
Delayed Theory Combination vs. Nelson-Oppen for
Satisfiability Modulo Theories: a Comparative Analysis?

Roberto Bruttomesso1, Alessandro Cimatti1, Anders Franzen1,2,
Alberto Griggio2, and Roberto Sebastiani2

1 ITC-IRST, Povo, Trento, Italy. {bruttomesso,cimatti,franzen}@itc.it
2 DIT, Università di Trento, Italy. {griggio,rseba}@dit.unitn.it

Abstract. Many approaches for Satisfiability Modulo Theory (SMT(T)) rely on
the integration between a SAT solver and a decision procedure for sets of liter-
als in the background theory T (T -solver). When T is the combination T1 ∪T2
of two simpler theories, the approach is typically handled by means of Nelson-
Oppen’s (NO) theory combination schema in which two specific T -solvers de-
duce and exchange (disjunctions of) interface equalities.
In recent papers we have proposed a new approach to SMT(T1 ∪T2), called De-
layed Theory Combination (DTC). Here part or all the (possibly very expensive)
task of deducing interface equalities is played by the SAT solver itself, at the
potential cost of an enlargement of the boolean search space. In principle this
enlargement could be up to exponential in the number of interface equalities gen-
erated.
In this paper we show that this estimate was too pessimistic. We present a com-
parative analysis of DTC vs. NO for SMT(T1∪T2), which shows that, using state-
of-the-art SAT-solving techniques, the amount of boolean branches performed by
DTC can be upper bounded by the number of deductions and boolean branches
performed by NO on the same problem. We prove the result for different deduc-
tion capabilities of the T -solvers and for both convex and non-convex theories.

1 Introduction

Satisfiability Modulo a Theory T (SMT(T)) is the problem of checking the satisfiability
of a quantifier-free (or ground) first-order formula with respect to a given first-order
theory T . Theories of interest for many applications are, e.g., the theory of difference
logic DL , the theory EUF of equality and uninterpreted functions, the quantifier-free
fragment of Linear Arithmetic over the rationals LA(Q) and that over the integers
LA(Z). Particularly relevant is the case of SMT(T1∪T2), where the background theory
T is the combination of two (or more) simpler theories T1 and T2. 1

? This work has been partly supported by ISAAC, an European sponsored project, contract no.
AST3-CT-2003-501848, by ORCHID, a project sponsored by Provincia Autonoma di Trento,
and by a grant from Intel Corporation.

1 For better readability, and as it is common practice in papers dealing with combination of the-
ories, in this paper we always deal with only two theories T1 and T2. The discourse generalizes
to more than two theories.

A prominent approach to SMT(T) which underlies several systems (e.g., CVCLITE
[2], DLSAT [8], DPLL(T)/BarceLogic [10], MATHSAT [4], TSAT++ [1], ICS/YICES
[9]), is based on extensions of SAT technology: a SAT engine is modified to enumerate
boolean assignments, and integrated with a decision procedure for sets of literals in the
theory T (T -solver). The above schema is also followed to tackle the SMT(T1 ∪T2)
problem. The approach relies on a decision procedure able to decide the satisfiability of
sets of literals in T1∪T2, that is typically based on an integration schema like Nelson-
Oppen (NO) [11] (or its variant due to Shostak [13]): the Ti-solvers are combined by
means of a structured exchange of (disjunctions of) interface equalities (ei j’s).

Unfortunately from a practical point of view this schema poses some challenges.
First, the integration between the two Ti-solvers is not trivial to implement. Second,
the ability of Ti-solvers of inferring (disjunctions of) interface equalities (hereafter ei j-
deduction completeness) required by NO is neither always easy to achieve nor always
cheap to perform. (E.g., ei j-deduction is cheap for EUF but can be very expensive for
LA(Z).) Third, in case of non-convex theories (e.g., LA(Z)), a backtrack search must
be used to take care of the disjunctions that need to be managed.

In recent papers [3, 6] we have proposed a novel approach to SMT(T1∪T2), called
Delayed Theory Combination (DTC). The main idea is to avoid the integration schema
between T1 and T2, and tighten the connection between each Ti and the SAT engine.
While the truth assignment is being constructed, it is checked for consistency with re-
spect to each theory in isolation. This can be seen as constructing two (possibly incon-
sistent) partial models for the original formula; the “merging” of the two partial models
is enforced, on demand, since the solver is requested to find a complete assignment to
the ei j’s.

Compared to the NO schema, this approach has several advantages [3, 6]. First, it is
easier to implement and analyze. Second, the approach does not rely on the Ti-solvers
being ei j-deduction complete, although it can fully benefit from this property. Third, the
DTC nicely encompasses the case of non-convex theories. On the negative side, in [3,
6] we noticed that these benefits are traded with a potential enlargement of the boolean
search space which, in principle, could be up to exponential in the number of interface
equalities generated. Thus, despite the positive empirical results presented in [3, 6], the
latter fact represented, at least in theory, one possible drawback of DTC.

In this paper we show that this latter point was way too pessimistic. We present a
comparative analysis of DTC vs. NO for SMT(T1 ∪T2), and we introduce some novel
theoretical results, for both convex and non-convex theories and for different deduction
capabilities of the T -solvers. These results show that, by exploiting the full power of
advanced SAT techniques like backjumping and learning, DTC can be implemented in
such a way as to mimic the behavior of NO, so that the amount of boolean branches
required by DTC can be upper-bounded by the sum of the number of deductions and
branches required by NO in order to perform the same tasks.

From these results we have that DTC generalizes NO, in the sense that:

– under the same hypotheses of ei j-deduction-completeness of the Ti-solvers required
by NO, DTC emulates NO with no extra cost in terms of boolean search;

– in the more general case (Ti-solvers with partial or no ei j-deduction capabilities)
DTC can mimic the behavior of NO, in such a way that all or part of the (pos-

2

sibly very expensive) ei j-deductions are substituted with only few extra boolean
branches.

We also notice that the capability of learning conflict clauses containing interface equal-
ities, which is typical of DTC, allows for cutting branches corresponding to repeated
deductions in an equivalent NO schema.

