
Multi-Objective Reasoning
with Constrained Goal Models

Mai Chi Nguyen, Roberto Sebastiani, Paolo Giorgini, and John Mylopoulos

DISI, University of Trento, Italy

Abstract. Goal models have been widely used in Computer Science to represent
software requirements, business objectives, and design qualities. Existing goal
modeling techniques, however, have shown limitations of expressiveness and/or
tractability in coping with complex real-world problems. In this work, we ex-
ploit advances in automated reasoning technologies, notably Satisfiability and
Optimization Modulo Theories (SMT/OMT), and we propose and formalize: (i)
an extended notion of goal model, namely Constrained Goal Models (CGMs),
which makes explicit the notion of goal refinement, allows for associating numer-
ical attributes (e.g., penalty/reward, cost, workload) to goals and refinements for
defining constraints and multiple objective functions over goals, refinements and
their numerical attributes; (ii) a novel set of automated reasoning functionalities
over CGMs, allowing for automatically generating suitable refinements of input
CGMs, under user-specified assumptions and constraints, that also optimize the
given objective functions. We have implemented these modeling and reasoning
functionalities in a tool, named CGM-Tool, using the OMT solver OptiMathSAT
as automated reasoning backend.

1 Introduction

The concept of goal has long been used as useful abstraction in many areas of Computer
Science, for example Artificial Intelligence (AI) planning, agent-based systems, and
knowledge management. More recently, software engineering has also been using goals
to model requirements for software systems, business objectives for enterprises, and
design qualities [19].

Goal-oriented requirements engineering approaches have gained popularity in the
last two decades for a number of significant benefits in conceptualizing and analyz-
ing requirements [19]. Goal models provide a broader system engineering perspective
compared to the traditional requirements engineering methods, a precise criterion for
completeness of the requirements analysis process, and rationale for requirements spec-
ification, as well as automated support for early requirements analysis. Moreover, goal
models are useful in explaining requirements to stakeholders, and goal refinements of-
fer an accessible level of abstraction for decision makers in validating choices among
alternative designs.

Current goal modeling and reasoning techniques, however, have limitations in cop-
ing with complex real-world problems, as recently highlighted by Horkoff and Yu in [8].
Leading approaches such as KAOS [4] and i∗ [20] are limited in expressing stakeholder



preferences, but also in supporting scalable reasoning over goal models. More recent ap-
proaches, such as Techne [10] and [12], propose expressive extensions to goal models,
but still lack scalable reasoning facilities.

As an answer to the need for more expressiveness and more sophisticated reasoning
support, we exploit advances in automated reasoning technologies, notably Satisfiabil-
ity Modulo Theories (SMT) [1] and Optimization Modulo Theories (OMT) [17], to pro-
pose and formalize an extended notion of goal model, namely Constrained Goal Model
(CGM). CGMs provide many novelties w.r.t. previous definitions of goal models. In
particular, they allow stakeholders for:

(i) defining goal refinements, which are explicitly labeled by Boolean propositions and
can be interactively/automatically reasoned upon;

(ii) stating domain assumptions to represent preconditions to goals;
(iii) adding Boolean constraints over goals, domain assumptions and refinements;
(iv) expressing preferences over goals and their refinements, by distinguishing between

mandatory and optional requirements and by assigning preference weights (i.e.,
penalties/rewards) to goals and domain assumptions;

(v) associating numerical attributes (e.g., resources like cost, worktime, room, fuel) to
goals and refinements and for defining constraints and multiple objective functions
over goals, refinements and their numerical attributes.

Taking advantage of the formal semantics of CGMs and of the expressiveness and effi-
ciency of current SMT and OMT solvers, we also provide a set of automated reasoning
functionalities on CGMs. Particularly, on a given CGM and for any given set of stake-
holders’ assertions and constraints, our approach allows for:

(a) the automatic check of the realizability of the CGM;
(b) the interactive/automatic search for realizations;
(c) the automatic search for the “best” realizations in terms of penalties/rewards;
(d) the automatic search for the realization(s) which optimize the objective functions

defined by the stakeholder (point (v)).

Our approach is implemented as a tool (CGM-Tool), a standalone java application based
on the Eclipse RCP engine. The tool offers functionalities to create CGM models as
graphical diagrams and to explore alternatives scenarios running automated reasoning
techniques. CGM-Tool uses the SMT/OMT solver OptiMathSAT [17, 18] as auto-
mated reasoning backend.

