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1. Introduction

Verifying whether an ω-regular property is satisfied by a finite-state sys-
tem is a core problem in Model Checking (MC) (Kurshan, 1994; Vardi
and Wolper, 1994). Standard MC techniques build a complementary
Büchi automaton (BA), whose language contains all violations of the
desired property. They then compute the product of this automaton
with the system, and then check for emptiness (Vardi and Wolper,
1986; Kurshan, 1994). To check emptiness, one has to compute the
set of fair states, i.e., those states of the product automaton that are
extensible to a fair path. This computation can be performed in linear
time by using a depth-first search (Courcoubetis et al., 1992). The
main obstacle to this procedure is state-space explosion, i.e., the prod-
uct is usually too big to be handled. Symbolic model checking (SMC)
(Burch et al., 1992) tackles this problem by representing the product
automaton symbolically, usually by means of BDDs. Most symbolic
model checkers compute the fair states by means of some variant of the
doubly-nested-fixpoint Emerson-Lei algorithm (EL) (Emerson and Lei,
1986; Ravi et al., 2000; Fisler et al., 2001).

Another approach to formal verification is that of Symbolic Trajec-
tory Evaluation (STE) (Seger and Bryant, 1995), in which one tries to
show that the system satisfies the desired property by using symbolic
simulation and quaternary symbolic abstraction. This often enables
quick response time, but is restricted to very simple properties, con-
structed from Boolean implication assertions by means of conjunction
and the temporal next-time operator (Chou, 1999). In particular, STE
is limited to bounded properties (Kupferman and Vardi, 2001b). Re-
cently, GSTE (Yang and Seger, 2000; Yang and Seger, 2003) has been
proposed as an extension of STE that can handle all ω-regular proper-
ties. In this framework, properties are specified by means of Assertion
Graphs (AG). The GSTE algorithm augments symbolic simulation with
a fixpoint iteration. GSTE inherited from STE many techniques such as
quaternary symbolic abstraction, symbolic indexing (Yang and Seger,
2000; Yang and Seger, 2003) and functional vectors (Yang and Goel,
2002). Recent work on GSTE, (Yang and Seger, 2002; Yang and Goel,
2002) has described various case studies and has focused mainly on
abstraction in GSTE. The fundamental relation between GSTE and
SMC, however, has not been completely clarified. The basic relation-
ship between AGs and BAs is sketched in (Hu et al., 2003), but the
algorithmic relationship between GSTE and SMC has not been studied.

In this work, we analyze the property-specification language and
the checking algorithm used by GSTE and compare them to those
used in SMC. (We deal neither with abstraction nor with the state
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representation, which are orthogonal issues.) We first fill in the details
not given in (Hu et al., 2003) to show that assertion graphs are essen-
tially universal ω-automata (Manna and Pnueli, 1987), which require
all runs to be accepting. Universal automata enjoy the advantage of
easy complementation; in fact, they can be viewed as nondeterministic
automata for the complementary property (this feature is attained in
the COSPAN system by using deterministic automata (Hardin et al.,
1996)). Formally, given a BA, one can easily construct an AG for the
complementary language, and vice versa. This permits us to do a direct
comparison between the algorithms underlying GSTE and SMC.

We then point out that the GSTE algorithms are essentially a par-
titioned version of the standard SMC algorithms. SMC algorithms
operate on subsets of the product state space S × V , where S is the
state space of the system and V is the state space of the complementary
automaton. We show that GSTE operates on partitioned subsets of
the product state space. The partitioning is driven by the automaton
state space. The GSTE analog of a subset Q ⊆ S × V is the partition
{Qv : v ∈ V }, where Qv = {s : (s, v) ∈ Q}. The GSTE algorithms
are in essence an adaptation of the standard SMC algorithms to the
partitioned state space. Thus, rather than operate on subsets of product
state space P , GSTE operates on arrays of subsets of S, representing
a partitioning of P . We refer to such partitioning as property-driven
partitioning.

Finally, we proceed to explore the benefits of property-driven par-
titioning in the framework of SMC. We use NuSMV (Cimatti et al.,
1999) as our experimental platform in the context of LTL model check-
ing. We added to NuSMV the capability of property-driven partitioned
SMC, both for safety LTL properties and for full LTL properties, and
compared the performance of SMC with partitioned SMC. We find
that property-driven partitioning is an effective technique for SMC,
as partitioned SMC is typically faster than SMC. The major factor
seems to be the reduction in the number of BDD variables, which more
than compensates for the additional algorithmic overhead for handling
a partitioned state space.

Partitioning techniques have often been proposed in order to tackle
the state space explosion problem. (We refer here to disjunctive parti-
tioning, rather than to the orthogonal technique of conjunctive parti-
tioning, which is used to represent and/or maniplate large state spaces
(Burch et al., 1991; McMillan, 1996; Goel and Bryant, 2003).) Static
partitioning techniques, which require an analysis of the state space,
have been discussed, in (Narayan et al., 1996; Narayan et al., 1997). Dy-
namic partitioning techniques, which are driven by heuristics to reduce
BDD size, have been discussed, in (Cabodi et al., 1996; Cabodi et al.,
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1997; Fraer et al., 2000; Iyer et al., 2003). Partitioning has been used in
(Heyman et al., 2002; Grumberg et al., 2003) to develop a distributed
approach to SMC.