The paper is structured as follows. In Section 2 we present some background and
introduce the Nelson-Oppen combination schema for SMT(T1 ∪T2). DTC is then dis-
cussed in Section 3. We present our analysis in Sections 4 (where the case of ei j-
deduction completeness in the Ti-solvers of DTC is examined) and 5 (where the Ti-
solvers employed by DTC are assumed to have limited or no deduction capabilities).
Finally, in Section 6 we draw some conclusions.

For lack of space, the proofs of the theorems and a more detailed description of the
algorithms are omitted here, and they are reported in an extended technical report [7].

2 SMT for combined theories via Nelson-Oppen’s integration

2.1 Basic definitions and properties

Consider a theory T with equality. T is stably-infinite iff every quantifier-free T -
satisfiable formula is satisfiable in an infinite model of T . Notice that EUF , DL(Q),
DL(Z), LA(Q), LA(Z) are stably-infinite, whereas e.g. theories of bit-vectors BV are
typically not. In what follows, we shall assume to deal only with stably-infinite theories
with equality and with disjoint signatures.

T is convex iff, for every collection l1, ..., lk,e,e′ of literals in T s.t. e,e′ are in the
form (x = y), x,y being variables, we have that

{l1, ..., lk} |=T (e∨ e′) ⇐⇒ {l1, ..., lk} |=T e or {l1, ..., lk} |=T e′.
Notice that EUF , DL(Q), LA(Q) are convex, whereas DL(Z) and LA(Z) are not.

Consider two theories T1, T2 with equality and disjoint signatures Σ1,Σ2. An atom
ψ is i-pure if only =, variables and symbols from Σi occur in ψ. A formula ϕ is pure iff
every atom in ϕ is i-pure for some i ∈ {1,2}. Every non-pure T1∪T2 formula ϕ can be
converted into an equivalently satisfiable pure formula ϕ′ by recursively labeling terms
t with fresh variables vt , and by adding the atom (vt = t). E.g.:
(f (x+3y) = g(2x−y)) ⇒ (f (vx+3y) = g(v2x−y))∧(vx+3y = x+3y)∧(v2x−y = 2x−y).
This process is called purification, and is linear in the size of the input formula. Thus,
henceforth we assume w.l.o.g. that all input formulas ϕ ∈ T1∪T2 are pure.

If ϕ is a pure T1 ∪T2 formula, then v is an interface variable for ϕ iff it occurs in
both 1-pure and 2-pure atoms of ϕ. An equality (vi = v j) is an interface equality for ϕ
iff vi, v j are interface variables for ϕ. We assume an unique representation for (vi = v j)
and (v j = vi). Henceforth we denote the interface equality (vi = v j) by “ei j”.

Given a T -inconsistent set of literals L = {l1, . . . , ln} in a theory T , a conflict set
η is an (T -)inconsistent subset of L. η is minimal if none of its strict subsets is T -
inconsistent. We say that η is ¬ei j-minimal iff η\{¬ei j} is no more T -inconsistent, for
every ¬ei j ∈ η.

3

function Bool+T (ϕ: quantifier-free formula)
1 A p←− T 2B(Atoms(ϕ))
2 ϕp←− T 2B(ϕ)
3 while Bool-satisfiable(ϕp) do
4 µp←− pick total assign(A p,ϕp)
5 (ρ,π)←− T − satis f iable(B2T (µp))
6 if ρ = sat then return sat
7 ϕp←− ϕp∧T 2B(¬π)
8 end while
9 return unsat
end function

Fig. 1. A simplified view of enumeration-based T-satisfiability procedure: Bool+T

A T -solver is a procedure that decides the consistency of an assignment µ in T . An
(propositional) assignment µ for a formula ϕ is a function µ : Atoms(ϕ) 7→ {true, f alse}.
µ can be equivalently represented as a set of literals µS, where ¬A ∈ µS if µ(A) = f alse,
and A ∈ µS otherwise. µ can also equivalently be seen as a formula µϕ, built as the
conjunction of the literals in the set µS. (In the following, we will denote all such equiv-
alent representations with µ. Moreover, we will denote with µTi the subassignment of µ
containing only i-pure literals.) When a T -solver detects the inconsistency of µ, it also
returns a conflict set η of µ. Finally, we also require every T -solver involved in either
the NO schema or DTC to be incremental (it does not need to restart the computation
from scratch to decide the satisfiability of µ′ if it had already proved that of µ⊂ µ′) and
backtrackable (it can return to a previous state in an efficient manner) [11].

We say that a T -solver is ¬ei j-minimal (resp. minimal) if the conflict sets it returns
are always ¬ei j-minimal (resp. minimal). Notice that ¬ei j-minimality is a much weaker
requirement than minimality.

2.2 Satisfiability Modulo Theory

Fig. 1 presents Bool+T , a (much simplified) decision procedure for SMT(T). The
function Atoms(ϕ) takes a ground formula ϕ and returns the set of atoms which occur
in ϕ. We use the notation ϕp to denote the propositional abstraction of ϕ, which is
formed by the function T 2B that maps propositional variables to themselves, ground
atoms into fresh propositional variables, and is homomorphic w.r.t. boolean operators
and set inclusion. The function B2T is the inverse of T 2B . We use µp to denote a
propositional assignment. (If T 2B(µ) |= T 2B(ϕ), then we say that µ propositionally
satisfies ϕ.) The idea underlying the algorithm is that the truth assignments for the
propositional abstraction of ϕ are enumerated and checked for satisfiability in T . The
procedure either returns sat if one such model is found, or returns unsat otherwise. The
function pick total assign returns a total assignment to the propositional variables in
ϕp, that is, it assigns a truth value to all variables in A p. The function T -satisfiable(µ)
detects if the set of conjuncts µ is T -satisfiable: if so, it returns (sat, /0); otherwise, it

4

returns (unsat, π), where π⊆ µ is a T -unsatisfiable set, called a theory conflict set. We
call the negation of a conflict set, a conflict clause.

