

UNIVERSITY
OF TRENTO

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.disi.unitn.it

AXIOM PINPOINTING IN LIGHTWEIGHT DESCRIPTION LOGICS
VIA HORN-SAT ENCODING AND CONFLICT ANALYSIS

Roberto Sebastiani and Michele Vescovi

First version: March 2009
Last revision: July 2009

Technical Report # DISI-09-014

.

Axiom Pinpointing in Lightweight Description Logics
via Horn-SAT Encoding and Con�ict Analysis

Roberto Sebastiani and Michele Vescovi

DISI, Università di Trento, Via Sommarive 14, I-38123, Povo, Trento, Italy.
{rseba,vescovi}@disi.unitn.it

Abstract. The recent quest for tractable logic-based languages arising
from the �eld of bio-medical ontologies has raised a lot of attention on
lightweight (i.e. less expressive but tractable) description logics, like EL
and its family. To this extent, automated reasoning techniques in these
logics have been developed for computing not only concept subsump-
tions, but also to pinpoint the set of axioms causing each subsumption.
In this paper we build on previous work from the literature and we pro-
pose and investigate a simple and novel approach for axiom pinpointing
for the logic EL+. The idea is to encode the classi�cation of an ontology
into a Horn propositional formula, and to exploit the power of Boolean
Constraint Propagation and Con�ict Analysis from modern SAT solvers
to compute concept subsumptions and to perform axiom pinpointing. A
preliminary empirical evaluation com�rms the potential of the approach.

1 Motivations and goals

In contrast to the trend of the last two decades [3], in which the research in
description logic has focused on investigating increasingly expressive logics, the
recent quest for tractable logic-based languages arising from the �eld of bio-
medical ontologies has attracted a lot of attention on lightweight (i.e. less ex-
pressive but tractable) description logics, like EL and its family [1,4,6,12,16,2].
In particular, the logic EL+ [4,6,7] extends EL and is of particular relevance due
to its algorithmic properties and due to its capability of expressing several im-
portant and widely-used bio-medical ontologies, such as Snomed-CT [24,23,26],
NCI [22], GeneOntology [8] and the majority of Galen [17]. In fact in
EL+ not only standard logic problems such as concept subsumption (e.g., �is
Amputation-of-Finger a subconcept of Amputation-of-Arm in the ontology
Snomed-CT?� [7]), but also more sophisticated logic problems such as axiom
pinpointing are tractable. (E.g., �Find a minimal set of axioms in Snomed-CT
which are responsible of the fact that Amputation-of-Finger is a subconcept
of Amputation-of-Arm?� [7]) Importantly, the problem of axiom pinpointing in
EL+ is of great interest for debugging complex bio-medical ontologies (see, e.g.,
[7]). To this extent, the problems of concept subsumption and axiom pinpointing
in EL+ have been thoroughly investigated, and e�cient algorithms for these two

functionalities have been implemented and tested with success on large ontolo-
gies, including Snomed-CT (see e.g. [4,6,7]).

The description logic community has spent a considerable e�ort in the at-
tempt of extending EL as much as possible, de�ning a maximal subset of logical
constructors expressive enough to cover the needs of the practical applications
above mentioned, but whose inference problems remain tractable. Beside the
logic EL+ [4], on which we focus in this work, many other extension of EL have
been studied [1,2].

In this paper we build on previous work from the literature of EL+ reasoning
[4,6,7] and of SAT and SMT [15,27,11,13,18], and propose a simple and novel
approach for (concept subsumption and) axiom pinpointing in EL+�and hence
in its sub-logics EL and ELH. In a nutshell, the idea is to generate polynomial-
size Horn propositional formulas representing part or all the deduction steps
performed by the classi�cation algorithms of [4,6], and to manipulate them
by exploiting the functionalities of modern con�ict-driven SAT/SMT solvers �
like Boolean Contraint Propagation (BCP) [15], con�ict analysis under assump-
tions [15,11], and all-SMT [13]. In particular, we show that from an ontology
T it is possible to generate in polynomial time Horn propositional formulas φT ,
φone
T and φall

T (po) of increasing size s.t., for every pair of primitive concepts Ci, Di:

(i) concept subsumption is performed by one run of BCP on φT or φone
T ;

(ii) one non-minimal set of axioms (nMinA) responsible for the derivation of
Ci vT Di is computed by one run of BCP and con�ict analysis on φone

T
or φall

T (po);
(iii) one minimal such set (MinA) is computed by iterating process (ii) on φall

T (po)

for an amount of times up-to-linear in the size of the �rst nMinA found;
(iv) the same task of (iii) can also be computed by iteratively applying process (ii)

on an up-to-linear sequence of increasingly-smaller formulas φone
T ,φone

S1
,...,φone

Sk
;

(v) all MinAs can be enumerated by means of all-SMT techniques on φall
T (po),

using step (iii) as a subroutine.

It is worth noticing that (i) and (ii) are instantaneous even with huge φT , φone
T

and φall
T (po), and that (v) requires building a polynomial-size formula φall

T (po), in
contrast to the exponential-size formula required by the all-MinAs process of [6].

We have implemented a prototype tool and performed a preliminary empirical
evaluation on the available ontologies, whose results con�rm the potential of our
novel approach.

Content. In �2 we provide the necessary background on EL+ reasoning and
on con�ict-driven SAT solving; in �3 we present our SAT-based procedures for
concept subsumption, one-MinA extraction and all-MinAs enumeration; in �4 we
discuss our techniques and compare them with those in [6]; in �5 we present our
preliminary empirical evaluation, in �6 we draw some conclusions and outline
directions for future research.

Syntax Semantics
top > ∆I

conjunction X u Y XI ∩ Y I

existential restriction ∃r.X {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ XI}
general concept inclusion X v Y XI ⊆ Y I

role inclusion r1 ◦ · · · ◦ rn v s rI1 ◦ · · · ◦ rIk ⊆ sI

Table 1. Syntax and semantics of EL+.

2 Background
2.1 Classi�cation, Subsumption and Axiom Pinpointing in EL+

We overview the main notions concerning concept subsumption, classi�cation,
and axiom pinpointing in EL+.

