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Abstract—Microcode is a critical component in modern micro-
processors, and substantial effort has been devoted in the past to
verify its correctness. A prominent approach, based on symbolic
execution, traditionally relies on the use of boolean SAT solvers
as a backend engine. In this paper, we investigate the application
of Satisfiability Modulo Theories (SMT) to the problem of
microcode verification. We integrate MathSAT, an SMT solver
for the theory of Bit Vectors, within the flow of microcode
verification, and experimentally evaluate the effectiveness of some
optimizations. The results demonstrate the potential of SMT
technologies over pure boolean SAT.

I. INTRODUCTION

A modern Intel CPU may have over 700 instructions in the
Instruction Set Architecture (ISA), some of them for backward
compatibility with the very first x86 processors. Although
the processor itself is a Complex Instruction Set Computer
(CISC), the microarchitecture (basically the implementation
of the ISA) is what can be likened to a Reduced Instruc-
tion Set Computer (RISC). The instructions in the ISA are
translated into a smaller set of simpler instructions called
microinstructions or micro-operations. Most instructions in
Intel processors correspond to a single microinstruction, while
larger programs are stored in a microcode program memory
called the Microcode ROM. Some of these programs may be
surprisingly large, such as string move in the Pentium 4 which
was reported in [15] to use thousands of microinstructions.

Verification of these programs is a critical, but time-
consuming process. To aid in the verification effort, a tool
suite called MicroFormal has been developed at Intel starting
in 2003 and under intensive research (in collaboration with
academic partners) and development since. This system is used
for several purposes:

« Generation of execution paths. These execution paths are
used in traditional testing to ensure full path coverage,
and to generate test cases which execute these paths,
described in [2], [3].

o Assertion-based verification. Microcode developers an-
notate their programs with assertions, and these can be
verified to hold using MicroFormal.

o Verification of backwards compatibility, described in
[1]. When new generation CPUs are developed, they
should be backwards compatible with older generations,
although they may include more features.

At the heart of this set of tools is a system for symbolic ex-

ecution (often called also symbolic simulation) of microcode,
which is the part of the tool suite on which we will concentrate.
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The symbolic execution engine explores the paths of the
microcode, generating proof obligations, that have to be
solved by a satisfiability engine. Such proof obligations can
be thought of as constraints over bit-vectors. Traditionally,
they are transformed into boolean satisfiability problems, and
analyzed by means of boolean SAT solvers [7]. Although SAT
technology is very efficient and has been highly specialized to
the context of application, the time spent in the satisfiability
engine is a very significant fraction of the total time devoted
to symbolic execution.

In this work, we tackle this problem by presenting an
alternative approach, based on the use of Satisfiability Modulo
Theory (SMT) techniques [6] to replace boolean SAT. Modern
approaches to SMT can be thought of leveraging the structure
of the problem, by reasoning at a higher level of abstraction
than SAT: efficient SAT reasoning is used to deal with the
boolean component, and it is complemented by specialized
rewriting and constraint solving to deal with more complex
information at the level of bit-vectors.

The work presented in this paper (and described in greater
detail in [12]) is based on the MathSAT SMT solver [9],
that was the winner of the 2009 SMT competition on the
bit-vector (BV) category, and was still unbeaten in 2010
edition. MathSAT was first integrated within the MicroFormal
platform, and then customized to deal with the specific proof
obligations arising from symbolic simulation of microcode.
In particular, tailored solutions were adopted to deal with
the satisfiability of sequences of formulae, and of sets of
formulae. The approach was evaluated on a selected set of
realistic microcode programs. MathSAT was able to provide
substantial leverage over in-house SAT techniques on single
problems; combined with the solutions described in this paper,
we were able to significantly reduce the total execution time.
As a consequence, a modified version of MathSAT was put in
the production version of MicroFormal. Substantial speed-ups
are reported on a wide class of real-world problems.

The rest of this paper is structured as follows. In § II
we present an overview of the MicroFormal framework. In
§ III we describe the nature of the proof obligations resulting
from MicroFormal, and in § III-A and III-B we discuss
tailored techniques to deal with them. In § IV we present the
experimental evaluation. In § V we discuss related work. In
§ VI we draw some conclusions and outline directions for
future work.



