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Abstract. A dominant approach to Satisfiability Modulo Theories (SMT) relies
on the integration of a Conflict-Driven-Clause-Learning (CDCL) SAT solver and
of a decision procedure able to handle sets of atomic constraints in the underly-
ing theory T (T -solver). In pure SAT, however, Stochastic Local-Search (SLS)
procedures sometimes are competitive with CDCL SAT solvers on satisfiable in-
stances. Thus, it is a natural research question to wonder whether SLS can be
exploited successfully also inside SMT tools.
In this paper we investigate this issue. We first introduce a general procedure
for integrating a SLS solver of the WalkSAT family with a T -solver. Then we
present a group of techniques aimed at improving the synergy between these
two components. Finally we implement all these techniques into a novel SLS-
based SMT solver for the theory of linear arithmetic over the rationals, combining
UBCSAT/UBCSAT++ and MathSAT, and perform an empirical evaluation on
satisfiable instances. The results confirm the potential of the approach.

1 Introduction

Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of
a (typically quantifier-free) first-order formula with respect to some decidable theory
T . A dominant approach to SMT, called lazy approach, relies on the integration of a
Conflict-Driven Clause-Learning (CDCL) SAT solver and of a decision procedure able
to handle sets of atomic constraints in the underlying theory T (T -solver) (see, e.g.,
[13, 5]). In pure SAT, however, Stochastic Local-Search (SLS) procedures (see [11])
sometimes are competitive with or even outperform CDCL SAT solvers on satisfiable
instances, in particular when dealing with unstructured problems. Therefore, it is a nat-
ural research question to wonder whether SLS can be exploited successfully also inside
SMT tools. In this paper we start investigating this issue.

Remarkably, CDCL and SLS SAT solvers are very different in the way they perform
search. CDCL SAT solvers reason on partial truth assignments, which are updated in a
stack-based manner. Moreover, they intensively use techniques like boolean constraint-
propagation (BCP), conflict-directed backtracking (backjumping) and learning, which
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are heavily exploited in the lazy-SMT paradigm and allow for very-efficient SMT opti-
mization techniques like early pruning, theory-propagation, theory-driven backjumping
and learning (see [13, 5]). SLS SAT solvers, instead, reason on total truth assignments,
which are updated by swapping the phase of single literals according to some mixed
greedy/stochastic strategy. Moreover, they typically do not use BCP, backjumping and
learning. Therefore, the problem of an effective integration of a T -solver with a SLS
SAT solver is not a straightforward variant of the standard integration with a CDCL
solver in lazy SMT. Moreover, the standard SMT optimization techniques mentioned
above cannot be applied in a straightforward way.

In order to cope with these problems, we perform the following steps. First, in-
spired by the idea of “partially-invisible” SAT formulas, we present a novel and general
architecture for integrating a T -solver with a Boolean SLS solver based on the widely-
used WalkSAT algorithm, resulting in a basic SLS-based SMT solver, which we call
WALKSMT. Second, we analyze the differences between the interaction of a T -solver
with a CDCL-based and a SLS-based SAT solver, and we introduce and discuss a group
of optimization techniques aimed at improving the synergy between an SLS solver and
the T -solver. Third, we present an implementation of WALKSMT with the optimiza-
tion techniques above, which is based on the integration of the UBCSAT [17] and UBC-
SAT++ [6] SLS solvers with the LA(Q)-solver of MATHSAT [7]. Finally, we perform
an extensive experimental evaluation of our implementation. We consider satisfiable in-
dustrial problems coming from the SMT-LIB, and we evaluate the effects of the various
optimization techniques, also comparing them against MATHSAT. We observe that (i)
the basic “naive” version of WALKSMT was not able to solve any problem within a
600s timeout; (ii) the optimization techniques drastically improve the performances of
the basic version, allowing the optimized WALKSMT to solve 149/225 problems; (iii)
as a comparison, MATHSAT solved 208/225 problems. We also compare the optimized
WALKSMT and MATHSAT on randomly-generated unstructured problems, obtaining
small differences in performances.

The rest of the paper is organized as follows. In §2 we introduce the necessary
background on SLS and SMT. In §3 and §4 we describe respectively our basic algorithm
and the optimization techniques we have conceived for improving its performance. In
§5 we experimentally evaluate our approach. In §6 we conclude and highlight directions
for future work.

2 Background

2.1 Stochastic Local Search for SAT

Local search (LS) algorithms [11, 10] are widely used for solving hard combinatorial
search problems. The idea behind LS is to inspect the search space of a given problem
instance starting at some position and then iteratively moving from the current position
to a neighboring one where each move is determined by a decision based on information
about the local neighborhood. LS algorithms making use of randomized choices during
the search process are called Stochastic Local search (SLS) algorithms. SLS algorithms
have been successfully applied to the solution of many NP-complete decision problems,
including SAT. Notice, however, that SLS algorithms typically do not guarantee that



Algorithm 1 WalkSAT (ϕ)
Require: CNF formula ϕ, MAX TRIES, MAX FLIPS

1: for i = 1 to MAX TRIES do
2: µ← INITIALTRUTHASSIGNMENT(ϕ)
3: for j = 1 to MAX FLIPS do
4: if (µ |= ϕ) then
5: return SAT

6: else
7: c← CHOOSEUNSATISFIEDCLAUSE(ϕ)
8: µ← NEXTTRUTHASSIGNMENT(ϕ, c)
9: end if

10: end for
11: end for
12: return UNKNOWN

eventually an existing solution is found, so that they cannot verify the unsatisfiability of
a problem.

