. The theorems in Em are the set of formulas in
Λm which can be inferred by tautological inference and by the application of the
inference rule:

ϕ↔ ψ

2rϕ↔ 2rψ
(E)

. (25.3)

As a consequence, the schemata

N. 2r⊤
M. 2r(ϕ ∧ ψ) → 2rϕ
C. (2rϕ ∧ 2rψ) → 2r(ϕ ∧ ψ)

(25.4)

which are theorems in Km do not hold in Em. The three principles N , M , and C
enforce closure conditions on the set of provable formulas which are not always de-
sirable, especially if the 2r operator has an epistemic (such as knowledge or belief)
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reading. If we interpret 2rϕ as “a certain agent r believes ϕ”, then N enforces
that r believes all the logical truths, M that r’s beliefs are closed under logical
consequence, and C that r’s beliefs are closed under conjunction. These three
closure properties are different forms of omniscience, and —as such— they might
not be appropriate for modeling the beliefs of a real agent (see, e.g., [FHMV95]).
By combining the schemata in (25.4) and using them as axiom schemata, we can
get eight different combinations corresponding to eight distinct logics, where each
logic is named after the list of its modal axiom schemata. The logic EMCNm
corresponds to the basic normal modal logic Km.

The semantics of classical modal logics is given by means of Montague-Scott
structures. A Montague-Scott structure for Em is a tuple S = 〈U , π,N1, . . . ,Nm〉,
where U is a set of states, π is a function π : A×U 7−→ {True, False}, and each
Nr is a relation Nr : U 7−→ P(P(U)), i.e., for each u ∈ U , Nr(u) ⊆ P(U). Notice
that Montague-Scott structures are a generalization of Kripke structures, so the
class of possible models for Km is indeed a subclass of the possible models for
Em. In analogy with Section 25.2.1, we write “u ∈ S” instead of “u ∈ U”, and
we call S, u a situation. The binary relation |= between a modal formula ϕ and
a pair S, u s.t. u ∈ S is defined as follows:

S, u |= Ai, Ai ∈ A ⇐⇒ π(Ai, u) = True;
S, u |= ¬ϕ1 ⇐⇒ S, u 6|= ϕ1;
S, u |= ϕ1 ∧ ϕ2 ⇐⇒ S, u |= ϕ1 and S, u |= ϕ2;
S, u |= 2rϕ1, 2r ∈ B ⇐⇒ {v |M,v |= ϕ1} ∈ Nr(u)

(25.5)

We extend the definition of |= to formula sets µ = {ϕ1, ..., ϕn} as follows:

S, u |= µ ⇐⇒ S, u |= ϕi, for every ϕi ∈ µ.

“S, u |= ϕ” should be read as “S, u satisfy ϕ in Em” (alternatively, “S, u Em-
satisfy ϕ”). We say that a formula ϕ ∈ Λm is satisfiable in Em (Em-satisfiable
from now on) if and only if there exist S and u ∈ S s.t. S, u |= ϕ. ϕ is valid
for S, written S |= ϕ, if S, u |= ϕ for every u ∈ S. ϕ is valid for a class of
Montague-Scott structures C if S |= ϕ for every S ∈ C. ϕ is said to be valid in
Em iff S |= ϕ for every Montague-Scott structure S. The semantics of the logic
E is given by the relation defined in 25.5 only. The logics where one of M , C and
N is an axiom require the following closure conditions on Nr to be satisfied for
each r:

(M) if U ⊆ V and U ∈ Nr(w) then V ∈ Nr(w) (closure by superset inclusion),
(C) if U ∈ Nr(w) and V ∈ Nr(w) then U ∩ V ∈ Nr(w) (closure by intersection),
(N) U ∈ Nr(w) (unit containment).

Notice that if an Em structure S is such that Nr(u) satisfies all the above condi-
tions for each world u ∈ S, then S is also a Km structure.

In analogy with section 25.2.1, if m = 1, we simply write, e.g., “E” for “E1”,
“EM” for “EM1”, and so on. For every non-normal logic L, it can be proved
that a Λm-formula is a theorem in L if and only if it is valid in L [Che80, Fit83].

The problem of determining the Em-satisfiability of a Em-formula ϕ is de-
cidable, and the Em-satisfiability problem is NP-complete [Var89]. Satisfiability
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is also NP-complete in all the classical modal logics that do not contain C as an
axiom (EM, EN, EMN), while it is PSPACE-complete in the remaining ones (EC,
EMC, ECN, EMCN). The satisfiability problems maintain the same complexity
classes when considering multi-agent extensions.

25.2.4. Modal Logics and Description Logics

The connection between modal logics and terminological logics – also known as
description logics – is due to a seminal paper by Klaus Schild [Sch91] where the
description logic ALC [SSS91] is shown to be a notational variant of the modal
logic Km. Here we survey some of the results of [Sch91], and we refer the reader
to [BCM+03] for further reading about the current state of the art in modal and
description logics.

Following [Sch91], we start by defining the language of ALC. Formally, the
language ALC is defined by grammar rules of the form:

C → c | ⊤ | C1 ⊓ C2 | ¬C | ∀R.C
R → r

(25.6)

where C, and Ci denote generical concepts, c denotes an atomic concept symbol
and r a role symbol. The formal semantics of ALC is specified by an extension
function. Let D be any set called the domain. An extension function ε over D is
a function mapping concepts to subsets of D and roles to subsets of D ×D such
that

ε[⊤] = D
ε[C ⊓D] = ε[C] ∩ ε[D]
ε[¬C] = D \ ε[C]

ε[∀R.C] = {d ∈ D | ∀〈d, e〉 ∈ ε[R] e ∈ ε[C]}

(25.7)

Using extension functions, we can define the semantic notion of subsumption,
equivalence and coherence: D subsumes C, written |= C ⊑ D, iff for each exten-
sion function ε, ε[C] ⊆ ε[D], whereas C and D are equivalent, written |= C = D
iff for each extension function ε, ε[C] = ε[D]. Finally, C is coherent iff there is an
extension function ε with ε[C] 6= ∅. The following result allows us to concentrate
on any of the above notions without loss of generality:

Lemma 1. [Sch91] Subsumption, equivalence, and incoherence are log-space
reducible to each other in any terminological logic comprising Boolean operations
on concepts.

Viewing ALC from the modal logic perspective (see 25.2.1), atomic concepts
simply can be expounded as atomic propositions, and can be interpreted as the
set of states in which such propositions hold. In this case “∀.” becomes a modal
operator since it is applied to formulas. Thus, e.g., ¬c1 ⊔ ∀r.(c2 ⊓ c3) can be
expressed by the Km-formula ¬A1∨2r(A2∧A3). The subformula 2r(A2∧A3) is
to be read as “agent r knows A2 ∧A3”, and means that in every state accessible
for r, both A2 and A3 hold.2 Actually

2Notice that we replaced primitive concepts ci with i ∈ {1, 2, 3} with propositions Ai, as-
suming the obvious bijection between the two sets.
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• the domain of an extension function can be read as a set of states U ,
• atomic concepts can be interpreted as the set of worlds in which they hold,

if expounded as atomic formulas, and
• atomic roles can be interpreted as accessibility relations.

Hence ∀R.C can be expounded as “all states in which agent R knows proposition
C” instead of “all objects for which all R’s are in C”.

To establish the correspondence between ALC and Km consider the function
f mapping ALC concepts to Km-formulas with f(ci) = Ai for i ∈ 1, 2, . . ., i.e., f
maps concept symbols to primitive propositions, f(⊤) = ⊤, f(C ⊓D) = f(C) ∧
f(D), f(¬C) = ¬f(C) and f(∀R.C) = 2Rf(C). It could easily be shown by
induction on the complexity of ALC−concepts that f is a linearly length-bounded
isomorphism such that an ALC−concept C is coherent iff the Km-formula f(C)
is satisfiable. Formally:

Theorem 1. [Sch91] ALC is a notational variant of the propositional modal logic
Km, and satisfiability in Km has the same computational complexity as coherence
in ALC.

By this correspondence, several theoretical results for Km can easily be car-
ried over to ALC. We immediately know, for example, that without loss of gen-
erality, any decision procedure for Km-satisfiability is also a decision procedure
for ALC−coherence.

There are other result (see, e.g., [BCM+03]) that link normal modal logics,
as described in 25.2.2, to various description logics that extend ALC in several
ways. According to these results, decision procedures for expressive description
logics may be regarded as decision procedures for various normal modal logics,
e.g., KD, T, B, and the other way round.

25.3. Basic Modal DPLL

In this section we introduce the basic concepts of modal tableau-based and DPLL-
based procedures, and we discuss their relation.

25.3.1. A Formal Framework

Assume w.l.o.g. that the 3r’s are not part of the language (each 3rϕ can be
rewritten into ¬2r¬ϕ). We call atom every formula that cannot be decomposed
propositionally, that is, every formula whose main connective is not proposi-
tional. Examples of atoms are, A1, Ai (propositional atoms), 21(A1 ∨ ¬A2) and
22(21A1∨¬A2) (modal atoms). A literal is either an atom or its negation. Given
a formula ϕ, an atom [literal] is a top-level atom [literal] for ϕ if and only if it
occurs in ϕ and under the scope of no boxes. Atoms0(ϕ) is the set of the top-level
atoms of ϕ.

We call a truth assignment µ for a formula ϕ a truth value assignment to all
the atoms of ϕ. A truth assignment is total if it assigns a value to all atoms in ϕ,
partial otherwise. Syntactically identical instances of the same atom are always
assigned identical truth values; syntactically different atoms, e.g., 21(ϕ1 ∨ ϕ2)



i

i

“p02c11˙mod” — 2008/11/16 — 16:01 — page 790 — #10
i

i

i

i

i

i

790 Chapter 25. SAT Techniques for Modal and Description Logics

and 21(ϕ2 ∨ϕ1), are treated differently and may thus be assigned different truth
values.

To this extent, we introduce a bijective function L2P (“L-to-Propositional”)
and its inverse P2L := L2P−1 (“Propositional-to-L”), s.t. L2P maps top-
level Boolean atoms into themselves and top-level non-Boolean atoms into fresh
Boolean atoms — so that two atom instances in ϕ are mapped into the same
Boolean atom iff they are syntactically identical— and distributes with sets and
Boolean connectives. (E.g., L2P({2rϕ1,¬(2rϕ1 ∨ ¬A1)}) is {B1,¬(B1 ∨ ¬A1)}
.) L2P and P2L are also called Boolean abstraction and Boolean refinement
respectively.

We represent a truth assignment µ for ϕ as a set of literals

µ = { 21α11, . . . ,21α1N1
,¬21β11, . . . ,¬21β1M1

,
...
2mαm1, . . . ,2mαmNm

,¬2mβm1, . . . ,¬2mβmMm
,

A1, . . . ,¬AR,¬AR+1, . . . ,¬AS},

(25.8)

2rαi’s, 2rβj ’s being modal atoms and Ai’s being propositional atoms. Positive
literals 2rαi and Ak in µ mean that the corresponding atom is assigned to true,
negative literals ¬2rβi and ¬Ak mean that the corresponding atom is assigned
to false. If µ2 ⊆ µ1, then we say that µ1 extends µ2 and that µ2 subsumes µ1. A
restricted truth assignment

µr = {2rαr1, . . . ,2rαrNr
,¬2rβr1, . . . ,¬2rβrMr

} (25.9)

is given by restricting µ to the set of atoms in the form 2rψ, where 1 ≤ r ≤ m.
Trivially µr subsumes µ.

Notationally, we use the Greek letters µ, η to represent truth assignments.
Sometimes we represent the truth assignments in (25.8) and (25.9) also as the
formulas given by the conjunction of their literals:

µ =











































∧N1

i=1 21α1i ∧
∧M1

j=1 ¬21β1j∧

. . .

∧Nm

i=1 2mαm ∧
∧Mm

j=1 ¬2mβmj∧

∧R
k=1Ak ∧

∧S
h=R+1 ¬Ah,

(25.10)

µr =
∧

i

2rαri ∧
∧

j

¬2rβrj . (25.11)

For every logic L, we say that an assignment µ [restricted assignment µr]
is L-satisfiable meaning that its corresponding formula (25.10) [(25.11)] is L-
satisfiable.