The Logic EL+. The description logic EL+ belongs to the EL family, a group
of lightweight description logics which allow for conjunctions, existential restric-
tions and support TBox of GCIs (general concept inclusions) [4]; EL+ extends
EL adding complex role inclusion axioms. In more details, the concept descrip-
tions in EL+ are inductively de�ned through the constructors listed in the upper
part of Table 1, starting from a set of primitive concepts and a set of primitive
roles. (We use the uppercase letters X, Xi, Y , Yi, to denote generic concepts,
the uppercase letters C, Ci, D, Di, E, Ei to denote concept names and the
lowercase letters r, ri, s to denote role names.) An EL+ TBox (or ontology) is
a �nite set of general concept inclusion (GCI) and role inclusion (RI) axioms as
de�ned in the lower part of Table 1. Given a TBox T , we denote with PCT the
set of the primitive concepts for T , i.e. the smallest set of concepts containing:
(i) the top concept >; (ii) all concept names used in T . We denote with PRT
the set of the primitive roles for T , i.e. the set of all the role names used in T .
We use the expression X ≡ Y as an abbreviation of the two GCIs X v Y and
Y v X.

The semantics of EL+ is de�ned in terms of interpretations. An interpretation
I is a couple I = (∆I , ·I), where ∆I is the domain, i.e. a non-empty set of
individuals, and ·I is the interpretation function which maps each concept name
C to a set CI ⊆ ∆I and maps each role name r to a binary relation rI ⊆
∆I ×∆I . In the right-most column of Table 1 the inductive extensions of ·I to
arbitrary concept descriptions are de�ned. An interpretation I is a model of a
given TBox T if and only if the conditions in the Semantics column of Table 1
are respected for every GCI and RI axiom in T . A TBox T ′ is a conservative
extension of the TBox T if every model of T ′ is also a model of T , and every
model of T can be extended to a model of T ′ by appropriately de�ning the
interpretations of the additional concept and role names.

Given the concepts X and Y , Y subsumes X w.r.t. the TBox T , written
X vT Y (or simply X v Y when it is clear to which TBox we refer to),

Subsumption assertions (. . . ∈ A) TBox's axioms (. . . ∈ T) ... added to A
X v C1, X v C2, ..., X v Ck k ≥ 1 C1 u · · · u Ck v D X v D

X v C C v ∃r.D X v ∃r.D
X v ∃r.E, E v C ∃r.C v D X v D

X v ∃r.D r v s X v ∃s.D
X v ∃r1.E1, ..., En−1 v ∃rn.D n ≥ 1 r1 ◦ · · · ◦ rn v s X v ∃s.D
Table 2. Completion rules of the concept subsumption algorithm for EL+. A rule reads
as follows: if the assertions/axioms in the left column belong to A, the GCI/RI of the
central column belongs to T , and the assertion of the right column is not already in
A, then the assertion of the right column is added to A.

i� XI ⊆ Y I for every model I of T . The computation of all subsumption
relations between concept names occurring in T is called classi�cation of T .
Concept subsumption and classi�cation in EL+ can be performed in polynomial
time [1,6]. In particular, in [1,6], the problem of classifying an EL+ TBox is
solved as a subcase of the polynomial-time algorithm for concept subsumption
in which all the possible concept subsumptions in the TBox are deduced.

Normalization. In EL+ it is convenient to establish and work with a normal
form of the input problem, which helps to make explanations, proofs, reasoning
rules and algorithms simpler and more general. Usually the following normal
form for the EL+ TBoxes is considered [1,4,5,6]:

(C1 u ... u Ck) v D k ≥ 1 (1)
C v ∃r.D (2)

∃r.C v D (3)
r1 ◦ · · · ◦ rn v s n ≥ 1 (4)

s.t. C1, ..., Ck, D ∈ PCT and r1, ..., rn, s ∈ PRT . A TBox T can be turned into a
normalized TBox T ′ that is a conservative extension of T [1], by introducing new
concept names. In a nutshell, normalization consists in substituting all instances
of complex concepts of the forms ∃r.C and C1u ...uCk with fresh concept names
(namely, C ′ and C ′′), and adding the axioms C ′ v ∃r.C [resp. ∃r.C v C ′] and
C ′′ v C1, ..., C

′′ v Ck [resp. (C1 u ... u Ck) v C ′′] for every substitution in the
right [resp. left] part of an axiom. This transformation can be done in linear
time and the size of T ′ is linear w.r.t. that of T [1]. We call normal concept
of a normal TBox T ′ every non-conjunctive concept description occurring in
the concept inclusions of T ′; we call NC′T the set of all the normal concepts of
T ′. (I.e., the set NC′T consists in all the concepts of the form C or ∃r.C, with
C ∈ PCT ′ and r ∈ PRT ′ .)

Concept subsumption in EL+. Given a normalized TBox T over the set
of primitive concepts PCT and the set of primitive roles PRT , the subsumption

algorithm for EL+ [6] generates and extends a set A of assertions through the
completion rules de�ned in Table 2. (By �assertion� we mean every known or
deduced subsumption relation between normal concepts of the TBox T .) The
algorithm starts with the initial set A = {ai ∈ T | ai is a GCI} ∪ {C v C | C ∈
PCT } ∪ {C v > | C ∈ PCT } and extends A using the rules of Table 2 until no
more assertions can be added. (Notice that a rule is applied only if it extends
A.)

In [1] the soundness and completeness of the algorithm are proved, together
with the fact that the algorithm terminates after polynomially-many rule appli-
cations, each of which can be performed in polynomial time. Intuitively, since
the number of concept and role names is linear in the size of the input TBox,
the algorithm cannot add to A more than the cardinality of PCT × PCT × PRT
assertions. Thus, since no rule removes assertions from A, the algorithm stops
after at most a polynomial number of rule applications. Moreover, it is easy to
device that every rule application can be performed in polynomial time.

Once a complete classi�cation of the normalized TBox is computed and stored
in some ad-hoc data structure, if C,D ∈ PCT , then C vT D i� the pair C,D
can be retrieved from the latter structure. The problem of computing X vT Y
s.t. X,Y 6∈ PCT can be reduced to that of computing C vT ∪{CvX,YvD} D, s.t.
C and D are two new concept names.

Axiom Pinpointing in EL+. We consider Ci, Di ∈ PCT s.t. Ci vT Di. We
call S s.t. S ⊆ T a (possibly non-minimal) axiom set for Ci v Di wrt. T , written
nMinA, if Ci vS Di; we call an nMinA S a minimal axiom set for Ci v Di,
written MinA, if Ci 6vS′ Di for every S ′ s.t. S ′ ⊂ S.