SLS algorithms for SAT typically work with a CNF input formula (namely ϕ) and
share a common high-level schema: (i) they initialize the search by generating an ini-
tial truth assignment (typically at random); (ii) they iteratively select one variable and
flip it within the current truth assignment. The search terminates when the current truth
assignment satisfies the formula ϕ or after MAX TRIES sequences of MAX FLIPS vari-
able flips without finding a model for ϕ. The main difference in SLS SAT algorithms is
typically given by the different strategies applied to select the variable to be flipped.

WalkSAT Algorithms. WalkSAT is a popular family of SLS-based SAT algorithms
[11, 10]. The schema of such algorithms is shown in Algorithm 1. Initially, a complete
truth assignment µ for the variables of the input problem ϕ is selected by INITIAL-
TRUTHASSIGNMENT according to some heuristic criterion (e.g., uniformly at random).
If this assignment satisfies the formula, then the algorithm terminates. Otherwise, a
variable is selected and flipped in µ using a two-stage process. In the first stage, a
currently-unsatisfied clause c is selected by CHOOSEUNSATISFIEDCLAUSE according
to some heuristic criterion (e.g., uniformly at random). In the second stage, one of the
variables occurring in the selected clause c is flipped by NEXTTRUTHASSIGNMENT
according to some mixed greedy/random heuristic criterion, so that to generate another
truth assignment. The procedure is repeated until either a solution is found, or the limit
for the number of tries is reached.

Over the last ten years, several variants of the basic WalkSAT algorithm have been
proposed [14, 12, 16], which differ mainly for the different heuristics used for the func-
tions described above —in particular on the degree of greediness and randomness and
in the criteria used for selecting the variable to flip in c within NEXTTRUTHASSIGN-
MENT. From our own empirical experience [15], the best performing WalkSAT-based
algorithm for SAT seems to be Adaptive Novelty+ [16]. It adopts the Novelty+’s vari-
able selection heuristic, and it adjusts its degree of greediness according to the search
progress. Novelty+ chooses the variable to be flipped from c depending on the score (i.e.



the difference in the total number of satisfied clauses a flip would cause) and the vari-
able’s age (i.e. the number of search steps performed since a variable was last flipped).
If the variable with the highest score does not have minimal age among the variables
in c, then it is selected. Otherwise, it is selected with a probability 1 − p, where p is a
parameter (called noise setting). While in the remaining cases p, the variable is picked
uniformly at random (random walk). Adaptive Novelty+ changes the probability of
making greedy choices by increasing the noise setting p only when it needs to escape
from situations in which there is no further progress in finding a solution (once the
stagnation situation is overcome, the noise setting is gradually decreased). We refer the
reader to [11] for a more detailed explanation.

Trimming Variable Selection and Literal Commitment Strategy. A few attempts
have been made in order to enhance SLS algorithms with techniques borrowed from
CDCL solvers (e.g. [6, 4]). In particular, Belov and Stachniak [6] propose two tech-
niques that exploit the search history to improve the variable selection process of the
classic SLS procedures for SAT. They modify the WalkSAT schema by adding a database
(DB) that represents a set of constraints that help to guide the search process. It consists
in (1) a set of clauses ψ obtained by storing selected unsatisfied-clauses (see line 7 of
Algorithm 1) and (2) a partial truth assignment η that records assignments made by the
local search heuristic. The goal of the trimming variable selection technique is to prune
the search by preventing the selection of variables whose flip will cause a conflict in
the database. In particular, for every variable v belonging to the selected clause c, the
procedure checks the satisfiability of ψ ∧ η′ by unit propagation, where η′ is obtained
from η by adding the (flipped) truth assignment of v. If it is unsatisfiable, the variable v
cannot be flipped. When all variables cause a conflict, the database is reset (i.e. η is set
to ∅) so that any variable can be chosen by the local search heuristic. Notice that, once
the truth value of a variable has been flipped, η is updated accordingly and the clause c
is added to the database.

The literal commitment strategy aims at exploiting the power of unit propagation in-
side SLS procedures that naturally work with total truth assignments rather than partial
ones. It iteratively deduces literals l in ψ deriving from η (i.e. ψ ∧ η |= l) and updates
the current total truth assignment µ accordingly during a single search step. We refer
the reader to [6] for a more detailed explanation.

2.2 Satisfiability Modulo Theory

Let T be a first-order theory. We call T -literal a ground atomic formula in T or its nega-
tion. We call a theory solver for T , T -solver, a tool able to decide the T -satisfiability
of a conjunction/set µ of T -literals. If µ is T -unsatisfiable, then T -solver returns UN-
SAT and the subset η of T -literals in µ which was found T -unsatisfiable; (η is here-
after called a T -conflict set, and ¬η a T -conflict clause.) if µ is T -satisfiable, then
T -solver returns SAT; it may also be able to return some unassigned T -literal l 6∈ µ3

s.t. {l1, ..., ln} |=T l, where {l1, ..., ln} ⊆ µ. We call this process T -deduction and

3 Taken from a set of all the available T -literals; when combined with a SAT solver, such set
would be the set of all the T -literals occurring in the input formula to solve.