We say that a total truth assignment µ for ϕ propositionally satisfies ϕ,
written µ |=p ϕ, if and only if L2P(µ) |= L2P(ϕ), that is, for all sub-formulas
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ϕ1, ϕ2 of ϕ:

µ |=p ϕ1, ϕ1 ∈ Atoms0(ϕ) ⇐⇒ ϕ1 ∈ µ,
µ |=p ¬ϕ1 ⇐⇒ µ 6|=p ϕ1,
µ |=p ϕ1 ∧ ϕ2 ⇐⇒ µ |=p ϕ1 and µ |=p ϕ2.

We say that a partial truth assignment µ propositionally satisfies ϕ if and
only if all the total truth assignments for ϕ which extend µ propositionally satisfy
ϕ. For instance, if ϕ = 21ϕ1∨¬22ϕ2, then the partial assignment µ = {21ϕ1} is
such that µ |=p ϕ. In fact, both {21ϕ1 22ϕ2} and {21ϕ1,¬22ϕ2} propositionally
satisfy ϕ. Henceforth, if not otherwise specified, when dealing with propositional
satisfiability we do not distinguish between assignments and partial assignments.
Intuitively, if we consider a formula ϕ as a propositional formula in its top-level
atoms, then |=p is the standard satisfiability in propositional logic. Thus, for
every ϕ1 and ϕ2, we say that ϕ1 |=p ϕ2 if and only if µ |=p ϕ2 for every µ s.t.
µ |=p ϕ1. We say that ϕ is propositionally satisfiable if and only if there exist an
assignment µ s.t. µ |=p ϕ. We also say that |=p ϕ (ϕ is propositionally valid) if
and only if µ |=p ϕ for every assignment µ for ϕ. Thus ϕ1 |=p ϕ2 if and only if
|=p ϕ1 → ϕ2, and |=p ϕ iff ¬ϕ is propositionally unsatisfiable. Notice that |=p is
stronger than |=, that is, if ϕ1 |=p ϕ2, then ϕ1 |= ϕ2, but not vice versa. E.g.,
2rϕ1 ∧ 2r(ϕ1 → ϕ2) |= 2rϕ2, but 2rϕ1 ∧ 2r(ϕ1 → ϕ2) 6|=p 2rϕ2.

Example 1. Consider the following K2 formula ϕ and its Boolean abstraction
L2P(ϕ):

ϕ = {¬21(¬A3 ∨ ¬A1 ∨A2) ∨A1 ∨A5}

∧ {¬A2 ∨ ¬A5 ∨ 21(¬A2 ∨A4 ∨A5)}
∧ {A1 ∨ 22(¬A4 ∨A5 ∨A2) ∨A2}

∧ {¬22(A4 ∨ ¬A3 ∨A1) ∨ ¬21(A4 ∨ ¬A2 ∨A3) ∨ ¬A5}

∧ {¬A3 ∨A1 ∨ 22(¬A4 ∨A5 ∨A2)}

∧ {21(¬A5 ∨A4 ∨A3) ∨ 21(¬A1 ∨A4 ∨A3) ∨ ¬A1}

∧ {A1 ∨ 21(¬A2 ∨A1 ∨A4) ∨A2}

L2P(ϕ) = {¬B1 ∨A1 ∨A5}
∧ {¬A2 ∨ ¬A5 ∨B2}
∧ {A1 ∨B3 ∨A2}
∧ {¬B4 ∨ ¬B5 ∨ ¬A5}
∧ {¬A3 ∨A1 ∨B3}
∧ {B6 ∨B7 ∨ ¬A1}
∧ {A1 ∨B8 ∨A2}

The partial assignment µp = {B6, B8,¬B1,¬B5, B3,¬A2} satisfies L2P(ϕ), so
that the following assignment µ := P2L(µp) propositionally satisfies ϕ:

µ = 21(¬A5 ∨A4 ∨A3) ∧ 21(¬A2 ∨A1 ∨A4) ∧ [
∧

i 21α1i]
¬21(¬A3 ∨ ¬A1 ∨A2) ∧ ¬21(A4 ∨ ¬A2 ∨A3) ∧ [

∧

j ¬21β1j ]

22(¬A4 ∨A5 ∨A2) ∧ [
∧

i 22α2i]
¬A2. [

∧

k Ak ∧
∧

h ¬Ah]



i

i

“p02c11˙mod” — 2008/11/16 — 16:01 — page 792 — #12
i

i

i

i

i

i

792 Chapter 25. SAT Techniques for Modal and Description Logics

µ gives rise to two restricted assignments µ1 and µ2:

µ1 = 21(¬A5 ∨A4 ∨A3) ∧ 21(¬A2 ∨A1 ∨A4) ∧ [
∧

i 21α1i]
¬21(¬A3 ∨ ¬A1 ∨A2) ∧ ¬21(A4 ∨ ¬A2 ∨A3) [

∧

j ¬21β1j ]

µ2 = 22(¬A4 ∨A5 ∨A2) [
∧

i 22α2i].

We say that a collection M := {µ1, . . . , µn} of (possibly partial) assignments
propositionally satisfying ϕ is complete if and only if, for every total assignment
η s.t. η |=p ϕ, there exists µj ∈ M s.t. µj ⊆ η. Intuitively, M can be seen
as a compact representation of the whole set of total assignments propositionally
satisfying ϕ.

Proposition 1. [SV98] Let ϕ be a formula and let M := {µ1, . . . , µn} be a
complete collection of truth assignments propositionally satisfying ϕ. Then, for
every L, ϕ is L-satisfiable if and only if µj is L-satisfiable for some µj ∈ M.

We also notice the following fact.

Proposition 2. [Seb01] Let α be a non-Boolean atom occurring only positively
[resp. negatively] in ϕ. Let M be a complete set of assignments satisfying ϕ, and
let

M′ := {µj \ {¬α}| µj ∈ M} [resp. {µj \ {α} | µj ∈ M}].

Then (i) for every µ′
j ∈ M′, µ′

j |=p ϕ, and (ii) ϕ is L-satisfiable if and only if
there exist a L-satisfiable µ′

j ∈ M′.

proposition 1 shows that the L-satisfiability of a formula can be reduced
to that of a complete collection of sets of literals (assignment), for every call.
Proposition 2 says that, if we have non-Boolean atoms occurring only positively
[resp. negatively] in the input formula, we can safely drop every negative [resp.
positive] occurrence of them from all assignments in a complete set M preserving
the completeness of M. In general, L-satisfiability of a conjunction of literals
depends on L [Fit83, Che80]. The following propositions give a recursive definition
for Km.

Proposition 3. [GS00] The truth assignment µ of Equation (25.10) is Km-
satisfiable if and only if the restricted truth assignment µr of Equation (25.11) is
Km-satisfiable, for all 2r’s.

3

Proposition 4. [GS00] The restricted assignment µr of Equation (25.11) is Km-
satisfiable if and only if the formula

ϕrj =
∧

i

αri ∧ ¬βrj (25.12)

is Km-satisfiable, for every ¬2rβrj occurring in µr.

Notice that propositions 3 and 4 can be merged into one single theorem stating
that µ is Km-satisfiable if and only if ϕrj is Km-satisfiable, for all r and j. Notice
furthermore that the depth of every ϕrj is strictly smaller than the depth of ϕ.

3Notice that the component
∧R

k=1
Ak ∧

∧S

h=R+1
¬Ah in (25.10) is consistent because µ is

a truth assignment.
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Example 2. Consider the formula ϕ and the assignments µ, µ1 and µ2 in Exam-
ple 1. µ propositionally satisfies ϕ. Thus, for proposition 1, ϕ is Km-satisfiable
if µ is Km-satisfiable. By proposition 3, µ is Km-satisfiable if and only if both
µ1 and µ2 are Km-satisfiable; by proposition 4, µ2 is trivially Km-satisfiable, as
it contains no negated boxes, and µ1 is Km-satisfiable if and only if each of the
formulas

ϕ11 =
∧

i α1i ∧ ¬β11 = (¬A5 ∨A4 ∨A3) ∧ (¬A2 ∨A1 ∨A4) ∧A3 ∧A1 ∧ ¬A2,
ϕ12 =

∧

i α1i ∧ ¬β12 = (¬A5 ∨A4 ∨A3) ∧ (¬A2 ∨A1 ∨A4) ∧ ¬A4 ∧A2 ∧ ¬A3

is Km-satisfiable. As they both are satisfiable propositional formulas, then ϕ is
Km-satisfiable.

Proposition 1 reduces the L-satisfiability of a formula ϕ to the L-satisfiability
of a complete collection of its truth assignments, for every L. If L is Km, propo-
sitions 3 and 4 show how to reduce the latter to the Km-satisfiability of formulas
of smaller depth. This process can be applied recursively, decreasing the depth
of the formula considered at each iteration. Following these observations, it is
possible to test the Km-satisfiability of a formula ϕ by implementing a recursive
alternation of two basic steps [GS96a, GS96b]:

1. Propositional reasoning: using some procedure for propositional satisfia-
bility, find a truth assignment µ for ϕ s.t. µ |=p ϕ;

2. Modal reasoning: check the Km-satisfiability of µ by generating the cor-
responding restricted assignments µr’s and formulas ϕrj ’s.

The two steps recurse down until we get to a truth assignment with no modal
atoms. At each level, the process is repeated until either a Km-satisfiable as-
signment is found (in which case ϕ is Km-satisfiable) or no more assignments are
found (in which case ϕ is not Km-satisfiable).

25.3.2. Modal Tableaux

We call “tableau-based” a system that implements and extends to other logics the
Smullyan’s propositional tableau calculus, as defined in [Smu68]. Tableau-based
procedures basically consist of a control strategy applied on top of a tableau
framework. By tableau framework for modal logics we denote a refutation formal
system extending Smullyan’s propositional tableau with rules handling the modal
operators (modal rules). Thus, for instance, in our terminology Kris [BH91,
BFH+94], Crack [BFT95] and LWB [HJSS96] are tableau-based systems.

For instance, in the labeled tableau framework for normal modal logics in N
described in [Fit83, Mas94, Mas00], branches are represented as sets of labeled
formulas u : ψ, where u labels the state in which the formula ψ has to be satisfi-
able. At the first step the root 1 : ϕ is created, ϕ being the modal formula to be
proved (un)satisfiable. At the i-th step, a branch is expanded by applying to a
chosen labeled formula the rule corresponding to its main connective, and adding
the resulting labeled formula to the branch. The rules are the following: 4

4 Analogous rules handling negated ∧’s and ∨’s, double negations ¬¬, single and double
implications → and ↔, diamonds 3r, n-ary ∧’s and ∨’s, and the negation of all them, can
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u : (ϕ1 ∧ ϕ2)
u : ϕ1, u : ϕ2

(∧)
u : (ϕ1 ∨ ϕ2)

u : ϕ1 u : ϕ2
(∨), (25.13)

u : ¬2rϕ

u′ : ¬ϕ
(¬2r)

u : 2rϕ

u′′ : ϕ
(2r)

. (25.14)

The modal rules are constrained by the following applicability conditions:

• ¬2r-rule: u′ is a new state (u′ is said to be directly accessible from u);
• 2r-rule: u′′ is an existing state which is accessible from u via Rr.

Distinct logics L differ for different notions of accessibility in the 2r-rule [Fit83,
Mas94, Mas00].

Every application of the ∨-rule splits the branch into two sub-branches. A
branch is closed when a formula ψ and its negation ¬ψ occur in it. The proce-
dure stops when all branches are closed (ϕ is L-unsatisfiable) or no more rule is
applicable (ϕ is L-satisfiable).

For some modal logics it is possible to drop labels by using alternative sets of
non-labeled modal rules [Fit83]. For instance in Km it is possible to use unlabeled
formulas and update branches according to the rules

Γ, ϕ1 ∧ ϕ2

Γ, ϕ1, ϕ2
(∧)

Γ, ϕ1 ∨ ϕ2

Γ, ϕ1 Γ, ϕ2
(∨) (25.15)

µ

α1 ∧ . . . ∧ αm ∧ ¬βj
(2r/¬2r) (25.16)

for each box-index r ∈ {1, ...,m}. Γ is an arbitrary set of formulas, and µ is
a set of literals which includes ¬2rβj and whose only positive 2r-atoms are
2rα1, . . . ,2rαm.