The structure of the paper is as follows: §2 provides the necessary background on
goal modeling and on SMT/OMT; §3 introduces the notion of CGM through an exam-
ple; §4 introduces the syntax and semantics of CGMs; §5 presents the set of automated
reasoning functionalities for CGMs; §6 gives a quick overview of our prototype tool
based on the presented approach; §7 gives an overview of related work; in §8 we draw
conclusions and present future research challenges.

2 Background

Our research baseline consists of our previous work on qualitative goal models and of
Satisfiability and Optimization Modulo Theories (SMT and OMT respectively).
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Goal Models. Qualitative goal models are introduced in [13], where the concept of goal
is used to represent respectively a functional and non-functional requirement in terms of
a proposition. A goal can be refined by means of AND/OR refinement relationships and
qualitative evidence (strong and weak) for/against the fulfilment of a goal is provided
by contribution links labelled +,− etc. In [7], goal models are formalized by replacing
each proposition g, standing for a goal, by four propositions (FSg , PSg , PDg , FDg)
representing full (and partial) evidence for the satisfaction/denial of g. A traditional
implication such as p∧ q → r is then translated into a series of implications connecting
these new symbols, including FSp ∧ FSq → FSr, PSp ∧ PSq → PSr, as well as
FDp → FDr, FDq → FDr, etc. The conflict between goals a and b is captured
by axioms of the form FSa → FDb, and it is consistent to have both FSa and FSa

evaluated to true at the same time. As a result, even though the semantics of a goal model
is a classical propositional theory, inconsistency does not result in everything being true.
In fact, a predicate g can be assigned a subset of truth values {FS, PS, FD,PD}.

[15] extended the approach further by including axioms for avoiding conflicts of
the form FSa∧FDa. The approach recognized the need to formalize goal models so as
to automatically evaluate the satisfiability of goals. These goal models, however, do not
incorporate the notion of conflict as inconsistency, they do not include concepts other
than goals, cannot distinguish optional (”nice to have”) from mandatory requirements
and have no notion of a robust solution, i.e. solution without ”conflict”, where a goal
can not be (fully or partially) denied and (respectively, fully or partially) satisfied at the
same time.

Satisfiability and Optimization Modulo Theories. Satisfiability Modulo Theories
(SMT) is the problem of deciding the satisfiability of a quantifier-free first-order for-
mula Φ with respect to some decidable theory T (see [16, 1]). In this paper we focus on
the theory of linear arithmetic over the rationals, LRA: SMT(LRA) is the problem of
checking the satisfiability of a formula Φ consisting in atomic propositions A1, A2, ...
and linear-arithmetic constraints like “(2.1x1 − 3.4x2 + 3.2x3 ≤ 4.2)”, combined by
means of Boolean operators ¬,∧,∨,→,↔. An Optimization Modulo Theories over
LRA (OMT(LRA)) problem 〈Φ, 〈obj1, ..., objk〉〉 is the problem of finding solution(s)
to an SMT(LRA) formula Φ which optimize the rational-valued objective functions
obj1, ..., objk, either singularly or lexicographically [17, 18]). 1

Very efficient SMT(LRA) and OMT(LRA) solvers are available, which combine
the power of modern SAT solvers with dedicated linear-programming decision and min-
imization procedures (see [16, 1, 17, 18]). For instance, in the empirical evaluation re-
ported in [17] our OMT(LRA) solver OptiMathSAT was able to handle problems with
up to thousands Boolean/rational variables in less than 10 minutes each.

3 Constrained Goal Models

We introduce the main ideas of CGMs and the main functionalities of our CGM-Tool
through a meeting scheduling example (Figure 1) where we model the requirements for

1 A solution optimizes lexicographically 〈obj1, ..., objk〉 if it optimizes obj1 and, if more than
one such obj1-optimal solutions exists, it also optimizes obj2,..., and so on.
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a meeting scheduling system, including the functional requirement ScheduleMeeting,
as well as non-functional/quality requirements LowCost, FastSchedule, MinimalEffort
and GoodQualitySchedule. They are represented as root goals.
Goals, Refinements, and Domain Assumptions. Notationally, round-corner rect-
angles (e.g., ScheduleMeeting) are root goals, representing stakeholder re-
quirements; ovals (e.g. CollectTimetables) are intermediate goals; hexagons
(e.g. CharacteriseMeeting) are tasks, i.e. non-root leaf goals; rectangles (e.g.,
ParticipantsUseSystemCalendar) are domain assumptions. We call elements both
goals and domain assumptions. Labeled bullets at the merging point of the edges
connecting a group of source elements to a target element are refinements (e.g.,
(GoodParticipation,MinimalConflict)