(
∨n

i=1 ¬li ∨ l) a T -deduction clause. Notice that T -conflict and T -deduction clauses
are valid in T . We call them T -lemmas. Given a T -formula ϕ, the formula ϕp obtained
by rewriting each T -atom in ϕ into a fresh atomic proposition is the Boolean abstraction
of ϕ, and ϕ is the refinement of ϕp. Notationally, we indicate by ϕp and µp the Boolean
abstraction of ϕ and µ, and by ϕ and µ the refinements of ϕp and µp respectively. With
a little abuse of notation, we say that µp is T -(un)satisfiable iff µ is T -(un)satisfiable.

In a lazy SMT(T ) solver, the Boolean abstraction ϕp of the input formula ϕ is given
as input to a CDCL SAT solver, and whenever a satisfying assignment µp is found s.t.
µp |= ϕp, the corresponding set of T -literals µ is fed to the T -solver; if µ is found
T -consistent, then ϕ is T -consistent; otherwise, T -solver returns the T -conflict set η
causing the inconsistency, so that the clause ¬ηp (the Boolean abstraction of ¬η) is
used to drive the backjumping and learning mechanism of the SAT solver. Important
optimizations are early pruning and T -propagation: the T -solver is invoked also on an
intermediate assignment µ: if it is T -unsatisfiable, then the procedure can backtrack; if
not, and if the T -solver is able to perform a T -deduction {l1, ..., ln} |=T l, then l can be
unit-propagated, and the T -deduction clause (

∨n
i=1 ¬li∨ l) can be used in backjumping

and learning. The above schema is a coarse abstraction of the procedures underlying all
the state-of-the-art lazy SMT tools. The interested reader is pointed to, e.g., [13, 5] for
details and further references.

3 Stochastic Local Search for SMT

We start from a simple observation: in principle, from the perspective of a SAT solver,
an SMT problem instance ϕ can be seen as the problem of solving a partially-invisible
CNF SAT formula ϕp ∧ τp, s.t. the “visible” part ϕp is the Boolean abstraction of
ϕ and the “invisible” part τp is (the Boolean abstraction of) the set τ of all the T -
lemmas providing the obligations induced by the theory T on the T -atoms of ϕ. (See
the example in Fig 1.) Thus, every assignment µp s.t. µp |= ϕp is T -unsatisfiable iff µp

falsifies some non-empty set of clauses {cp1, ..., cpn} ⊆ τp. To this extent, a traditional
“lazy” SMT solver can be seen as a CDCL SAT solver which knows ϕp but not τp:
whenever a model µp for ϕp is found, it is passed to a T -solver which (behaves as if
it) knows τp, and hence checks if µp falsifies some clause cpi ∈ τp: if this is the case,
it returns one (or more) such clause(s) cpi , which is then used to drive the future search
and which is optionally added to ϕp.

3.1 A basic WalkSMT procedure

The above observation inspired to us a procedure integrating a T -solver into a SLS
algorithm of the WalkSAT family (WALKSMT hereafter). A high-level description of
the pseudo-code of WALKSMT is shown in Algorithm 2. (We present first a basic ver-
sion of WALKSMT, in which we temporarily ignore steps 1-3 and 12-13, which we
will describe in §4, together with other enhancements.) WALKSMT receives in input a
SMT(T ) CNF formula and applies a WalkSAT scheme to its Boolean abstraction ϕp.
INITIALTRUTHASSIGNMENT, CHOOSEUNSATISFIEDCLAUSE and NEXTTRUTHAS-
SIGNMENT are the functions described in §2.1. (Notice that their underlying heuristics
vary with the different variants of WalkSAT adopted.)



φ :
c1 : {A1}
c2 : {¬A1 ∨ (x− z > 4)}
c3 : {¬A3 ∨A1 ∨ (y ≥ 1)}
c4 : {¬A2 ∨ ¬(x− z > 4) ∨ ¬A1}
c5 : {(x− y ≤ 3) ∨ ¬A4 ∨A5}
c6 : {¬(y − z ≤ 1) ∨ (x+ y = 1) ∨ ¬A5}
c7 : {A3 ∨ ¬(x+ y = 0) ∨A2}
c8 : {¬A3 ∨ (z + y = 2)}

τ : (all possible T -lemmas on the T -atoms of φ)
c9 : {¬(x+ y = 0) ∨ ¬(x+ y = 1)}
c10 : {¬(x− z > 4) ∨ ¬(x− y ≤ 3) ∨ ¬(y − z ≤ 1)}
c11 : {(x− z > 4) ∨ (x− y ≤ 3) ∨ (y − z ≤ 1)}
c12 : {¬(x− z > 4) ∨ ¬(x+ y = 1) ∨ ¬(z + y = 2)}
c13 : {¬(x− z > 4) ∨ ¬(x+ y = 0) ∨ ¬(z + y = 2)}
... ...