This describes the tableau-based decision procedure of Figure 25.1, which is
the restriction to Km of the basic version of the Kris procedure described in
[BH91]. Tableau-based formalisms for many modal logics are described, e.g., in
[Fit83, Mas94]. Tableau-based procedures for many modal logics are described,
e.g., in [BH91, BFH+94, BFT95, HJSS96].

25.3.3. From Modal Tableaux to Modal DPLL

We call “DPLL-based” any system that implements and extends to other log-
ics the Davis-Putnam-Longeman-Loveland procedure (DPLL) [DP60, DLL62].
DPLL-based procedures basically consist on the combination of a procedure han-
dling purely-propositional component of reasoning, typically a variant of the
DPLL algorithm, and some procedure handling the purely-modal component,
typically consisting of a control strategy applied on top of a modal tableau rules.

be derived straightforwardly, and are thus omitted here. Following [Fit83], the ∧-, ∨-, ¬2r-
and 2r-rules (and those for their equivalent operators) are often called α-, β-, π-, and ν-rules
respectively.
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function Km-Tableau(Γ)
if ψi ∈ Γ and ¬ψi ∈ Γ /* branch closed */

then return False;
if (ϕ1 ∧ ϕ2) ∈ Γ /* ∧-elimination */

then return Km-Tableau(Γ ∪ {ϕ1, ϕ2}\{(ϕ1 ∧ ϕ2)});
if (ϕ1 ∨ ϕ2) ∈ Γ /* ∨-elimination */

then return Km-Tableau(Γ ∪ {ϕ1}\{(ϕ1 ∨ ϕ2)}) or

Km-Tableau(Γ ∪ {ϕ2}\{(ϕ1 ∨ ϕ2)});
for every r ∈ {1, ...,m} do

for every ¬2rβj ∈ Γ do /* branch expanded */
if not Km-Tableau({¬βj} ∪

⋃

2rαi∈Γ
{αi})

then return False;
return True;

Figure 25.1. An example of a tableau-based procedure for Km. We omit the steps for the

other operators.

Thus, for instance, in our terminology Ksat [GS96a, GS00], Fact [Hor98b,
Hor98a], Dlp [PS98], Racer [HM01] are DPLL-based systems. 5

From a purely-logical viewpoint, it is possible to conceive a DPLL-based
framework by substituting the propositional tableaux rules with some rules im-
plementing the DPLL algorithms in a tableau-based framework [SV98]. For in-
stance, one can conceive a DPLL-based framework for a normal logic L from
Fitting or Massacci’s frameworks (see §25.3.2) by substituting the ∨-rule (25.13)
with the following rules:

u : (l ∨ C)

u : l u : ¬l
(Branch)

u : l u : (¬l ∨ C)

u : C
(Unit)

, (25.17)

where l is a and C is a disjunction of literals. 6 More recent and richer formal
frameworks for representing DPLL and DPLL-based procedures are described in
[Tin02, NOT06].

As stated in §25.3.2, for some modal logics it is possible to drop labels by using
alternative sets of non-labeled modal rules [Fit83]. If so, DPLL-based procedures
can be implemented more straightforwardly. For instance, in Km it is possible
to use unlabeled formulas and update branches according to the following rules
[SV98]:

ϕ
µ1 µ2 . . . µn

(DPLL)
µ

α1 ∧ . . . ∧ αm ∧ ¬βj
(2r/¬2r) (25.18)

where the 2r/¬2r-rule is that of (25.16), and {µ1, . . . , µn} is a complete set of
assignments for ϕ, which can be produced by the DPLL algorithm.

5See footnote 1 in §25.1.
6 Here we assume for simplicity that the input formula is in conjunctive normal form (CNF).

Equivalent formalisms are available for non-CNF formulas [DM94, Mas98].
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function Ksat(ϕ)
return KsatF (ϕ,⊤);

function KsatF (ϕ, µ)
if ϕ = ⊤ /* base */

then return KsatA(µ);
if ϕ = ⊥ /* backtrack */

then return False;
if {a unit clause (l) occurs in ϕ} /* unit */

then return KsatF (assign(l, ϕ), µ ∧ l);
l := choose-literal(ϕ); /* split */
return KsatF (assign(l, ϕ), µ ∧ l) or

KsatF (assign(¬l, ϕ), µ ∧ ¬l);

/* µ is
∧

i
21α1i ∧

∧

j
¬21β1j ∧ . . . ∧

∧

i
2mαmi ∧

∧

j
¬2mβmj ∧

∧

k
Ak ∧

∧

h
¬Ah */

function KsatA(µ)
for each box index r ∈ {1...m} do

if not KsatAR(
∧

i
2rαri ∧

∧

j
¬2rβrj)

then return False;
return True;

/* µr is
∧

i
2rαri ∧

∧

j
¬2rβrj */

function KsatAR(µr)
for each literal ¬2rβrj ∈ µ do

if not Ksat(
∧

i
αri ∧ ¬βrj)

then return False;
return True;

Figure 25.2. The basic version of Ksat algorithm.

25.3.4. Basic Modal DPLL for Km

The ideas described in §25.3.3 were implemented in the Ksat procedure [GS96a,
GS00], whose basic version is reported in Figure 25.2. This schema evolved
from that of the PTAUT procedure in [AG93], and is based on the “classic”
DPLL procedure [DP60, DLL62]. Ksat takes in input a modal formula ϕ and
returns a truth value asserting whether ϕ is Km-satisfiable or not. Ksat invokes
KsatF (where “F ” stands for “Formula”), passing as arguments ϕ and (by refer-
ence) the empty assignment ⊤. KsatF tries to build a Km-satisfiable assignment
µ propositionally satisfying ϕ. This is done recursively, according to the following
steps:

• (base) If ϕ = ⊤, then µ satisfies ϕ. Thus, if µ is Km-satisfiable, then ϕ
is Km-satisfiable. Therefore KsatF invokes KsatA(µ) (where “A” stands
for Assignment), which returns a truth value asserting whether µ is Km-
satisfiable or not.

• (backtrack) If ϕ = ⊥, then µ does not satisfy ϕ, so that KsatF returns
False.

• (unit) If a literal l occurs in ϕ as a unit clause, then l must be assigned ⊤. 7

To obtain this, KsatF is invoked recursively with arguments the formula
returned by assign(l, ϕ) and the assignment obtained by adding l to µ.

7A notion of unit clause for non-CNF propositional formulas is given in [AG93].
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assign(l, ϕ) substitutes every occurrence of l in ϕ with ⊤ and evaluates the
result.

• (split) If none of the above situations occurs, then choose-literal(ϕ) returns
an unassigned literal l according to some heuristic criterion. Then KsatF
is first invoked recursively with arguments assign(l, ϕ) and µ ∧ l. If the
result is negative, then KsatF is invoked with arguments assign(¬l, ϕ)
and µ ∧ ¬l.

KsatF is a variant of the “classic” DPLL algorithm [DP60, DLL62]. The KsatF
schema differs from that of classic DPLL by only two steps.

The first difference is the “base” case: when finding an assignment µ which
propositionally satisfies the input formula, it simply returns “True”. KsatF in-
stead is supposed also to check the Km-satisfiability of the corresponding set of
literals, by invoking KsatA on µ. If the latter returns true, then the whole for-
mula is satisfiable and KsatF returns True as well; otherwise, KsatF backtracks
and looks for the next assignment.

The second difference is in the fact that in KsatF the pure-literal step
[DLL62] is removed. 8 In fact the sets of assignments generated by DPLL with
pure-literal might be incomplete and might cause incorrect results, as shown by
the following example.

Example 3. Let ϕ be the following formula:

(21A1∨A1) ∧(21(A1 → A2)∨A2) ∧(¬21A2∨A2) ∧(¬A2∨A3) ∧(¬A2∨¬A3).

ϕ is Km-satisfiable, because µ = {A1,¬A2,21(A1 → A2),¬21A2} is an assign-
ment which propositionally satisfies ϕ and which is also modally consistent. It
is easy to see that no satisfiable assignment propositionally satisfying ϕ assigns
21A1 to true. As 21A1 occurs only positively in ϕ, DPLL with the pure literal
rule would assign 21A1 to true as first step, which would lead the procedure to
return False.

With these simple modifications, the embedded DPLL procedure works as an
enumerator of a complete set of assignments, whose Km-satisfiability is recursively
checked by KsatA.

KsatA(µ) invokes KsatAR(µr) (where “AR” stands for Restricted Assign-
ment) for every box index r. This is repeated until either KsatAR returns a
negative value (in which case KsatA(µ) returns False) or no more 2r’s are avail-
able (in which case KsatA(µ) returns True). KsatAR(µr) invokes Ksat(ϕrj) for
any conjunct ¬2rβrj occurring in µr. Again, this is repeated until either Ksat
returns a negative value (in which case KsatAR(µr) returns False) or no more
¬2rβrj ’s are available (in which case KsatAR(µr) returns True). Notice that
KsatF , KsatA and KsatAR are a direct implementation of propositions 1, 3
and 4, respectively. This guarantees their correctness and completeness.

8 Alternatively, the application of the pure-literal rule can be restricted to atomic propositions
only.
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25.3.5. Modal DPLL vs. Modal Tableaux

[GS96a, GS96b, GS00, GGST98, GGST00, HPS99, HPSS00] presented extensive
empirical comparisons, in which DPLL-based procedures outperformed tableau-
based ones, with performance gaps that can reach orders of magnitude. (Similar
performance gaps between tableau-based vs. DPLL-based procedures were ob-
tained lately also in a completely-different context [ACG00].) Remarkably, most
such results were obtained with tools implementing the “classic” DPLL procedure
of §25.3.4, very far from the efficiency of current DPLL implementations.

We concentrate on the basic tableau-based and DPLL-based algorithms for
Km-satisfiability described in §25.3.2 and §25.3.4. Both procedures work (i) by
enumerating truth assignments which propositionally satisfy the input formula ϕ
and (ii) by recursively checking the Km-satisfiability of the assignments found.
Both algorithms perform the latter step in the same way. The key difference is
thus in the way they handle propositional inference. [GS96b, GS00] remarked
that, regardless the quality of implementation and the optimizations performed,
tableau-based procedures have, with respect to DPLL-based procedures, two
weaknesses which make them intrinsically less efficient, and whose effects get
up to exponentially amplified when using them in modal inference. We consider
them in turn.

Syntactic vs. semantic branching. In a propositional tableau truth as-
signments are generated as branches induced by the application of the ∨-rule to
disjunctive subformulas of the input formula ϕ. Thus, they perform what we call
syntactic branching [GS96b], that is, the branching in the search tree is induced by
the syntactic structure of ϕ. As discussed in [D’A92, DM94], an application of the
∨-rule generates two subtrees which can be mutually consistent , i.e., which may
share propositional models. 9 Therefore, the set of truth assignments enumer-
ated by propositional tableau procedures grows exponentially with the number of
disjunctions occurring positively in ϕ, regardless the fact that it may contain up
to exponentially-many duplicated and/or subsumed assignments.

Things get even worse in the modal case. When testing Km-satisfiability,
unlike the propositional case where tableaux look for one assignment satisfying
the input formula, the propositional tableaux are used to enumerate all the truth
assignments, which must be recursively checked for Km-consistency. This requires
checking recursively possibly-many sub-formulas of the form

∧

i αri∧¬βj of depth
d − 1, for which a propositional tableau will enumerate all truth assignments,
and so on. At all levels of nesting, a redundant truth assignment introduces a
redundant modal search tree. Thus, with modal formulas the redundancy of the
propositional case propagates with the modal depth, and, in the worst case, the
number of redundant truth assignments can become exponential.

DPLL instead, performs a search which is based on what we call semantic
branching [GS96b], that is, a branching on the truth value of sub-formulas ψ of ϕ

9As pointed out in [D’A92, DM94], the propositional tableaux rules are unable to represent
bivalence: “every proposition is either true or false, tertium non datur”. This is a consequence
of the elimination of the cut rule in cut-free sequent calculi, from which propositional tableaux
are derived.
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Figure 25.3. Search trees for the formula Γ = (α ∨ ¬β) ∧ (α ∨ β) ∧ (¬α ∨ ¬β). Left: a

tableau-based procedure. Right: a DPLL-based procedure.