Baader et al. [6] proposed a technique for computing all MinAs for T wrt.
Ci vT Di, which is based on building from a classi�cation of T a pinpointing
formula (namely ΦCivT Di), which is a monotone propositional formula on the
set of propositional variables PT def= {s[axj] | axj ∈ T } s.t., for every O ⊆ T , O is
a MinA wrt. Ci vT Di i� {s[axi] | axi ∈ O} is a minimal valuation of ΦCivT Di . 1

Thus, the all-MinAs algorithm in [6] consists in (i) building ΦCivT Di and (ii)
computing all minimal valuations of ΦCivT Di . According to [6], however, this
algorithm has serious limitations in terms of complexity: �rst, the algorithm
for generating ΦCivT Di requires intermediate logical checks, each of them in-
volving the solution of an NP-complete problem; second, the size of ΦCivT Di

can be exponential wrt. that of T . More generally, [6] proved also that there
is no output-polynomial algorithm for computing all MinAs (unless P=NP).
(To the best of our knowledge, there is no publicly-available implementation
of the all-MinAs algorithm above.) Consequently, [6] concentrated the e�ort
on �nding polynomial algorithms for �nding one MinA at a time, proposing a
linear-search minimization algorithm which allowed for �nding MinAs for full-
Galen e�ciently. This technique was further improved in [7] by means of a
binary-search minimization algorithm, and by a novel algorithm exploiting the
1 A monotone propositional formula is a formula whose only connectives are ∧ and ∨.

notion of reachability-modules, which allowed to �nd e�ciently MinAs for the
much bigger Snomed-CT ontology. We refer the readers to [6,7] for a detailed
description.

Further, in a very-recent work [25] the all-MinAs problem is solved with
a di�erent approach based on the techniques of the Hitting Set Tree (HST),
where the universal set is the whole ontology and the set of the all MinAs
is collection of the minimal subsets to be found. In particular the hitting set
tree is expanded along the algorithm computing, at the end, all the MinAs
for the given subsumption. In this approach the optimized algorithm and the
linear minimization algorithm above exposed are used as subroutines respectively
to initialize the algorithm and to minimize the sets found. However, also this
techniques has the major drawback of performance in large-scale ontologies, thus
it has been implemented and succeeded in �nding all-MinAs in combination with
the reachability-modules extraction technique wich drastically reduces the search
space of the HST algorithm. We refer the readers to [25] for a richer explanation
and detailed explanation of the approach.

2.2 Basics on Con�ict-Driven SAT Solving

For the best comprehension of the content of �3, we recall some notions on SAT
and on con�ict-driven SAT solving. For a much deeper description, we refer the
reader to the literature (e.g., [28,11,14]).

Basics on SAT and notation. We assume the standard syntactic and semantic
notions of propositional logic. Given a non-empty set of primitive propositions
P = {p1, p2, . . .}, the language of propositional logic is the least set of formulas
containing P and the primitive constants > and ⊥ (�true� and �false�) and closed
under the set of standard propositional connectives {¬,∧,∨,→,↔}. We call a
propositional atom every primitive proposition in P, and a propositional literal
every propositional atom (positive literal) or its negation (negative literal). We
implicitly remove double negations: e.g., if l is the negative literal ¬pi, by ¬l we
mean pi rather than ¬¬pi. We represent a truth assignment µ as a conjunction of
literals

∧
i li (or analogously as a set of literals {li}i) with the intended meaning

that a positive [resp. negative] literal pi means that pi is assigned to true [resp.
false].

A propositional formula is in conjunctive normal form, CNF, if it is written
as a conjunction of disjunctions of literals:

∧
i

∨
j lij . Each disjunction of literals∨

j lij is called a clause. Notationally, we often write clauses as implications:
�(

∧
i li) → (

∨
j lj)� for �

∨
i ¬li ∨

∨
j lj�; also, if η is a conjunction of literals

∧
i li,

we write ¬η for the clause
∨

i ¬li, and vice versa.
A unit clause is a clause with only one literal. A Horn clause is a clause

containing at most one positive literal, and a Horn formula is a conjunction of
Horn clauses. Notice that Horn clauses are either unary positive clauses, or they
contain at least one negative literal. A de�nite Horn clause is a non-unary Horn
clause containing exactly one positive literal (and hence at least one negative

1. SatValue DPLL (formula ϕ, assignment µ)
2. while (1)
3. while (1)
4. status = bcp(ϕ, µ);
5. if (status == sat)
6. return sat;
7. else if (status == conflict)
8. blevel = analyze_conflict(ϕ, µ);
9. if (blevel == 0) return unsat;
10. else backtrack(blevel,ϕ, µ);
11. else break;
12. decide_next_branch(ϕ, µ);

Fig. 1. Schema of a con�ict-driven DPLL SAT solver.

one), and a a de�nite Horn formula is a conjunction of de�nite Horn clauses. (In-
tuitively, de�nite Horn formulas represents sets of implications between Boolean
variables (

∧n
i=1 pi) → pj s.t. n > 0.) Notice that a de�nite Horn formula φ is

always satis�able, since it is satis�ed by both the assignments µ> and µ⊥ which
assign all variables to true and false respectively. Notice also that, for every sub-
set {pi}i of Boolean variables in φ, φ ∧∧

i pi and φ ∧
∧

i ¬pi are satis�ed by µ>
and µ⊥ respectively. Thus, in order to falsify a de�nite Horn formula φ, it is
necessary to add to it at least one positive and one negative literal.

The problem of detecting the satis�ability of a propositional CNF formula,
also referred as the SAT problem, is NP-complete. A SAT solver is a tool able to
solve the SAT problem. The problem of detecting the satis�ability of a proposi-
tional Horn formula, also referred as the Horn-SAT problem, is polynomial.

Con�ict-driven SAT solving. Most state-of-the-art SAT procedures are evo-
lutions of the Davis-Putnam-Longeman-Loveland (DPLL) procedure [10,9] and
they are based on the con�ict-driven paradigm [21,27]. A high-level schema of
a modern con�ict-driven DPLL engine, adapted from the one presented in [28],
is shown in Figure 1. The propositional formula ϕ is in CNF; the assignment µ
is initially empty, and it is updated in a stack-based manner.