φp :
c1 : {A1}
c2 : {¬A1 ∨B1}
c3 : {¬A3 ∨A1 ∨B2}
c4 : {¬A2 ∨ ¬B1 ∨ ¬A1}
c5 : {B3 ∨ ¬A4 ∨A5}
c6 : {¬B4 ∨B5 ∨ ¬A5}
c7 : {A3 ∨ ¬B6 ∨A2}
c8 : {¬A3 ∨B7}

τp :
c9 : {¬B6 ∨ ¬B5}
c10 : {¬B1 ∨ ¬B3 ∨ ¬B4}
c11 : {B1 ∨B3 ∨B4}
c12 : {¬B1 ∨ ¬B5 ∨ ¬B7}
c13 : {¬B1 ∨ ¬B6 ∨ ¬B7}
... ...

B1
def
= (x− z > 4), B2

def
= (y ≥ 1), B3

def
= (x− y ≤ 3), B4

def
= (y − z ≤ 1),

B5
def
= (x+ y = 1), B6

def
= (x+ y = 0), B7

def
= (z + y = 2).

ϕ :
c2 : {(x− z > 4)}
c5 : {(x− y ≤ 3) ∨ ¬A4 ∨A5}
c6 : {¬(y − z ≤ 1) ∨ (x+ y = 1) ∨ ¬A5}
c7 : {A3 ∨ ¬(x+ y = 0)}
c8 : {¬A3 ∨ (z + y = 2)}
c9 : {¬(x+ y = 0) ∨ ¬(x+ y = 1)}

ϕp :
c2 : {B1}
c5 : {B3 ∨ ¬A4 ∨A5}
c6 : {¬B4 ∨B5 ∨ ¬A5}
c7 : {A3 ∨ ¬B6}
c8 : {¬A3 ∨B7}
c9 : {¬B6 ∨ ¬B5}

µp
1 = {B1, A3,¬A4,¬A5,¬B6, B5, B3, B4, B7}

µ1 = {(x− z > 4),¬(x+ y = 0), (x+ y = 1), (x− y ≤ 3), (y − z ≤ 1), (z + y = 2)}

Fig. 1. Top: example of an SMT(LA(Q)) formula φ as a “partially-invisible” formula φp ∧ τp.
Middle: the formula ϕ [resp ϕp ] obtained from φ [resp φp ] after preprocessing (see §4).
Bottom: a truth assignment µp satisfying ϕp and violating c10, c12 in τp, and its refinement µ1.

Since we are temporarily ignoring steps 1-3 and 12-13, the only significant differ-
ence wrt. Algorithm 1 is in steps 7-14. Whenever a total model µp is found s.t. µp |= ϕp,
it is passed to T -solver. If (the set of T -literals corresponding to) µp is T -satisfiable
(i.e., µp |= ϕp ∧ τp) the procedures ends returning SAT. Otherwise, T -solver returns
CONFLICT and a T -lemma cp. Notice that this corresponds to say that µp 6|= ϕp ∧ τp,
and that cp is one of the (possibly-many) clauses in ϕp ∧ τp which are falsified by µp.
Thus, cp is used by NEXTTRUTHASSIGNMENT as “selected” unsatisfied clause to drive
the flipping of the variable. To this extent, T -solver plays also the role of CHOOSEUN-
SATISFIEDCLAUSE on ϕp∧τp when no unsatisfied clause is found in ϕp (to this extent,
see also “Multiple Learning” in §4).



Algorithm 2 WALKSMT (ϕ)
Require: SMT(T ) CNF formula ϕ, MAX TRIES, MAX FLIPS

1: if (T -PREPROCESS (ϕ) == CONFLICT) then
2: return UNSAT

3: end if
4: for i = 1 to MAX TRIES do
5: µp ← INITIALTRUTHASSIGNMENT (ϕp)
6: for j = 1 to MAX FLIPS do
7: if (µp |= ϕp) then
8: 〈status, cp〉 ← T -solver(ϕp, µp)
9: if (status == SAT) then

10: return SAT

11: end if
12: cp ← UNIT-SIMPLIFICATION(ϕp, cp)
13: ϕp ← ϕp ∧ cp

14: µp ← NEXTTRUTHASSIGNMENT (ϕp, cp)
15: else
16: cp ← CHOOSEUNSATISFIEDCLAUSE (ϕp)
17: µp ← NEXTTRUTHASSIGNMENT (ϕp, cp)
18: end if
19: end for
20: end for
21: return UNKNOWN

Example 1. Suppose WALKSMT is invoked on the formula ϕp in Fig. 1, generating
the total truth assignment µp

1 that satisfies ϕp. Then T -solver is invoked on µ1, which
is T -inconsistent due to the the literals {(x − z > 4), (x + y = 1), (z + y = 2)},
returning UNSAT and the conflict clause cp1 = {¬B1 ∨ ¬B5 ∨ ¬B7} (i.e. c12 in τp).
Then NEXTTRUTHASSIGNMENT will flip one of the literals B1, B5 or B7.

Remark: efficient T -solvers for local search. In CDCL-based SMT solvers, the inter-
action with T -solvers is stack-based: the truth assignment µ is incrementally extended
when performing unit propagation, T -propagation, and when picking an unassigned lit-
eral for branching, and it is partly undone upon backtracking, when the most-recently-
assigned literals are removed from it. Consequently, T -solvers designed for interaction
with a CDCL SAT solver are typically optimized for such stack-based invocation. In
particular, they are typically incremental —when they have to check the consistency of
a truth assignment µ′ that is an extension of a previously-checked µ, they don’t need
to restart the computation from scratch— and backtrackable —when backtracking oc-
curs, the most-recently-assigned literals that need to be unassigned can be efficiently
removed, and the internal state can be efficiently restored to a previous configuration
(see [13, 5]).