II. BACKGROUND
A. Intermediate Representation Language

To simplify the process, the symbolic execution engine does
not work directly with microcode. Instead it works with an
intermediate representation called Intermediate Representation
Language, or IRL. This is a simple formal language with all
features necessary to model microcode programs. Microcode
programs are translated into IRL by a set of IRL templates,
which define the translation from microcode instructions into
a corresponding sequence of IRL instructions. This makes
adapting the tool suite to a new microarchitecture simpler,
since all that needs to be written is a new set of templates
describing how instructions are translated into IRL. Another
benefit of using IRL is that it is possible to handle other
types of low-level software. Although the precise details of
the language used in MicroFormal are not public, its main
features have been presented in [1].

The correctness of the translation from actual microcode
programs into IRL is crucial, but outside the scope of this high-
level description of MicroFormal. We will also make many
simplifications and skip over details that are not immediately
relevant for the work presented.

B. Symbolic execution of microcode

The MicroFormal symbolic execution engine is used to
compute a set of paths through a program, where a path is
a sequence of locations that the program can follow from
start to finish. A path through the program for which there
exists an assignment to input registers such that the execution
follows that path is called feasible. A partial path is a path
from the start to some non-exit location within the program.
The problem solved by the symbolic execution engine is to
find all paths from the starting location to one of the exit
locations. Symbolic execution [18] is a form of execution
where all input (or initial values of variables) are symbolic.
Consider the following simple example, which swaps values
in two bit-vector variables

X, Y BitVector([64];
l: x 1= x + vy;

2: Yy 1= X — y;

3: x 1= x - y;

4. exit;

To execute this program symbolically, we start by giving the
symbolic values xg, yo to the variables x and y. For the first
assignment x := x + y we create a new symbolic value
z1 and compute how it relates to the symbolic values of the
variables in the right hand side of the assignment x1=x + ¥
and so on for all instructions in the program, accumulating the
equations that define the symbolic values we have created.

l: x (= x + vy l'lﬁxo-l-yo

2: y 1= x -y x1=Zo+ Yo, Y1=T1 — Yo

3: x 1= x -y T1=%0+ Yo, Y1=T1 — Yo, T2=T1 — Y1
4: exit T1=%0 + Yo, Y1=T1 — Yo, T2a=T1 — Y1
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Fig. 1. Overview of the MicroFormal symbolic execution engine

By expanding the final definitionswe can see that the final
values of the variables (z’, ') depend on the initial given by
the equations =’ = (2o + o) — o and y' = (2o + Yo) — Yo
which can be simplified to 2’ = 1y and 3’ = z( respectively.

Apart from the current symbolic values for all variables in
the program, during symbolic execution we also keep track of
a path condition and the program location. The path condition
is the conjunction of the conditions on the conditional branches
along the current execution path, expressed in terms of the
initial symbolic values. A more detailed description of how
this may be performed is presented in [17].

An execution starts by executing the basic block (a non-
branching sequence of instructions) starting at the beginning
of the program to the first branch instruction. This partial
path is marked as open. Then as long as there exists an
open partial path m, all feasible branch targets continuing
this path are computed by generating a sequence of path
feasibility conditions which are sent to a decision procedure.
A path feasibility condition is the path condition which would
result when branching into a given branch target. If this path
condition is satisfiable, the target is feasible in the sense that
there exists some input that would execute down the current
path and branch to that target. For every feasible branch
target, MicroFormal extends 7 with the basic block starting
at that location into a new path 7’. If 7’ reaches a terminating
instruction, this path is stored in the path database. Otherwise
it is marked as an open path and the execution continues. An
overview of the symbolic execution engine in MicroFormal
can be seen in figure 1.

A path feasibility condition for a partial path 7 is a formula
which describes the possible branch targets symbolically in
terms of the input variables combined with some query on
the target, and which is used to determine the possible values
for the branch target. The details on the formulation of path
feasibility conditions are outside the scope of this paper, here
we will focus on the decision procedure used to solve these
and other decision problems generated by MicroFormal.