In the main loop, decide_next_branch(ϕ, µ) (line 12.) chooses an unas-
signed literal l from ϕ according to some heuristic criterion, and adds it to µ.
(This operation is called decision, l is called decision literal and the number of
decision literals in µ after this operation is called the decision level of l.) In the
inner loop, bcp(ϕ, µ) iteratively deduces literals l from the current assignment
and updates ϕ and µ accordingly; this step is repeated until either µ satis�es
ϕ, or µ falsi�es ϕ, or no more literals can be deduced, returning sat, conflict
and unknown respectively. In the �rst case, DPLL returns sat. In the second case,
analyze_conflict(ϕ, µ) detects the subset η of µ which caused the con�ict
(con�ict set) and the decision level blevel to backtrack. (This process is called
con�ict analysis, and is described in more details below.) If blevel is 0, then

a con�ict exists even without branching, so that DPLL returns unsat. Otherwise,
backtrack(blevel, ϕ, µ) adds the blocking clause ¬η to ϕ (learning) and back-
tracks up to blevel (backjumping), popping out of µ all literals whose decision
level is greater than blevel, and updating ϕ accordingly. In the third case, DPLL
exits the inner loop, looking for the next decision.

bcp is based on Boolean Constraint Propagation (BCP), that is, the iterative
application of unit propagation: if a unit clause l occurs in ϕ, then l is added to
µ, all negative occurrences of l are declared false and all clauses with positive
occurrences of l are declared satis�ed. Current SAT solvers include extremely
fast implementations of bcp based on the two-watched-literal scheme [15]. Notice
that a complete run of bcp requires an amount of steps which is at most linear in
the number of clauses containing the negation of some of the propagated literals.

analyze_conflict works as follows [21,15,27]. Each literal is tagged with
its decision level, that is, the literal corresponding to the nth decision and the
literals derived by unit-propagation after that decision are labeled with n; each
non-decision literal l in µ is also tagged by a link to the clause ψl causing its unit-
propagation (called the antecedent clause of l). When a clause ψ is falsi�ed by
the current assignment �in which case we say that a con�ict occurs and ψ is the
con�icting clause� a con�ict clause ψ′ is computed from ψ s.t. ψ′ contains only
one literal lu which has been assigned at the last decision level. ψ′ is computed
starting from ψ′ = ψ by iteratively resolving ψ′ with the antecedent clause ψl of
some literal l in ψ′ (typically the last-assigned literal in ψ′, see [28]), until some
stop criterion is met. E.g., with the 1st-UIP Scheme the last-assigned literal in
ψ′ is the one always picked, and the process stops as soon as ψ′ contains only
one literal lu assigned at the last decision level; with the Decision Scheme, ψ′
must contain only decision literals, including the last-assigned one.

If ϕ is a Horn formula, then one single run of bcp is su�cient to decide the
satis�ability of ϕ. In fact, if bcp(ϕ, {}) returns conflict, then ϕ is unsatis�able;
otherwise ϕ is satis�able because, since all unit clauses have been removed from
ϕ, all remaining clauses contain at least one negative literal, so that assigning
all unassigned literals to false satis�es ϕ.

Con�ict-driven SAT solving under assumptions. The schema in Figure 1
can be adapted to check also the satis�ability of a CNF propositional formula
ϕ under a set of assumptions L def= {l1, ..., lk}. (From a purely-logical viewpoint,
this corresponds to check the satis�ability of

∧
li∈L li ∧ ϕ.) This works as fol-

lows: l1, ..., lk are initially assigned to true, they are tagged as decision literals
and added to µ, then the decision level is reset to 0 and DPLL enters the ex-
ternal loop. If

∧
li∈L li ∧ ϕ is consistent, then DPLL returns sat; otherwise, DPLL

eventually backtracks up to level 0 and then stops, returning conflict. Impor-
tantly, if analyze_conflict uses the Decision Scheme mentioned above, then
the �nal con�ict clause will be in the form

∨
lj∈L′ ¬lj s.t. L′ is the (possibly

much smaller) subset of L which actually caused the inconsistency revealed by
the SAT solver (i.e., s.t.

∧
lj∈L′ lj ∧ ϕ is inconsistent). In fact, at the very last

branch, analyze_conflict will iteratively resolve the con�icting clause with

the antecedent clauses of the unit-propagated literals until only decision literals
are left: since this con�ict has caused a backtrack up to level 0, these literals are
necessarily all part of L.

This technique is very useful in some situations. First, sometimes one needs
checking the satis�ability of a (possibly very big) formula ϕ under many di�erent
sets of assumptions L1, ...,LN . If this is the case, instead of running DPLL on∧

li∈Lj
li ∧ ϕ for every Lj �which means parsing the formulas and initializing

DPLL from scratch each time� it is su�cient to parse ϕ and initialize DPLL only
once, and run the search under the di�erent sets of assumptions L1, ...,LN . This
is particularly important when parsing and initialization times are relevant wrt.
solving times. In particular, if ϕ is a Horn formula, solving ϕ under assumptions
requires only one run of bcp, whose computational cost depends linearly only on
the clauses where the unit-propagated literals occur.

Second, this technique can be used in association with the use of selector
variables: all the clauses ψi of ϕ can be substituted by the corresponding clauses
si → ψi, all sis being fresh variables, which are initially assumed to be true (i.e.,
L = {si | ψi ∈ ϕ}). If ϕ is unsatis�able, then the �nal con�ict clause will be
of the form

∨
sk∈L′ ¬sk, s.t. {ψk |sk ∈ L′} is the actual subset of clauses which

caused the inconsistency of ϕ. This technique is used to compute unsatis�able
cores of CNF propositional formulas [14].

3 Axiom Pinpointing via Horn SAT and Con�ict Analysis

In this section we present our novel contributions. Since our work is inspired by
that in [6], we follow the same �ow of that paper. We assume that T is the result
of a normalization process, as described in �2.1. (We will consider the issue of
normalization at the end of �3.2.)

3.1 Classi�cation and Concept Subsumption via Horn SAT solving

We consider �rst the problem of concept subsumption. We build a Horn proposi-
tional formula φT representing the classi�cation of the input ontology T . A basic
encoding works as follows. For every normalized concept X in NCT we introduce
one fresh Boolean variable p[X] which is uniquely-associated to X. We initially
set φT to be the empty set of clauses. We run the classi�cation algorithm of �2.1:
for every non-trivial 2 axiom or assertion ai of the form (1)-(3) which is added
to A, we add to φT one clause EL+2sat(ai) of the form

p[C1] ∧ ... ∧ p[Ck] → p[D] k ≥ 1 (5)
p[C] → p[∃r.D] (6)

p[∃r.C] → p[D] (7)
2 We do not encode axioms of the form C v C and C v > because they generate valid
clauses p[C] → p[C] and p[C] → >.

respectively. Notice that (5)-(7) are de�nite Horn clauses. It follows straight-
forwardly that C vT D if and only if the Horn formula φT ∧ p[C] ∧ ¬p[D] is
unsatis�able, for every pair of concepts C, D in PCT . (See Theorem 1 in Ap-
pendix A for more details and a formal proof.) Notice that φT is polynomial wrt.
the size of T , since the algorithm of �2.1 terminates after a polynomial number
of rule applications.