In local search, instead, a new assignment µ′ is obtained from the previous one µ
by flipping an arbitrary literal (according to some heuristics). In this setting, the con-
ventional backtrackability feature of T -solvers is of little use, since there is no notion
of most-recently-assigned literals to remove. Instead, it is very desirable to be able to



remove arbitrary literals from a T -solver without the need of resetting its internal state.
Such requirement might seem unrealistic, or at least difficult to fulfill. However, at least
two state-of-the-art T -solvers have this capability: the T -solver for DL of [8] and the
T -solver for LA(Q) of [9], which are therefore natural candidates for integration with
a SLS-based SAT solver. The MATHSAT solver implements both.

4 Enhancements to the basic WalkSMT procedure

The WALKSMT algorithm described above is very naive. Here we analyze the inter-
action of a T -solver with a SLS SAT solver, and we present a group of optimization
techniques aimed at improving the synergy of their interaction.

4.1 Preprocessing

Before entering the main WALKSMT routine, we apply a preprocessing step to the
input formula ϕ in order to make it simpler to solve (steps 1-3 in algorithm 19). This
preprocessing consists mainly of two techniques: Initial BCP and Static Learning.
Initial BCP. Often SMT formulas contain lots of “structural” atomic propositions whose
truth value is assigned deterministically (e.g., when the formula derives from a CNF-
ization step). Unlike a CDCL solver, an SLS one cannot handle them efficiently. Thus,
during preprocessing we first perform a run of BCP to the input formula, simplifying
the formula accordingly. In order to preserve correctness, we keep as unit clauses the T -
literals l1, .., ln which have been assigned to true by BCP. If during this process one of
the clauses of φp is falsified, or if the set of T -literals l1, .., ln above is T -inconsistent,
the algorithm can exit returning UNSAT. Otherwise, l1, .., ln are tagged “unflippable”,
so that the SLS engine initially assigns them to true and never flips their value.
Static Learning. During preprocessing we also conjoin to the formula ϕ/ϕp short and
“obvious” T -lemmas on the atoms occurring in ϕ, which can be generated without
explicitly invoking the T -solver. (Examples of such T -lemmas are mutual-exclusion
lemmas like c9 in Fig. 1. See also [13].) Thus the T -solver is invoked on an assignment
µ only if µp verifies also these T -lemmas (row 7 in Alg. 2). This prevents WALKSMT
from invoking T -solver on obviously-T -inconsistent assignments.

Example 2. Consider as input the formula φ of Fig. 1 (top). The preprocessing step
generates the formula ϕ of Fig. 1 (bottom). In fact, BCP unit-propagates the literals
A1, B1,¬A2, simplifying clause c7 and eliminating clauses c1, c3 and c4. Clause c2
survives as an unit clause because B1 is (the label of) a T -literal. Notice that the T -
atom B2

def
= (y ≥ 0) disappears from the formula because c3 is satisfied by the unit-

propagation of A1. The T -lemma c9 is then added to the simplified formula by static
learning.

4.2 Single and multiple learning

Learning. SLS SAT solvers typically do not implement learning. This is potentially a
major problem with SLS-based SMT, because the SLS solver may generate many total



assignments µp
1, ..., µ

p
k each containing the same T -inconsistent subset ηp, causing thus

k − 1 useless calls to T -solver. Thus, like in standard CDCL-based SMT solvers, we
conjoin to ϕp the T -lemma cp returned by the T -solver (step 13). Henceforth T -solver
is no more invoked on assignments violating cp.

Unit Resolution. Before learning a T -lemma c, we remove from it all the T -literals
whose negation occurs as unit clauses in the input problem (step 12). (Notice that after
this step cmay be no longer a T -lemma.) We do this in both static and dynamic learning.

Example 3. Consider the scenario of Example 1, assuming learning is implemented.
Because of the unit clause c2 of ϕp, we remove from the conflict clause cp1 the literal
¬B1, obtaining cp1

′ def
= {¬B5 ∨ ¬B7} (i.e., a unit-resolved version of c12 in τp.), which

we add to ϕp. Then NEXTTRUTHASSIGNMENT will flip one of the literals B5 or B7.
T -solver will never be invoked again on assignments containing both B5 and B7.

Multiple Learning. Unlike with CDCL-based SMT solvers, which typically use some
form of early pruning to check partial truth assignments for T -consistency, in an SLS-
based approach T -solvers operate always on complete truth assignments µ. In this set-
ting, it is likely that µ contains many different T -inconsistent subsets, often indepen-
dent from each another. This is the idea at the basis of our multiple learning technique,
which allows for learning more than one T -lemma for every T -inconsistent assignment.
When a conflict set η is found (and simplified via unit-resolution), a given percentage
p of its literals are randomly removed from µ, and T -solver is invoked again on the
resulting set. This process is repeated until no more conflict is found. We then learn all
the T -lemmas cp1, ..., c

p
k generated during the process. Also, if k > 1, then one clause

cp among cp1, ..., c
p
k is chosen by CHOOSEUNSATISFIEDCLAUSE to be fed to NEXT-

TRUTHASSIGNMENT.