The algorithm is a coarse abstraction of the ones underlying TSAT++, MATHSAT,
DLSAT, DPLL(T)/BarceLogic, CVCLITE, and ICS/YICES. The test for satisfiabil-
ity and the extraction of the corresponding truth assignment are kept separate in this
description only for the sake of simplicity.

In practice, the enumeration of truth assignments is carried out by means of effi-
cient implementations of the DPLL algorithm [15], where a partial assignment µp is
built incrementally, each time selecting an unassigned literal l (literal selection), called
decision literal, according to some heuristic criterion, adding it to µp and performing
all the other assignments which derive deterministically from this choice (unit propaga-
tion). When some assignment µp falsifies the formula returning a (boolean) conflict set
πp, or when T -satisfiable(B2T (µp)) fails returning a theory conflict set π, the negation
¬πp of (the boolean abstraction of) the conflict set is passed as conflict clauses to the
boolean solver. Then ¬πp is added in conjunction to ϕp either temporarily or perma-
nently (learning), and the algorithm backtracks up to the highest point in the search
where a literal can be unit-propagated on ¬πp (backjumping). Learning also avoids
generating the same conflicts in future branches.

An important variant [10] is that of building from ¬πp a “mixed boolean+theory
conflict clause”, by recursively removing non-decision literals l from the conflict clause
by resolving the latter with the clause Cl which caused the unit-propagation of l; this
is done until the conflict clause contains only decision literals (last-UIP strategy) or at
most one non-decision literal assigned after the last decision (first-UIP strategy).2

Another important improvement is early pruning (EP): before every literal selec-
tion, intermediate assignments are checked for T -satisfiability and, if not T -satisfiable,
they are pruned (since no refinement can be T -satisfiable). Finally, theory deduction
can be used to reduce the search space by allowing the T -solvers to explicitly return
truth values for unassigned literals, which can be unit-propagated by the SAT solver.
The interested reader is pointed to, e.g., [1, 4, 10, 5] for details and further references.

2.3 Nelson-Oppen’s schema

Given two signature-disjoint stably infinite theories T1 and T2, the Nelson-Oppen com-
bination schema [11], in the following referred to as NO, allows for solving the satisfia-
bility problem for T1∪T2 (i.e. the problem of checking the T1∪T2-satisfiability of sets
of Σ1∪Σ2-literals) by using the satisfiability procedures for T1 and T2. The procedure is
basically a structured interchange of information inferred from either theory and prop-
agated to the other, until convergence is reached. The schema requires the exchange of
information, the kind of which depends on the convexity of the involved theories. In
the case of convex theories, the two solvers communicate to each other single interface
equalities. In the case of non-convex theories, the NO schema becomes more com-
plicated, because the two solvers need to exchange arbitrary disjunctions of interface
equalities, which have to be managed within the decision procedure by means of case

2 These are standard techniques implemented in most SAT solvers in order to build the boolean
conflict clauses [14].

5

Branch 1 Branch 2

¬RESET5

v0 = v1

v2 = v5

v3 = h(v0)
v4 = h(v1)
v6 = f (v2)
v7 = f (v5)

v3 = v4

¬(v6 = v7)

v0 ≥ v1

v5 = 0

v0 = v1

v2 = v5

v3 = v4

v2 = v3− v4

v0 ≥ v1

v5 = v8

v0 ≤ v1

v0 = v1

v3 = v4

v2 = v3− v4

v3 = h(v0)
v4 = h(v1)
v6 = f (v2)
v7 = f (v5)

v0 = v1

v3 = v4

¬(v6 = v7)

v0 ≤ v1

LA(Q)

EUF ∪LA(Q)-Satisfiable!

EUF EUF LA(Q)

〈ei j-deduction〉

〈ei j-deduction〉 〈ei j-deduction〉

〈ei j-deduction〉〈ei j-deduction〉

RESET5

Fig. 2. Representation of the search tree for the formula of Example 1

splitting and of backtrack search. In the latter case, the NO schema performs a number
of branches to check the consistency of a set of literals which depends on how many
disjunctions of equalities are exchanged at each step: if the current set of literals is µ,
and one of the Ti-solver sends the disjunction

Wn
k=1(ei j)k to the other, the latter must

further investigate up to n branches to check the consistency of each of the µ∪{(ei j)k}
sets separately.

We notice that the ability to carry out deductions of (disjunctions of) ei j’s is crucial
for NO: if the current set of literals µTi in input to each Ti-solver is Ti-consistent, then
Ti-solver must be able to derive the (disjunctions of) interface equalities ei j which are
entailed by µTi in Ti (if any), or say that no (disjunction of) ei j’s is entailed if this is
the case. If the Ti-solver is always capable of doing this, we say that it is ei j-deduction
complete. In what follows we will assume that all the Ti-solvers used in a NO schema
are ei j-deduction complete.

Example 1 (convex case). Consider the following EUF ∪LA(Q) formula ϕ (see Fig. 2)

EUF : (v3 = h(v0))∧ (v4 = h(v1))∧ (v6 = f (v2))∧ (v7 = f (v5))∧
LA(Q) : (v0 ≥ v1)∧ (v0 ≤ v1)∧ (v2 = v3− v4)∧ (RESET5→ (v5 = 0))∧
Both : (¬RESET5→ (v5 = v8))∧¬(v6 = v7).

(1)

v0, v1, v2, v3, v4, v5 are interface variables, v6, v7, v8 are not. (Thus, e.g., (v0 = v1) is an
interface equality, whilst (v0 = v6) is not.) RESET5 is a boolean variable.
After the first run of unit propagations, assume DPLL selects the literal RESET5, re-
sulting in the assignment

µ = { (v3 = h(v0)),(v4 = h(v1)),(v6 = f (v2)),(v7 = f (v5)),(v0 ≥ v1),
(v0 ≤ v1),(v2 = v3− v4),¬(v6 = v7),RESET5,(v5 = 0)}, (2)

which propositionally satisfies ϕ. Now, the set of literals µEUF ⊂ µ is given to the EUF
solver, which reports its consistency and deduces no new interface equality. Then the
set µLA(Q) ⊂ µ is given to the LA(Q) solver, which reports consistency and deduces the
interface equality (v0 = v1), which is passed to the EUF solver. The new set µEUF ∪
{(v0 = v1)} is still EUF -consistent, but this time the EUF solver deduces the equality

6

v2 = v3∨ v2 = v4

v1 = v3∨ v1 = v4

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6
v2 ≤ v6 +1

v4 = 1
v3 = 0
v5 = v4−1

v5 = v6

v2 = v3

v1 = v4v1 = v3

v5 = v6

v2 = v4

¬(f (v2) = f (v4))
f (v3) = v5
f (v1) = v6

¬(f (v1) = f (v2))
µLA(Z)

EUF ∪LA(Z)-Satisfiable!