R20−−→ GoodQualitySchedule), while the Ris de-
note their labels. 2

Intuitively, requirements represent desired states of affairs we want the system-to-be
to achieve (either mandatorily or possibly); they are progressively refined into interme-
diate goals, until the process produces actionable goals (tasks) that need no further
decomposition and can be executed; domain assumptions are propositions about the
domain that need to hold for a goal refinement to work. Refinements are used to rep-
resent the alternatives of how to achieve an element; a refinement of an element is a
conjunction of the sub-elements that are necessary to achieve it.

The main objective of our CGM is to achieve the requirement ScheduleMeeting,
which is mandatory. ScheduleMeeting has only one candidate refinement R1, consist-
ing in five sub-goals: CharacteriseMeeting, CollectTimetables, FindASuitableRoom,
ChooseSchedule, and ManageMeeting. Since R1 is the only refinement of the require-
ment, all these sub-goals must be satisfied in order to satisfy it. There may be more than
one way to refine an element; e.g., CollectTimetables is further refined either by R10

into the single goal ByPerson or by R2 into the single goal BySystem. The subgoals
are further refined until they reach the level of domain assumptions and tasks.
User’s Assertions. Some requirements can be optional, like LowCost, MinimalEffort,
FastSchedule, and GoodQualitySchedule (in blue in Figure 1). They are requirements
that we would like to fulfill with our solution, provided they do not conflict with other
requirements. To this extent, in order to analyze interactively the possible different re-
alizations, one can interactively mark [or unmark] requirements as satisfied, thus mak-
ing them mandatory (if unmarked, they are optional). Similarly, one can interactively
mark/unmark (effortful) tasks as denied, or mark/unmark some domain assumption as
satisfied or denied. More generally, one can mark as satisfied or denied every goal or
domain assumption. We call these marks user’s assertions.

Importantly, in a CGM, elements and refinements are enriched by user-defined con-
straints, which can be expressed either graphically as relation edges or textually as
Boolean or SMT(LRA) formulas.
Relation Edges. We have three kinds of relation edges. Contribution edges
“Ei

++−−→ Ej” between elements (in green), like “ScheduleAutomatically
++−−→

MinimalConflicts”, mean that if the source element Ei is satisfied, then also the target
element Ej must be satisfied (but not vice versa). Conflict edges “Ei

−−←→ Ej” between

2 The label of a refinement can be omitted when there is no need to refer to it explicitly.
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Fig. 1. An example of a CGM
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elements (in red), like “ConfirmOccurrence
−−←→ CancelMeeting”, mean that Ei and

Ej cannot be both satisfied. Refinement bindings “Ri←→Rj” between two refinements
(in purple), like “R2←→R7”, are used to state that, if the target elements Ei and Ej of
the two refinements Ri and Rj , respectively, are both satisfied, then Ei is refined by Ri

if and only if Ej is refined by Rj . Intuitively, this means that the two refinements are
binded, as if they were two different instances of the same choice.
Boolean Constraints. It is possible to enrich CGMs with logic formulas, representing
arbitrary logic constraints on elements and refinements (plus possibly others). Such
constraints can be global or local to elements and refinements, that is, each goal G can
be tagged with a pair of prerequisite formulas

{
φ+G, φ

−
G

}
, so that φ+G [resp. φ−G] must be

satisfied when G is satisfied [resp. denied]. (The same holds for each requirement R.)
For example, to require that, as a prerequisite for FastSchedule, ScheduleManually

and ByPerson cannot be both satisfied, one can add a constraint to the positive prereq-
uisite formula of FastSchedule:

φ+FastSchedule = ... ∧ ¬(ScheduleManually ∧ ByPerson), (1)

or, equivalently, add globally to the CGM the following Boolean formula:

FastSchedule→ ¬(ScheduleManually ∧ ByPerson). (2)

Notice that there is no way we can express (1) or (2) with the relation edges above.
Realizations of a CGM. We suppose now that ScheduleMeeting is marked satisfied
(i.e. it is mandatory) and that no other element is marked. Then the CGM in Figure 1
has more than 20 possible realizations. The sub-graph which is highlighted in yellow
describes one of them.