Property-driven partitioning is orthogonal to previous partition-
ing techniques. Unlike dynamic partitioning techniques, no expensive
BDD-splitting heuristics are required. Unlike previous static partition-
ing techniques, property-driven partitioning is fully automated and no
analysis of the system state space is needed. The technique is also of in-
terest because it represents a novel approach to automata-theoretic ver-
ification. So far, automata-theoretic verification means that either both
system and property automaton state spaces are represented explicitly
(e.g. in SPIN (Holzmann, 2003)) or symbolically (in NuSMV (Cimatti
et al., 1999) or in Cadence SMV1). Just like GSTE, property-driven
partitioning enables a hybrid approach, in which the property au-
tomaton, whose state space is often quite manageable, is represented
explicitly, while the system, whose state space is typically exceedingly
large is represented symbolically. Another hybrid approach (Biere et al.,
1999; Cimatti et al., 2001) applies a mixed depth-first/breadth-first
search to the powerset automaton. In (Cimatti et al., 2001), only reach-
ability is taken into account and the experiments focus on planning
problems. In (Biere et al., 1999),the search is applied to the product
with a tableau corresponding to an LTL formula and it works on-the
fly. In this case, the authors manage to keep the size of product linear
with the size of the system (by splitting redundant sets of states), but
no experimental results are provided. Finally, (Henzinger et al., 2003)
translates BAs into a variant of the equational µ-calculus based on the
post-image operator. Though it can be considered as an application of
property-driven partitioning, the attention is focused on the forward
nature of the approach.

For branching-time logics, symbolic procedures ((Burch et al., 1992))
verify a CTL formula by computing, for every subformula, the states
of the system that satisfy it. The automata-theoretic counterpart of
branching-time logics are automata over infinite trees. It is shown in
(Kupferman et al., 2000) that, by translating CTL formulas into weak
alternating automata, one can achieve optimal decision procedures.
The “weakness” of the automata induces a partitioning on the state
space of the product of the automaton with the system and a partial
order on the block of the partition. The algorithm proceeds up the
partial order by computing for each partition block which states of the
product have a non-empty language. Since the translation produces
automata with one state for every subformula, the standard symbolic

1 See www-cad.eecs.berkeley.edu/~kenmcmil/smv/
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model-checking algorithm can be viewed as a partitioned version of
this automata-theoretic approach. This, together with the automata-
theoretic treatment of CTL* model checking in (Kupferman et al.,
2000), suggests that it would be possible to apply to CTL* model
checking a combination of the standard property-driven partitioning
for CTL (Burch et al., 1992) with the property-driven partitioning for
LTL described here.

The paper begins with an overview of the basic notions of SMC
(Clarke et al., 1999) and GSTE (Yang and Seger, 2000) in Section 2:
first, BAs and AGs are defined in a new perspective that clarifies the
common underlying structure; we then describe SMC and GSTE model
checking procedures. In Section 3, first, we prove that AGs and BAs
are equivalent; then, we analyze the checking algorithms of GSTE and
show that they are partitioned versions of standard SMC algorithms. In
Section 4, we export property-driven partitioning to SMC and we report
on the comparison of SMC with partitioned SMC in the framework of
NuSMV. We conclude in Section 5 with a discussion of future research
directions.

2. Büchi Automata and Assertion Graphs

In this section, we introduce the specification languages and the check-
ing algorithms used by SMC (Clarke et al., 1999) and GSTE (Yang and
Seger, 2000). In SMC, we can specify properties by means of BAs, while
GSTE uses AGs. Both the languages have a finite and a fair semantics.
The finite semantics is checked with a fixpoint computation, while the
fair one requires a doubly-nested fixpoint computation.

We define a system M as a tuple 〈S, SI , T 〉, where S is the set of
states, SI ⊆ S is the set of initial states, T ⊆ S × S is the transition
relation. We use capital letters such as Y,Z, .. to denote subsets of S.
We define functions post, pre : 2S −→ 2S such that post(Y ) = {s′ ∈
S | (s, s′) ∈ T, s ∈ Y } and pre(Y ) = {s′ ∈ S | (s′, s) ∈ T, s ∈ Y }. A
finite (resp., infinite) trace in M is a finite (resp., infinite) sequence σ of
states such that σ[i+1] ∈ post(σ[i]) for all 1 ≤ i < |σ| (resp., i ≥ 1). A
trace σ is initial iff σ(1) ∈ SI . We define Lf (M) as the set of all initial
finite traces of M and L(M) as the set of all initial infinite traces. We
define S∗ (resp. Sω) as the set of all finite (resp., infinite) sequences of
states in M . (Thus, Lf (M) ⊆ S∗ and L(M) ⊆ Sω.)

In the following, we propose a new representation for BAs and AGs:
both can be seen as an extension of Fair Graphs (FG). This is the
structure which AGs and BAs have in common. As we shall see, while
an AG is an FG with two labeling functions, a BA is an FG with just
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one labeling function. We use labels on vertices rather than on edges (as
in GSTE (Yang and Seger, 2000)). This does not affect the generality
of our framework and allows for an easier comparison between GSTE
and SMC as well as an experimental evaluation in the framework of
NuSMV. Moreover, labels are defined as sets of system’s states. (In
practice, labels are given as predicates on system states; a predicate
describes the set of states that satisfy it.)

2.1. Fair Graphs, Büchi Automata and Assertion Graphs

Fair Graphs are essentially graphs with the addition of a fairness con-
dition.

DEFINITION 1. A Fair Graph G is a tuple 〈V, VI , E,F〉 where V is
the set of vertices, VI ⊆ V is the set of initial vertices, E ⊆ V ×V is a
total relation representing the set of edges, and F = {F1, ..., Fn}, with
Fj ⊆ V for 1 ≤ j ≤ n, is the set of fair sets.

