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1 Introduction

Satisfiability Modulo Theories (SMT) can be seen as an extended form of propositional
satisfiability, where propositions are either simple boolean propositions or quantifier-
free atomic constraints in a specific theory. In this paper we present MATHSAT version
3 [6,7,8], a DPLL-based decision procedure for the SMT problem for various theories,
including those of Equality and Uninterpreted Functions (EUF ) 1, of Separation Logic
(SEP ), and of Linear Arithmetic on the Reals (LA(R)) and on the integers (LA(Z)).
MATHSAT is also able to solve the SMT problem for combined EUF +SEP , EUF
+LA(R), and EUF +LA(Z), either by means of Ackermann’s reduction [1] or using
our new approach called Delayed Theory Combination (DTC) [6], which is alternative
to the classical Nelson-Oppen or Shostak integration schemata.

MATHSAT is based on the approach of integrating a state-of-the-art SAT solver with
a hierarchy of dedicated theory solvers. It is a re-implementation of an older version
of the same tool [3,4], supporting more extended theories, and their combination, and
implementing a number of important optimization techniques 2.

MATHSAT has been and is currently used in many projects, both as a platform
for experimenting new automated reasoning techniques, and as a workhorse reasoning
procedure onto which to develop formal verification tools. Our main target application
domains are those of formal verification of RTL circuit designs, and of timed and hy-
brid systems. MATHSAT has been and is currently widely used by many authors for
empirical tests on SMT problems (see, e.g., [11,12,2]).

For lack of space, in this paper we omit any description of empirical results, which
can be found in [6,7,8]. A Linux executable of the solver, together with the papers
[6,7,8] and the benchmarks used there, is available from http://mathsat.itc.it/.

� This work has been partly supported by ISAAC, an European sponsored project, contract no.
AST3-CT-2003-501848, by ORCHID, a project sponsored by Provincia Autonoma di Trento,
and by BOWLING, a project sponsored by a grant from Intel Corporation. The work of T.
Junttila has also been supported by the Academy of Finland, projects 53695 and 211025.

1 More precisely, EUF with some extensions for arithmetic predicates and constants.
2 We notice that some ideas related to the mathematical solver(s) presented in this paper (i.e.,

layering, stack-based interfaces, theory-deduction) are to some extent similar to ideas pio-
neered by Constraint Logic Programming (see, e.g., [14]).

R. Nieuwenhuis (Ed.): CADE 2005, LNAI 3632, pp. 315–321, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



316 M. Bozzano et al.

2 The Main Procedure

MATHSAT is built on top of the standard “online” lazy integration schema used in
many SMT tools (see, e.g., [3,11,2]). In short: after some preprocessing to the input
formula φ, a DPLL-based SAT solver is used as an enumerator of (possibly partial) truth
assignments for (the boolean abstraction of) φ; the consistency in T of (the set of atomic
constraints corresponding to) each assignment is checked by a solver T -SOLVER. This
is done until either one T -consistent assignment is found, or all assignments have been
checked.

MATHSAT 3 [6,7,8] is a complete re-implementation of the previous versions
described in [3,4], supporting more theories (e.g., EUF , EUF +LA(R), EUF
+LA(Z)) and a richer input language (e.g., non-clausal forms, if-then-else). It features
a new preprocessor, a new SAT solver, and a much more sophisticate theory solver,
which we describe in this section. It also features new optimization techniques, which
we describe in the next sections. 3

2.1 The Preprocessor

First, MATHSAT allows the input formula to be in non-clausal form and to include op-
erations such as if-then-else’s over non-boolean terms. The preprocessor translates the
input formula into conjunctive normal form by using a standard linear-time satisfiability
preserving translation. Second, the input formula may contain constraints that mix the-
ories in a way that cannot be handled either by the EUF solver or the linear arithmetic
solver alone (e.g., f (x)+ f (z) = 4). To handle these constraints, the preprocessor either
(i) eliminates them by applying Ackermann’s reduction [1] or (ii) purifies them into a
normal form if the Delayed Theory Combination scheme [6] is applied.

2.2 The SAT Solver

In MATHSAT, the boolean solver is built upon the MINISAT solver [10]. Thus it in-
herits for free conflict-driven learning and backjumping [15], restarts [13], optimized
boolean constraint propagation based on the two-watched literal scheme [16], and an
effective splitting heuristics VSIDS [16]. It communicates with T -SOLVER through a
stack-based interface that passes assigned literals, T -consistency queries and backtrack-
ing commands to T -SOLVER, and gets back answers to the queries, T -inconsistent sets
(theory conflict sets) and T -implied literals.