(typically atoms): 10

ϕ

ϕ[ψ/⊤] ϕ[ψ/⊥],

where ϕ[ψ/⊤] is the result of substituting with ⊤ all occurrences of ψ in ϕ and
then simplify the result. Thus, every branching step generates two mutually-
inconsistent subtrees. 11 Because of this, DPLL always generates non-redundant
sets of assignments. This avoids any search duplication and, in the case of modal
search, any recursive exponential propagation of such a redundancy.

Example 4. Consider the simple formula Γ = (α ∨ ¬β) ∧ (α ∨ β) ∧ (¬α ∨ ¬β),
where α and β are modal atoms s.t. α ∧ ¬β is not modally consistent. and let
d be the depth of Γ. The only possible assignment propositionally satisfying Γ is
µ = α ∧ ¬β. Look at Figure 25.3 left. Assume that in a tableau-based procedure,
the ∨-rule is applied to the three clauses occurring in Γ in the order they are listed.
Then two distinct but identical open branches are generated, both representing the
assignment µ. Then the tableau expands the two open branches in the same way,
until it generates two identical (and possibly big) closed modal sub-trees T of modal
depth d, each proving the Km-unsatisfiability of µ.

This phenomenon may repeat itself at the lower level in each sub-tree T , and
so on. For instance, if α = 21((α′ ∨ ¬β′) ∧ (α′ ∨ β′)) and β = 21(α′ ∧ β′),
then at the lower level we have a formula Γ′ of depth d− 1 analogous to Γ. This
propagates exponentially the redundancy with the depth d.

Finally, notice that if we considered the formula ΓK =
∧K
i=1(αi ∨ ¬βi) ∧

(αi ∨βi)∧ (¬αi ∨¬βi), the tableau would generate 2K identical truth assignments
µK =

∧

i αi ∧ ¬βi, and things would get exponentially worse.
Look at Figure 25.3, right. A DPLL-based procedure branches asserting α = ⊤

or α = ⊥. The first branch generates α∧¬β, while the second gives ¬α∧¬β ∧β,
which immediately closes. Therefore, only one instance of µ = α∧¬β is generated.
The same applies to µK .

10Notice that the notion of “semantic branching” introduced in [GS96b] is stronger than
that lately used in [Hor98b, HPS99], the former corresponding to the latter plus the usage of
unit-propagation.

11 This fact holds for both “classic” [DP60, DLL62] and “modern” DPLL (see, e.g., [ZM02]),
because in both cases two branches differ for the truth value of at least one atom, although for
the latter case the explanation is slightly more complicate.



i

i

“p02c11˙mod” — 2008/11/16 — 16:01 — page 800 — #20
i

i

i

i

i

i

800 Chapter 25. SAT Techniques for Modal and Description Logics
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−β

T23
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Figure 25.4. Search trees for the formula Γ = (α ∨ φ1) ∧ (β ∨ φ2) ∧ φ3 ∧ (¬α ∨ ¬β). Left: a

tableau-based procedure. Right: a DPLL-based procedure.

Detecting constraint violations. A propositional formula ϕ can be seen as a
set of constraints for the truth assignments which possibly satisfy it. For instance,
a clause A1 ∨ A2 constrains every assignment not to set both A1 and A2 to ⊥.
Unlike tableaux, DPLL prunes a branch as soon as it violates some constraint of
the input formula. (For instance, in Ksat this is done by the function assign.)

Example 5. Consider the formula Γ = (α ∨ φ1) ∧ (β ∨ φ2) ∧ φ3 ∧ (¬α ∨ ¬β),
α and β being atoms, φ1, φ2 and φ3 being sub-formulas, such that α ∧ β ∧ φ3 is
propositionally satisfiable and α ∧ φ2 is Km-unsatisfiable. Look at Figure 25.4,
left. Again, assume that, in a tableau-based procedure, the ∨-rule is applied in
order, left to right. After two steps, the branch α, β is generated, which violates
the constraint imposed by the last clause (¬α ∨¬β). A tableau-based procedure is
not able to detect such a violation until it explicitly branches on that clause, that
is, only after having generated the whole sub-tableau T3 for α∧β∧φ3, which may
be rather big. DPLL instead (Figure 25.4, right) avoids generating the violating
assignment detects the violation and immediately prunes the branch.

25.4. Advanced Modal DPLL

In this section we present the most important optimizations of the DPLL-based
procedures described in §25.3, and one extension to non-normal modal logics.

25.4.1. Optimizations

As described in §25.3.4, the first DPLL-based tools of [GS96a, GS96b, SV98,
GS00] were based on the “classic” recursive DPLL schema [DP60, DLL62]. Dras-
tic improvements in performances were lately obtained by importing ideas and
techniques from the SAT literature and/or by directly implementing tools on top
of modern DPLL solvers, which are applied to the Boolean abstraction of the
input formula [GGST98, GGST00, HPS99, Tac99, GGT01, HM01].

In particular, modern DPLL implementation are non-recursive, and are based
on very efficient, destructive data structures to handle Boolean formulas and
assignments. They benefit of sophisticated search techniques (e.g., backjump-
ing, learning, restarts [MSS96, BS97, GSK98]), smart splitting heuristics (e.g.,
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[MMZ+01, GN02, ES04]), highly-engineered data structures and implementation
tricks (e.g., the two-watched literal scheme [MMZ+01]), and advanced prepro-
cessing techniques [Bra01, BW03, EB05]. In particular, modern DPLL imple-
mentations perform conflict analysis on failed assignments µ’s, which detect the
reason of each failure, that is, a (typically much smaller) subset µ′ of µ which
alone causes the failure. When this happens, the procedure

• adds the negation of µ′ as a new clause to the formula, so that no assign-
ment containing µ′ will be ever investigated again. This technique is called
learning;

• backtracks to the highest point in the stack where one literal l in the learned
clause ¬µ′ is not assigned, it unit propagates l, and it proceeds with the
search. This technique is called backjumping.

Backjumping and learning are of great interest in our discussion, as it will be made
clear in §25.4.1.4. The other DPLL optimizations come for free by using state-
of-the-art SAT solvers and they are substantially orthogonal to our discussion, so
that they will not be discussed here.

We describe some further optimizations which have been proposed to the basic
schema of §25.3.4. For better readability, the description will refer to the case
of Km, but they can be extended to other logics. Most of these techniques and
optimizations have lately been adopted by the so-called lazy tools for Satisfiability
Modulo Theories, SMT (see §26.4.3).

25.4.1.1. Normalizing atoms

One potential source of inefficiency for DPLL-based procedures is the occur-
rence in the input formula of equivalent though syntactically-different atoms (e.g.,
2r(A1 ∨ A2) and 2r(A2 ∨ A1)), or pairs atoms in which one is equivalent to the
negation of the other (e.g. 2r(A1∨A2) and 3r(¬A1∧¬A2)). If two atoms ψ1, ψ2

are s.t. ψ1 6= ψ2 and |= ψ1 ↔ ψ2 [resp. ψ1 6= ¬ψ2 and |= ψ1 ↔ ¬ψ2], then they are
recognized as distinct Boolean atoms B1 =def L2P(ψ1) and B2 =def L2P(ψ2),
which may be assigned different [resp. identical] truth values by DPLL. This
may cause the useless generation of many unsatisfiable assignments and the cor-
responding useless calls to KsatA (e.g., up to 2|Atoms

0(ϕ)|−2 calls on assignments
like {2r(A1 ∨A2),¬2r(A2 ∨A1)...}).

In order to avoid these problems, it is wise to preprocess atoms so that to map
as many as possible equivalent literals into syntactically identical ones [GS96a,
GS00, HPS99]. This can be achieved by applying some rewriting rules, like, e.g.:

• Drop dual operators: 2r(ϕ1∨ϕ2), 3r(¬ϕ1∧¬ϕ2) =⇒ 2r(ϕ1∨ϕ2), ¬2r(ϕ1∨
ϕ2), or even (ϕ1 ∧ ϕ2), (¬ϕ1 ∨ ¬ϕ2) =⇒ (ϕ1 ∧ ϕ2), ¬(ϕ1 ∧ ϕ2)

• Exploit associativity: 2r(ϕ1 ∨ (ϕ2 ∨ϕ3)), 2r((ϕ1 ∨ϕ2)∨ϕ3) =⇒ 2r(ϕ1 ∨
ϕ2 ∨ ϕ3),

• Sort: 2r(ϕ2 ∨ ϕ1 ∨ ϕ3), 2r(ϕ3 ∨ ϕ1 ∨ ϕ2) =⇒ 2r(ϕ1 ∨ ϕ2 ∨ ϕ3).
• Exploit properties of normal modal logics: 2r(ϕ1 ∧ϕ2) =⇒ 2rϕ1 ∧2rϕ2 if

L ∈ N .
• Exploit specific properties of some logic L: 2r2rϕ1 =⇒ 2rϕ1 if L is S5.

Notice that pre-conversion to BNF (§25.2.1) goes in this direction.
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Example 6. Consider the modal atoms occurring in the formula ϕ in Example 1.
For every modal atom in ϕ there are 3! = 6 equivalent permutations, which are all
mapped into one atom if the modal atoms are sorted. E.g., if we consider an equiv-
alent formula ϕ′ in which the second occurrence of the atom 22(¬A4 ∨A5 ∨A2),
occurring in rows 3 and 5, is rewritten as 22(A5 ∨ ¬A4 ∨A2), then the latter will
be encoded by L2P into a different Boolean variable, namely B9, which could be
assigned by DPLL a different truth value wrt. B3, generating an modally incon-
sistent assignment µ′. If all atoms in ϕ′ are pre-sorted, then the problem does not
occur.

25.4.1.2. Early Pruning

Another optimization [GS96a, GS00, Tac99] was conceived after the empirical ob-
servation that most assignments found by DPLL are “trivially” Km-unsatisfiable,
that is, they will remain Km-unsatisfiable even after removing some of their con-
juncts. If an incomplete 12 assignment µ′ is Km-unsatisfiable, then all its exten-
sions are Km-unsatisfiable. If the unsatisfiability of µ′ is detected on time, then
this prevents checking the Km-satisfiability of all the up to 2|Atoms

0(ϕ)|−|µ′| truth
assignments which extend µ′.

This suggests the introduction of an intermediate Km-satisfiability test on
incomplete assignments just before the split. (Notice there is no need to introduce
similar tests before unit propagation.) In the basic algorithm of Figure 25.2, this
is done by introducing the three lines below in the function KsatF of Figure 25.2,
just before the “split”:

if (Likely-Unsatisfiable(µ)) /* early-pruning */
if not KsatA(µ)

then return False;

(We temporarily ignore the test performed by Likely-Unsatisfiable.) KsatA is
invoked on the current incomplete assignment µ. If KsatA(µ) returns False,
then all possible extensions of µ are unsatisfiable, and therefore KsatF returns
False. The introduction of this intermediate check, which is called early pruning,
caused a drastic improvement in the overall performances [GS96a, GS00].

Example 7. Consider the formula ϕ of Example 1. Suppose that, after three
recursive calls, KsatF builds the incomplete assignment:

µ′ = 21(¬A1 ∨A4 ∨A3) ∧ 21(¬A2 ∨A1 ∨A4) ∧ ¬21(A4 ∨ ¬A2 ∨A3)

(rows 6, 7 and 4 of ϕ). If it is invoked on µ′, KsatA will check the K2-satisfiability
of the formula

(¬A1 ∨A4 ∨A3) ∧ (¬A2 ∨A1 ∨A4) ∧ ¬A4 ∧A2 ∧ ¬A3,

which is unsatisfiable. Therefore there will be no more need to select further
literals, and KsatF will backtrack.

12By incomplete assignment µ for ϕ we mean that µ has not assgined enough atoms to
determine whether µ |= ϕ or not.
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The intermediate consistency checks, however, may introduce some useless
calls to KsatA.

One way of addressing this problem is to condition the calls to KsatA in
early-pruning steps to some heuristic criteria (here represented by the heuristic
function Likely-Unsatisfiable). The main idea is to avoid invoking KsatA when it
is very unlikely that, since the last call, the new literals added to µ can cause in-
consistency: e.g., when they are added only literals which are purely-propositional
or contain new Boolean atoms [GS96a, GS00].