From the point of view of the decision procedure, the
symbolic execution engine feeds it a sequence of formulae,



and the result returned for one formula affects the future paths
taken by the symbolic execution engine, and therefore also
which formulae it receives in the future.

C. Improvements to the basic symbolic execution algorithm

To improve performance of the symbolic execution, several
techniques are used as described in [3]; here we will briefly
present three of them. One problem is the sheer size of the
formulae sent to the decision procedure. In order to reduce
the size of formulae, MicroFormal merges sets of partial
paths ending up in the same location into a single path by
introducing extra variables and conditional assignments. The
details are explained in [3], but for our purposes the relevant
effect is that it removes open partial paths which have so
far been generated, and replaces them with a new merged
path which is equivalent to but syntactically different from the
previous paths. Two other techniques that are used are based
on caching and SSAT, briefly described below.

Caching of solver results: The result of each solver call is
stored in a cache shown in figure 1. This cache stores for every
formula solved whether it is satisfiable or not, as well as the
model for satisfiable formulae. If a formula o has been shown
previously to be satisfiable, then any future formula o V (3
can be determined to be satisfiable without calling a solver.
In the same way, if o has been shown to be unsatisfiable,
any future occurrence of it as a subformula in future formulae
can be replaced with L as a simplification step. In case this
fails, it is possible to take a model stored in the cache and
evaluate the current formula with it. In case it evaluates to
true, there is no need to call the solver. It may also happen
that the evaluation results in a new smaller formula due to
some variable occurring in the formula which did not occur
in the model. In this case it is possible to send this simplified
formula to the solver: if it is satisfiable, then it is possible
to extend the old model into a model for the current formula.
The motivations for caching models is that if a path feasibility
check for some partial path shows it to be feasible, then there
exists an extension to this path. Therefore the model for this
path feasibility check should be useful in the future.

SSAT: In most cases, the symbolic execution engine
generates a single formula which must be solved before exe-
cution can continue, because the satisfiability of this formula
determines how the execution should proceed. But in some
cases, it is possible to generate more than one formula, which
it can predict must be solved regardless of their satisfiability.
One technique used to improve performance of solving in
these cases is to apply Simultaneous SAT (SSAT) introduced
by Khasidashvili et al. [16]. This technique is a modification of
the standard DPLL algorithm which allows the user to solve
multiple proof objectives for a single formula in CNF. The
solver will solve all proof objectives and for each of them
return their satisfiability and a model in cases of satisfiable
proof objectives. The motivation behind this technique is
twofold; First a single model may satisfy more than one proof
objective, and second information learnt while solving one
proof objective may be helpful in solving the others. Both of

these assume that the proof objectives are closely related to
each other, which is the case in this application.

III. SMT(BV) FOR SYMBOLIC EXECUTION

The primary objective of this wok is the reduction of
time spent in satisfiability checking of the proof obligations
generated during symbolic execution. The problem has been
tackled along two directions: (i) improve execution time for
each call to the decision procedure, and (ii) identify a more
efficient use of the decision procedure. (In the following,
it suffices to see MicroFormal as a generator of bit-vector
formulae to be solved.)

Direction (i) was pursued by replacing the backend engine
used in MicroFormal, called Prover, with the MathSAT SMT
solver. Prover is composed of an encoder from bit-vector
formulae to boolean formulae (through a process of bit-
blasting), pipelined to a customized (and extremely efficient)
SAT solver working on a boolean formulae in CNF. MathSAT,
on the other hand, can be seen as working at a higher level of
abstraction, and leveraging structural information at the level
of bit vectors to perform simplifications and rewritings. For
example, reasoning at BV level allows simplification based on
the theory of equality. This step, though conceptually simple,
allows exploiting recent progress made in dealing with the
theory of bit vectors in the field of SMT [8], [10]. We refer the
reader to [12] for a detailed description of how MathSAT deals
with BV. Notice that MathSAT won the 2009 SMT competition
on the BV category, see http://www.smtcomp.org/2009/.