A more compact encoding, namely φ?
T , is possible since we notice that the

�rst two completion rules in Table 2 (which we call propositional completion
rules hereafter) correspond to purely-propositional inference steps. Thus, we can
omit adding to φ?

T the clauses encoding assertions deriving from propositional
completion rules, because these clauses are entailed by the clauses encoding the
promises of the rules. Therefore, every clause ψ in φT \φ?

T is s.t. φ?
T |= ψ, so that

φ?
T is equivalent to φT . Thus, as before, C vT D if and only if φ?

T ∧ p[C] ∧¬p[D]

is unsatis�able. In order to improve the reduction in size, in the classi�cation
algorithm of �2.1 one can adopt a heuristic strategy of applying propositional
completion rules �rst: if one assertion can be derived both from a propositional
and a non-propositional rule, the �rst is applied, and no clause is added to φT .

Once φT has been generated, in order to perform concept subsumption
we exploit the techniques of con�ict-driven SAT solving under assumptions
described in �2.2: once φT is parsed and DPLL is initialized, each subsump-
tion query Ci vT Di corresponds to solving φT under the assumption list
Li

def= {¬p[Di], p[Ci]}. This corresponds to one single run of bcp, whose cost
depends linearly only on the clauses where the unit-propagated literals occur.
In practice, if the basic encoding was used, or if Ci vT Di has been inferred
by means of a non-propositional rule, then φT contains the clause p[Ci] → p[Di],
so that bcp stops as soon as ¬p[Di] and p[Ci] are unit-propagated; if instead the
more compact encoding was used and Ci vT Di has been inferred by means of
a (chain of) propositional rule(s), then bcp stops as soon as the literals involved
in this chain have been unit-propagated. In both cases, as discussed in �2.2, each
query is instantaneous even for a huge φT .

3.2 Computing single and all MinAs via Con�ict Analysis
We consider the general problem of generating MinAs. We build another Horn
propositional formula φall

T representing the complete classi�cation DAG of the
input normalized ontology T . 3 The size of φall

T is polynomial wrt. that of T .

Building the formula φall
T . For every normalized concept X in NCT we intro-

duce one fresh Boolean variable p[X] which is uniquely-associated to X; further
(selector) Boolean variables will be introduced, through the steps of the algo-
rithm, to uniquely represent axioms and assertions. We initially set φall

T to
the empty set of clauses. Then we run an extended version of the classi�cation
algorithm of �2.1:
3 Here �complete� means �including also the rule applications generating already-
generated assertions�.

1. for every RI axiom ai we introduce the axiom selector variable s[ai]; for every
GCI axiom ai of the form C v C or C v >, s[ai] is the �true� constant >;

2. for every non-trivial GCI axiom ai we add to φall
T a clause of the form

s[ai] → EL+2sat(ai) (8)

s.t. s[ai] is the axiom selector variable for ai and EL+2sat(ai) is the clause
encoding ai, as in (5)-(7);

3. for every application of a rule (namely r) generating some assertion gen(r)
(namely ai) which was not yet present in A (and thus adding ai to A), we
add to φall

T a clause (8) and a clause of the form

(
∧

aj∈ ant(r)

s[aj]) → s[ai] (9)

s.t. s[ai] (that is s[gen(r)]) is the selector variable for ai and ant(r) are the
antecedents of ai wrt. rule r (that is, the assertions and the RI or GCI axiom
in the left and central columns of Table 2 for rule r respectively);

4. for every application of a rule (namely r) generating some assertion gen(r)
(namely ai) which was already present in A (and thus not adding ai to A),
we add to φall

T only a clause of the form (9).

Notice that (8) and (9) are de�nite Horn clauses since all (5)-(7) are de�nite Horn
clauses. (We call (8) and (9) assertion clauses and rule clauses respectively.)
Notice also that step 4. is novel wrt. the classi�cation algorithm of �2.1. Notice
also that, if the rule clauses (9) were not added to φall

T , then φall
T ∧∧

ai∈T s[ai]

would be simply a conservative extension of φT .
In order to ensure termination, we perform step 3. and 4. in a queue-based

manner, which assures that every possible distinct (i.e. with di�erent antecedents)
rule application is applied only once. This can be achieved, e.g., with the fol-
lowing strategy: initially all GCI axioms are added to a queue Q and all axioms
are added to A; at each step an assertion ak is dequeued, and steps 3. or 4.
are applied to all and only the rules applications whose antecedents are ak and
one or two of the previously-dequeued axioms/assertions a1, ..., ak−1; the novel
assertions ak+j deduced by the rule application in step 3. are added to the
queue Q and to A. This process ends when the queue is empty. A pseudo-code
representation of this algorithm is exposed in Figure 2.

We show that the extended algorithm requires a polynomial amount of steps
wrt. the size of T and that φall

T is polynomial in the size of T . In order to
make the explanation simpler, we assume wlog. that in all axioms in T all u's
and ◦'s are binary, i.e., that 1 ≤ k ≤ 2 in (2) and 1 ≤ n ≤ 2 in (4). 4 Thus,
4 This is not restrictive, since, e.g., each GCI axiom of the form C1u ...uCk v D in T
can be rewritten into the set {C1uC2 v C1:2, C1:2uC3 v C1:3, ..., C1:k−1uCk v D},
and each RI axiom of the form r1 ◦ · · · ◦ rn v s can be rewritten into the set
{r1 ◦ r2 v r1:2, r1:2 ◦ r3 v r1:3, ..., r1:n−1 ◦ rn v s}, each C1:i and r1:j being a fresh
concept name and a fresh role name respectively.

ClauseSet build-φall
T (NormalizedOntology T)

// Initialization of A and Q
1. Q = {}; A = {};
2. for each primitive concept C in T
3. add C v C and C v > to A; introduce s[CvC] = s[Cv>] = >;
4. enqueue {C v C, C v >} into Q;
5. for each GCI or RI axiom ax in T
6. add ax to A; introduce s[ax];
7. if ax is a non-trivial GCI axiom then
8. add the clause (s[ax] → EL+2sat(ax)) to φall

T ;
9. enqueue ax into Q;
// Updating A,B and Q (B is the set of already-handled assertions)
10. B = ∅;
11. while Q is not empty
12. dequeue a from Q;
13. for each rule instance r such that ant(r) \ B = {a}
14. if gen(r) 6∈ A then
15. add gen(r) to A; introduce s[gen(r)];
16. add the clause (s[gen(r)] → EL+2sat(gen(r))) to φall

T ;
17. enqueue gen(r) into Q;
18. add the clause ((

V
aj∈ant(r) s[aj]) → s[gen(r)]) to φall

T ;
19. B = B ∪ {a}
20. return φall

T ;

Fig. 2. Polynomial-time algorithm building the formula φall
T . Q is a queue of assertions,

A and B are sets of assertions.

every rule application has at most three antecedents: one axiom and one or two
assertions. Let A∗ be the �nal set of assertions. Then the number of di�erent
rule applications on axioms and assertions in A∗ is upper-bounded by |A∗|2 · |T |.
Thus, it su�ces to avoid repeating the same rule application more than once
(as described above and shown in Figure 2) to keep both the algorithm and the
�nal size of φall

T polynomial.
It follows that, for every S ⊆ T and for every pair of concepts C, D in

PCT , C vS D if and only if φall
T ∧∧

ai∈S s[ai] ∧ p[C] ∧¬p[D] is unsatis�able. (See
Theorems 2 and 3 in Appendix A for details and formal proofs.)