µEUF

〈ei j-deduction〉

〈ei j-deduction〉

〈ei j-deduction〉

Fig. 3. Representation of the search tree for the formula of Example 2

(v3 = v4), which is in turn passed to the LA(Q) solver, that now as a consequence of this
and the assignment µLA(Q) deduces (v2 = v5). The EUF solver is then invoked again
to check the EUF -consistency of the assignment µEUF ∪{(v0 = v1),(v2 = v5)}: since
this check fails, the Nelson-Oppen method reports the EUF ∪LA(Q)-unsatisfiability
of ϕ under the whole assignment µ. At this point, then, DPLL backtracks and tries
assigning false to RESET5, resulting in the new assignment

µ = { (v3 = h(v0)),(v4 = h(v1)),(v6 = f (v2)),(v7 = f (v5)),(v0 ≥ v1),(v0 ≤ v1),
(v2 = v3− v4),¬(v6 = v7),¬RESET5,(v5 = v8))},

which is found EUF ∪LA(Q)-satisfiable (see Fig. 2). ¦

Example 2 (non-convex case). Consider the following EUF ∪LA(Z) formula ϕ

EUF : ¬(f (v1) = f (v2))∧¬(f (v2) = f (v4))∧ (f (v3) = v5)∧ (f (v1) = v6)∧
LA(Z) : (v1 ≥ 0)∧ (v1 ≤ 1)∧ (v5 = v4−1)∧ (v3 = 0)∧ (v4 = 1)∧

(v2 ≥ v6)∧ (v2 ≤ v6 +1).
(3)

Here (see Fig. 3) all the variables (v1, . . . ,v6) are interface ones. ϕ contains only unit
clauses, so after the first run of unit propagations, DPLL generates the assignment µ
which is simply the set of literals in ϕ. The Nelson-Oppen combination schema then
runs as follows. First, the sub-assignment µEUF is given to the EUF solver, which
reports its consistency and deduces no interface equality. Then, the sub-assignment
µLA(Z) is given to the LA(Z) solver, which reports its consistency and deduces the
disjunction (v1 = v3)∨ (v1 = v4). Next, there is a case-splitting and the two equal-
ities (v1 = v3) and (v1 = v4) are passed to the EUF solver. The first branch, cor-
responding to selecting (v1 = v3), is opened: then the set µEUF ∪ {(v1 = v3)} is
EUF -consistent, and the equality (v5 = v6) is deduced. After that, the assignment
µLA(Z)∪{(v5 = v6)} is passed to the LA(Z) solver, that reports its consistency and de-
duces another disjunction, (v2 = v3)∨ (v2 = v4). At this point, another case-splitting is
needed in the EUF solver, resulting in the two branches µEUF ∪{(v1 = v3),(v2 = v3)}

7

function Bool+T1+T2 (ϕi: quantifier-free formula)
1 ϕ←− purify(ϕi)
2 A p←− T 2B(Atoms(ϕ)∪ interface equalities(ϕ))
3 ϕp←− T 2B(ϕ)
4 while Bool-satisfiable (ϕp) do
5 µp

1 ∧µp
2 ∧µp

e = µp←− pick total assign(A p,ϕp)
6 (ρ1,π1)←− T1-satisfiable (B2T (µp

1 ∧µp
e))

7 (ρ2,π2)←− T2-satisfiable (B2T (µp
2 ∧µp

e))
8 if (ρ1 = sat∧ρ2 = sat) then return sat else
9 if ρ1 = unsat then ϕp←− ϕp∧T 2B(¬π1)
10 if ρ2 = unsat then ϕp←− ϕp∧T 2B(¬π2)
11 end while
12 return unsat
end function

Fig. 4. A simplified view of the Delayed Theory Combination procedure for SMT(T1∪T2)

and µEUF ∪{(v1 = v3),(v2 = v4)}. Both of them are found inconsistent, so the whole
branch previously opened by the selection of (v1 = v3) is found inconsistent; at this
point, the other case of the branch (i.e. the equality (v1 = v4)) is selected, and since
the assignment µEUF ∪{(v1 = v4)} is EUF -consistent and no new interface equality
is deduced, the Nelson-Oppen method reports the EUF ∪LA(Z)-satisfiability of ϕ
under the whole assignment µ. ¦

3 SMT for combined theories via Delayed Theory Combination

In the Delayed Theory Combination (DTC) schema [3, 6], the SMT(T1 ∪T2) problem
is tackled in a different way: each of the two Ti solvers works in isolation, without
direct exchange of information. Their mutual consistency is ensured by augmenting the
input problem with all interface equalities ei j, even if these do not occur in the original
problem. The enumeration of assignments includes not only the atoms in the formula,
but also the interface equalities ei j. Both theory solvers receive, from the boolean level,
the same truth assignment µe for ei j: under such conditions, the two “partial” models
found by each decision procedure can be merged into a model for the input formula.