2.3 The Theory Solver T -SOLVER

T -SOLVER gets in input a set of quantifier-free constraints µ and checks whether µ is
T -satisfiable or not. In the first case, it also tries to perform and return deductions in

3 In order to distinguish what is new in MATHSAT 3 wrt. previous versions, in the next sections
we label by “[3,4]” those techniques which were already present in previous versions, with
“[7,8]” the new techniques, and with “[3,4,7,8]” those techniques which have been proposed
in earlier versions and have been significantly improved or extended in MATHSAT 3.
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the form µ′ |=T l s.t. l is a literal representing a truth assignment to a not-yet-assigned
atom occurring in the input formula, and µ′ ⊆ µ in the (possibly minimal) set of literals
entailing l. In the second case, it returns the (possibly minimal) sub-assignment µ′ ⊆ µ
which caused the inconsistency (conflict set). Due to the early pruning step (see § 3), T -
SOLVER is typically invoked on incremental assignments. When a conflict is found, the
search backtracks to a previous point, and T -SOLVER then restarts from a previously
visited state. Based on these considerations, T -SOLVER has a persistent state, and is
incremental and backtrackable: incremental means that it avoids restarting the compu-
tation from scratch whenever it is given as input an assignment µ′ such that µ′ ⊃ µ and
µ has already been proved satisfiable; backtrackable means that it is possible to return
to a previous state on the stack in a relatively efficient manner.

T -SOLVER consists mainly on two main layers: an Equational Satisfiability Proce-
dure for EUF and a Linear Arithmetic Procedure for SEP , LA(R) and LA(Z).

The Equational Satisfiability Procedure The first layer of T -SOLVER is provided by
the equational solver, a satisfiability checker for EUF with minor extensions for arith-
metic predicates and constants. The solver is based on the congruence closure algorithm
presented in [17], and reuses some of the data structures of the theorem prover E [19]
to store and process terms and atoms. It is incremental and supports efficient backtrack-
ing. The solver generates conflict sets and produces deductions for equational literals. It
also implicitly knows that syntactically different numerical constants are semantically
distinct, and efficiently detects and signals if a new equation forces the identification of
distinct domain elements.

The Linear Arithmetic Procedure The second layer of T -SOLVER is given by
a procedure for the satisfiability of sets of linear arithmetic constraints in the form
(∑i civi �� c j), with ��∈ {=, �=,>,<,≥,≤}. The linear solver is layered, running faster,
more general solvers first and using slower, more specialized solvers only if the early
ones do not detect an inconsistency. The control flow through the linear solver is given
in Fig. 1.

First, we consider only those constraints that are in the difference logic fragment,
i.e., the subassignment of µ consisting of all constraints of the forms vi − v j �� c and
vi �� c, with ��∈ {=, �=,<,>,≤,≥}. Satisfiability checking for this subassignment is
performed by an incremental version of the Bellman-Ford algorithm [9], which allows
for deriving minimal conflict sets. Second, we try to determine if the current assign-
ment µ is consistent over the reals, by means of the Cassowary constraint solver. Cas-
sowary [5] is a simplex-based solver over the reals, using slack variables to efficiently
allow the addition and removal of constraints and the generation of a minimal conflict
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set. Cassowary has been extended by an ad-hoc technique to handle disequalities on R

and with arbitrary precision arithmetic.
If the variables are interpreted over the integers, and the problem is unsatisfiable

in the reals, then it is so in the integers. When the problem is satisfiable in the reals, a
simple form of branch-and-cut is carried out, to search for solutions over the integers,
using Cassowary’s incremental and backtrackable machinery. If branch-and-cut does
not find either an integer solution or a conflict within a small, predetermined amount of
search, the Omega constraint solver [18] is called on the current assignment.

3 Tightly-Integrated SAT and Theory Solvers

In MATHSAT the naive DPLL+T -SOLVER integration schema is enriched by the fol-
lowing optimization techniques [3,4,7,8]. Apart from theory-driven backjumping and
learning, all these optimizations can be disabled/enabled by the user.

Early Pruning [3,4] Before every boolean decision step, T -SOLVER is invoked on the
current assignment µ. If this is found unsatisfiable, then there is no need to proceed, and
the procedure backtracks.

Theory-Driven Backjumping [3,4,7,8] When T -SOLVER finds the assignment µ to be
T -unsatisfiable, it also returns a conflict set η causing the unsatisfiability. This enables
MINISAT to backjump in its search to the most recent branching point in which at least
one literal l ∈ η is not assigned a truth value, pruning the search space below.

Theory-Driven Learning [3,4,7,8] When T -SOLVER returns a conflict set η, the
clause ¬η can be added in conjunction to ϕ: this will prevent MINISAT from gen-
erating again any branch containing η.

Theory-Driven Deduction (and Learning) [3,4,7,8] With early pruning, if a call to
T -SOLVER produces some deduction in the form µ′ |=T l (e.g., by the EUF solver),
then l is returned to the SAT solver, which uses it for boolean constraint propagation,
triggering new boolean simplification. Moreover, the implication clause µ → l can be
learned and added to the main formula, pruning the remaining boolean search.