Computing one MinA. Once φall
T is generated, in order to compute one

MinA, we can exploit the techniques of con�ict-driven SAT solving under as-
sumptions described in �2.2. After φall

T is parsed and DPLL is initialized, each
query Ci vT Di corresponds to solving φall

T under the assumption list Li
def=

{¬p[Di], p[Ci]}∪{s[ai] | ai ∈ T }. This corresponds to a single run of bcp and one
run of analyze_conflict, whose cost depends linearly only on the clauses where
the unit-propagated literals occur. (Actually, if bcp does not return conflict,
then sat is returned without even performing con�ict analysis.) If bcp returns
conflict, as explained in �2.2, then analyze_conflict produces a con�ict clause

AxiomSet lin-extract-MinADPLL(Concept Ci, Di, AxiomSet T ∗, formula φall
T)

1. S = T ∗;
2. for each axiom aj in T ∗
3. L = {¬p[Di], p[Ci]} ∪ {s[ai] | ai ∈ S \ {aj}};
4. if (DPLLUnderAssumptions(φall

T ,L) == unsat)
5. S = S \ {aj};
6. return S;

Fig. 3. SAT-based variant of the linear MinA-extracting algorithm in [6].

ψCi,Di

T ∗
def= p[Di] ∨ ¬p[Ci] ∨

∨
ai∈T ∗ ¬s[ai] s.t. T ∗ is an nMinA wrt. Ci vT Di.

In fact, the presence of both ¬p[Di] and p[Ci] in Li is necessary for causing the
con�ict, so that, due to the Decision Scheme, the con�ict set necessarily con-
tains both of them. (Intuitively, analyze_conflict implicitly spans upward
the classi�cation sub-DAG rooted in Ci vT Di and having T ∗ as leaf nodes,
which contains all and only the nodes of the assertions which have been used to
generate Ci vT Di.)

Notice that T ∗ may not be minimal. In order to minimize it, we can apply the
SAT-based variant of the linear minimization algorithm of [6] in Figure 3.(We
assume that φall

T has been parsed and DPLL has been initialized, and that φall
T has

been solved under the assumption list Li above, producing the con�ict clause
ψCi,Di

T ∗ and hence the nMinA T ∗; then lin-extract-MinADPLL(Ci, Di, T ∗,
φall
T) is invoked.) In a nutshell, the algorithm tries to remove one-by-one the

axioms ajs in T ∗, each time checking whether the reduced axiom set S \ {aj}
is still such that Ci vS\{aj} Di. (The correctness of this algorithm is a straight-
forward consequence of Theorem 3 in Appendix A.) As before, each call to
DPLLUnderAssumptions requires only one run of bcp.

This schema can be improved as follows: if DPLLUnderAssumptions performs
also con�ict analysis and returns (the con�ict clause corresponding to) an nMinA
S ′ s.t. S ′ ⊂ S \ {ai}, then S is assigned to S ′ and all axioms in (S \ {aj}) \ S ′
will not be selected in next loops. As an alternative choice, one can implement
instead (a SAT-based version of) the binary-search variant of the minimization
algorithm (see e.g. [7]).

It is important to notice that the formula φall
T is never updated: in order to

check Ci vS\{aj} Di, it su�ces to drop s[aj] from the assumption list. The latter
fact makes (the encoding of) the axiom aj useless for bcp to falsify the clause
encoding Ci vT Di, so that DPLLUnderAssumptions returns unsat if and only if
a di�erent falsifying chain of unit-propagations can be found, corresponding to
a di�erent sequence of rule applications generating Ci vT Di. Notice that this
fact is made possible by step 4. of the encoding, which allows for encoding all
alternative sequences of rule applications generating the same assertions.

We also notice that one straightforward variant to this technique, which is
feasible since typically |T ∗| ¿ |T |, is to compute another formula φall

T ∗ from
scratch and to feed it to the algorithm of Figure 3 instead of φall

T .

One very important remark is in order. During pinpointing the only clause of
type (8) in φall

T which is involved in the con�ict analysis process is s[CivT Di] →
(p[Ci] → p[Di]), which reduces to the unit clause ¬s[CivT Di] after the unit-
propagation of the assumption literals ¬p[Di], p[Ci]. Thus, one may want to
decouple pinpointing from classi�cation/subsumption, and produce a reduced
�pinpointing-only� version of φall

T , namely φall
T (po). The encoding of φall

T (po) works
like that of φall

T , except that no clause (8) is added to φall
T (po). Thus each query

Ci vT Di corresponds to solving φall
T (po) under the assumption list Li

def= {¬s[CivT Di]}∪
{s[ai] | ai ∈ T }, so that the algorithm for pinpointing is changed only in the fact
that φall

T (po) and {¬s[CivT Di]} are used instead of φall
T and {¬p[Di], p[Ci]} respec-

tively (see Theorem 4 in Appendix A). Thus, wlog. in the remaining part of
this section we will reason using φall

T (po) and {¬s[CivT Di]}. (The same results,
however, can be obtained using φall

T and {¬p[Di], p[Ci]} instead.)

Computing all MinAs. We describe a way of generating all MinAs of Ci vT
Di from φall

T (po) and {¬s[CivT Di]}. (As before, the same results can be obtained
if φall

T and {¬p[Di], p[Ci]} are used instead.) In a nutshell, the idea is to assume
{¬s[CivT Di]} and to enumerate all possible minimal truth assignments on the
axiom selector variables in PT def= {s[axj] | axj ∈ T } which cause the inconsistency
of the formula φall

T (po). This can be implemented by means of a variant of the all-
SMT technique in [13]. A naive version of this technique is described as follows.