A simplified view of the algorithm is presented in Fig. 4. Initially (lines 1–3), the
formula is purified, the new ei j’s are created and added to the set of propositional sym-
bols A p, and the propositional abstraction ϕp of ϕ is created. Then, the main loop is
entered (lines 4–11): while ϕp is propositionally satisfiable (line 4), a satisfying truth
assignment µp is selected (line 5). It is important to stress that truth values are associ-
ated not only to atoms in ϕ, but also to the ei j atoms, even though they do not occur in
ϕ. µp is then (implicitly) separated into µp

1 ∧µp
e ∧µp

2 , where B2T (µp
i) is a set of i-pure

literals and B2T (µp
e) is a set of ei j-literals. The relevant parts of µp are checked for con-

sistency against each theory (lines 6–7); Ti-satisfiable(µ) returns a pair (ρi,πi), where
ρi is unsat iff µ is unsatisfiable in Ti, and sat otherwise. If both calls to Ti-satisfiable re-
turn sat, then the formula is satisfiable. Otherwise, when ρi is unsat, then πi is a theory

8

conflict set, i.e. πi ⊆ µ and πi is Ti-unsatisfiable. Then, ϕp is strengthened to exclude
truth assignments which may fail in the same way (line 9–10), and the loop is resumed.
Unsatisfiability is returned (line 12) when the loop is exited without having found a
model.

In practical implementations of DTC, the search for a satisfactory assignment is
based on a modern DPLL engine, performing literal selection, unit-propagation, back-
jumping and learning, early pruning, and theory deduction, as explained in §2.2. In
particular, DTC can be enhanced by ei j-deduction, in which ei j’s can by deduced by the
Ti-solvers and hence unit-propagated. We refer the reader to [3, 6] for a more detailed
discussion.

Notation-wise, we call “new” ei j’s all the interface equalities ei j’s which do not
occur in any clause of the input formula ϕ (including all the clauses learned). Moreover,
we often write sets of literals {l1, ..., ln} as conjunctions l1∧ ...∧ ln, and we often write
clauses (

W
i li)∨ (

W
j l j) as implications: (

V
i¬li)→ (

W
j l j) or (

V
i¬li∧V j¬l j)→⊥.

Hereafter, for the sake of proving the theoretical results in §4 and §5, we assume
that DTC implements the following strategy.

Strategy 1 (NO emulation)

1. All the conflict clauses derived by theory conflicts are learned. 3

2. Each conflict clause in 1. is a mixed boolean+theory conflict clause which is built
from the theory conflict set by means of the last-UIP strategy described in §2.2. 4

3. The literal selection heuristic and the Ti-solvers calls are such that:
(i) new ei j’s are selected only after all the other literals have been assigned,

(ii) Early pruning (EP) is applied before every selection of a new ei j, 5

(iii) the new ei j’s selected are always assigned false,
(iv) each Ti-solver is invoked only if at least one literal (which has not been deduced

singularly by Ti-solver itself) has been added to its input since the last call. 6

4. At every early-pruning call on a branch (namely µ) which is found both T1- and T2-
consistent, if one Ti-solver performs the ei j-deduction µ∗ |=Ti

Wk
j=1 e j, s.t. µ∗ ⊆ µTi ,

each e j being an unassigned interface equality on variables in µ, then:
(i) the clause T 2B(µ∗→Wk

j=1 e j) is learned immediately;
(ii) if k = 1, then ek is added to the current assignment and unit-propagated imme-

diately;
(iii) if k > 1, then ¬e1, ...,¬ek are put on the top of the literal selection list, so that

to be the next ¬ei j’s selected by the literal selection heuristic.

3 That is, if one Ti-solver returns a conflict set π, then the conflict clauses T 2B(¬π) is always
added to ϕp, either temporarily or permanently.

4 That is, each conflict clause contains all and only (the negation of) the decision literals which
forced the unit-propagation or the ei j-deduction of those in the theory conflict.

5 That is, before adding a new (negated) ei j to µ, the Ti-satisfiability of µ is checked for both
Ti’s by calling the Ti-solver’s. If µ is found Ti-inconsistent for some Ti, then the procedure
backtracks.

6 This avoids invoking a Ti-solver twice in sequence on the same input. The restriction “which
... by Ti-solver itself” means that, if Ti-solver (µ) returns “Sat” and deduces ei j , then Ti-solver
is not invoked on µ∪{ei j}.

9

SAT

(v0 = v1)

EUF -unsat
C67

LA(Q)-deduce (v0 = v1)
learn C01

C34 : (µ′EUF ∧ (v0 = v1))→ (v3 = v4)
C01 : (µ′LA(Q))→ (v0 = v1)

C25 : (µ′′LA(Q)∧ (v5 = 0)∧ (v3 = v4))→ (v2 = v5)
C67 : (µ′′EUF ∧ (v2 = v5))→ (v6 = v7)

(v2 = v5)

RESET5

µEUF : { (v3 = h(v0)),(v4 = h(v1)),¬(v6 = v7),
(v6 = f (v2)),(v7 = f (v5))}

(v0 = v1)

(v3 = v4)

(v5 = v8)(v5 = 0)

(v3 = v4)

¬RESET5

EUF -deduce (v3 = v4)

LA(Q)-deduce (v2 = v5)

µLA(Q) :
{(v0 ≥ v1),(v0 ≤ v1),
(v2 = v3− v4)}

learn C34

learn C25

LA(Q)-deduce (v0 = v1)
learn C′01

Fig. 5. DTC execution of Example 3 on LA(Q)∪EUF , with ei j-deduction-complete Ti-solvers.

5. [If and only if both Ti-solvers are ei j-deduction complete]
If a total assignment µ which propositionally satisfies ϕ is found Ti-satisfiable for
both Ti’s, and neither Ti-solver performs any ei j-deduction from µ, then DTC stops
returning “Sat”. 7

4 DTC with ei j-deduction-complete Ti-solvers vs. NO

In this section, we assume that both the Ti-solvers employed by DTC are ei j-deduction
complete. Under these assumptions, we have the following result.

Theorem 1. Let T1 and T2 be two stably-infinite (possibly non-convex) theories and let
both Ti-solvers be ei j-deduction complete; let ϕ be a pure T1 ∪ T2 formula and let µ
be a total assignment propositionally satisfying ϕ. Let DTC with Strategy 1 prove the
T1 ∪T2-consistency (resp. T1 ∪T2-inconsistency) of µ, returning a conflict set η in the
case of inconsistency. Let dtc br be the number of boolean branches required in the
DTC proof. Then we have:

dtc br ≤ no br (4)

no br being the number of branches performed by a corresponding NO proof of the
T1∪T2-consistency (resp. T1∪T2-inconsistency) of µ.