Intuitively, a realization of a CGM under given user’s assertions (if any) represents
one of the alternative ways of refining the mandatory requirements (plus possibly some
of the optional ones) in compliance with the user’s assertions and user-defined con-
straints. It is a sub-graph of the CGM including a set of satisfied elements and refine-
ments: it includes all mandatory requirements, it includes [resp. does not include] all
elements satisfied [resp. denied] in the user’s assertions; for each non-leaf element in-
cluded, at least one of its refinement are included; for each refinement included, all its
target elements are included; finally, a realization complies with all relation edges and
with all Boolean and SMT(LRA) constraints (see later).

Apart from the mandatory requirement, the realization in Figure 1 allows to achieve
also the optional requirements LowCost, GoodQualitySchedule, but not FastSchedule
and MinimalEffort; it requires accomplishing the tasks CharacteriseMeeting,
CallParticipants, ListAvailableRooms, UseAvailableRoom, ScheduleManually,
ConfirmOccurrence, GoodParticipation, MinimalConflicts, and requires the domain
assumption LocalRoomAvailable.
Preferences via Penalties/Rewards. In general, a CGM has many possible realiza-
tions. To distinguish among them, stakeholders may want to capture preferences on the
requirements to achieve and on the tasks to accomplish.

In order to state preferences directly, stakeholders can assign positive weights
(penalties) to tasks and negative weights (rewards) to (non-mandatory) requirements
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(the numbers “Weight = . . .” in Figure 1). This implies that requirements [resp. tasks]
with higher rewards [resp. smaller penalties] are preferable. If so, thank to a call to an
OMT solver, the system returns a realization which minimizes its global weight, that is,
the total difference between the penalties and rewards.

For instance, the minimal-weight realization of the example CGM, achieves all
the optional requirements except MinimalEffort, with a total weight of −65. Such
realization requires accomplishing the tasks CharacteriseMeeting, EmailParticipants,
UsePartnerInstitution, ScheduleManually, ConfirmOccurrence, GoodParticipation,
and MinimalConflicts, and requires no domain assumption. (This was found automati-
cally by our CGM-Tool of §6 in 0.008 seconds on an Apple MacBook Air laptop.)

In general, stakeholders might not always be at ease in assigning numerical values
to state their preferences. This can be coped with in two possible ways. One simple way
is to use more coarse-grained and user-friendly rankings (e.g. “critical”, “important”,
“moderately important”, “marginal”) which are automatically translated into numbers.
A more radical way is to allow stakeholders to set pairwise preferences or equivalences
between tasks/requirements, and then to use an ad-hoc algorithm like Analytic Hierar-
chy Process (AHP) [11] to generate the numerical values automatically.
Numerical Attributes. In addition to Boolean constraints and penalties/rewards, it is
also possible to use numerical variables to express different numerical attributes of el-
ements (such as cost, worktime, space, fuel, etc.) For example, suppose we estimate
that UsePartnerInstitutions costs 80AC, whereas UseHotelsAndConventionCenters
costs 200AC. One can express these facts straightforwardly and intuitively by adding
a global numerical variable cost to the model; then the system automatically gener-
ates a numerical attribute costE for each element E, whose value is set to the default
value 0, and the default global constraint cost =

∑
E∈E costE; 3 then, for some element

E of interest, one can set the value for costE in case E is satisfied (or denied): e.g.,
costUsePartnerInstitutions := 80 and costUseHotelsAndConventionCenters := 200. By doing so,
the following prerequisite SMT(LRA) constraints are automatically added:

φ+UsePartnerInstitutions = ... ∧ (costUsePartnerInstitutions = 80) (3)
φ+UseHotelsAndConventionCenters = ... ∧ (costUseHotelsAndConventionCenters = 200).

and the corresponding negative prerequisite constraints (like φ−UsePartnerInstitutions = ...∧
(costUsePartnerInstitutions = 0)), are also automatically added (if not specified otherwise).
SMT(LRA) Constraints. Suppose that, in order to achieve the optional requirements
LowCost, we need to have a total cost smaller than 100AC. This can be expressed by
adding the prerequisite constraint: φ+LowCost = . . . ∧ (cost < 100). Hence, e.g., due to
(3), every realization that the tool generates automatically which satisfies LowCost will
not involve the task UseHotelsAndConventionCenters.