Example 4. Consider the scenario of Example 1 and 3, assuming multiple learning is
implemented, with p = 100%. After learning the clause cp1

′, we drop B5, B7 from µp
1

and re-invoke T -solver on the set of T -literals µ2
def
= µ1 \ {(x+ y = 1), (z + y = 2)},

returning UNSAT and the conflict clause cp2
def
= {¬B1 ∨ ¬B3 ∨ ¬B4}, from which ¬B1

is removed by unit-resolution, so that also the clause cp2
′ def
= {¬B3 ∨ ¬B4} is learned

(a unit-resolved version of clause c10). After further removing B3 and B4 from µ2 the
set of T -literals is found T -consistent by T -solver, so that no further clause is learned.
Then cp1

′
, cp2

′ are fed to CHOOSEUNSATISFIEDCLAUSE which selects one and feed it to
NEXTTRUTHASSIGNMENT, which flips one literal among B5, B7, B3 and B4.

4.3 Literal filterings

Pure-literal Filtering. If some T -atoms occur only positively [resp. negatively] in the
original formula (learned clauses and statically-learned clauses are not considered), then
we can safely drop every negative [resp. positive] occurrence of them from the assign-
ment µ to be checked by the T -solver [13]. (Intuitively, since such occurrences play no
role in satisfying the formula, the resulting partial assignment µp′ still satisfies ϕp.) The
benefits of this action is twofold:



(i) reduces the workload for the T -solver by feeding it smaller sets;
(ii) increases the chance of finding a T -consistent satisfying assignment by removing

“useless” T -literals which may cause the T -inconsistency of µ.

Example 5. Consider the formula ϕp in Fig. 1 and the total truth assignment

µp
4 = {B1,¬A3,¬A4,¬A5,¬B6,¬B5, B3, B4,¬B7}

that satisfies ϕp, but is T -inconsistent because of its subset {B1, B3, B4} (clause c10
in τp). Without pure-literal filtering, T -solver detects the inconsistency, WALKSMT
learns the clause and looks for another assignment. If pure-literal filtering is imple-
mented, instead, since the T -literals ¬B5, B4 and ¬B7 occur only negatively in the
original formula φ, they are filtered out from µp

4, resulting in the partial assignment

ηp4 = {B1,¬A3,¬A4,¬A5,¬B6, B3},

which still satisfies ϕp. T -solver is invoked on the corresponding set of T -literals:

η4 = {(x− z > 4),¬(x+ y = 0), (x− y ≤ 3)}.

which is T -consistent, from which we can conclude that ϕ (and φ) is T -consistent.

Ghost-literal Filtering. We further enforce the benefits of pure-literal filtering as fol-
lows. When a truth assignment µ is found s.t. µp |= ϕp, before invoking T -solver on µ,
we check whether any T -atom occurring only positively [resp. negatively] in the origi-
nal formula and being assigned true [resp. false] in µ can be flipped without falsifying
any clause. (This test can be performed very efficiently inside an SLS solver.) If this
is the case, then the atom is flipped. This step is repeated until no more such atoms
are found, after which the resulting set µ is passed to T -solver. This allows for further
removing useless T -literals from µ by pure-literal filtering. (Since such literals are a
particular case of “ghost literals” [13], we call this enhancement ghost-literal filtering.)

Example 6. Consider the formula ϕp in Fig. 1 and the total truth assignment

µp
5 = {B1, A3,¬A4,¬A5,¬B6,¬B5, B3,¬B4, B7}

that satisfies ϕp. If we apply pure-literal filtering on µp
5, then we can filter out only the

literal ¬B5 before invoking T -solver. By ghost-literal filtering, the literalsB3, ¬B4 and
¬B6 are flipped without falsifying ϕp, resulting in the total truth assignment:

µp
5
′
= {B1, A3,¬A4,¬A5, B6,¬B5,¬B3, B4, B7}.

Now, by pure-literal filtering, we remove from µp
5
′ the literals B3, ¬B4, ¬B5 and ¬B6.

5 Experimental Evaluation

We have implemented two versions of the WALKSMT procedure described above to
work for the LA(Q) theory. The implementation is done on top of MATHSAT4 [7],



using part of its preprocessor its LA(Q)-solver [9] and lots of its features. We have
implemented two versions, each using one between two SLS-based SAT solvers: UBC-
SAT 4 [17] and UBCSAT++ 5 [6]. UBCSAT is a SLS platform providing a very-wide
range of SLS algorithms for SAT (including the WalkSAT family), with a very flexible
architecding the WalkSAT family), with a very flexible architecture. Among the various
SLS procedures provided by UBCSAT, we have chosen to use the Adaptive Novelty+

variant of the WalkSAT family because it was the best-performing in a previous exten-
sive empirical evaluation [15]. UBCSAT++ is built on top of UBCSAT and extends its
implementation of Adaptive Novelty+ with the Trimming Variable Selection and Lit-
eral Commitment Strategy techniques described in §2.1. We partition the enhancements
of WALKSMT of §4 into three groups:

– Preprocessing and Learning (PL), including preprocessing (Initial BCP and Static
Learning), Learning and Unit Resolution;

– Multiple Learning (ML);
– Filtering (FI), including both Pure-Literal and Ghost-Literal filterings.