Another way is to make KsatA work in an incremental way: if for some box
index r ∈ {1...m} no literal of the form 2rψ or ¬2rψ has been added to µ since
the last call to KsatA, then KsatA can avoid performing the corresponding call
to KsatAR; moreover, if for some box index r ∈ {1...m} no positive 2rψ’s have
been added to µ since the last call to KsatA, then KsatAR can avoid calling
recursively Ksat on the subformulas (

∧

i αri ∧ ¬βrj) s.t. ¬2rβrj was already
passed to KsatA in the last call [Tac99].

25.4.1.3. Caching

This section is an overview of [GT01] to which we refer for further reading. Con-
sider the basic version of Ksat algorithm in Figure 25.2. Without loss of gen-
erality, in the remainder of this section we assume that |B| = 1, so that the call
to KsatA is the same as KsatAR. The extension to the case where |B| > 1 is
straightforward since it simply requires checking the different modalities in sep-
arate calls to KsatAR. Given two assignments µ and µ′, it may be the case
that KsatA(µ) and KsatA(µ′) perform some equal subtests, i.e., recursive calls
to Ksat. This is the case, e.g., when µ and µ′ differ only for the propositional
conjuncts and there is at least one conjunct of the form ¬2β. To prevent recom-
putation, the obvious solution is to cache both the formula whose satisfiability is
being checked and the result of the check. Then, the cache is consulted before
performing each subtest to determine whether the result of the subtest can be
assessed on the basis of the cache contents.

In the following, we assume to have two different caching mechanisms, each
using a separate caching structure:

• S-cache to store and query about satisfiable formulas, and
• U-cache to store and query about unsatisfiable formulas.

In this way, storing a subtest amounts to storing the formula in the appropriate
caching structure. Of course, the issue is how to implement effective caching
mechanisms allowing to reduce the number of subtests as much as possible. To
this extent, the following considerations are in order:

1. if a formula
∧

α∈∆′ α ∧ ¬β has already been determined to be satisfiable
then, if ∆ ⊆ ∆′, we can conclude that also

∧

α∈∆ α∧¬β is satisfiable, and
2. if a formula

∧

α∈∆′ α∧¬β has already been determined to be unsatisfiable
then, if ∆ ⊇ ∆′, we can conclude that also

∧

α∈∆ α ∧ ¬β is unsatisfiable.

The above observations suggest the usage of caching mechanisms that allow for
storing sets of formulas and for efficiently querying about subsets or supersets.
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function KsatA(µ)
∆ := {α | 2α is a conjunct of µ};
Γ := {β | ¬2β is a conjunct of µ};
if U-cache get(∆,Γ) return False;
Γr := S-cache get(∆,Γ);
Γs := ∅;
foreach β ∈ Γr do

if not Ksat(
∧

α∈∆
α ∧ ¬β) then

if Γs 6= ∅ then S-cache store(∆,Γs);
U-cache store(∆, β);
return False

else Γs := Γs ∪ {β};
S-cache store(∆,Γs);
return True.

Figure 25.5. KsatA: satisfiability checking for K with caching

In other words, given a subtest

Ksat(
∧

α∈∆

α ∧ ¬β), (25.19)

we want to be able to query our S-cache about the presence of a formula
∧

α∈∆′

α ∧ ¬β (25.20)

with ∆ ⊆ ∆′ (query for subsets or subset-matching). Analogously, given the
subtest (25.19), we want to be able to query our U-cache about the presence of a
formula (25.20) with ∆ ⊇ ∆′ (query for supersets or superset-matching). In this
way, caching a subtest avoids the recomputation of the very same subtest, and of
the possibly many “subsumed” subtests.

Observations 1 and 2 are independent of the particular modal logic being
considered. They are to be taken into account when designing caching structures
for satisfiability in any modal logic. Of course, depending on the particular modal
logic considered, some other considerations might be in order. For example, in
K, we observe that in KsatA there is a natural unbalance between satisfiable
subtests and unsatisfiable ones. In fact, with reference to Figure 25.2, when
testing an assignment µ

3. many subtests can be determined to be satisfiable, all sharing the same
set ∆, and

4. at most one subtest may turn out to be unsatisfiable.

Observation 3 suggests that S-cache should be able to store satisfiable subtests
sharing a common set ∆ in a compact way. Therefore, S-cache associates the set ∆
to the set Γ′ ⊆ Γ, representing the “computed” satisfiable subtests

∧

α∈∆ α ∧ ¬β
for each β ∈ Γ′. Observation 4 suggests that U-cache should not care about
subtests sharing a common ∆. Therefore, U-cache associates ∆ to the single β
for which the subtest

∧

α∈∆ α ∧ ¬β failed.
Given the design issues outlined above, we can modify Ksat to yield the

procedure KsatA shown in Figure 25.5. In the Figure:
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• U-cache get(∆,Γ) returns True if U-cache contains a set ∆′ such that ∆ ⊇
∆′, ∆′ is associated with β and β ∈ Γ;

• S-cache get(∆,Γ) returns the set Γ \ Γ′ where Γ′ is the union over all the
sets Γ′′ such that for some set ∆′ ⊇ ∆, Γ′′ is associated to ∆′ in S-cache.

• U-cache store(∆, β) stores in U-cache the set ∆ and associates β to it;
• S-cache store(∆,Γ) stores in S-cache the set ∆ and associates to it the set

Γ.

The new issue is now to implement effective data structures for S-cache and U-

cache supporting the above functions. Clearly, we expect that the computational
costs associated to the above functions will be superior to the computational
costs associated to other caching structures designed for “equality-matching”,
i.e., effectively supporting the functions obtained from the above by substituting
“⊇” with “=”. There is indeed a trade-off between “smart but expensive” and
“simple but efficient” data-structures for caching. Of course, depending on

• the particular logic being considered, and
• the characteristics of the particular formula being tested,

we expect that one caching mechanism will lead to a faster decision process than
the others.

Independently from the data-structure being used, the following (last) ob-
servation needs to be taken into account when dealing with modal logics whose
decision problem is not in NP (e.g., K, S4):

5. testing the consistency of a formula may require an exponential number
of subtests.

This is the case for the Halpern and Moses formulas presented in [HM85] for
various modal logics. Observation 5 suggests that it may be necessary to bound
the size of the cache, and introduce mechanisms for deciding which formulas to
discard when the bound is reached. Further discussion about the implementation
of caching and low-level optimizations can be found in [GT01].

25.4.1.4. Modal Backjumping

Another very important optimization, called modal backjumping [Hor98a, PS98],
generalizes the idea of backjumping in DPLL. KsatA can be easily modified so
that, when invoked on a Km-unsatisfiable set of modal literals µ, it returns also
the subset µ′ of µ which caused the inconsistency of µ. We call µ′, a modal conflict
set of µ.

An easy way of computing µ′ is that of returning the set L2P({2rαri}i ∪
{¬2rβrj}) corresponding to the first formula ϕrj =

∧

i αri ∧¬βrj which is found
unsatisfiable by Ksat.

Example 8. Consider the formula ϕ of Example 1. The assignment µp =
{B6, B8, B2,¬B1,¬B5, B3} is found by KsatF , which satisfies L2P(ϕ). Thus
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KsatA is given as input

µ = 21(¬A5 ∨A4 ∨A3) ∧
21(¬A2 ∨A1 ∨A4) ∧ 21(¬A2 ∨A4 ∨A5) ∧ [

∧

i 21α1i]
¬21(¬A3 ∨ ¬A1 ∨A2) ∧ ¬21(A4 ∨ ¬A2 ∨A3) ∧ [

∧

j ¬21β1j ]

22(¬A4 ∨A5 ∨A2) [
∧

i 22α2i]

and hence invokes KsatAR on the two restricted assignments:

µ1 = 21(¬A5 ∨A4 ∨A3) ∧
21(¬A2 ∨A1 ∨A4) ∧ 21(¬A2 ∨A4 ∨A5) ∧ [

∧

i 21α1i]
¬21(¬A3 ∨ ¬A1 ∨A2) ∧ ¬21(A4 ∨ ¬A2 ∨A3) [

∧

j ¬21β1j ]

µ2 = 22(¬A4 ∨A5 ∨A2) [
∧

i 22α2i].

µ2 is trivially Km-satisfiable. µ1 requires invoking Ksat on the two formulas

ϕ11 = (¬A5 ∨A4 ∨A3) ∧ (¬A2 ∨A1 ∨A4) ∧
(¬A2 ∨A4 ∨A5) ∧A3 ∧A1 ∧ ¬A2,

ϕ12 = (¬A5 ∨A4 ∨A3) ∧ (¬A2 ∨A1 ∨A4) ∧
(¬A2 ∨A4 ∨A5) ∧ ¬A4 ∧A2 ∧ ¬A3.

The latter is unsatisfiable, from which we can conclude that

21(¬A5∨A4∨A3) ∧21(¬A2∨A1∨A4) ∧21(¬A2∨A4∨A5) ∧¬21(A4∨¬A2∨A3)

is Km-unsatisfiable, so that {B6, B8, B2,¬B5, } is a conflict set of µp.

The conflict set µ′ found is then used to drive the backjumping mecha-
nism of DPLL. Different strategies are possible. The DPLL-based modal tools
[Hor98a, PS98] and earlier SMT tools [WW99] used to jump up to the most re-
cent branching point s.t. at least one literal lp ∈ µ′ is not assigned. Intuitively,
all open subbranches departing from the current branch at a lower decision point
contain µ′, so that there is no need to explore them; this allows for pruning all
these subbranches from the search tree. (Notice that these strategies do not ex-
plicitly require adding the clause ¬µ′ to ϕ.) More sophisticate versions of this
technique, which mirror the most-modern backjumping techniques introduced in
DPLL, were lately introduced in the context of SMT (see §26.4.3.5).

In substance, modal backjumping differs from standard Boolean backjumping
only for the notion of conflict set used: whilst a Boolean conflict set µ is an
assignment which causes a propositional inconsistency if conjoined to ϕ (i.e, s.t.
µ∧ϕ |=p ⊥), a modal conflict set is a set of literals which in Km-inconsistent (i.e,
s.t. µ |= ⊥).

25.4.1.5. Pure-literal filtering

This technique, which we call pure-literal filtering,13 was implicitly proposed by
[WW99] and then generalized and adopted in the *SAT tool [Tac99] (and lately
imported into SMT [ABC+02], see §26.4.3.7). The idea is that, if we have non-
Boolean atoms occurring only positively [resp. negatively] in the input formula,

13Also called triggering in [WW99, ABC+02].
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we can safely drop every negative [resp. positive] occurrence of them from the
assignment µ to be checked by KsatA. (The correctness and completeness of this
process is a consequence of proposition 2 in §25.3.1.)

There are some benefits for this behavior. Let µ′ be the reduced version of µ
.

First, µ′ might be Km-satisfiable despite µ is Km-unsatisfiable. If so, and
if µ (and hence µ′) propositionally satisfies ϕ, then KsatF can stop, potentially
saving a lot of search.

Second, if both µ′ and µ are Km-unsatisfiable, the call to KsatA on µ′ rather
than that on µ can cause smaller conflict sets, in order to improve the effectiveness
of backjumping and learning.

Third, checking the Km-satisfiability of µ′ rather than that of µ can be signif-
icantly faster. In fact, suppose 2rβrj occurs only positively in ϕ and it is assigned
a negative value by KsatF , so that ¬2rβrj ∈ µ but ¬2rβrj 6∈ µ′. Thus ¬2rβrj
will not occur in the restricted assignment µr fed to KsatAR, avoiding the call to
Ksat on (

∧

i αri∧¬βrj). This allows for extending the notion of “incrementality”
of §25.4.1.2, by considering only the literals in µ′ rather than those in µ.

25.4.2. Extensions to Non-Normal Modal Logics

This section briefly surveys some of the contents of [GGT01] to which we refer for
further reading. Following the notation of [GGT01], we say that an assignment µ
satisfies a formula ϕ if µ entails ϕ by propositional reasoning, and that a formula ϕ
is consistent in a logic L (or L-consistent) if ¬ϕ is not a theorem of L, i.e., if ¬ϕ 6∈
L. Whether an assignment is consistent, depends on the particular classical modal
logic L being considered. Furthermore, depending on the logic L considered, the
consistency problem for L (i.e., determining whether a formula is consistent in
L) belongs to different complexity classes. In particular, the consistency problem
for E, EM, EN, EMN is NP-complete, while for EC, ECN, EMC it is PSPACE-
complete (see [Var89, FHMV95]). Here, to save space, we divide these eight logics
in two groups. We present the algorithms for checking the L-consistency of an
assignment first in the case in which L is one of E, EM, EN, EMN, and then in
the case in which L is one of the others.