Static Learning [7,8] Before the main solver is invoked, short clauses valid in T like,
e.g., ¬(t = 1)∨¬(t = 2), ¬(t1 − t2 ≤ 3)∨ (t2 − t1 > −4), (t1 − t2 ≤ 3)∧ (t2 − t3 < 5) →
(t1 − t3 < 9), are added off-line to the input formula φ if their atoms occur in φ. This
helps pruning the search space at the boolean level.

Clause Discharge [7,8] MATHSAT inherits MINISAT’s feature of periodically dis-
carding some of the learned clauses to prevent explosion of the formula size. However,
because the clauses generated by theory-driven learning and theory deduction mecha-
nisms may have required a lot of work in T -SOLVER, as a default option they are never
discarded.

Control on Split Literals [3,4,7,8] In MATHSAT it is possible to initialize the weights
of the literals in the VSIDS splitting heuristics so that either boolean or mathematical
atoms are preferred as splitting choices early in the DPLL search.
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4 An Optimized Theory Solver

In MATHSAT, T -SOLVER benefits of the following optimization techniques [3,4,7,8].
All these optimizations can be disabled/enabled by the user.

Clustering [7,8] At the beginning of the search, the set of all atoms occurring in the
formula is partitioned into disjoint clusters L1, ...,Lk: intuitively, two atoms (literals)
belong to the same cluster if they share a variable. Thus, instead of having a single,
monolithic solver for linear arithmetic, k different solvers are constructed, each respon-
sible for the handling of a single cluster. This allows for “dividing-and-conquering” the
mathematical component of search, and for generating shorter conflict sets.

EQ-Layering [7,8] The equational solver can be used not only as a solver for EUF ,
but also as a layer in the arithmetic reasoning process. In that case, all constraints, in-
cluding those involving arithmetic operators, are passed to the equational solver. Arith-
metic function symbols are treated as fully uninterpreted. However, the solver has a
limited interpretation of the predicates < and ≤, knowing only that s < t implies s �= t,
and s = t implies s ≤ t and ¬(s < t). Thus, the equational interpretation is a (rough)
approximation of the arithmetic interpretation, and all conflicts and deductions found
by the equational solver under EUF semantics are valid under fully interpreted se-
mantics. Hence, they can be used to prune the search. Thus, given the efficiency and the
deduction capabilities of the equality solver, this process in many cases significantly
improves the overall performances [8].

Filtering [3,4,7,8] MATHSAT simplifies the set of constraints passed to T -SOLVER

by “filtering” unnecessary literals. If an atom ψ which occurs only positively (resp.,
negatively) in the input formula φ is assigned to false (resp., true) in the current truth
assignment µ, then it is dropped from µ without loosing correctness and completeness.
If an atom ψ is assigned by unit propagation on clauses resulting from theory-driven
learning, theory-driven deduction, or static learning, then it is dropped from the set of
constraints µ to check because it is a consequence in T of other literals in µ.

Weakened Early Pruning [7,8] During early pruning calls, T -SOLVER does not have
to detect all inconsistencies; as long as calls to T -SOLVER at the end of a search branch
faithfully detect inconsistency, correctness is guaranteed. We exploit this by using a
faster, but less powerful version of T -SOLVER for early pruning calls. Specifically, as
the theory of linear arithmetic on Z is much harder, in theory and in practice, than that
on R, during early pruning calls, T -SOLVER looks for a solution on the reals only.

5 Delayed Theory Combination of T -Solvers

In the standard Nelson-Oppen’s (or Shostak’s) approaches, the T -solvers for two dif-
ferent theories T1, T2 interact with each other by deducing and exchanging (disjunctions
of) interface equalities in the form (vi = v j), vi,v j being variables labeling terms in the
different theories; the SAT solver interacts with this integrated T1 ∪T2-solver according
to the standard SMT paradigm.

In Delayed Theory Combination (DTC) [6], instead, the SAT solver is in charge of
finding suitable truth value assignments not only to the atoms occurring in the formula,
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but also for their relative interface equalities. Each T -solver works in isolation, without
direct exchange of information, and interacts only with the SAT solver, which gives it
as input not only the set of atomic constraints for its specific theory, but also the truth
value assignment to the interface equalities. Under such conditions, two theory-specific
models found by the two T -solvers can be merged into a model for the input formula.

We notice the following facts [6]. DTC does not require the direct combination of
T -solvers for T1 and T2; the construction of conflict sets involving multiple theories is
straightforward; with DTC the T -solvers are not required to have deduction capabilities
(though, the integration benefits from them); DTC extends naturally to the case of more
than two theories; DTC does not suffer in the case of non-convex theories, like LA(Z).
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