A finite (resp., infinite) path in G is a finite (resp., infinite) sequence
ρ of vertices such that (ρ[i], ρ[i+1]) ∈ E for all 1 ≤ i < |ρ| (resp., i ≥ 1).
ρ is initial iff ρ[1] ∈ VI . ρ is fair iff it visits every set F ∈ F infinitely
often. If F = {F}, we define Lf (G) as the set of all finite initial paths
of G whose last state belongs to F . We define L(G) as the set of all
fair initial paths. We say that a path of G is accepting if it belongs to
Lf (G) or to L(G).

For every v ∈ V we define the set of successor vertices E(v) = {v ′ ∈
V | (v, v′) ∈ E} and the set of predecessor vertices E−(v) = {v′ ∈
V | (v′, v) ∈ E} . (The operators E and E− are analogous to post and
pre. They are used for clarity of notation.)

A labeling function is a function γ : V −→ 2S . Given a set of
vertices V ′ ⊆ V , we define the restriction γ|

V ′
of γ to V ′ as follows:

γ|
V ′

(v) = γ(v) if v ∈ V ′, and γ|
V ′

(v) = ∅ otherwise. Typically, we use
α, β, γ to denote labeling functions. Notice that a labeling function γ
can be considered and represented as a set of subsets of S: {γ(v)}v∈V .
With abuse of notation, given two labeling functions α and γ, we will
write α ⊆ γ (resp., α ∩ γ, α ∪ γ) to mean, for all v ∈ V , α(v) ⊆ γ(v)
(resp., α(v) ∩ γ(v), α(v) ∪ γ(v)).

DEFINITION 2. Given a finite (resp. infinite) sequence of states σ
in M , a path ρ in G of the same length l (resp., both infinite) and
a function γ : V −→ 2S, we say that σ satisfies ρ under γ (denoted
σ |=γ ρ) iff σ[i] ∈ γ(ρ[i]) for all 1 ≤ i ≤ l (resp., i ≥ 1).

A Büchi automaton (BA) is essentially an FG with the addition of
a labeling function. A sequence of states is accepted by a BA iff it

main.tex; 18/10/2005; 9:02; p.6



GSTE is Partitioned Model Checking 7

satisfies the labeling function along at least one accepting path of the
FG. In the following, BAs express complementary properties, that is,
their language contains all violations of the desired property.

Formally, a Büchi Automaton B is a tuple 〈G,L〉 where G = 〈V, VI , E,F〉
is a fair graph, and L : V −→ 2S is the labeling function. We define the
set Lf (B) (resp., L(B)) as the set of finite (resp., infinite) sequences of
states of M accepted by B:

DEFINITION 3.

− finite semantics: if F = {F}, Lf (B) = {σ ∈ S∗ | there exists a
finite path ρ ∈ Lf (G) with |σ| = |ρ| = l, ρ[l] ∈ F and σ |=L ρ};

− fair semantics: L(B) = {σ ∈ Sω | there exists a fair path ρ ∈
L(G) with σ |=L ρ}.

Since a BA has the complementary language of the specification, the
model checking problem consists of verifying whether Lf (M)∩Lf (B) =
∅, in the case of finite semantics, L(M) ∩ L(B) = ∅, in the case of fair
semantics.

An assertion graph (AG) is essentially an FG with the addition
of two labeling functions: the antecedent and the consequent. An AG
accepts a sequence of states iff, along all accepting paths, either the
sequence does not satisfy the antecedent or it satisfies the consequent.

Formally, an Assertion Graph A is a tuple 〈G, ant, cons〉 where G =
〈V, VI , E,F〉 is a fair graph, ant : V −→ 2S is the antecedent function,
and cons : V −→ 2S is the consequent function. Given a sequence of
states σ in M and a path ρ in G of the same length, we say that σ
satisfies ρ in A (denoted σ |=A ρ) iff σ |=ant ρ ⇒ σ |=cons ρ. We define
the set Lf (A) (resp., L(A)) as the set of finite (resp., infinite) sequences
of states of M accepted by A:

DEFINITION 4.

− finite semantics:2 if F = {F}, Lf (A) = {σ ∈ S∗ | for every
finite path ρ ∈ Lf (G), if |σ| = |ρ| = l and ρ[l] ∈ F for some l, then
σ |=A ρ};

− fair semantics: L(A) = {σ ∈ Sω | for every fair path ρ ∈ L(G),
σ |=A ρ}.

The model checking problem for an AG consists of verifying whether
Lf (M) ⊆ Lf (A), in the case of finite semantics, L(M) ⊆ L(A), in the
case of fair semantics.

2 In (Hu et al., 2003) the finite semantics is called terminal. Moreover, the authors,
as in (Yang and Seger, 2000), define a third and a fourth semantics called strong
and infinite, which we ignore in this paper.
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   true p&!q !q

a. FG example b. BA example

true/false !q/falsep&!q/false

c. AG example

Figure 1.

EXAMPLE 1. An example of FG is depicted in Fig. 1.a. The vertices
are represented by points, the edges by arrows. An arrow without the
starting vertex points to a vertex to indicate that it is initial. For sim-
plicity, in the example we have only one fair set. The circle around the
rightmost vertex means that it belongs to this fair set.