Notationally, we use a “+” [resp. “–”] symbol to denote that an option is enabled
[resp. disabled]: e.g., “UBCSAT++ BASIC+PL-ML+FI” denotes WALKSMT based
on UBCSAT++ with PL and FI enabled and ML disabled. (Notice that ML requires PL,
so that we cannot have “...-PL+ML...” configurations.)

In this section, we evaluate the performance of WALKSMT by comparing its two
versions (those based on UBCSAT and UBCSAT++ respectively) against the CDCL-
based SMT solver MATHSAT4. We ran MATHSAT4 with all the optimizations enabled
(the most important ones are early pruning and T -propagation). 6 We performed our
comparison over two distinct sets of instances, which are described in the next two sec-
tions: the first consists of the set of all satisfiable LA(Q) formulas in the SMT-LIB 1.2
(www.smtlib.org), whereas the second is composed of randomly-generated prob-
lems. All tests were executed on 2.66 GHz Xeon machines running Linux, using a
timeout of 600 seconds. The correctness of the models found by WALKSMT have been
cross-checked by MATHSAT4. In order to make the experiments reproducible, the full-
size plots, the tools, the problems, and the results are available at [1].

5.1 WALKSMT on SMT-LIB Instances

In the first part of our experiments, we compare WALKSMT against MATHSAT on all
the satisfiable LA(Q)-formulas (QF LRA) in the SMT-LIB 1.2. These instances are all
classified as “industrial”, because they come from the encoding of different real-world
problems in formal verification, planning and optimization, and they are divided into

4 UBCSAT is publicly available at http://www.satlib.org/ubcsat/.
5 UBCSAT++ was kindly provided to us by the developers, Belov and Stachniak.
6 Although more efficient SMT (LA(Q)) solvers exist, including the recent MATHSAT5, here

the choice of MATHSAT4 is aimed at minimizing the differences in performance due to the
implementation, because WALKSMT is implemented on top of MATHSAT4 (in particular
it uses its preprocessor and T -solver for LA(Q)), so that to better highlight the differences
between SLS- and CDCL-based approaches.



Solver
SMT-LIB Instances

Total
sc uart sal TM tta miplib

Total # of Instances 108 36 11 24 24 22 225
WalkSMT UBCSAT Basic–PL–ML–FI 0 0 0 0 0 0 0
WalkSMT UBCSAT++ Basic–PL–ML–FI 0 0 0 0 0 1 1
WalkSMT UBCSAT Basic+PL–ML–FI 59 10 6 13 5 3 96
WalkSMT UBCSAT++ Basic+PL–ML–FI 46 6 7 17 10 1 87
WalkSMT UBCSAT Basic+PL+ML–FI 103 15 6 12 6 3 145
WalkSMT UBCSAT++ Basic+PL+ML–FI 61 6 7 15 9 1 99
WalkSMT UBCSAT Basic+PL–ML+FI 59 32 10 14 9 3 127
WalkSMT UBCSAT++ Basic+PL–ML+FI 62 12 8 18 10 1 111
WalkSMT UBCSAT Basic+PL+ML+FI 78 35 10 14 9 3 149
WalkSMT UBCSAT++ Basic+PL+ML+FI 63 14 8 19 10 2 116
MATHSAT4 108 36 11 21 24 8 208

Table 1. Comparison of the number of instances solved within the 600s timeout by the various
configurations of WALKSMT and MATHSAT4. Notice that instances solved by the different
solvers might not be the same.
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Fig. 2. Cumulative plots of WALKSMT and MATHSAT4 on all SMT-LIB instances.

six categories: sc, uart, sal, TM, tta startup (“tta” hereafter), and miplib. 7

The results of the experiments are reported in Figures 2, 3, 4, 5 and in Table 1. Figure 2
shows the cumulative plots of the execution time for the different configurations of
WALKSMT and MATHSAT4 on SMT-LIB instances. (The plots for BASIC-PL-ML-
FI are not reported since no formula was solved within the timeout.) Figure 3 compares
the best configurations of WALKSMT (BASIC+PL+ML+FI) with UBCSAT (left) and
with UBCSAT++ (right) against MATHSAT4 on all instances. Figure 4 shows the rela-

7 Notice that other SMT-LIB categories like spider benchmarks and clock synchro
do not contain satisfiable instances and are thus not reported here.
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Fig. 3. Comparison of the best configurations of WALKSMT (BASIC+PL+ML+FI) against
MATHSAT4 on SMT-LIB instances. Left: with UBCSAT; Center: with UBCSAT++; Right: with
UBCSAT++, considering only miplib and TM benchmarks.
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Fig. 4. Pairwise comparison between different configurations of WALKSMT with UBCSAT on
SMT-LIB instances, adding increasingly PL, ML and FI to basic WALKSMT.
Left: BASIC-PL-ML-FI vs. BASIC+PL-ML-FI (benefits of adding PL to Basic);
Center: BASIC+PL-ML-FI vs. BASIC+PL+ML-FI (benefits of further adding ML);
Right: BASIC+PL+ML-FI vs. BASIC+PL+ML+FI (benefits of further adding FI).
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tive effects of the different optimizations for WALKSMT with UBCSAT. Figure 5 com-
pares WALKSMT UBCSAT against WALKSMT UBCSAT++ on BASIC+PL+ML+FI
versions. The results suggest a list of considerations.