25.4.2.1. Logics E, EM, EN, EMN

The following proposition is an easy consequence of the results presented in [Var89].

Proposition 5. Let µ =
∧

i 2αi ∧
∧

j ¬2βj ∧ γ be an assignment in which γ
is a propositional formula. Let L be one of the logics E, EM, EN, EMN. µ is
consistent in L if for each conjunct ¬2βj in µ one of the following conditions is
satisfied:

• (αi ≡ ¬βj) is L-consistent for each conjunct 2αi in µ, and L=E;
• (αi ∧ ¬βj) is L-consistent for each conjunct 2αi in µ, and L=EM;
• ¬βj and (αi ≡ ¬βj) are L-consistent for each conjunct 2αi in µ, and

L=EN;
• ¬βj and (αi ∧ ¬βj) are L-consistent for each conjunct 2αi in µ, and

L=EMN.
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function LsatA(µ)
foreach conjunct 2βj do

foreach conjunct 2αi do

if M [i, j] = Undef then M [i, j] := Lsat(αi ∧ ¬βj);
if L ∈ {EN,EMN} and M [i, j] = True then M [j, j] := True;
if L ∈ {E,EN} and M [i, j] = False then

if M [j, i] = Undef then M [j, i] := Lsat(¬αi ∧ βj);
if L = EN and M [j, i] = True then M [i, i] := True;
if M [j, i] = False then return False

end

if L ∈ {EN,EMN} then

if M [j, j] = Undef then M [j, j] := Lsat(¬βj);
if M [j, j] = False then return False

end;
return True.

Figure 25.6. LsatA for E, EM, EN, EMN

When implementing the above conditions, care must be taken in order to avoid
repetitions of consistency checks. In fact, while an exponential number of as-
signments satisfying the input formula can be generated, at most n2 checks are
possible in L, where n is the number of “2” in the input formula. Given this upper
bound, for each new consistency check, we can cache the result for a future pos-
sible re-utilization in a n×n matrix M. This ensures that at most n2 consistency
checks will be performed. In more detail, given an enumeration ϕ1, ϕ2, . . . , ϕn of
the boxed subformulas of the input formula, M[i,j], with i 6= j, stores the result
of the consistency check for (ϕi ∧¬ϕj). M[i,i] stores the result of the consistency
check for ¬ϕi. Initially, each element of the matrix M has value Undef (meaning
that the corresponding test has not been done yet). The result is the procedure
LsatA in Figure 25.6, where the procedure Lsat is identical to the procedure
Ksat modulo the call to KsatA which must be replaced by LsatA.

Consider Figure 25.6 and assume that L=E or L=EN. Given a pair of con-
juncts 2αi and ¬2βj , we split the consistency test for (αi ≡ ¬βj) in two simpler
sub-tests:

• first, we test whether (αi ∧ ¬βj) is consistent, and
• only if this test gives False, we test whether (¬αi ∧ βj) is consistent.

Notice also that, in case L=EN or L=EMN, if we know that, e.g., (αi ∧ ¬βj)
is consistent, then also ¬βj is consistent and we store this result in M[j,j]. The
following proposition ensures the correctness of Lsat in the case of E, EM, EN
and EMN.

Proposition 6. Let µ =
∧

i 2αi ∧
∧

j ¬2βj ∧ γ be an assignment in which γ is
a propositional formula. Let L be one of the logics E, EM, EN, EMN. Assume
that, for any formula ϕ whose depth is less than the depth of µ, Lsat(ϕ)

• returns True if ϕ is L-consistent, and
• False otherwise.
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function LsatA(
∧

i
2αi ∧

∧

j
¬2βj ∧ γ)

∆ := {αi | 2αi is a conjunct of µ};
foreach conjunct 2βj do

∆′ := ∆;
if L ∈ {EC, ECN} then

foreach conjunct 2αi do

if M [j, i] = Undef then M [j, i] := Lsat(¬αi ∧ βj);
if M [j, i] = True then ∆′ = ∆′ \ {αi}

end;
if L ∈ {ECN} or ∆′ 6= ∅ then

if not Lsat(
∧

αi∈∆′ αi ∧ ¬βj) then return False

end;
return True.

Figure 25.7. LsatA for EC, ECN, EMC

LsatA(µ) returns True if µ is L-consistent, and False otherwise.

25.4.2.2. Logics EC, ECN, EMC

The following proposition is an easy consequence of the results presented in [Var89].

Proposition 7. Let µ =
∧

i 2αi ∧
∧

j ¬2βj ∧ γ be an assignment in which γ
is a propositional formula. Let ∆ be the set of formulas αi such that 2αi is a
conjunct of µ. Let L be one of logics EC, ECN, EMC. µ is consistent in L if for
each conjunct ¬2βj in µ one of the following conditions is satisfied:

• ((
∧

αi∈∆′ αi) ≡ ¬βj) is L-consistent for each non empty subset ∆′ of ∆,
and L=EC;

• ((
∧

αi∈∆′ αi) ≡ ¬βj) is L-consistent for each subset ∆′ of ∆, and L=ECN;
• ∆ is empty or ((

∧

αi∈∆ αi) ∧ ¬βj) is L-consistent, and L=EMC;

Assume that L=EC or L=ECN. The straightforward implementation of the corre-
sponding condition may lead to an exponential number of checks in the cardinality
|∆| of ∆. More carefully, for each conjunct ¬2βj in µ, we can perform at most
|∆| + 1 checks if

1. for each formula αi in ∆, we first check whether (¬αi ∧ βj) is consistent
in L. Let ∆′ be the set of formulas for which the above test fails. Then,

2. in case L=ECN or ∆′ 6= ∅, we perform the last test, checking whether
((

∧

αi∈∆′ αi) ∧ ¬βj) is consistent in L.

Furthermore, the result of the consistency checks performed in the first step can
be cached in a matrix M analogous to the one used in the previous subsection.

If L=EC or L=ECN, the procedure LsatA in Figure 25.7 implements the
above ideas. Otherwise, it is a straightforward implementation of the conditions
in proposition 7. The following proposition ensures the correctness of Lsat in
the case of E, EM, EN and EMN.
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Proposition 8. Let µ =
∧

i 2αi ∧
∧

j ¬2βj ∧ γ be an assignment in which γ is a
propositional formula. Let L be one of logics EC, ECN, EMC. Assume that, for
any formula ϕ whose depth is less than the depth of µ, Lsat(ϕ)

• returns True if ϕ is L-consistent, and
• False otherwise.

LsatA(µ) returns True if µ is L-consistent, and False otherwise.

25.5. The OBDD-based Approach

In this section we briefly survey the basics of the OBDD-based approach to imple-
ment decision procedures for modal K, and we refer the reader to [PSV02, PV03]
for further details. The contents of this section and the next borrow from [PSV06],
including basic notation and the description of the algorithms.

The OBDD-based approach is inspired by the automata-theoretic approach
for logics with the tree-model -property. In that approach, one proceeds in two
steps. First, an input formula is translated to a tree automaton that accepts
all the tree models of the formula. Second, the automaton is tested for non-
emptiness, i.e., whether it accepts some tree. The approach described in [PSV02]
combines the two steps and carries out the non-emptiness test without explicitly
constructing the automaton. The logic K is simple enough that the automaton’s
non-emptiness test consists of a single fixpoint computation, which starts with a
set of states and then repeatedly applies a monotone operator until a fixpoint is
reached. In the automaton that corresponds to a formula, each state is a type, i.e.,
a set of formulas satisfying some consistency conditions. The algorithms that we
describe here start from some set of types and then repeatedly apply a monotone
operator until a fixpoint is reached.

25.5.1. Basics

To aid the description of the OBDD-based algorithms we introduce some addi-
tional notation. The set of propositional atoms used in a formula is denoted
AP (ϕ), and, given a formula ψ, we call its set of subformulas sub(ψ). For
ϕ ∈ sub(ψ), we can define depth(ϕ) in the usual way. If not stated otherwise,
we assume all formulas to be in BNF. The closure of a formula cl(ψ) is defined as
the smallest set such that, for all subformulas ϕ of ψ, if ϕ is not of the form ¬ϕ′,
then {ϕ,¬ϕ} ⊆ cl(ψ). The algorithms that we present here work on types, i.e.,
maximal sets of formulas that are consistent w.r.t. the Boolean operators, and
where (negated) box formulas are treated as atoms. A set of formulas a ⊆ cl(ψ)
is called a ψ-type (or simply a type if ψ is clear from the context) if it satisfies
the following conditions:

• If ϕ = ¬ϕ′, then ϕ ∈ a iff ϕ′ 6∈ a.
• If ϕ = ϕ′ ∧ ϕ′′, then ϕ ∈ a iff ϕ′ ∈ a and ϕ′′ ∈ a.
• If ϕ = ϕ′ ∨ ϕ′′, then ϕ ∈ a iff ϕ′ ∈ a or ϕ′′ ∈ a.

For a set of types T , we define the maximal accessibility relation ∆ ⊆ T × T as
follows.

∆(t, t′) iff for all 2ϕ′ ∈ t, we have ϕ′ ∈ t′
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X := Init(ψ)
repeat

X′ := X

X := Update(X′)
until X = X′

if exists x ∈ X such that ψ ∈ x then

return “ψ is satisfiable”
else

return “ψ is not satisfiable”

Figure 25.8. Basic schema for the OBDD-based algorithm.

In Figure 25.8 we present the basic schema for the OBDD-based decision
procedures. The schema can be made to work in two fashions, called top-down
and bottom-up in [PSV06], according to the definition of the accessory functions
Init and Update. In both cases, since the algorithms operate with elements in a

finite lattice 2cl(ψ) and use a monotone Update, they are bound to terminate. In
the case of the top-down approach, the accessory functions are defined as:

• Init(ψ) is the set of all ψ-types.
• Update(T ) := T \ bad(T ), where bad(T ) are the types in T that contain

unwitnessed negated box formulas. More precisely,

bad(T ) := {t ∈ T | there exists ¬2ϕ ∈ t and,
forall u ∈ T with ∆(t, u), we have ϕ ∈ u}.

Intuitively, the top-down algorithm starts with the set of all types and remove
those types with “possibilities” 3ϕ for which no “witness” can be found. In the
bottom-up approach, the accessory functions are defined as:

• Init(ψ) is the set of all those types that do not require any witness, which
means that they do not contain any negated box formula, or equivalently,
that they contain all positive box formulas in cl(ψ). More precisely,

Init(ψ) := {t ⊆ cl(ψ) | t is a type and 2ϕ ∈ t for each 2ϕ ∈ cl(ψ)}.

• Update(T ) := T ∪ supp(T ), where supp(T ) is the set of those types whose
negated box formulas are witnessed by types in T . More precisely,

supp(T ) := {t ⊆ cl(ψ) |t is a type and,
for all ¬2ϕ ∈ t, there exists u ∈ T
with ¬ϕ ∈ u and ∆(t, u)}.

Intuitively, the bottom-up algorithm starts with the set of types having no possi-
bilities 3ϕ , and adds those types whose possibilities are witnessed by a type in
the set. Notice that the two algorithms described above, correspond to the two
ways in which non-emptiness can be tested for automata for K.

25.5.2. Optimizations

The decision procedure described in the previous section handle the formula in
three steps. First, the formula is converted into BNF. Then the initial set of
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types is generated – we can think of this set as having some memory efficient
representation. Finally, this set is updated through a fixpoint process. The
answer of the decision procedure depends on a simple syntactic check of this
fixpoint. In the following we consider three orthogonal optimizations techniques.
See [PSV06] for more details, and for a description of preprocessing techniques
that may further improve the performances of the OBDD-based implementations.

25.5.2.1. Particles

The approaches presented so far strongly depend on the fact that the BNF is
used and they can be said to be redundant: if a type contains two conjuncts of
some subformula of the input, then it also contains the corresponding conjunction
– although the truth value of the latter is determined by the truth values of
the former. Working with a different normal form it is possible to reduce such
redundancy. We consider K-formulas in NNF (negation normal form) and we
assume hereafter that all the formulas are in NNF. A set p ⊆ sub(ψ) is a ψ-
particle if it satisfies the following conditions:

• If ϕ = ¬ϕ′, then ϕ ∈ p implies ϕ′ 6∈ p
• If ϕ = ϕ′ ∧ ϕ′′, then ϕ ∈ p implies ϕ′ ∈ p and ϕ′′ ∈ p.
• If ϕ = ϕ′ ∨ ϕ′′, then ϕ ∈ p implies ϕ′ ∈ p or ϕ′′ ∈ p.