Examples of BA and AG are depicted resp. in Fig. 1.b and 1.c. They
have the same underlying FG. In the AG, the labels are represented in
the format ant/cons. p and q are propositional properties. With the fair
semantics, the AG corresponds to the LTL property G(p → Fq), while
the BA has the complementary language.

�

As we will see in Section 3, given a BA, one can easily construct an
AG for the complementary language, and vice versa.

2.2. SMC algorithms

Given a system M = 〈S, SI , T 〉 and a BA B = 〈〈V, VI , E,F〉,L〉, SMC
first computes the product P between B and M . Then, in the case of
finite semantics, it finds the set of vertices reachable from the initial
vertices and checks if it intersects a certain set of vertices FP in P ;
in the case of fair semantics it finds the set of fair vertices, i.e., those
which are extensible to fair paths, and it checks if it intersects the set
of initial vertices.

The product between M and B is a BA defined as follows: P =
〈〈VP , IP , EP ,FP 〉,LP 〉 where VP = {(s, v) | s ∈ M,v ∈ V, s ∈ L(v)},
IP = {(s, v) ∈ VP | s ∈ SI , v ∈ VI}, EP = {((s, v), (s′, v′)) | (s, v) ∈ VP ,
(s′, v′) ∈ VP , (s, s′) ∈ T, (v, v′) ∈ E}, FP = {FP1, ..., FPn} where
FPj = {(s, v) ∈ VP | v ∈ Fj}, LP (s, v) = {s}.

In the case of finite semantics F = {F}, so that FP = {FP }, where
FP = {(s, v) ∈ VP | v ∈ F}. Then, it is easy to see that Lf (P ) =
Lf (M) ∩ Lf (B). Moreover, every finite path of P corresponds to a
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Algorithm traversal(P )
1. R := IP

2. N := IP

3. repeat
4. Z := EY[N ]
5. N := Z\R
6. R := R ∪ Z
7. until N = ∅
8. return R

Figure 2.

Algorithm fairstates(P )
1. Y := VP

2. repeat
3. Y ′ := Y
4. for FP ∈ FP

5. Z := E[Y U(Y ∧ FP )]
6. Y := Y ∧EX[Z]
7. until Y ′ = Y
8. return Y

Figure 3.

finite trace of M accepted by B. Thus, to verify that Lf (P ) = ∅, we
can just compute the set of reachable vertices and check that it does
not intersect FP . Usually, this set is found with a traversal algorithm
like the one described in Fig. 2.

Similarly, in the case of fair semantics, it is easy to see that L(P ) =
L(M)∩L(B). Moreover, every fair path of P corresponds to an infinite
trace of M accepted by B. Thus, to verify that L(P ) = ∅ we can just
compute the set of fair vertices and check that it does not intersect
IP . The standard algorithm to compute the set of fair vertices is the
Emerson-Lei algorithm (EL) described in Fig. 3 (Emerson and Lei,
1985; Emerson and Lei, 1986). SMC tools typically implement variants
of this doubly-nested fixpoint computation , cf. (Ravi et al., 2000; Fisler
et al., 2001).

2.3. GSTE algorithms

The algorithm used by GSTE to check the AG in the different seman-
tics is described in Fig. 4. The function GSTE fairstates of line 2 is
called only in the case of fair semantics and it is described in Fig. 5.
GSTE fairstates restricts the antecedent function to the states of the
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Algorithm GSTE (M,A)
1. if fair semantics
2. then A := GSTE fairstates(M,A)
3. α := ant|VI

4. for v ∈ V, α(v) := α(v) ∩ SI

5. repeat
6. α′ := α
7. for v ∈ V, α(v) := α′(v) ∪

⋃
v′∈E−(v) post(α′(v′)) ∩ ant(v)

8. until α′ = α
9. if fair semantics
10. then return α ⊆ cons
11. else return α|F ⊆ cons

Figure 4.

Algorithm GSTE fairstates(M,A)
1. repeat
2. ant′ := ant
3. for F ∈ F ,
4. for v ∈ V, α(v) :=

⋃
v′∈E(v),v′∈F pre(ant(v′)) ∩ ant(v)

5. repeat
6. α′ := α
7. for v ∈ V, α(v) := α′(v) ∪

⋃
v′∈E(v) pre(α′(v′)) ∩ ant(v)

8. until α′ = α
9. ant := α
10. until ant′ = ant
11. return A

Figure 5.

system that are extensible to fair paths. In the lines 3-9 of Fig. 4, α
is defined iteratively until a fixpoint is reached. First, α is initialized
to be the restriction of ant to the set of initial vertices and to the set
of initial states. Then, at every iteration, a state s is added to α(v) iff
s ∈ ant(v) and there exists a state s′ ∈ α(v′) such that s is reachable
from s′ in one step and v is reachable from v′ in one step. When the
fixpoint is reached, α(v) contains s iff there exists an initial path ρ of
the assertion graph and an initial trace σ of the system of the same
length l such that ρ[l] = v, σ[l] = s and σ |=ant ρ.

With an analogous fixpoint computation (lines 4-8), GSTE fairstates
finds a function α such that α(v) contains s iff there exist a path ρ of
the assertion graph and a trace σ of the system of the same length l
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such that ρ[l] ∈ F , ρ[1] = v, σ[1] = s and σ |=ant ρ. This computation
is applied for every F ∈ F and it is nested in a second fixpoint com-
putation: at every iteration the antecedent function is updated with α
until a fixpoint is reached. At the end of the outer loop, ant(v) contains
s iff there exist a fair path ρ of the assertion graph and an infinite trace
σ of the system such that σ |=ant ρ.