Similarly to cost, one can introduce, e.g., another global numerical attribute
workTime to reason on working time, and estimate, e.g., that the total working time
for ScheduleManually, ScheduleAutomatically, EmailParticipants, CallParticipants,
CollectFromSystemCalendar are 3, 1, 1, 2, 1 hour(s) respectively, and state that the
optional requirement FastSchedule must require a global time smaller than 5 hours.

3 Notice that this is only a default global constraint: the user is free to manipulate it.
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Notice that one can build combinations of numerical attributes. For instance, if labor
costs 35AC/hour, then one can redefine cost as (cost =

∑
E∈E costE +35 ·workTime),

or introduce a new global variable totalCost as (totalCost = cost + 35 · workTime).
Preferences via Multiple Objectives. Stakeholders may define rational-valued objec-
tives obj1, ..., objk to optimize (i.e. maximize or minimize) as functions of Boolean
and numerical variables —e.g., cost, workTime, totalCost can be suitable objectives,
Weight is considered a pre-defined objective— and ask the tool to automatically gener-
ate realization(s) which optimize one objective, or some combination of more objectives
(like totalCost), or which optimizes lexicographically an ordered list of objectives.

For example, the previously-mentioned optimum-weight realization of Figure 1
is such that Weight = −65, workTime = 4 and cost = 80. Our CGM has many
different minimum-weight realizations s.t. Weight = −65, with different values
of cost and workTime. Among them, it is possible to search, e.g., for the realiza-
tions with minimum workTime, and among these for those with minimum cost,
by setting lexicographic minimization with order 〈Weight,workTime, cost〉. This
results into one realization with Weight = −65, workTime = 2 and cost = 0
achieving all the optional requirements, requiring the tasks: CharacteriseMeeting,
CollectFromSystemCalendar, GetRoomSuggestions, CancelLessImportantMeeting,
ScheduleAutomatically, ConfirmOccurence, GoodParticipation, MinimalConflicts,
CollectionEffort, MatchingEffort, and requiring the domain assumptions:
ParticipantsUseSystemCalendar, LocalRoomAvailable. (This was found automatically
by our CGM-Tool of §6 in 0.016 seconds on an Apple MacBook Air laptop.)

4 Abstract Syntax and Semantics

We call a goal graphD a directed acyclic graph (DAG) alternating element nodes (here-
after “elements”) and refinement nodes (“refinements”, collapsed into bullets), s.t.: (a)
each element has from zero to many outgoing edges to distinct refinements and from
zero to many incoming edges from distinct refinements; (b) each refinement node has
exactly one outgoing edge to an element (target) and one or more incoming edges from
distinct elements (sources).
Elements are either goals or domain assumptions, subject to the following constraints:
a domain assumption cannot be a root element; if the target of a refinement R is a
domain assumption, then it sources must be only domain assumptions; if the target of a
refinement R is a goal, then at least one of its sources must be a goal. We call root goals
and leaf goals requirements and tasks respectively. Notationally, we use the symbols
R, Rj for labeling refinements, E, Ei for generic elements (without specifying if goals
or domain assumptions), G, Gi for goals, A, Ai for domain assumptions.

Definition 1 (Constrained Goal Model). A Constrained Goal Model (CGM) is a tuple
M def

= 〈B,N ,D, Ψ〉, s.t.

– B def
= G ∪ R ∪ A is a set of atomic propositions, where G def

= {G1, ..., GN}, R
def
=

{R1, ..., RK}, A
def
= {A1, ..., AM} are respectively sets of goal, refinement and

domain-assumption labels. We denote with E the set of element labels: E def
= G ∪A;
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– N is a set of numerical variables in the rationals;
– D is a goal graph, s.t. all its goal nodes are univocally labeled by a goal label in
G, all its refinements are univocally labelled by a refinement label in R, and all its
domain assumption are univocally labeled by a assumption label in A;

– Ψ is a SMT(LRA) formula on B and N .