Thus, in contrast to a type, a particle may contain both ϕ′ and ϕ′′, but neither
ϕ′ ∧ ϕ′′ nor ϕ′ ∨ ϕ′′. Incidentally, particles are closer than types to assignments
over modal atoms as described in Section 25.3.4. For particles, ∆(·, ·) is defined as
types. From a set of particles P and the corresponding ∆(·, ·), a Kripke structure
Kp can be constructed in the same way as from a set of types (see [PSV06]).

The schema presented in Figure 25.8 can be made to work for particles as
well. In the top-down algorithm:

• Init(ψ) is the set of all ψ-particles.
• Update(P ) := P \ bad(P ), where bad(P ) is the particles in P that contain

unwitnessed diamond formulas and it is defined similarly to the case of
types

Also in the case of particles, the bottom-up approach differs only for the defini-
tions of Init and Update:

• Init(ψ) := {p ⊆ sub(ψ) | p is a particle and 3ϕ 6∈ p for all 3ϕ ∈ sub(ψ)} is
the set of ψ-particles p that do not contain diamond formulas.

• Update(P ) := P ∪ supp(P ) where supp(P ) is the set of witnessed particles
defined similarly to witnessed types.

Just like a set of types can be encoded in some efficient way, e.g., a set of bit
vectors using a BDD, the same can be done for particles. It is easy to see that
bit vectors for particles may be longer than bit vectors for types because, for
example, the input may involve subformulas 2A and 3¬A. The overall size
of the BDD may, however, be smaller for particles since particles impose fewer
constraints than types, and improvements in the run time of the algorithms may
result because the particle-based Update functions require checking less formulas
than the type-based ones.
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25.5.2.2. Lean approaches

Even though the particle approach imposes less constraints than the type ap-
proach, it still involves redundant information: like types, particles may contain
both a conjunction and the corresponding conjuncts. To further reduce the size of
the corresponding BDDs, in [PSV06] it is proposed a representation where “non-
redundant” subformulas are only kept track of. A set of “non-redundant” sub-
formulas atom(ψ) is defined as the set of those formulas in cl(ψ) that are neither
conjunctions nor disjunctions, i.e., each ϕ ∈ atom(ψ) is of the form 2ϕ′, A, ¬2ϕ′,
or ¬A. By definition of types, each ψ-type t ⊆ cl(ψ), corresponds one-to-one to a
lean type lean(t) := t ∩ atom(ψ). To specify algorithms for lean types, a relation
.
∈ must be defined recursively as follows: ϕ

.
∈ t if

• ϕ ∈ atom(ψ) and ϕ ∈ t,
• ϕ = ¬ϕ′ and not ϕ

.
∈ t,

• ϕ = ϕ′ ∧ ϕ′′, ϕ′
.
∈ t, and ϕ′′

.
∈ t, or

• ϕ = ϕ′ ∨ ϕ′′, and ϕ′
.
∈ t, or ϕ′′

.
∈ t.

The top-down and bottom-up approach for types can be easily modified to work
for lean types. It suffices to modify the definition of the functions bad and supp

as follows:

bad(T ) := {t ∈ T | there exists ¬2ϕ ∈ t and,

forall u ∈ T with ∆(t, u), we have ϕ
.
∈ u}.

supp(T ) := {t ⊆ cl(ψ) |t is a type and,
for all ¬2ϕ ∈ t, there exists u ∈ T

with ¬ϕ
.
∈ u and ∆(t, u)}.

A lean optimization can also be defined for particles – details are given in [PSV06].
Notice that this approach bears also some resemblances with the approach used
in [CGH97] to translate LTL to SMV.

25.5.2.3. Level based evaluation

Another variation of the basic algorithm presented in Figure 25.8 exploits the fact
that K enjoys the finite-tree-model property, i.e., each satisfiable formula ψ of K
has a finite tree model of depth bounded by the depth of nested modal operators
depth(ψ) of ψ. We can think of such a model as being partitioned into layers,
where all states that are at distance i from the root are said to be in layer i.
Instead of representing a complete model using a set of particles or types, each
layer in the model can be represented using a separate set. Since only a subset of
all subformulas appears in one layer, the representation can be more compact.

We start by (re)defining cl(·) as

cli(ψ) := {ϕ ∈ cl(ψ) | ϕ occurs at modal depth i in ψ}

and ∆(·, ·) as

∆(t, t′) iff for all t ⊆ cli(ψ), t′ ⊆ cli+1(ψ), and ϕ′ ∈ t′ for all 2ϕ′ ∈ t.
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d := depth(ψ)
Xd := Initd(ψ)
for i := d− 1 downto 0 do

Xi := Update(Xi+1,i)
end

if exists x ∈ X0 such that ψ ∈ x then

return “ψ is satisfiable”
else

return “ψ is not satisfiable”

Figure 25.9. Algorithm for the level-based optimization.

in order to adapt them to the layered approach. A sequence of sets of types

T = 〈T0, T1, . . . , Td〉 with Ti ⊆ 2cli(ψ) can still be converted into a tree Kripke
structure (see [PSV06] for details).

A bottom-up algorithm for level-based evaluation can be defined as in Fig-
ure 25.9. The algorithm works bottom-up in the sense that it starts with the
leaves of a tree model at the deepest level and then moves up the tree model
toward the root, adding nodes that are “witnessed”. In contrast, the bottom-up
approach presented earlier starts with all leaves of a tree model. The accessory
functions can be defined as follows:

• Initi(ψ) := {t ⊆ cli(ψ) | t is a type }.
• Update(T, i) := {t ∈ Initi(ψ) | for all ¬2ϕ ∈ t there exists u ∈ T with ¬ϕ ∈
u and ∆i(t, u)}.

For a set T of types of formulas at level i+ 1, Update(T, i) represents all types of
formulas at level i that are witnessed in T .

25.6. The Eager DPLL-based approach

Recently [SV06, SV08] have explored the idea of encoding Km/ALC-satisfiability
into SAT and handle it by state-of-the-art SAT tools. A satisfiability-preserving
encoding from Km/ALC to SAT was proposed there, with a few variations and
some important optimizations. As Km-satisfiability is PSPACE-complete, the
encoding is necessarily worst-case exponential (unless PSPACE=NP). However,
the only source of exponentiality is the modal depth of the input formula: if
the depth is bounded, the problem is NP-complete [Hal95], so that the encoding
reduces to polynomial. In practice, the experiments presented there showed that
this approach can handle most or all the problems which are at the reach of the
other approaches, with performances which are comparable with, or even better
than, those of the current state-of-the-art tools.

As this idea was inspired by the so-called “eager approach” to SMT [BGV99,
SSB02, Str02] (see §26.3), we call this approach, eager approach to modal reason-
ing. In this section we present an overview of this approach.
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25.6.1. The basic encoding

In order to make our presentation more uniform, and to avoid considering the
polarity of subformulas, we adopt from [Fit83, Mas00] the representation of Km-
formulas from the following table:

α α1 α2 β β1 β2 πr πr
0 νr νr

0
(ϕ1 ∧ ϕ2) ϕ1 ϕ2 (ϕ1 ∨ ϕ2) ϕ1 ϕ2 3rϕ1 ϕ1 2rϕ1 ϕ1

¬(ϕ1 ∨ ϕ2) ¬ϕ1 ¬ϕ2 ¬(ϕ1 ∧ ϕ2) ¬ϕ1 ¬ϕ2 ¬2rϕ1 ¬ϕ1 ¬3rϕ1 ¬ϕ1

¬(ϕ1 → ϕ2) ϕ1 ¬ϕ2 (ϕ1 → ϕ2) ¬ϕ1 ϕ2

in which non-literal Km-formulas are grouped into four categories: α’s (conjunc-
tive), β’s (disjunctive), π’s (existential), ν’s (universal). All such formulas occur
in the main formula with positive polarity only. 14 This allows for disregarding
the issue of polarity of subformulas.

We borrow some notation from the Single Step Tableau (SST) framework
[Mas00, DM00]. We represent univocally states in M as labels σ, represented
as non empty sequences of integers 1.nr11 .n

r2
2 . ... .n

rk

k , s.t. the label 1 represents
the root state, and σ.nr represents the n-th successor of σ through the relation
Rr. With a little abuse of notation, hereafter we may say “a state σ” meaning
“a state labeled by σ”. We call a labeled formula a pair 〈σ : ψ〉, s.t. σ is a state
label and ψ is a Km-formula.

Let A[, ] be an injective function which maps a labeled formula 〈σ : ψ〉, s.t. is
not in the form ¬φ, into a Boolean variable A[σ, ψ]. Let L[σ, ψ] denote ¬A[σ, φ] if
ψ is in the form ¬φ, A[σ, ψ] otherwise. Given a Km-formula ϕ, Km2SAT builds
a Boolean CNF formula recursively as follows:

Km2SAT (ϕ) := A[1, ϕ] ∧Def(1, ϕ) (25.21)

Def(σ, Ai), := ⊤ (25.22)

Def(σ, ¬Ai) := ⊤ (25.23)

Def(σ, α) := (L[σ, α] → (L[σ, α1] ∧ L[σ, α2])) ∧Def(σ, α1) ∧Def(σ, α2) (25.24)

Def(σ, β) := (L[σ, β] → (L[σ, β1] ∨ L[σ, β2])) ∧Def(σ, β1) ∧Def(σ, β2) (25.25)

Def(σ, π
r,j

) := (L[σ, πr,j ] → L
[σ.j, π

r,j

0
]
) ∧Def(σ.j, π

r,j

0 ) (25.26)

Def(σ, ν
r
) :=

∧

〈σ:πr,i〉

((L[σ, νr ] ∧ L[σ, πr,i]) → L[σ.i, νr
0
]) ∧

∧

〈σ:πr,i〉

Def(σ.i, ν
r
0 ). (25.27)

Here by “〈σ : πr,i〉” we mean that πr,i is the j-th distinct πr formula labeled by
σ.

We assume that the Km-formulas are represented as DAGs, so to avoid the
expansion of the same Def(σ, ψ) more than once. Moreover, following [Mas00],
we assume that, for each σ, the Def(σ, ψ)’s are expanded in the order: α, β, π, ν.
Thus, each Def(σ, νr) is expanded after the expansion of all Def(σ, πr,i)’s, so
that Def(σ, νr) will generate one clause ((L[σ, πr,i] ∧L[σ, 2rν

r
0 ]) → L[σ.i, νr

0 ]) and

one novel definition Def(σ.i, νr0) for each Def(σ, πr,i) expanded. 15

Intuitively, Km2SAT (ϕ) mimics the construction of an SST tableau expan-
sion [Mas00, DM00] , s.t., if there exists an open tableau T for 〈1 : ϕ〉, then

14 E.g., a ∧-formula [resp. ∨-formula] occurring negatively is considered a positive occurrence
of a β-formula [resp. an α-formula ]; a 2r-formula [resp. a 3r-formula] occurring negatively is
considered a positive occurrence of a π-formula [resp. a ν-formula].

15Notice that, e.g., an occurrence of 2rψ is considered a ν-formula if positive, a π-formula if
negative.
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there exists a total truth assignment µ which satisfies Km2SAT (ϕ), and vice
versa. Thus, from the correctness and completeness of the SST framework, we
have the following fact.

Theorem 2. [SV08] A Km-formula ϕ is Km-satisfiable if and only if the corre-
sponding Boolean formula Km2SAT (ϕ) is satisfiable.

Notice that, due to (25.27), the number of variables and clauses inKm2SAT (ϕ)
may grow exponentially with depth(ϕ). This is in accordance to what stated in
[Hal95].