3. GSTE vs. SMC

In this section, we clarify the relationship between GSTE and SMC.
First, we show that AGs and BAs are equivalent. Then, we show that
the GSTE algorithm is essentially a “partitioned” version of the SMC
algorithm.

We now show that, given a BA B, one can easily find an AG A with
the complementary language and vice versa. This means that, given
a specification ϕ, one can choose either GSTE or SMC techniques to
check ϕ, no matters whether ϕ is an AG or a BA. Moreover, since BAs
are nondeterministic (i.e., existential) automata, AGs are revealed to
be their dual, which are universal automata.

The following four theorems establish the relationship between AGs
and BAs. : see App. A for the proofs. First, the following two theorems
show how to express AGs as BAs. Intuitively, the state space of an
AG is multiplied by a counter: the value 0 of the counter corresponds
to a finite path that satisfies the antecedent; the value 1 represents a
point in which the antecedent is satisfied but the consequent is violated;
the final value 2 corresponds to an accepting suffix that satisfies the
antecedent.

THEOREM 1. Let A = 〈G, ant, cons〉 be an AG where G = 〈V, VI , E,F〉
and F = {F}. Let B be the BA 〈G′,L〉, where G′ = 〈V ′, V ′

I , E′,F ′〉 s.t.

• V ′ = V × {0, 1, 2},

• V ′
I = VI × {0, 1},

• E′ = {((v1, k1), (v2, k2)) | (v1, v2) ∈ E, k2 ∈ {0, 1} if k1 = 0, and
k2 = 2 otherwise},

• F ′ = {F × {1, 2}},

L((v, k)) = ant(v) if k ∈ {0, 2}, and L((v, k)) = ant(v) ∩ (S\cons(v))
if k = 1. Then Lf (B) = S∗\Lf (A)
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12 Sebastiani, Singerman, Tonetta and Vardi

THEOREM 2. Let A = 〈G, ant, cons〉 be an AG where G = 〈V, VI , E,F〉
and F = {F1, ..., Fn}. Let B be the BA 〈G′,L〉, where G′ = 〈V ′, V ′

I , E′,F ′〉
s.t.

• V ′ = V × {0, 1, 2},

• V ′
I = VI × {0, 1},

• E′ = {((v1, k1), (v2, k2)) | (v1, v2) ∈ E, k2 ∈ {0, 1} if k1 = 0, and
k2 = 2 otherwise},

• F ′ = {F1 × {2}, ..., Fn × {2}},

L((v, k)) = ant(v) if k ∈ {0, 2}, and L((v, k)) = ant(v) ∩ (S\cons(v))
if k = 1. Then L(B) = Sω\L(A)

The following two theorems show how to express BAs as AGs.

THEOREM 3. Let B = 〈G,L〉 be a BA. Let A be the AG 〈G, ant, cons〉,
where ant = L, cons(v) = ∅ for all v ∈ V . Then Lf (B) = S∗\Lf (A)

THEOREM 4. Let B = 〈G,L〉 be a BA. Let A be the AG 〈G, ant, cons〉,
where ant = L, cons(v) = ∅ for all v ∈ V . Then L(B) = Sω\L(A)

We now compare the algorithms used by GSTE and SMC. In par-
ticular, we show that the former is essentially a “partitioned” version
of the latter.

In Section 2, we saw how SMC solves the model checking problem
for a BA B: it builds the product automaton P between M and B and
it verifies that the language of P is empty. GSTE follows an analogous
procedure for checking an AG A: it actually computes the product
between M and Bant, where Bant is a BA with the same underlying
graph G of A and the labeling function equal to ant. The only difference
between SMC and GSTE is that the latter operates on partitioned
subsets of the product state space. The partitioning is driven by the
automaton state space and we refer to such partitioning as property-
driven partitioning. The GSTE analog of a subset Q ⊆ SP is the
partition {Qv : v ∈ V }, where Qv = {s : (s, v) ∈ SP}. Indeed, every
labeling function γ can be seen as a division of the model into sets of
states, one for every vertex v of the graph, which is exactly the set
γ(v). If γ ⊆ ant, then γ turns out to represent a set Sγ ⊆ SP of states
in the product defined as follows: Sγ = {(s, v)|s ∈ γ(v)}

One can see that the lines 3-9 of the algorithm in Fig. 4 computes
the reachable states of SP . In fact, we could rewrite lines 6-8 in terms of
CTL formulas as α = α∪EY[α]. Thus, at the end of the loop, α(v) =
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Algorithm partitioned traversal(M,B)
1. α := parL(S)|F
2. β := α
3. repeat
4. γ := EX[β]
5. β = γ\α
6. α := α ∪ γ
7. until β = ∅
8. return α

Figure 6.

{s|(s, v) is reachable in SP }. This computation is actually a partitioned
version of the one of Fig. 2 with the difference that SMC applies the
post-image only to the new states added in the previous iteration, while
GSTE applies the post-image to the whole set of reached states.

In the case of fair semantics the computation of reachable states
is preceded by a pruning of the product: GSTE fairstates finds all
vertices of SP such that they are extensible to fair paths. To compare
this procedure with EL, we rewrite the operations of GSTE fairstates
in terms of CTL formulas. At the lines 4-5 of the algorithm in Fig. 5,
GSTE fairstates actually computes the preimage of ant|F (seen as a
set of states in SP ). So, we can rewrite these lines as α = EX[(ant|F )].
Furthermore, the lines 7-9 are the same as α = α ∪ (ant ∩ EX[(α)])
so that one can see the loop of lines 6-10 as α = E[(ant)U(α)]. This
reachability computation is nested in a second fixpoint computation,
so that it becomes evident that GSTE fairstates is a variant of the
EL algorithm of Fig. 3.