In order to identify more effective ways to use the decision
procedure (ii), we consider that MicroFormal presents to
the solver a sequence ®;,P,,..., Py, where each P, is a
nonempty set of formulae. The sequence of formulae is not
known a priori, meaning that the set ®;_; is not known until all
formulae in the set ®; have been solved. Since all formulae in
the sequence derive from the symbolic execution of the same
microcode program, they will share the same set of variables.

The sets of formulae in the sequence have typically a
very distinct nature: the vast majority are singleton sets,
containing a single formula; the remaining few, non-singleton
sets, however, can contain large numbers of formulae, in some
cases even thousands. Thus, we concentrated on two specific
way to use the decision procedure, i.e. how to efficiently solve

« sequences of single formulae,
o large sets of formulae.

A. Solving sequences of single formulae

In MicroFormal, most sets in a sequence contain a single
formula, and we need to solve this one formula to advance the
search. Each formula is usually very similar to the previous
one. This can be seen by measuring similarity for a number of
medium to large sequences. Seeing each formula as a Directed
Acyclic Graph (DAG) using perfect sharing, we can compare
the similarity of a pair of formulae by measuring the number of
nodes in the DAG for one which do not occur in the DAG for
the other. Formally, given two formulae ¢ and ¢, we compute
the ratio of terms occurring in ¢ which do not occur in % to



Algorithm 1: Solve reusing information

Algorithm 2: MSPSAT

Inpu':: (bl? ¢2) tey (bN
Input: Reset interval &
¢ —T;

for i € [1, N] do

if ¢ mod k = 0 then

o=

end

p; < fresh proposition;

¢ — N (pi = di);

solve ¢ under the assumptions {p; };
end

the total number of terms in ¢, and vice versa. The minimal
of the two ratios denotes the similarity.

Consecutive formulae appear to be highly similar, with
a median similarity of 78%, 95% and 99%, respectively in
the sequences of three typical programs (see § IV-A), and
this is something we would wish to take advantage of. The
cases with very small similarity between formulae are almost
always combined with at least one of the two formulae being
very small. The approach we have taken is to reuse learnt
information from the solving of one formula to help solving
the next.

Modern SAT solvers are often quite good at handling
irrelevant information, since the heuristics they use often
manage to focus on the relevant parts of a formula, ignoring
the rest. MathSAT inherits these features from its underlying
SAT solver. We will take advantage of this fact by retaining all
information stored in the solver from one formula to the next.
We will also take advantage of the fact that MathSAT imple-
ments incremental solving under assumptions [11]. The basic
approach is shown in algorithm 1. When solving a sequence
of individual formulae ¢1, ¢, ..., the basic algorithm is to
first create one fresh predicate p;, add the formula p; = ¢,
and solve under the assumption of p; to discover if ¢; is
satisfiable; then, we create another fresh predicate ps and add
P2 = ¢o to the solver and solve under the assumption of po.
In the second iteration, the complete formula in the solver will
be (p1 = ¢1) A (p2 = ¢2) and all learnt information from the
solving of ¢, is still available when solving ¢s.

Although the solver might be good at ignoring irrelevant
information, eventually as the amount of irrelevant clauses
grow these will have a negative impact on performance, and
of course also on memory usage. Therefore it is important to
at some point remove this information. The simplest possible
approach would be to just throw away all information irrele-
vant or not, and then solve the next formula as if it is the first
one encountered. The advantages of this is that it is very easy
to implement and to use. The disadvantage are that we also
throw away potentially useful information.

The main question with this approach of dealing with the
accumulation of irrelevant information is, when to reset the
solver? Several solutions suggest themselves:

IHPUt: ¢1) ¢23 R ¢N
P —{p1,...,on}; /I p; fresh predicates
N
¢ — /\i=1(pi = ¢i);
Sat + (; Unsat — (;
while P # () do
p; <+ some element in P;
if ¢ under the ass. {p;} satisfiable with model p then
Sat — Sat U{¢; | u|=p;i};

else
Unsat <+ Unsat U ¢;;
end
P — P\ {p; | ¢; € (Sat U Unsat)};
end

return Sat, Unsat

o Use fixed reset frequency. Reset every k formulae.

o Reset based on subformula reuse. Measure how much the
next formula is already known to the solver, how much of
it is not previously known, and how much of the solver
information is irrelevant.

o Use an adaptive strategy. Measure solver performance,
and try to predict when degradation starts to occur. Reset
before it becomes detrimental.