A CGM is thus an and-or directed acyclic graph (DAG) of elements, as nodes, and
refinements, as (grouped) edges, which are labeled by atomic propositions and can be
augmented with arbitrary constraints in form of SMT(LRA) formulas –typically con-
junctions of smaller global and local constraints– on the element and refinement labels
and on the numerical variables. Intuitively, a CGM describes a (possibly complex) com-
bination of alternative ways of realizing a set of requirements in terms of a set of tasks,
under certain domain assumptions.

In general, the user might not be at ease in defining a possibly-complex global
SMT(LRA) formula Ψ to encode constraints among elements and refinements, plus
numerical variables. To this extent, as mentioned in §3, apart from the possibility of
defining global formulas, CGMs provide constructs allowing the user to encode graph-
ically and locally desired constraints of frequent usage: relation edges, prerequisite
constraints

{
φ+G, φ

−
G

}
and

{
φ+R, φ

−
R

}
and user’s assertions. Each is automatically con-

verted into a simple SMT(LRA) formula as follows, and then conjoined to Ψ .

Element-contribution edges, E1
++−−→ E2, are encoded into the formula (E1 → E2).

Element-conflict edges, E1
−−←→ E2, are encoded into the formula ¬(E1 ∧ E2).

Refinement-binding edges, R1←→R2, s.t. E1, E2 are the target elements of R1, R2

respectively, are encoded into the formula (E1 ∧ E2)→ (R1 ↔ R2).
Prerequisite constraints,

{
φ+G, φ

−
G

}
[resp.

{
φ+R, φ

−
R

}
] are encoded into the formulas

(G→ φ+G) and (¬G→ φ−G) [resp. (R→ φ+R) and (¬R→ φ−R)].
User’s assertions, Ei := > and Ej := ⊥, are encoded into the formulas (Ei), (¬Ej).

Notice that, unlike refinements, relation edges are allowed to create loops, possibly
involving refinements.

The semantics of CGMs is formally defined as follows.

Definition 2 (Realization of a CGM). LetM def
= 〈B,N ,D, Ψ〉 be a CGM. A realiza-

tion ofM is a LRA-interpretation µ over B ∪N such that: 4

(a) µ |= ((
∧n

i=1Ei)↔ R) ∧ (R→ E) for each refinement
(
E1, . . . , En

) R−→ E;

(b) µ |=
(
E → (

∨
Ri∈Ref(E)Ri)

)
, for each non-leaf element E;

(c) µ |= Ψ .

We say thatM is realizable if it has at least one realization, unrealizable otherwise.

In a realization, each element E or refinement R can be either satisfied or denied
(i.e., their label can be assigned to > or ⊥ respectively by µ). If an element E is not a

4 A LRA-interpretation µ is a function which assigns truth values to Boolean atoms and rational
values to numerical variables. “µ |= Φ” means that µ makes the formula Φ evaluate to true.
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leaf, then it can be satisfied only by satisfying the set of source elements E1, . . . , En

of one of its refinements
(
E1, . . . , En

) R−→ E. If µ satisfies a refinement R of an ele-
ment E, i.e., it satisfies all the source elements E1, . . . , En, then it satisfies the element
E, but not vice versa (condition (a)). For a non-leaf element to be satisfied, at least
one of its refinements must be satisfied (condition (b)). We call this fact Closed World
Assumption (CWA). The satisfiability or deniability of each element or refinement can
be further constrained by all the constraints defined inside the formula Ψ : every real-
ization µ must satisfy such constraints (condition (c)). Notice that, by fulfilling condi-
tion (c), a realization must implicitly comply also with all the relation edges, with the
user’s assertions and with the local pre-requisite constraints

{
φ+E , φ

−
E

}
and

{
φ+R, φ

−
R

}
,

because the corresponding formulas are conjuncts of Ψ . Thus Ψ contains also the
global and local SMT(LRA) constraints over global and local numerical attributes (e.g.
LowCost → (cost ≤ 100), UsePartnerInstitutions → (costUsePartnerInstitutions = 80),
and the definitions of objectives (e.g., (totalCost =

∑
E∈E costE + 35 · workTime)).

A realization µ for a CGM M def
= 〈B,N ,D, Ψ〉 is represented graphically as the

sub-graph of D where all the denied element and refinement nodes are eliminated.

5 Automated Reasoning Functionalities

Definition 3 (SMT(LRA) Encoding of a CGM). LetM def
= 〈B,N ,D, Ψ〉 be a CGM.