4. SMC vs. property-driven partitioned SMC

In Section 3, we saw that GSTE is a partitioned version of SMC. We can
also apply property-driven partitioning to standard SMC algorithms.
In particular, there are two algorithms to be partitioned: traversal
and fairstates (Fig. 2 and 3). We partitioned both of them, by us-
ing NuSMV as a platform. This choice is motivated by the fact that
NuSMV implements symbolic model checking for LTL, its source is
open, and its code is well-documented and easy to modify.

The “translated” algorithms are shown is Fig. 6 and Fig. 7. Both are
based on backward reachability and respect the structure of NuSMV’s
implementation (e.g., the order of fair sets is irrelevant). The differ-
ence with the non-partitioned versions is that while traversal and
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14 Sebastiani, Singerman, Tonetta and Vardi

Algorithm partitioned fairstates(M,B)
1. α := >;
2. repeat
3. α′ := α;
4. β := >;
5. for F ∈ F
6. β := β ∩E[αU(α ∩ parL(S)|F )];
7. α := α ∩ β;
8. α := α ∩EX[α];
9. until α′ = α
10. return α

Figure 7.

fairstates operate on a single set of states in the product automaton,
partitioned traversal and partitioned fairstates operate on an array
of sets of states of the system (one set for every vertex of the BA). Thus,
every variable in the algorithms of Fig. 6 and 7 can be considered as
a labeling function. For every set Y ⊆ S of states and labeling L, we
define the labeling function parL(Y ) such that: parL(Y )(v) = Y ∩L(v)
for all v ∈ V . The initial states of the product are given by parL(SI)|VI

.

Given a fair set F of the BA, the correspondent set in the product is
given by parL(S)|F . The backward image of a labeling function α is
given by

EX[(α)](v) =
⋃

v′∈E(v)

pre(α(v′)) ∩ L(v).

We investigated if property-driven partitioning is effective for sym-
bolic model checking. In particular, we applied the technique to LTL
model checking. In fact, it is well known that, given a formula ϕ ex-
pressed by an LTL formula, we can find a BA with the same language.
The standard LTL symbolic model checkers translate the negation of
the specification into a BA, they add the latter to the model and check
for emptiness. The goal of our experiments was to compare the perfor-
mance of partitioned and non-partitioned SMC algorithms. Thus, we
did not try to optimize the algorithms implemented in NuSMV, but to
apply to them property-driven partitioning. The question we wanted to
answer is whether the reduction in BDD size more than compensates
for the algorithmic overhead involved in handling a partitioned state-
space. This also provides an indirect comparison between GSTE and
standard SMC techniques.

To verify an LTL formula ϕ, NuSMV calls ltl2smv, which trans-
lates ¬ϕ into a symbolically represented BA with fairness constraints

main.tex; 18/10/2005; 9:02; p.14



GSTE is Partitioned Model Checking 15

F . Then, the function EFG[true] checks if the language of the prod-
uct is empty. Since NuSMV does not apply any particular technique
when ϕ is a safety formula (Kupferman and Vardi, 2001a), we en-
hanced the tool with the option -safety: when ϕ contains only the
temporal connectives X, G, and V , it constructs a predicate F on
the automaton states (representing accepting states for the comple-
mentary property) and calls the function E[trueUF ]. In the follow-
ing, we refer to this procedure and to the standard NuSMV’s proce-
dure as ‘‘NuSMV -safety’’ and ‘‘NuSMV’’ respectively. We imple-
mented the partitioned versions of both and we refer to latter ones
as ‘‘NuSMV -safety -partitioned’’ and ‘‘NuSMV -partitioned’’

respectively. The BA is built automatically by ltl2smv in the case of
non-partitioned algorithms while it is constructed by hand (in these
experiments) in the case of partitioned algorithms.

When NuSMV builds the product between the property automa-
ton and the system, it appends the symbolic variables of the property
automaton at the bottom of the variable ordering. We added an option
to NuSMV, ‘‘-topencode’’, in order to put such variables at the
top. With this change, we obtain a symbolic version of property-driven
partitioning: if indeed you have a BDD that corresponds to a subset Q
of the product and you follow an assignment to the symbolic variables
of the property automaton that corresponds to a vertex v, then the
BDD node you obtain is exactly the partition Qv of Q.

We ran our tests on three examples of SMV models (for the SMV

code, visit www.science.unitn.it/~stonetta/partitioning.html).
For every example, we chose two properties true in the model (one
safety and one liveness property, see Tab. I) and two properties that
failed (again one safety and one liveness property, see Tab. II). The first
example is a dining-philosophers protocol (Dijksta, 1972). Concurrency
is modeled with the interleaving semantics. Typically, a philosopher
iterates through a sequence of four states: she thinks, tries to pick up
the chopsticks, eats and, finally, she puts down the chopsticks. When
a deadlock condition happens, a philosopher puts the chopsticks down.
The safety property true in this example is the following: if a philoso-
pher is thinking and both her chopsticks are free and she is scheduled
for 4 steps in a row, then she will start eating. From this property,
we deduce an analogous one which fails: with the same premises, after
4 steps the philosopher does not eat. The satisfied liveness property
states that if every philosopher is scheduled infinitely often, then some-
body eats infinitely often (at least one philosopher does not starve). In
contrast, the following liveness property does not hold in the example:
if a philosopher is scheduled infinitely often, then she eats infinitely
often.
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16 Sebastiani, Singerman, Tonetta and Vardi

Table I. Satisfied properties.