¢ Delete only irrelevant information from the solver, and
keep the rest. This sounds like the best solution, but
computing which information is irrelevant is not a simple
problem. Just because it is not relevant for the current
formula does not mean it will not become relevant again
in the future.

Even in the cases where no learnt information is explicitly
removed, the underlying solver is free to remove learnt clauses,
as any standard SAT solver does. This can be more or less
aggressive, and works regardless of how the solver is used.
However, these techniques will not work on the original
clauses generated from encoding of the formulae given to
the solver, only the learnt clauses. In this application an
aggressive heuristic for clause removal may be interesting,
such as suggested in [4] and used in the glucose SAT solver.

B. Solving sets of formulae

In the cases where the current set of formulas contain more
than one formula, we should try to take advantage of this in
order to improve performance. For three medium-sized to large
microcode programs (see § IV-A) the simulator generates sets
of formulae with 93 non-singleton sets with between 100 and
1000 instances, and 11 sets with over 1000 instances.

To take advantage of this fact, we would like to make the
solver aware of all formulae beforehand. In this way we may
be able to satisfy more than one formula at a time, and also
reuse learnt information to discover that several formulae in
the set are unsatisfiable. One way of achieving this is shown in
a simple algorithm 2 we will call Multiple Similar Properties
SAT (MSPSAT). Here we create one fresh predicate (boolean



variable) p; for each formula ¢; and give the solver the formula
A\ pi = o

To solve ¢;, we solve under the assumption p;. Should it be
satisfiable under this assumption, we can easily check which
of the other formulae are also satisfied by the same model
by checking the truth assignment for the other fresh variables.
The algorithm iteratively picks one unsolved formula as a goal
and solves under the assumption of the corresponding fresh
variable. If it is satisfiable we check if any other unsolved
formulae are satisfied by the same model, and discharge all
satisfiable formulae.

IV. EXPERIMENTAL EVALUATION
A. Benefits of incremental and simultaneous solving

We now turn to an experimental evaluation of the techniques
proposed in this paper. Except where explicitly noted, all
experiments were carried out on a machine with dual Intel
Xeon E5430 CPUs running at 2.66 GHz using 32 GB of RAM
running Linux.

The initial experiments are run on instances coming from
three nontrivial microcode programs. For these three, Micro-
Formal was instrumented to dump all instances to files in
SMT-LIB format, and produce a log describing how these
instances were created. In this paper the programs will be
called “program 17, “program 2” and “program 3”. Table I
gives the number of formulae generated in each of these three
MicroFormal runs. A test bench has been created which can
replay the solver calls in these three runs of MicroFormal,
which makes it easy to experiment with different strategies
and instrument the system to extract interesting information.
In order to emulate the behaviour of MicroFormal, when
solving a formula it is first loaded into memory in a separate
data structure to avoid measuring the time taking for parsing
formulae. From this data structure the MathSAT API is called
creating and solving formulae simulating the in-memory usage
in MicroFormal as closely as possible without actually running
MicroFormal.

Apart from the techniques described in this paper, these
experiments were performed with MathSAT set up to simply
bit-blast and solve the formula using a SAT solver. Since
the vast majority of formulas generated by MicroFormal are
trivial, this seems to deliver good performance, and this setup
should also mean that the techniques described here will also
translate to SAT solvers. For the instances taking the most
execution time, more aggressive preprocessing techniques can
be effective, but the total execution time is dominated by
a large number of trivial instances, and the preprocessing
normally used in MathSAT seems to be too expensive to be
used here.