Theorem 1 states that, under the same hypotheses of ei j-deduction as NO, DTC
emulates NO with no extra cost in terms of boolean search.

Example 3 (convex case). Consider again the EUF ∪LA(Q) formula ϕ of Example 1.
Figure 5 illustrates a DTC execution when both Ti-solvers are ei j-deduction complete.

On the left branch (when RESET5 is selected), after the unit-propagation of (v5 = 0),
the LA(Q) solver deduces (v0 = v1), and thus by Step 4. (i) of Strategy 1, the clause
C01 is learned and (v0 = v1) is unit-propagated. As a consequence of this, the EUF
7 Step 5. is identical to the T1∪T2-satisfiability termination condition of NO.

10

solver can deduce (v3 = v4), resulting in the learning of C34 and the unit-propagation of
(v3 = v4), which in turn causes the LA(Q)-deduction of (v2 = v5), with the resulting
learning of C25 and unit-propagation of the deduced equality.

At this point, µ′′EUF ∪{(v2 = v5)} 8 is found EUF -inconsistent, so that the EUF -
solver returns (the negation of) the clause C67, which is resolved backward with the
clauses C25, C34, C01, ¬(v6 = v7), and (RESET5 → (v5 = 0)) as explained in Step
2. of Strategy 1, obtaining a mixed theory+boolean conflict clause C′67 in the form
(µ∗∧RESET5)→⊥ s.t. µ∗ contains no interface equality. C′67 forces DTC to backjump
up to the last branching point. Then the execution of the right branch begins with the
unit-propagation of ¬RESET5 on C′67 and hence of (v5 = v8) on ¬RESET5→ (v5 = v8),
which produces an assignment propositionally satisfying ϕ. The theory solvers are in-
voked, and the LA(Q) solver deduces again (v0 = v1), learning a clause C′01 which is
similar to C01 except for the fact that it may contain the redundant literal (v5 = v8) in-
stead of (v5 = 0). 9 Then (v3 = v4) is unit-propagated on C34. At this point, since both
theory solvers cannot deduce any new ei j, by Step 5. of Strategy 1 DTC concludes that
ϕ is EUF ∪LA(Q)-satisfiable. ¦

Notice that the left branch of the DTC search tree of Figure 5 mimics directly that
of the NO execution of Figure 2. The main difference relies on the fact that, unlike with
NO, the deduced ei j’s are not exchanged directly by the Ti-solvers, but rather they are
added to the current assignment µ and unit-propagated.

In the right branch, instead, all values are assigned directly by unit-propagation.
This fact illustrates one further potential advantage of DTC with respect to NO: the
fact that new ei j’s are known a priori to the DPLL engine allows their inclusion in the
learned clauses derived by theory conflicts. Thanks to unit-propagation, this makes it
possible to assign truth values to them directly at the boolean level, without performing
the (potentially costly) invocation of the Ti-solvers. In the traditional NO schema, this
fact does not come naturally, because the boolean solver knows nothing about the ei j’s.

We consider now the case where some Ti’s are non-convex.

Example 4 (non-convex case). Consider the EUF ∪LA(Z) formula ϕ and assignment
µ of Example 2. Figure 6 illustrates a DTC execution when both Ti-solvers are ei j-
deduction complete.

The first invocation of the LA(Z) solver results in deducing of the disjunction
(v1 = v4)∨ (v1 = v3) and learning of the corresponding clause C13. By Step 4.(iii)
of Strategy 1, then, (v1 = v4) and (v1 = v3) are put on the top of the literal selec-
tion list. As a consequence, DTC selects ¬(v1 = v4), and thanks to C13 it immediately
unit-propagates (v1 = v3). At this point the EUF solver can deduce (v5 = v6), so
that the clause C56 is learned and the deduced equality is unit-propagated immediately.
When µLA(Z)∪{(v5 = v6)} is passed to the LA(Z) solver, this deduces the disjunction
(v2 = v4)∨ (v2 = v3), learning C23. Selecting ¬(v2 = v4) results in the unit-propagation
of (v2 = v3), which in turn causes a EUF conflict. After the EUF -solver returns

8 Hereafter, µ′T , µ′′T , µ′′′T will denote generic subsets of µT , T ∈ {EUF ,LA(Q),LA(Z)}.
9 Here we assume the “worst” case in which µ′LA(Q) in C01 contains the (redundant) literal

(v5 = 0). If this is not the case, then (v0 = v1) is directly unit-propagated on C01, without
calling the theory solvers.

11

SAT

 f (v1) = v6

¬(f (v1) = f (v2))¬(f (v2) = f (v4))
f (v3) = v5

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6
v2 ≤ v6 +1

v5 = v4−1
v3 = 0
v4 = 1

¬(v1 = v4)

v2 = v3

v1 = v3

v5 = v6

¬(v2 = v4) v2 = v4

v1 = v4

µLA(Z):µEUF : C13 : (µ′LA(Z))→ ((v1 = v3)∨ (v1 = v4))
C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)
C23 : (µ′′LA(Z)∧ (v5 = v6))→ ((v2 = v3)∨ (v2 = v4))
C24 : (µ′′EUF ∧ (v1 = v3)∧ (v2 = v3))→⊥
C14 : (µ′′′EUF ∧ (v1 = v3)∧ (v2 = v4))→⊥

LA(Z)-deduce (v1 = v4)∨ (v1 = v3), learn C13

EUF -unsat, C14

EUF -unsat, C24

LA(Z)-deduce (v2 = v4)∨ (v2 = v3), learn C23

EUF -deduce (v5 = v6), learn C56

Fig. 6. DTC execution of Ex 4 on LA(Z)∪EUF , with ei j-deduction-complete Ti-solvers.