Safety Liveness

Dining G((p ∧ r ∧ X(r) ∧ XX(r) ∧ X3(r)) → X4(e)) (
∧

1≤i≤N
GFri) → (GFs)

Mutex G((t1 ∧
∧

2≤i≤N
¬ti) → Xc) G(

∧
1≤ı≤N

ti → Fci)

Life G(b → Xc) G((G!b) → FG(d))

Table II. Failed properties.

Safety Liveness

Dining G((p ∧ r ∧ X(r) ∧ XX(r) ∧ X3(r)) → X4(¬e)) (GFr1) → (GFe1)

Mutex G((t1 ∧
∧

2≤i≤N
¬ti) → X¬c) F (t1 → G¬c1)

Life G(b → X¬c) F ((G!b) ∧ GF (!d))

The second example is a mutual-exclusion protocol: N processes
non-deterministically try to access the critical session. The access is
controlled by the main module, which guarantees that a process does
not wait forever. The true safety property says that, if a process is the
only one that is waiting, then it accesses the critical session in one step.
If we change this property by writing that the process does not access
the critical session in one step, we obtain the safety property that fails.
The satisfied liveness property asserts that, if a process is trying, sooner
or later it will access the critical session. We chose the negation of this
property as an example of liveness property that fails.

Finally, the third example is a variant of the game of life: at the
beginning there is only one creature; every creature has a maximum
life set to 100, but it can die non-deterministically in every moment;
when the age is between 15 and 65, a creature can bear a child, which
is born in the next step; at most N creatures can be born; when all the
creatures are dead the game is reset. The true safety property states
that, if a creature is bearing a child, then the number of born creatures
increases; the failed property states that the number decreases. The
true liveness property asserts the following: if no creature will be born
anymore, then, after a certain point in the future (likely after a reset),
the number of alive creatures will be equal to one forever. The negation
of this property corresponds exactly to the liveness property which
failed.
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We run NuSMV on the Rice Terascale Cluster (RTC)3 , a 1 Ter-
aFLOP Linux cluster based on Intel Itanium 2 Processors. Timeout
was set to 172800 seconds (two days). The results are shown in Figs.
8, 9, 10 and 11: Figs. 8 and 9 present the execution time in seconds,
while Figs. 10 and 11 present the number of allocated BDD nodes; both
quantities are plotted in log scale against the number N of processes in
the model. Every example takes a column of plots. We plotted safety
property in the first column and liveness properties in the second col-
umn. First compare the partitioned version with the non-partitioned
one with regard to the verification time. As for satisfied properties (Fig.
8), we notice that, in the first two rows (dining philosophers and mutual
exclusion), the former outperforms the latter. Moreover, in the case of
the safety property for dining philosophers and the liveness property for
mutual exclusion, the gap is exponential, i.e. the ratio between the two
execution times grows exponentially with the size of the model. In the
third row (life), NuSMV does not seem to get relevant benefit from the
property-driven partitioning (even if you should notice that, in the last
point of the liveness case, ‘‘NuSMV’’ runs out of time). Similarly, in
the case of failed properties, the partitioned version always outperforms
the non-partitioned one (see Fig. 9). Moreover, in the case of liveness
properties, the improvement is exponential for all three examples.

In Figs. 10 and 11, we can compare the amount of memory required
by the different versions of NuSMV. Again, partitioning generally re-
duces memory requirement, sometimes quite significantly.

Finally, comparing the effect of ‘‘-topencode’’ on NuSMV, we
notice that it usually worsens (as in Fig. 8) or it does not affect (as
in Fig. 9) the execution time. As for space requirements, only in two
cases (bottom right plots of Figs. 10 and Figs. 11) we have an evident
improvement.

5. Conclusions

Our contributions in this work are two-fold. First, we elucidate the
relationship between GSTE and SMC. We show that assertion graphs
are simply universal automata, or, viewed dually, are nondeterminis-
tic automata for the complementary properties. Furthermore, GSTE
algorithms are essentially a partitioned version of standard SMC algo-
rithms, where the partitioning is static and is driven by the property un-
der verification. Second, we exported the technique of property-driven
partitioning to SMC and showed its effectiveness in the framework of
NuSMV.

3 See www.citi.rice.edu/rtc/
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Figure 8. Satisfied properties of Tab. I. X axis: number of processes. Y axis: time.
Left column: performances of ‘‘NuSMV -safety’’, ‘‘NuSMV -safety -topencode’’

and ‘‘NuSMV -safety -partitioned’’ on safety properties. Right column: per-
formances of ‘‘NuSMV’’, ‘‘NuSMV -topencode’’ and ‘‘NuSMV -partitioned’’ on
liveness properties. 1st row: dining-philosophers example. 2nd row: mutex example.
3rd row: life example.