1) Solving sequences of single formulae: We start by inves-
tigating the effect of fixed reset strategies on singleton sets. For
these experiments, we solve only singleton sets, skipping over
the other calls completely. The result on the three programs are
summarized in figure 2. It shows the relative improvement of

TABLE I
MICROFORMAL TEST SETS

Program Instances Satisfiable Unsatisfiable
Program 1 52933 44359 8574
Program 2 5468 4341 1127
Program 3 28962 13757 15205
10+
g

Program

Relative improvement
ey
L
P —

T T
50 100 150
Reset interval

Fig. 2. Effect of reset interval on singleton calls

reusing solver information compared to solving each formula
in isolation. The horizontal axis shows the reset interval, that
is how frequently all learnt information is thrown away. A
reset interval of 1 corresponds to solving each formula in
isolation. From the figure, it is clear that there is a positive
effect of reusing solver information. For program 1 the best
improvement is a factor of 4 (at a reset interval of 161), and
for program 2 the best improvement is a factor of almost 10
(at reset a interval of 169). Lastly for program 3 the best
improvement is a factor of 7.4 (at a reset interval of 99).

We can also see that the exact reset frequency is not critical.
For program 1 and program 2, there is only a minor difference
between different reset intervals above 50. For program 3, the
trend is similar but the data appears to be more noisy. This
is due to some outliers among the instances to be solved,
which are both large and significantly different from any
of the others. These cause significant overhead when these
instances are retained in the solver and we attempt to solve
fresh instances. Performance depends on being able to divest
the solver of this irrelevant information as soon as possible,
but with a fixed reset interval how quickly this happens is
largely due to chance. To avoid this, we will choose a reset
interval of 25 for future experiments, which although shorter
than what is indicated as the optimal, should on the other
hand handle such outliers better. With this reset interval, the
improvement for these three programs is a factor of 2.7, 6.7
and 4.9 respectively.

To check if reuse of solver information is usable outside
of MicroFormal, the technique has also been applied to the
instances coming from the SAGE tool [13] (available in SMT-
LIB under QF_BV/sage). Out of 12 sets of instances, a
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Fig. 3. Effect of reusing solver information on SAGE instances. Execution
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fixed reset strategy of resetting every 25 instances helped
in all but two sets. In one of the two, execution time was
comparable (332 versus 334 seconds). In the other reusing
solver information used 65 seconds versus 11 seconds for
solving each instance individually. The added time is taken
up in two instances which take considerably more time than
the rest. Full results for these sets of instances can be found in
figure 3, where total execution time (in seconds) for each set
of instances is reported. Although the improvement is not as
large as for the three microcode programs seen earlier, there is
still a fairly clear improvement, and, indeed this improvement
is statistically significant (p = 0.016).

2) Solving sets of formulae: For the cases where Micro-
Formal generates multiple formulae to solve there are several
choices, we will look at a few of them as listed below:

1) Solve them in the same way as single formulae. There
might not after all be any need to treat these instances
any different from any other.

2) Solve them as with single formulae, but with an infinite
reset interval. The motivation is that similarity can be
expected to be better within each set than between
singleton instances since all instances in a set have been
generated at a specific point in symbolic execution.

3) Solve them with MSPSAT.

As a baseline, let’s look at the performance when treating
each instance as a singleton, disregarding that more than one
instance is known a priori. The results are shown in the
first row in table II. We can see a significant improvement
using MSPSAT over solving each formula individually. For
comparison, we also include the execution time when solving
all instances reusing solver information using a reset interval of
25, and also when resetting only in between sets of instances.
We can see that using a reset interval of 25 gives worse
performance than using the MSPSAT algorithm, so there
seems to be some value in treating these sets in a special way.
For these three programs at least there does however not seem

TABLE II
PERFORMANCE OF THE MSPSAT ALGORITHMS

Method Program1 Program 2 Program 3

No reuse 104459.86 1722.31 55539.64

Reset (25) 9104.31 217.13 5434.52

Reset in-between 4485.51 243.91 2694.61

MSPSAT 6064.98 278.00 2826.98
TABLE III

AMPLE PERFORMANCE SUMMARY (EXECUTION TIMES IN SECS)

Solver Type Median Mean Standard Dev.

Prover Singleton 1072.14 2887.13 5973.29
Non-singleton 389.01 2264.52 4432.13
Ample 2412.00 6282.90 10316.34

MathSAT  Singleton 98.48 289.05 704.25
Non-singleton 233.25 975.24 1751.98
Ample 997.00 2183.03 2842.62

to be an advantage with MSPSAT when compared to using a
separate solver instance for non-singleton sets which is reset
in-between every set. Indeed, the latter technique has a small,
but statistically insignificant, advantage over the others.