Example 9 (NNF). Let ϕnnf be (3A1∨3(A2∨A3)) ∧ 2¬A1 ∧ 2¬A2 ∧ 2¬A3.
16 It is easy to see that ϕnnf is K1-unsatisfiable: the 3-atoms impose that at
least one atom Ai is true in at least one successor of the root state, whilst the
2-atoms impose that all atoms Ai are false in all successor states of the root state.
Km2SAT (ϕnnf ) is:

1. A[1, ϕnnf ]

2. ∧( A[1, ϕnnf ] → (A[1, 3A1∨3(A2∨A3)] ∧A[1, 2¬A1] ∧A[1, 2¬A2] ∧A[1, 2¬A3]) )
3. ∧( A[1, 3A1∨3(A2∨A3)] → (A[1, 3A1] ∨A[1, 3(A2∨A3)]) )
4. ∧( A[1, 3A1] → A[1.1, A1] )
5. ∧( A[1, 3(A2∨A3)] → A[1.2, A2∨A3] )
6. ∧( (A[1, 2¬A1] ∧A[1, 3A1]) → ¬A[1.1, A1] )
7. ∧( (A[1, 2¬A2] ∧A[1, 3A1]) → ¬A[1.1, A2] )
8. ∧( (A[1, 2¬A3] ∧A[1, 3A1]) → ¬A[1.1, A3] )
9. ∧( (A[1, 2¬A1] ∧A[1, 3(A2∨A3)]) → ¬A[1.2, A1] )

10. ∧( (A[1, 2¬A2] ∧A[1, 3(A2∨A3)]) → ¬A[1.2, A2] )
11. ∧( (A[1, 2¬A3] ∧A[1, 3(A2∨A3)]) → ¬A[1.2, A3] )
12. ∧( A[1.2, A2∨A3] → (A[1.2, A2] ∨A[1.2, A3]) )

After a run of BCP, 3. reduces to the implicate disjunction A[1,3A1]∨A[1,3(A2∨A3)].
If the first element A[1, 3A1] is assigned to true, then by BCP we have a conflict
on 4. and 6. If A[1, 3A1] is set to false, then the second element A[1, 3(A2∨A3)] is
assigned to true, and by BCP we have a conflict on 12. Thus Km2SAT (ϕnnf ) is
unsatisfiable.

25.6.2. Optimizations

The following optimizations of the encoding have been proposed in [SV06, SV08]
in order to reduce the size of the output propositional formula.

25.6.2.1. Pre-conversion to BNF

Before the encoding, some potentially useful preprocessing on the input formula
can be performed. First, the input Km-formulas can be converted into BNF. One
potential advantage is that, when one 2rψ occurs both positively and negatively
(like, e.g., in (2rψ∨...)∧(¬2rψ∨...)∧...), then both occurrences of 2rψ are labeled
by the same Boolean atom A[σ, 2rψ], and hence they are always assigned the

16For K1-formulas, we omit the box and diamond indexes.
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same truth value by DPLL; with NNF, instead, the negative occurrence ¬2rψ is
rewritten into 3r¬ψ, so that two distinct Boolean atoms A[σ, 2rψ] and A[σ, 3r¬ψ]

are generated; DPLL can assign them the same truth value, creating a hidden
conflict which may require some extra Boolean search to reveal.

Example 10 (BNF). We consider the BNF variant of the ϕnnf formula of Ex-
ample 9, ϕbnf = (¬2¬A1 ∨¬2(¬A2 ∧¬A3)) ∧ 2¬A1 ∧ 2¬A2 ∧ 2¬A3. As
before, it is easy to see that ϕbnf is K1-unsatisfiable. Km2SAT (ϕbnf ) is:

1. A[1, ϕbnf ]

2. ∧ ( A[1, ϕbnf ]

→ (A[1, (¬2¬A1∨¬2(¬A2∧¬A3))] ∧A[1, 2¬A1] ∧A[1, 2¬A2] ∧A[1, 2¬A3]) )
3. ∧ ( A[1, (¬2¬A1∨¬2(¬A2∧¬A3))] → (¬A[1, 2¬A1] ∨ ¬A[1, 2(¬A2∧¬A3)]) )
4. ∧ ( ¬A[1, 2¬A1] → A[1.1, A1] )
5. ∧ ( ¬A[1, 2(¬A2∧¬A3)] → ¬A[1.2, (¬A2∧¬A3)] )
6. ∧ ( (A[1, 2¬A1] ∧ ¬A[1, 2¬A1]) → ¬A[1.1, A1] )
7. ∧ ( (A[1, 2¬A2] ∧ ¬A[1, 2¬A1]) → ¬A[1.1, A2] )
8. ∧ ( (A[1, 2¬A3] ∧ ¬A[1, 2¬A1]) → ¬A[1.1, A3] )
9. ∧ ( (A[1, 2¬A1] ∧ ¬A[1, 2(¬A2∧¬A3)]) → ¬A[1.2, A1] )

10. ∧ ( (A[1, 2¬A2] ∧ ¬A[1, 2(¬A2∧¬A3)]) → ¬A[1.2, A2] )
11. ∧ ( (A[1, 2¬A3] ∧ ¬A[1, 2(¬A2∧¬A3)]) → ¬A[1.2, A3] )
12. ∧ ( ¬A[1.2, (¬A2∧¬A3)] → (A[1.2, A2] ∨A[1.2, A3]) )

Unlike with NNF, Km2SAT (ϕbnf ) is found unsatisfiable directly by BCP. In fact,
the unit-propagation of A[1, 2¬A1] from 2. causes ¬A[1, 2¬A1] in 3. to be false,
so that one of the two (unsatisfiable) branches induced by the disjunction is cut
a priori. With NNF, the corresponding atoms A[1, 2¬A1] and A[1, 3A1] are not
recognized to be one the negation of the other, s.t. DPLL may need exploring one
Boolean branch more.

25.6.2.2. Lifting boxes and diamonds

The second form of preprocessing is, the Km-formula can also be rewritten by
recursively applying the Km-validity-preserving “box/diamond-lifting rules”:

( 2rϕ1 ∧ 2rϕ2) =⇒ 2r(ϕ1 ∧ ϕ2), ( 3rϕ1 ∨ 3rϕ2) =⇒ 3r(ϕ1 ∨ ϕ2),
(¬2rϕ1 ∨ ¬2rϕ2) =⇒ ¬2r(ϕ1 ∧ ϕ2), (¬3rϕ1 ∧ ¬3rϕ2) =⇒ ¬3r(ϕ1 ∨ ϕ2).

(25.28)
This has the potential benefit of reducing the number of πr,i formulas, and hence

the number of labels σ.i to take into account in the expansion of the Def(σ, νr)’s
(25.27).

Example 11 (BNF with LIFT). If we apply the rules (25.28) to the formula of
Example 10, then we have ϕbnflift = ¬2(¬A1∧¬A2∧¬A3) ∧ 2(¬A1∧¬A2∧¬A3).
Km2SAT (ϕbnflift) is thus:

1. A[1, ϕbnflift]

2. ∧ ( A[1, ϕbnflift] → (¬A[1, 2(¬A1∧¬A2∧¬A3)] ∧A[1, 2(¬A1∧¬A2∧¬A3)]) )
3. ∧ ( ¬A[1, 2(¬A1∧¬A2∧¬A3)] → ¬A[1.1, (¬A1∧¬A2∧¬A3)] )
4. ∧ (( A[1, 2(¬A1∧¬A2∧¬A3)] ∧ ¬A[1, 2(¬A1∧¬A2∧¬A3)]) → A[1.1, (¬A1∧¬A2∧¬A3)] )
5. ∧ ( ¬A[1.1, (¬A1∧¬A2∧¬A3)] → (A[1.1, A1] ∨A[1.1, A2] ∨A[1.1, A3]) )
6. ∧ ( A[1.1, (¬A1∧¬A2∧¬A3)] → (¬A[1.1, A1] ∧ ¬A[1.1, A2] ∧ ¬A[1.1, A3]) )
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Km2SAT (ϕbnflift) is found unsatisfiable directly by BCP on 1. and 2..

One potential drawback of applying the lifting rules (25.28) is that, by collaps-
ing a conjunction/disjunction of modal atoms into one single atom, the possibility
of sharing box/diamond subformulas in the DAG representation of ϕ is reduced.
To cope with this problem, it is possible to adopt a controlled policy for applying
Box/Diamond-lifting, that is, to apply (25.28) only if neither atom has multiple
occurrences.

25.6.2.3. Handling incompatible πr and νr

A first straightforward optimization, in the BNF variant, avoids the useless en-
coding of incompatible πr and νr formulas. In BNF, in fact, the same subfor-
mula 2rψ may occur in the same state σ both positively and negatively (e.g.,
if πr,j is ¬2rψ and νr is 2rψ). If so, Km2SAT labels both those occurrences
of 2rψ with the same Boolean atom A[σ, 2rψ], and produces recursively two dis-
tinct subsets of clauses in the encoding, by applying (25.26) to ¬2rψ and (25.27)
to 2rψ respectively. However, the latter step (25.27) generates a valid clause
(A[σ, 2rψ]∧¬A[σ, 2rψ]) → A[σ.j, ψ], which can be dropped. Consequently A[σ.j, ψ]

no more occurs in the formula, so that also Def(σ.i, ψ) can be dropped as well,
as there is no more need of defining 〈σ : ψ〉.

Example 12. In the formula ϕbnf of Example 10 the implication 6. is valid and
can be dropped. In the formula ϕbnflift of Example 11, not only 4., but also 6.
can be dropped.

25.6.2.4. On-the-fly Boolean Constraint Propagation

One major problem of the basic encoding of §25.6.1 is that it is purely-syntactic,
that is, it does not consider the possible truth values of the subformulas, and
the effect of their propagation through the Boolean and modal connectives. In
particular, Km2SAT applies (25.26) [resp. (25.27)] to every π-subformula [resp.
ν-subformula], regardless the fact that the truth values which can be determinis-
tically assigned to the labeled subformulas of 〈1 : ϕ〉 may allow for dropping some
labeled π-/ν-subformulas, and thus prevent the need of encoding them.

One solution to this problem is that of applying BCP on-the-fly during the
construction of Km2SAT (ϕ). If a contradiction is found, then Km2SAT (ϕ) is ⊥.
When BCP allows for dropping one implication in (25.24)-(25.27) without assign-
ing some of its implicate literals, namely L[σ, ψi], then 〈σ : ψi〉 needs not to be
defined, so that Def(σ, ψ) can be dropped. Importantly, dropping Def(σ, πr,j)
for some π-formula 〈σ : πr,j〉 prevents generating the label σ.j (25.26) and all its
successor labels σ.j.σ′ (corresponding to the subtree of states rooted in σ.j), so
that all the corresponding labeled subformulas are not encoded.

Example 13. Consider Example 10. After building 1. – 3. in Km2SAT (ϕbnf ),
the atoms A[1,ϕbnf ], A[1,(¬2¬A1∨¬2(¬A2∧¬A3))], A[1,2¬A1], A[1,2¬A2] and A[1,2¬A3]

can be deterministically assigned to true by applying BCP. This causes the removal
from 3. of the first-implied disjunct ¬A[1, 2¬A1], so that 4. is not generated. As
label 1.1. is not defined, 6., 7. and 8. are not generated. Then after the con-
struction of 5., 9., 10., 11. and 12., by applying BCP a contradiction is found,
so that Km2SAT (ϕ) is ⊥.
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25.6.2.5. On-the-fly Pure-Literal Reduction

Another technique, evolved from that proposed in [PSV02, PV03], applies Pure-
Literal reduction on-the-fly during the construction of Km2SAT (ϕ). When for
some label σ all the clauses containing atoms A[σ, ψ] have been generated, if some
of them occurs only positively [resp. negatively], then it can be safely assigned to
true [resp. to false], and hence the clauses containing A[σ, ψ] can be dropped. As
a consequence, some other atom A[σ, ψ′] can become pure, so that the process is
repeated until a fixpoint is reached.

Example 14. Consider the formula ϕbnf of Example 10. During the construction
of Km2SAT (ϕbnf ), after 1.-8. are generated, no more clause containing atoms in
the form A[1.1, ψ] is to be generated. Then we notice that A[1.1, A2] and A[1.1, A3]

occur only negatively, so that they can be safely assigned to false. Therefore, 7.
and 8. can be safely dropped. Same discourse applies lately to A[1.2, A1] and
9. The resulting formula is found inconsistent by BCP. (In fact, notice that in
Example 10 A[1.1, A2], A[1.1, A3], and A[1.2, A1] play no role in the unsatisfiability
of Km2SAT (ϕbnf ).)
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