This work opens us several directions for future work. First, we have
to further investigate and understand the performance advantage of
property-driven partitioning. Second, we need to combine the tool with
an automated generator of explicit BAs for LTL formulas and evaluate
property-driven partitioning for more complex LTL properties. Third,
it requires revisiting the issue of translating LTL formulas to BAs. Pre-
vious translations have focused on making the BA smaller (cf. (Gerth
et al., 1995; Daniele et al., 1999; Somenzi and Bloem, 2000; Fritz, 2003))
or more deterministic (Sebastiani and Tonetta, 2003). The relative
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Figure 9. Same pattern as in Fig. 8 but with the failed properties of Tab. II.

merit of the two approaches has to be investigated in the context
of property-partitioned SMC. Fourth, it requires revisiting the issue
of symbolic fair-cycle detection. Previous works have compared var-
ious variations of the EL algorithm, as well as non-EL algorithms,
cf. (Bloem et al., 2000; Ravi et al., 2000; Fisler et al., 2001). This
has to be re-evaluated for property-partitioned SMC. Finally, a major
topic of research in the last few years has been that of property-driven
abstraction in model checking, (Clarke et al., 2000; Govindaraju and
Dill, 2000). The combination of this technique with property-driven
partitioning is also worth of investigation, which could benefit from
the study of abstraction in GSTE (Yang and Seger, 2002; Yang and
Goel, 2002).
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Figure 10. Same pattern as in Fig. 8 but with the number of allocated BDD nodes
on the Y axis.
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Figure 11. Same pattern as in Fig. 10 but with the failed properties of Tab. II.
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Appendix

A. Proofs

Proof of Theorem 1.
Suppose σ ∈ S∗\Lf (A). Then there exists ρ ∈ Lf (G) s.t. |σ| = |ρ| = l,
ρ[l] ∈ F and σ 6|=A ρ, i.e. σ |=ant ρ and σ 6|=cons ρ. In particular,
σ[h] ∈ ant(ρ[h]) for all 1 ≤ h ≤ l and there exists i, 1 ≤ i ≤ l, s.t.
σ[i] 6∈ cons(ρ[i]). Let ρ′ = (ρ[1], 0), ..., (ρ[l − 1], 0), (ρ[l], 1) if i = l, ρ′ =
(ρ[1], 0), ..., (ρ[i−1], 0), (ρ[i], 1), (ρ[i+1], 2), ..., (ρ[l], 2) otherwise. Thus,
ρ′ is a path of B, ρ′[l] ∈ F × {1, 2} and σ |=L ρ′, so that σ ∈ Lf (B).
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Suppose now σ ∈ Lf (B). Then there exists ρ′ ∈ Lf (G′) s.t. |σ| =
|ρ′| = l, ρ′(l) ∈ F × {1, 2} and σ |=L ρ. Since ρ′[1] ∈ V × {0, 1} and
ρ′[l] ∈ V ×{1, 2}, there must exist i, 1 ≤ i ≤ l, s.t. ρ′[i] ∈ V ×{1}. If ρ
is the projection of ρ′ on the first component, we have σ[h] ∈ ant(ρ[h])
for all 1 ≤ h ≤ l and σ[i] 6∈ cons(ρ[l]). Thus, we have that σ |=ant ρ
and σ 6|=cons ρ, so that σ 6|=A ρ.

Proof of Theorem 2.
Suppose σ ∈ Sω\L(A). Then there exists a fair path ρ ∈ L(G) s.t. σ 6|=A

ρ, i.e. σ |=ant ρ and σ 6|=cons ρ. In particular, σ[h] ∈ ant(ρ[h]) for all
h > 0 and there exists i s.t. σ[i] 6∈ cons(ρ[i]). If ρ′ = (ρ[1], 0), ..., (ρ[i −
1], 0), (ρ[i], 1), (ρ[i+1], 2), (ρ[i+2], 2), ..., then ρ′ is a path of B, ρ′ visits
infinitely often every Fj × {2} ∈ F ′ and σ |=L ρ′, so that σ ∈ L(B).

Suppose now σ ∈ L(B). Then there exists a fair path ρ′ ∈ L(G′) s.t.
σ |=L ρ. Since ρ′ starts from V ×{0, 1} and visits V ×{2}, there exists
i s.t. ρ′(i) ∈ V ×{1}. If ρ is the projection of ρ′ on the first component,
we have σ[h] ∈ ant(ρ[h]) for all h > 0 and σ[i] 6∈ cons(ρ[i]). Thus, we
have that σ |=ant ρ and σ 6|=cons ρ so that σ 6|=A ρ.

Proof of Theorem 3.
Suppose σ ∈ S∗\Lf (A). Then there exists ρ ∈ Lf (G) s.t. |σ| = |ρ| = l,
ρ[l] ∈ F and σ 6|=A ρ, i.e. σ |=ant ρ and σ 6|=cons ρ. In particular, σ |=L ρ.
Thus, σ ∈ Lf (B).

Suppose now σ ∈ Lf (B). Then there exists ρ ∈ Lf (G) s.t. |σ| =
|ρ| = l, ρ[l] ∈ F and σ |=L ρ. Since σ[1] 6∈ cons(ρ[1]), σ 6|=cons ρ. Thus,
we have that σ |=ant ρ and σ 6|=cons ρ so that σ 6|=A ρ.

Proof of Theorem 4.
Suppose σ ∈ Sω\L(A). Then there exists an initial fair path ρ ∈ L(G)
s.t. σ 6|=A ρ, i.e. σ |=ant ρ and σ 6|=cons ρ. In particular, σ |=L ρ. Thus,
σ ∈ L(B).

Suppose now σ ∈ L(B). Then there exists an initial fair path ρ ∈
L(G) s.t. σ |=L ρ. Since σ[1] 6∈ cons(ρ[1]), σ 6|=cons ρ. Thus, we have
that σ |=ant ρ and σ 6|=cons ρ so that σ 6|=A ρ.
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