First, the optimizations described in §4 lead to dramatic improvements in perfor-
mance, sometimes by orders of magnitude. Without them, WALKSMT times out on all
instances. (See Table 1 and Figures 2 and 4.):

– PL is crucial for performance, since with PL disabled almost no problem is solved
within the timeout. In particular, from our data we see that a key role is played by
learning. (Which perhaps is not surprising from an SMT perspective, but we believe
may be of interest from an SLS perspective.)

– ML produces significant improvements overall, except for a few cases where it may
worsen performances (e.g., with miplib).

– FI produces strong improvements in performance in all problem categories, (appar-
ently with the exception of the sc benchmarks).

Second, globally WALKSMT seems to perform better with UBCSAT than with
UBCSAT++, with some exceptions (TM, tta). From Figure 5, considering the prob-
lems solved by both configurations, we see that the total number of flips performed by
UBCSAT++ is dramatically smaller than that performed by UBCSAT, but the average
cost of each flip is dramatically higher.

Third, globally MATHSAT4 performs much better than WALKSMT, often by or-
ders of magnitude. This mirrors the typical performance gap between CDCL and SLS
SAT solvers on industrial benchmarks.

5.2 WALKSMT on Random Instances

Unlike with SAT, in SMT there is very-limited tradition in testing on random prob-
lems (e.g., [2, 3]). However, for a matter of scientific curiosity and/or to leverage to
SMT a popular test for SLS SAT procedures, here we present also a brief comparison
of WALKSMT vs. MATHSAT4 on randomly-generated, unstructured 3-CNF LA(Q)-
formulas. Each 3-CNF formula is randomly generated according to three integer pa-
rameters 〈m,n, a〉 as follows. First, a distinct T -atoms ψ1, ..., ψa are created, s.t. each
atomψj is in the form (

∑4
i=1 cjixji ≤ cj), it is generated by randomly picking four dis-

tinct variables xji out of n variables {x1, ..., xn}, and five integer values cj1, ..., cj4, cj
in the interval [−100, 100]. Then, m 3-CNF clauses are randomly generated, each by
randomly picking 3 distinct T -atoms in {ψ1, ..., ψa}, negating each with probability
0.5.

Figure 6 shows the run times of several versions of WALKSMT and MATHSAT4
on the generated formulas, for n = 20. Each graph shows curves for WALKSMT (in
particular, UBCSAT and UBCSAT++ with the best configuration BASIC+PL+ML+FI)
and MATHSAT4 on a group of instances with a fixed number a of T -atoms, for a =
30, 40, 50, 60. The plots represent the execution time versus the ratio r = m/a of
clauses/T -atoms. Each point in the graphs corresponds to the median run-time of each
algorithm on 100 different instances of the same size. (For WALKSMT, each value is
itself a median value of 3 runs with different seeds.) The plots show also the satisfia-
bility percentage of each group of instances, defined as the ratio between the satisfiable
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Fig. 6. Comparison of different configurations of WALKSMT and MATHSAT4 on randomly-
generated instances with 20 theory variables and atoms a = 30, 40, 50, 60.

instances generated and the total number of instances generated, for each value of r.
E.g., in the plot in the first column of the first row of Figure 6 the percentage 0.01% for
r = 6 means that we had to generate and test 10514 formulas (using MATHSAT4 with
a timeout of 600 seconds) in order to obtain 100 satisfiable instances.

The results show that, unlike with SMT-LIB formulas, on randomly-generated in-
stances there is a very small difference between the performance of UBCSAT BA-
SIC+PL+ML+FI, UBCSAT++ BASIC+PL+ML+FI and MATHSAT4.

6 Conclusions and future work

In this paper we have investigated the possibility of using an SLS SAT solver instead
of a conventional CDCL-based one as propositional engine for a lazy SMT solver. We
have presented and discussed several optimizations to the basic architecture proposed,
which allowed WALKSMT to solve a significant amount of industrial SMT problems,
although it is still much less efficient that the corresponding CDCL-based SMT solver.
We believe that the latter fact is not surprising, since optimization techniques for CDCL-
based SMT solvers have been investigated and optimized for the last ten years, whilst
to the best of our knowledge this is the first attempt of building a SLS-based one.

This research opens the possibility for several interesting future directions. The first
obvious option is to port the implementation to the more-efficient MATHSAT5 and to



extend the present work to cover other theories typically used in SMT. We would like to
concentrate in particular on “hard” theories such as LA(Z). Second, we plan to investi-
gate the use of SLS techniques for solving/approximating optimization problems, such
as Max-SMT. Third, we will explore the possibility of tightening the synergy between
the SLS SAT solver and T -solvers, for instance by better exploiting information that
can be provided by T -solvers when deciding which variables to flip, or by considering
architectures in which the search is more driven by the theory part of the formula rather
than by the SAT engine. Finally, we plan to work on the integration/combination be-
tween SLS-based and CDCL-based SMT solvers, both using a portfolio-like approach
and investigating more tightly-coupled solutions.
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