The SMT(LRA) encoding ofM is the formula ΨM
def
= Ψ ∧ ΨE ∧ ΨR, where:

ΨE
def
=
∧

E∈Roots(D)∪Internals(D)

(
E → (

∨
Ri∈Refinements(E)Ri)

)
(4)

ΨR
def
=
∧(

E1,...,En

)
R−→E, R∈R

(
(
∧n

i=1Ei ↔ R) ∧ (R→ E)
)
, (5)

Roots(D) and Internals(D) being the root and internal elements of D respectively.

The following facts are straightforward consequences of Definitions 2 and 3 and of
the definition and OMT(LRA).

Proposition 1. LetM def
= 〈B,N ,D, Ψ〉 be a CGM, ΨM its SMT(LRA) encoding and µ

a LRA-interpretation over B∪N . Then µ is a realization ofM if and only if µ |= ΨM.

Proposition 2. LetM and ΨM be as in Proposition 1, and let µ be a realization ofM.
Let {obj1, ..., objk} be LRA-terms occurring in Ψ . Then we have that:

(i) for every i in 1, ..., k, µ minimizes [resp. maximizes] obji if and only if µ is a solu-
tion of the OMT(LRA) minimization [resp. maximization] problem 〈ΨM, 〈obji〉〉;

(ii) µ lexicographically minimizes [resp. maximizes] 〈obj1, ..., objk〉 if and only if µ
is a solution of the OMT(LRA) lexicographic minimization [resp. maximization]
problem 〈ΨM, 〈obj1, ..., objk〉〉.

Propositions 1 and 2 suggest that realizations of a CGM M can be produced by
applying SMT(LRA) solving to the encoding ΨM, and that optimal realizations can be
produced by applying OMT(LRA) to ΨM and a list of defined objectives obj1, ..., objk.
This allowed us to implement straightforwardly the following reasoning functionalities
on CGMs by interfacing with a SMT/OMT tool.
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Search/enumerate realizations. Stakeholders can automatically check the realizabil-
ity of a CGMM –or to enumerate one or more of its possible realizations– under a
group of user assertions and of user-defined Boolean and SMT(LRA) constraints;
the tool performs this task by invoking an SMT solver on the formula ΨM of Defi-
nition 3.

Search/enumerate minimum-penalty/maximum reward realizations. Stakeholders
can assert the desired requirements and set the penalties of the tasks; then the
tool finds automatically realizations achieving the former while minimizing the
latter, by invoking the OMT solver on ΨM with the pre-defined Weight objective.
The vice versa is obtained by negating undesired tasks and setting the rewards of
optional requirements. Every intermediate situations can be also be obtained.

Search/enumerate optimal realizations wrt. user-defined objectives. Stakeholders
can define their own objective functions obj1, ..., objk over goals, refinements and
their numerical attributes; then the tool finds automatically realizations optimizing
them, either independently or lexicographically, by invoking the OMT solver on
ΨM and obj1, ..., objk.

Notice that all these actions can be performed interactively by marking an unmark-
ing (optional) requirements, tasks and domain assumptions, each time searching for a
suitable or optimal realization.

6 Implementation

CGM-Tool provides support modeling and reasoning on CGMs. Technically, CGM-
Tool is a standalone application written in Java and its core is based on Eclipse RCP
engine. Under the hood, it encodes constraint goal models in OptiMathSAT 5 [17] to
support reasoning on goal models. It is freely distributed as a compressed archive file
for multiple platforms 6. CGM-Tool supports:

Specification of projects: CGMs are created within the scope of project containers. A
project contains a set of CGMs that can be used to generate reasoning sessions with
OptiMathSAT (i.e., scenarios);

Diagrammatic modeling: the tool enables the creation (drawing) of CGMs in terms
of diagrams; furthermore it enhances the modeling process by providing real-time
check for refinement cycles and by reporting invalid refinement, contribution and
binding links;

Consistency/well-formedness check: CGM-Tool allows for the creation of diagrams
conform with the semantics of the modeling language by providing the ability to
run consistency analysis on the model;

Automated Reasoning: CGM-Tool provides the automated reasoning functionalities
of §5 by encoding the model into an SMT formula. The results of OptiMathSAT
are shown directly on the model as well as in a tabular form.