We consider a propositional CNF formula ϕ on the set of axiom selector
variables in {s[CivT Di]} ∪ PT . ϕ is initially set to >. One top-level instance
of DPLL (namely DPLL1) is used to enumerate a complete set of truth assign-
ments {µk}k on the axiom selector variables in PT which satisfy ϕ under the
assumption of ¬s[CivT Di]. Every time that a novel assignment µk is generated,
{¬s[CivT Di]} ∪ µk is passed to an ad-hoc �T -solver� checking whether it causes
the inconsistency of the formula φall

T (po). If this is the case, then the T -solver
returns conflict and a minimal subset {¬s[CivT Di]}∪ {s[axj] | axj ∈ T ∗k }, s.t. T ∗k
is a MinA, which caused such inconsistency. ψ∗k

def= s[CivT Di] ∨
∨

axj∈T ∗k ¬s[axj]

is then added to ϕ as a blocking clause and it is used as a con�ict clause for
driving next backjumping step. Otherwise, T -solver returns sat, and DPLL1 can
use s[CivT Di] ∨¬µk as a �fake� con�ict clause, which is added to ϕ as a blocking
clause and is used as a con�ict clause for driving next backjumping step. The
whole process terminates when backtrack back-jumps to blevel zero. The set
of all MinAs T ∗k are returned as output.

The T -solver is the procedure described in the previous paragraph �Compute
one MinA� (with φall

T (po), {¬s[CivT Di]} instead of φall
T , {¬p[Di], p[Ci]}), using a

second instance of DPLL, namely DPLL2. As before, we assume φall
T (po) is parsed

and DPLL2 is initialized only once, before the whole process starts.
Here we show that this naive procedure returns all MinAs of Ci vT Di.

The procedure enumerates truth assignments on the variables in PT and checks
whether they cause the inconsistency of the formula φall

T (po) by bcp only. The

search ends when all possible such assignments violate some con�ict clause added
to ϕ from the T -solver (either an actual con�ict clause or a �fake� one), that is,
when we have ¬s[CivT Di]∧ϕ∧

∧
h(s[CivT Di]∨

∨
axj∈T ∗h ¬s[axj])∧

∧
k(s[CivT Di]∨

¬µk) |= ⊥, 5 that is, ∧
h(

∨
axj∈T ∗h ¬s[axj])∧

∧
k ¬µk |= ⊥ since ϕ is set to >. This

means that every total assignment η on the variables in PT violates some clause
in the latter formula, in particular: if η is s.t. the formula ¬s[CivDi]∧η∧φall

T (po) is
satis�able, then η violates one of the clauses of the form ¬µk, otherwise η violates
one of the clauses of the form

∨
axj∈T ∗h ¬s[axj]. Let S be a set of axioms, and let

ηS
def= {s[axi] | axi ∈ S}∪{¬s[axi] | axi ∈ T \S}. If Ci vS Di, then ¬s[CivT Di] ∧

ηS ∧ φall
T (po) is unsatis�able. Thus, ηS violates some clause

∨
axj∈T ∗h ¬s[axj], as

stated above, that is, S ⊇ T ∗h for some MinA T ∗h . Thus, this procedure returns
all MinAs of Ci vT Di.

One important improvement to the naive procedure above is that of exploit-
ing early pruning and theory propagation, two well-known techniques from SMT
(see, e.g., [18]). The T -solver can be invoked also on partial assignments µk on
PT : if this causes the unit-propagation of one (or more) ¬s[axj] s.t. s[axj] ∈ PT
and s[axj] is unassigned, then the antecedent clause of ¬s[axj] can be fed to
analyze_conflict in DPLL2, which returns the clause s[CivT Di] ∨ ¬µ′k s.t.
µ′k ⊆ µk and ¬s[CivT Di] ∧ µ′k causes the propagation of ¬s[axj]. (As before,
we assume that analyze_conflict uses the Decision Scheme.) Intuitively, this
is equivalent to say that, if ¬s[CivT Di]∧µk∧s[axj] is passed to the T -solver, then
it would return conflict and the T -con�ict clause ψ∗k

def= s[CivT Di]∨¬µ′k ∨¬s[axj].
Thus µ′k ∧ s[axi] represents a non-minimal set of axioms causing the inconsis-
tency of φall

T (po), which can be further minimized by the algorithm of Figure 3,
as described above.

One problem of the naive procedure above, regardless of early pruning and
theory propagation, is that adding to ϕ a �fake� blocking clause (namely ¬ηk)
each time a new satisfying truth assignment ηk is found may cause an exponential
blowup of ϕ. As shown in [13], this problem can be overcome by exploiting
con�ict analysis techniques. Each time a model ηk is found, it is possible to
consider ¬ηk as a con�icting clause to feed to analyze_conflict and to perform
con�ict-driven backjumping as if the blocking clause ¬ηk belonged to the clause
set; importantly, it is not necessary to add permanently the con�icting clause
¬ηk to ϕ as a blocking clause, and it is su�cient to keep the con�ict clause
resulting from con�ict analysis only as long as it is active. 6

In [13] it is proved that this technique terminates and allows for enumerating
all models. (Notice that the generation of blocking clauses ψ∗k representing MinAs
is not a�ected, since in this case we add ψ∗k to ϕ as blocking clause.) The only
potential drawback of this technique is that some models may be found more
5 In general, an SMT solver which is run on a T -unsatis�able formula ϕ stops when

ϕ ∧ Vk ¬ηk |= ⊥, s.t. the ηks are the T -con�ict sets returned by the T -solver and
�|=� is purely-propositional entailment.

6 We say that a clause is currently active if it occurs in the implication graph, that is,
if it is the antecendent clause of some literal in the current assignment. (See [27].)

than once. However, according to the the empirical evaluation in [13], this events
appears to be rare and it has very low impact on performances, which are much
better than those of the naive version. We refer the reader to [13] for a more
detailed explanation of all-SMT.

One remark is in order. The reason why we use two di�erent instances of DPLL
is that we must distinguish unit-propagations of negated axiom selector variables
¬s[axi] on learned clauses from those performed on the clauses in φall

T (po): on the
one hand, we want to allow the former ones because they prevent exploring the
same assignments more than once; on the other hand, we want to avoid the
latter ones (or to perform them in a controlled way, as explained in the theory
propagation variant) because they may prevent generating some counter-model
of interest.