B. Overall impact of MathSAT within Ample

As a final experiment the impact of the usage of MathSAT
on the Ample tool is evaluated. Ample (Automatic Microcode
Path Logic Extraction) is a tool in MicroFormal used for
generation of execution paths for dynamic testing, and this will
be used for experimental evaluation in this section. For this
evaluation 32 different microcode programs have been selected
to be representative of small, medium, and large programs. For
each, Ample is run with its standard backend engine, the in-
house SAT solver Prover, and with MathSAT. In MathSAT,
reusing of solver information was used with a fixed reset
frequency of 25, and for non-singleton sets MSPSAT was used.
For Prover, singleton sets were solved individually, and non-
singleton sets were solved using the SSAT algorithm. The tool
was run on machines with Intel Xeon 5160 CPUs running at
3 GHz and 32GB RAM running Linux, and the execution
times of solver calls, other processing, total execution time
and memory usage was measured. In these experiments, in no
case was memory usage an issue.

The results are summarized in table III, which presents
the median, mean, and standard deviation values for the total
execution time on, respectively, singleton sets of formulae,
non-singleton sets (using MSPSAT for MathSAT, SSAT for
Prover) and for the total execution time for Ample. The
corresponding values, with one point for each of the 32
programs, are plotted in Figure 4.

For every program, the performance of MathSAT is better
than that of Prover, and for total execution time the improve-
ment is at worst a factor of 1.17, at best a factor of 4.43, and
overall the improvement is a factor of 2.88. Not surprisingly,
the improvement is statistically significant (p = 9-1077). As
the experiments on non-singleton sets showed, simply reusing
solver information resetting the solver in-between each set may
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Fig. 4. Results for each of the 32 programs: (left) total solving times on the singleton sets; (center) total solving times on the non-singleton sets; (right)

Ample total execution times.

improve performance further. At the time of writing, this has
not been tried on these 32 microcode programs.

It should be noted that the difference on non-singleton sets
are not necessarily due to the different algorithms (MSPSAT
versus SSAT) being used, since two completely different
solvers are used for the comparison.

V. RELATED WORK

Whittemore et al. [21] describes reusing of learnt clauses
in the SATIRE SAT solver. This is an incremental SAT
solver which allows the user to retract clauses and add new
ones before searching again. To implement this the solver
keeps track of the dependencies between learnt clauses and
original clauses. If a clause is retracted, all clauses which
have been learnt using this clause are also removed. Silva and
Sakallah [20] proposed a technique for reusing clauses from
one formula to the next in automatic test pattern generation
(ATPG) for circuits. In this application a SAT solver is used
to try to generate stimuli that expose a particular fault. They
notice that some learnt clauses are independent of the current
target fault instead depending only on the circuit being studied,
and could be reused from one SAT problem to the next.
This happens if a learnt clause is derived solely from clauses
originating in the circuit. Strichman [19] noticed that in the
context of Bounded Model Checking (BMC), certain clauses
could be reused from one unrolling to the next.

Eén and Sorensson showed in [11] how learnt clauses could
be reused when doing k-induction. This relies on the idea
that in this application we are monotonically adding non-
unit clauses to the solver, and all unit-clauses can be used
as assumptions rather than adding them permanently to the
solver.

In [14] GroBe and Drechsler propose to reuse clauses learnt
while solving one formula when solving another iff they can
be derived from the intersection of the clauses in the two
formulae.

Babi¢ and Hu proposed some simple heuristics to decide if
a fact is reusable of not in [5], which allow for reuse of learnt

unit clauses.

The only work which considers the idea of reusing all
information is the work by Eén and Sorensson, which is
targeted for the case of k-induction where all non-unit clauses
in one formula will occur also in the next. For general solving
of similar formulae which are not extensions of one another,
all previous work concentrate on techniques to compute the
relevant parts of the learnt clauses and reuse only those.