(the negation of) C24, DTC backjumps up to a point where (v2 = v4) can be unit-
propagated. This results again in an EUF -conflict, so that the EUF -solver returns
(the negation of) C14, which causes another backjumping up to where (v1 = v4) can
be unit-propagated. Then, after another invocation to the theory solvers, DTC stops,
declaring ϕ to be EUF ∪LA(Z)-satisfiable. ¦

As with the convex example, notice that the DTC search tree of Figure 6 mimics
directly that of the NO execution of Figure 3 (both dtc br and no br are equal to 3.)

5 DTC with non ei j-deduction-complete Ti-solvers vs. NO

In this section, we assume that both the Ti-solvers employed by DTC are ¬ei j-minimal
and have limited or no ei j-deduction capabilities. Under these assumptions, we have the
following result.

Theorem 2. Let T1 and T2 be two stably-infinite (possibly non-convex) theories. Let
both Ti-solvers be ¬ei j-minimal, and possibly have some ei j-deduction capabilities; let
ϕ be a pure T1∪T2 formula and let µ be a total assignment propositionally satisfying ϕ.
Let DTC with Strategy 1 prove the T1∪T2-consistency (resp. T1∪T2-inconsistency) of
µ, returning a conflict set η in the case of inconsistency. Let dtc br and dtc ded be the
number of boolean branches and of ei j-deductions performed in the DTC proof. Then
we have:

dtc br +dtc ded ≤ no br +no ded, (5)

no ded and no br being respectively the number of deductions and of branches per-
formed by a corresponding NO proof of the T1∪T2-consistency (resp. T1∪T2-inconsistency)
of µ.

Theorem 2 states that, if the Ti-solvers are both¬ei j-minimal, then there is a strategy
for DTC which emulates some NO proof (even though the Ti-solvers have limited or no
ei j-deduction capabilities!) at the cost of (at most) one extra boolean branch for every

12

f (v1) = v6

¬(f (v1) = f (v2))¬(f (v2) = f (v4))
f (v3) = v5

¬(v1 = v4)

¬(v1 = v3)

v2 = v3
¬(v2 = v3)

¬(v2 = v4)

v1 = v3

v5 = v6

v2 = v4

v1 = v4

¬(v5 = v6)

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6
v2 ≤ v6 +1

v5 = v4−1
v3 = 0
v4 = 1

µEUF : µLA(Z):

LA(Z)-unsat, C13

EUF -unsat, C56

LA(Z)-unsat, C23

EUF -unsat, C14

EUF -unsat, C24

C13 : (µ′LA(Z))→ ((v1 = v3)∨ (v1 = v4))
C56 : (µ′EUF ∧ (v1 = v3))→ (v5 = v6)

C14 : (µ′′′EUF ∧ (v1 = v3)∧ (v2 = v4))→⊥
C24 : (µ′′EUF ∧ (v1 = v3)∧ (v2 = v3))→⊥
C23 : (µ′′LA(Z)∧ (v5 = v6))→ ((v2 = v3)∨ (v2 = v4))

Fig. 7. DTC execution of Example 5 on LA(Z)∪EUF , with no ei j-deduction. The clauses Ci j’s
are the same as those of Fig. 6.

ei j-deduction performed by NO. Therefore the (possibly very expensive) ei j-deduction
steps of the NO schema can be avoided at the cost of one extra boolean branch each.

More generally, we notice that one key idea in the proof of Theorem 2 is that, when
the DPLL engine fails and generates a conflict set π, it backjumps up to the second-
most-recently-assigned ¬ei j in π, if any [7]. (See, e.g., the case of C23 in Figure 7.)
Therefore, in a more general case than that of Theorem 2 (no ¬ei j-minimality), the
more redundant ¬ei j’s the Ti-solvers are able to remove from the conflict set returned,
the more boolean branches are skipped by backjumping.

Example 5 (no ei j-deduction, non-convex case). Consider the EUF ∪LA(Z) formula
ϕ (3) and the assignment µ of Example 2. Look at Fig. 7. Both µLA(Z) and µEUF are
found consistent in the respective theories by the respective solvers.

Then DTC starts selecting new ¬ei j’s, and proceeds without causing conflicts, until
it selects ¬(v1 = v4) and ¬(v1 = v3), which cause a LA(Z) conflict. The branch is
in the form µ∪S j¬e j, so that, the ¬ei j-minimal conflict set η13 returned is in the
form µ′LA(Z) ∪ {¬(v1 = v3),¬(v1 = v4)}. Thus DTC learns the corresponding clause
C13 (see Fig 7) and backjumps up to the highest point which allows for unit-propagating
(v1 = v3) on C13, and performs such unit propagation. Then DTC starts and proceeds
selecting new ¬ei j’s without causing conflicts, until it selects ¬(v5 = v6), which causes
a EUF conflict represented by the clause C56. As EUF is convex, ¬(v5 = v6) is the
only ¬ei j occurring in the conflict set, so that DTC backtracks over the last chain of
¬ei j’s and unit-propagates (v5 = v6).

Again, DTC selects a chain of new ¬ei j’s without causing conflicts, until it selects
¬(v2 = v4) and ¬(v2 = v3), which cause a LA(Z) conflict represented by clause C23.
As before, it backjumps to the highest point where it can unit-propagate (v2 = v3).
Performing the latter unit propagation causes a EUF conflict, learning the clause C24.
By applying Step 2. of Strategy 1, resolving on literal (v2 = v3) the conflicting clause

13

C24 with the clause C23 (which caused the unit-propagation of (v2 = v3)), DTC obtains
a clause C′24 : (µ′′LA(Z) ∧ µ′′EUF ∧ (v5 = v6)∧ (v1 = v3))→ (v2 = v4), which allows it
for backjumping over all the remaining ¬ei j’s of the current chain and unit-propagating
(v2 = v4).

The latter causes a new EUF conflict represented by the clause C14. By Step 2. of
Strategy 1, C14 is resolved with the clauses C′24, C56, C13 (which caused the propagation
of (v2 = v4), (v5 = v6), (v1 = v3) respectively), obtaining the clause C′14 : (µ′LA(Z) ∧
µ′′LA(Z) ∧ µ′EUF ∧ µ′′EUF ∧ µ′′′EUF)→ (v1 = v4), which allows for backjumping up to µ
and unit-propagating (v1 = v4).