5 http://optimathsat.disi.unitn.it
6 http://www.cgm-tool.eu/
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Fig. 2. CGM-Tool Component view

As mentioned in §2, OptiMathSAT successfully handles problems with up to thousands
Boolean/rational variables [17]; this fact, combined with the negligible CPU times re-
ported in §3, provides a strong support for the scalability of our approach.

CGM-Tool extends the STS-Tool [14] as an RCP application by using the major
frameworks shown in Figure 2: Rich Client Platform (RCP), a platform for building
rich client applications, made up of a collection of low level frameworks such as OSGi,
SWT, JFace and Equnix, which provide us a workbench where to get things like menus,
editors and views; Graphical Editing Framework (GEF), a framework used to create
graphical editors for graphical modeling tools (e.g., tool palette and figures which can
be used to graphically represent the underlying data model concepts); Eclipse Modeling
Framework (EMF), a modeling framework and a code generation facility for building
tools and applications based on a structured data model.

7 Related work

We next offer a quick overview of, and comparison with some the state of the art goal-
oriented modeling languages. [10] provide better and deeper comparisons on require-
ments modeling languages and the goal-oriented approach, including their advantages
and limitations.
KAOS. KAOS [4] supports a rich ontology for requirements that goes well beyond
goals, as well as an Linear Temporal Logic (LTL)-grounded formal language for con-
straints. This language is coupled with a concrete methodology for solving requirements
problems. KAOS supports a number of analysis techniques, including obstacle, incon-
sistency and probabilistic goal analysis. However, unlike our proposal, KAOS does not
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support optional requirements and preferences, nor does it exploit SAT/SMT solver
technologies for scalability.
I∗ and Tropos. i∗ [20] focuses on modelling actors for a requirements engineering
problem (stakeholders, users, analysts, etc.), their goals and inter-dependencies. i∗

provides two complementary views of requirements: the Actor Strategic Dependency
Model (SD model) and the Actor Strategic Rationale Model (SR model). Typically,
SD models are used to analyze alternative networks of delegations among actors for
fulfilling stakeholder goals, whilst SR models are used to explore alternative ways of
fulfilling a single actor’s goals. i∗ is expressively lightweight, intended for early stages
of requirements analysis, and did not support formal reasoning until recent thesis work
by Horkoff [9]. Tropos [2] is a requirements-driven agent-oriented software develop-
ment methodology founded on i∗. Goal models can be formalized in Tropos by using
Formal Tropos [6], an extension of i∗ that supports LTL for formalizing constraints.
Alternatively, qualitative goal models can be used, briefly reviewed in §2. The main
deficiencies of this work relative to our proposal is that Formal Tropos is expressive but
not scalable, while qualitative goal models are variants of propositional logic, hence not
too expressive.
Techne and Liaskos. Techne [10] is a recent proposal for a class of goal-modeling
languages that supports optional goals and preferences, but is strictly propositional and
has not been studied at all for reasoning and tractability. Liaskos [12, 11] has proposed
extensions to qualitative goal models to support optional goals and preferences, as well
as decision-theoretic concepts such as utility. This proposal is comparable to our pro-
posal in this paper, but uses AI reasoners for reasoning (AI planners and GOLOG) and,
consequently, does not scale very well relative to our proposal.
Feature Models. Feature models [3] share many similarities with goal models: they are
hierarchically structured, with AND/OR refinements, constraints and attributes. How-
ever, each feature represents a bundle of functionality or quality and as such, feature
models are models of software specification, not requirements. Moreover, reasoning
techniques for feature models are limited relative to their goal model cousins.

8 Conclusions and Future Work

We have proposed a goal-based modeling language for requirements that supports the
representation of optional requirements, preferences, constraints and more. Moreover,
we have exploited automated reasoning solvers in order to develop a prototype tool that
scales well as goal models grow to realistic sizes for real world requirements problems.

We are currently implementing the encoding of syntactic-sugaring constraints, such
as ”AtMostN (N,P1, . . . , Pn)”, etc., to facilitate the modeling of some of the standard
and intuitive constraints among assumptions, goals, and refinement labels, without the
need to define complex and less-than-intuitive propositional formulas.

We also plan to formalize evolutionary versions of CGMs, which can handle evo-
lution requirements problems [5]. For such problems, the goal models can be changed
even after a solution has been implemented. Thus, given a modified CGM and its pre-
vious solution, we have to find a new solution that minimize the effort of applying
changes. Again, we plan to address this problem via OMT encodings.
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