A. Simultaneous SAT

Khasidashvili et al. [16] introduced a technique for solv-
ing a set of related formulae using an algorithm they call
Simultaneous SAT (SSAT). Given a formula in CNF and a
set of proof objectives being literals in this formula, their
algorithm is a modification of a normal DPLL-like algorithm.
They always keep a particular proof objective as the current
goal to satisfy, the currently watched proof objective. At any
decision this literal is chosen unless it has already been given
a truth value. When the solver finds a model, it checks all
other proof objectives and records all that have been satisfied
by the model. Then a new currently watched proof objective
is chosen among those which has not yet been solved. This
is repeated until all proof objectives have been solved. The
SSAT algorithm can be seen as a special case of reusing
learnt information when all formulae to be solved are known
in advance.

In contrast to the SSAT algorithm, the MSPSAT algorithm
presented in this work doesn’t require any modifications of the
underlying solver. Indeed it would be possible to implement
using the MathSAT API rather than modifying any part of the
solver.

VI. CONCLUSIONS

In this industrial case study, we have seen how the introduc-
tion of SMT technology can result in increased performance
over pure boolean SAT. The experience also demonstrates
that a tailored integration within a given verification flow
can have a big impact on performance. In particular, reusing



learnt information from solving previous formulae can be very
useful, and that in some cases it is possible to achieve good
performance without resorting to more complex techniques
for reusing information that have been proposed in the past.
Simply retaining all information, relevant or not, can provide a
significant performance boost with a very low implementation
cost and with no added solver complexity.

The activity described in this paper has had substantial
impact. MathSAT has now been successfully integrated into
MicroFormal, and it delivers significantly improved perfor-
mance over the SAT-based solver previously used. A version of
the tool set with MathSAT integrated has been made available
to users within Intel with MathSAT available as a command-
line option. Using MathSAT, this version has been successfully
used for verification of a next generation microarchitecture.
In the future, MathSAT will be made the default decision
procedure in MicroFormal.

Although some improvements have been made to MicroFor-
mal in this case study, the time taken to solve formulae is still
considerable compared to the rest of the work of the symbolic
execution engine, on average over half the execution time is
spent in solving formulae. Therefore, it would be interesting
to look for ways of further reducing the time taken to solve
instances as well as reducing the number of instances that need
to be solved. Listed below are a few possibilities which may
be interesting to investigate.

Better models: Since MicroFormal is currently capable
of storing models for previous formulae, and then use them
in a model caching scheme to either avoid future solver calls,
or significantly reduce the complexity of future calls, it makes
sense to attempt to adapt the models returned from the solver
to maximize the utility of this feature. A “good” model in this
case is one which models (or can be extended to model) as
many future formulae as possible, therefore minimal (or near
minimal) models may be interesting.

Heuristics for resets: The reset strategy used in this work
is a simple strategy with a fixed reset frequency. Although
it has been shown to deliver a significant performance im-
provement, it is still vulnerable to outliers in the sequence of
instances. It would be interesting to discover heuristics capable
of detecting when irrelevant information stored in the solver is
likely to negatively affect performance, and build an adaptive
reset strategy around such a heuristic. This should allow for
longer reset intervals in the cases where no outliers exists, and
further improve performance.

A hybrid concrete/symbolic execution engine: One tech-
nique which can quickly discover sets of paths in a program
is fuzz testing. It might be possible to combine fuzzing with
symbolic execution by starting with generating a number of
paths with fuzzing, and then extending this set using symbolic
execution. The two methods can be interleaved by a technique
similar to [13]. Judicial use of fuzzing and concrete execution
may in the best case be able to significantly reduce the number
of formulae that need to be solved, and taking a closer look
at this possibility may be a fruitful avenue of research.

Other possibilities: There are many other possibilities for
future improvement. Among them are the following:

e Support for uninterpreted functions. MicroFormal ab-
stracts some parts with uninterpreted functions, but cur-
rently those are eliminated using Ackermann’s expansion
by MicroFormal itself. Passing the original formula on to
the solver may improve performance.

o Parallelism. There are opportunities for parallelism in
MicroFormal. One example would be performing the
symbolic execution in parallel exploring several paths
simultaneously.
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