Finally, DTC starts and proceeds selecting ¬ei j’s (possibly unit-propagating some
value due to the clauses learned) without generating conflicts, so that to conclude that
the formula is T1∪T2-satisfiable.

Comparing with Fig. 3, dtc br = 6, dtc ded = 0, no ded = 3 and no br = 3. ¦
Notice that the three leftmost diagonal branches in Fig. 7 obtain the same effect as the
ei j-deduction steps in Fig. 6 (and in Fig. 3).

6 Conclusions

Theorem 1 shows that, under the same hypotheses of ei j-deduction-completeness as
NO, DTC can emulate NO, with no extra boolean search. Theorem 2 shows that, un-
der the hypothesis of ¬ei j-minimality, even Ti-solvers with limited or no ei j-deduction
capabilities allow DTC to emulate NO, at the cost of (at most) one extra boolean
branch for every (possibly very expensive) ei j-deduction performed by NO. Both re-
sults also highlight the fact that DTC naturally allows for learning clauses containing
ei j’s, which can be used in subsequent branches to prune search and avoid redoing the
same search/deductions from scratch.

We remark that Strategy 1 has been conceived only for mimicking NO, and by no
means it is assumed to be the most efficient strategy for DTC. (E.g., Step 3.(ii) can be
substituted with a weakened version of EP [4], and more efficient literal selection strate-
gies might be preferable to Step 3.(i) and (iii).) Some alternatives are currently under
investigation, and their theoretical properties and practical performance are subject for
future work.

As far as the ¬ei j-minimality hypothesis is concerned, we notice that, at least for
theories like EUF and LA(Q), there are known decision procedures that fulfill this
requirement (see [12] and [4] respectively.) For other theories, the problem of ¬ei j-
minimization opens a novel research branch. 10 However, we remark that DTC works
also when the Ti-solvers are not ¬ei j-minimal, at the cost of (at most) one extra branch
to explore for each redundant ¬ei j returned in a conflict set.

It is also important to notice that, in general, only a fraction of the assignments
µ enumerated turn out to be Ti-satisfiable for both Ti’s, so that to require the boolean

10 Bottom line, one can always make µ ¬ei j-minimal by dropping the remaining ¬ei j’s one by
one, each time checking µ\{¬ei j}. Notice that, in general, with ¬ei j-minimization the search
for the candidate ¬ei j’s to drop is restricted to only those occurring in µ, whilst with ei j-
deduction the search for the candidate ei j’s to deduce extends to all the unassigned ei j’s.

14

search on the ei j’s. Thus, for all the other branches, DTC may save the effort of many
failed attempts of deducing implied ei j’s.

On the whole, the results presented in this paper show that DTC allows for trad-
ing boolean search for ei j-deduction. Thus everyone can choose and implement the
most suitable Ti-solvers without being forced by the ei j-deduction-completeness strait-
jacket: for theories for which efficient ei j-deduction complete procedures are available
(e.g., EUF [12]), DTC allows for exploiting the full power of ei j-deduction; for harder
theories (e.g., LA(Z)), the research task changes from that of finding ei j-deduction
complete T -solvers to that of finding ¬ei j-minimal or nearly-¬ei j-minimal ones.

References

1. A. Armando, C. Castellini, E. Giunchiglia, and M. Maratea. A SAT-based Decision Proce-
dure for the Boolean Combination of Difference Constraints. In Proc. SAT’04, 2004.

2. C.L. Barrett and S. Berezin. CVC Lite: A New Implementation of the Cooperating Validity
Checker. In Proc. CAV’04, volume 3114 of LNCS. Springer, 2004.

3. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P.van Rossum, S. Ranise, and R. Sebas-
tiani. Efficient Satisfiability Modulo Theories via Delayed Theory Combination. In Proc. Int.
Conf. on Computer-Aided Verification, CAV 2005., volume 3576 of LNCS. Springer, 2005.

4. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P.van Rossum, S. Schulz, and R. Se-
bastiani. An incremental and Layered Procedure for the Satisfiability of Linear Arithmetic
Logic. In Proc. TACAS’05, volume 3440 of LNCS. Springer, 2005.

5. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P.van Rossum, S. Schulz, and R. Sebas-
tiani. MathSAT: A Tight Integration of SAT and Mathematical Decision Procedure. Journal
of Automated Reasoning, 2005. to appear.

6. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Ranise, and R. Se-
bastiani. Efficient Theory Combination via Boolean Search. Information and Computation,
2005. To appear.

7. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. Delayed The-
ory Combination vs. Nelson-Oppen for Satisfiability Modulo Theories: a Comparative
Analysis. Technical Report DIT-06-032, DIT, University of Trento, 2006. Available at
http://dit.unitn.it/˜rseba/papers/lpar06 dtc extended.pdf.

8. S. Cotton, E. Asarin, O. Maler, and P. Niebert. Some Progress in Satisfiability Checking for
Difference Logic. In Proc. FORMATS-FTRTFT 2004, 2004.

9. J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated Canonizer and Solver. In
Proc. CAV’01, volume 2102 of LNCS, pages 246–249, 2001.

10. H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T): Fast deci-
sion procedures. In Proc. CAV’04, volume 3114 of LNCS, pages 175–188. Springer, 2004.

11. G. Nelson and D.C. Oppen. Simplification by Cooperating Decision Procedures. ACM Trans.
on Programming Languages and Systems, 1(2):245–257, 1979.

12. R. Nieuwenhuis and A. Oliveras. Congruence Closure with Integer Offsets. In Proc. 10th
LPAR, number 2850 in LNAI, pages 77–89. Springer, 2003.

13. R.E. Shostak. Deciding Combinations of Theories. Journal of the ACM, 31:1–12, 1984.
14. L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict driven learning

in a boolean satisfiability solver. In Proc. ICCAD ’01. IEEE Press, 2001.
15. L. Zhang and S. Malik. The quest for efficient boolean satisfiability solvers. In Proc. CAV’02,

number 2404 in LNCS, pages 17–36. Springer, 2002.

15