Computing one MinA using a much smaller formula. Although polyno-
mial, φall

T /φall
T (po) may be huge for very-big ontologies T like Snomed-CT. For

these situations, we propose here a variant of the one-MinA procedure using
the much smaller formula φone

T [resp. φone
T (po)] (which is an improved SAT-based

version of the simpli�ed one-MinA algorithm of [6]). 7 φone
T [resp. φone

T (po)] is com-
puted like φall

T [resp. φall
T (po)], except that step 4. is never performed, so that only

one deduction of each assertion is computed. This is su�cient, however, to com-
pute one non-minimal axiom set T ∗ by one run of bcp and analyze_conflict,
as seen before. Since φone

T does not represent all deductions of Ci vT Di, we
cannot use the algorithm in Figure 3 to minimize it. However, since typically
T ∗ ¿ T , one can cheaply compute φone

T ∗ and run a variant of the algorithm in
Figure 3 in which at each loop a novel formula φone

S\{ai} is computed and fed to
DPLLUnderAssumptions together with the updated L. One further variant is to
compute instead φall

T ∗(po) and feed it to the algorithm in Figure 3.

Handling normalization. The normalized TBox T def= {ax1, ..., axN} can re-
sult from normalizing the non-normal one T̂ def= {âx1, ..., âxN̂} by means of the
process hinted in �2.1. |T | is O(|T̂ |). Each original axiom ˆaxi is converted into a
set of normalized axioms {axi1, ..., axiki}, and each axiom axiki can be reused in
the conversion of several original axioms âxj1, ..., âxjkj . In order to handle non-
normal TBoxes T̂ , we adopt one variant of the technique in [6]: for every ˆaxi, we
add to φall

T (po) [resp. φall
T] the set of clauses {s[ˆaxi] → s[axi1], ..., s[ˆaxi] → s[axiki

]},
and then we use PT̂

def= {s[âx1], ..., s[âxN̂]} as the novel set of axiom selector
variables for the one-MinA and all-MinAs algorithms described above. Thus
analyze_conflict �nds con�ict clauses in terms of variables in PT̂ rather than
in PT . (In practice, we treat normalization as the application of a novel kind
of completion rules.) Since PT̂ is typically smaller than PT , this may cause

7 We prefer considering φone
T rather than the corresponding formula φone

T (po) since it �ts
better with the removal of transitive clauses described in �3.1.

a signi�cant reduction in search for DPLL1 in the all-MinAs procedure. (No-
tice that when one axj is shared by âxj1, ..., âxjkj , the clause set {s[âxj1] →
s[aj], ..., s[âxjkj

] → s[aj]} is equivalent to (s[âxj1] ∨ ... ∨ s[âxjkj
]) → s[aj].) (Here-

after we will call T the input TBox, no matter whether normal or not.)

4 Discussion
We �rst compare our all-MinAs technique for EL+ of �3.2 with that presented
in [6]. By comparing the pinpointing formula ΦCivT Di of [6] (see also �2.1)
with φall

T (po), and by analyzing the way they are built and used, we highlight
the following di�erences: (i) ΦCivT Di is built only on axiom selector variables
in PT def= {s[axj] | axj ∈ T }, whilst φall

T (po) is build on all selector variables in
PA def= {s[aj] | aj ∈ A} (i.e., of both axioms and inferred assertions); (ii) the
size of ΦCivT Di and the time to compute it are worst-case exponential in |T | [6],
whilst the size of φall

T (po) and the time to compute it are worst-case polynomial
in |T |; (iii) the algorithm for generating ΦCivT Di in [6] requires intermediate
logical checks, whilst the algorithm for building φall

T (po) does not; (iv) each MinA
is a model of ΦCivT Di , whilst it is (the projection to PT of) a counter-model
of φall

T (po). Moreover, our process can reason directly in terms of (the selector
variables of) the input axioms, no matter whether normal or not.

In accordance with Theorem 5 in [6], also our approach is not output-polynomial,
because in our proposed all-MinAs procedure even the enumeration of a polyno-
mial amount of MinAs may require exploring an exponential amount of models.
In our proposed approach, however, the potential exponentiality is completely
relegated to the �nal step of our approach, i.e. to our variant of the all-SMT
search, since the construction of the SAT formula is polynomial. Thus we can
build φall

T (po) once and then, for each Ci vT Di of interest, run the all-SMT
procedure until either it terminates or a given timeout is reached: in the latter
case, we can collect the MinAs generated so far. (Notice that the fact that DPLL1
selects positive axiom selector variables �rst tends to anticipate the enumeration
of over-constrained assignments wrt. to that of under-constrained ones, so that
it is more likely that counter-models, and thus MinAs, are enumerated during
the �rst part of the search.) With the all-MinAs algorithm of [6], instead, it may
take an exponential amount of time to build the pinpointing formula ΦCivT Di

before starting the enumeration of the MinAs.
As far as the generation of each single MinA of �3.2 is concerned, another

interesting feature of our approach relates to the minimization algorithm of
Figure 3: we notice that, once φall

T (po) is generated, in order to evaluate di�erent
subsets S\{aj} of the axiom sets, it su�ces to assume di�erent selector variables,
without modifying the formula, and perform one run of bcp. Similarly, if we
want to compute one or all MinAs for di�erent deduced assertion, e.g. C1 vT
D1, . . . , Cj vT Dj , . . ., we do not need recomputing φall

T (po) each time, we just
need assuming (i.e. querying) each time a di�erent axiom selector variable, e.g.
respectively: ¬s[C1vT D1], . . . ,¬s[CjvT Dj],

Ontology notGalen GeneOnt. NCI fullGalen Snomed'09
of prim. concepts 2748 20465 27652 23135 310075
of orig. axioms 4379 20466 46800 36544 310025
of norm. axioms 8740 29897 46800 81340 857459
of role names 413 1 50 949 62
of role axioms 442 1 0 1014 12

Size (var#|clause#)
φT 5.4e3|1.8e4 2.2e4|4.2e4 3.2e4|4.7e4 4.8e4|7.3e5 5.3e5|8.4e6
φone
T 2.3e4|2.7e4 5.5e4|5.4e4 7.8e4|4.7e4 7.3e5|1.4e6 8.4e6|1.6e7

φall
T (po) 1.7e5|2.2e5 2.1e5|2.6e5 2.9e5|3.0e5 5.3e6|1.2e7 2.6e7|8.4e7

Encode time
φT 0.65 2.37 2.98 35.28 3753.04
φone
T 2.06 4.15 6.19 68.94 4069.84

φall
T (po) 1.17 1.56 2.37 178.41 198476.59

Load time
φT 0.11 0.37 1.01 1.93 21.16
φone
T 0.18 0.55 1.17 5.95 59.88

Subsumption (on 105)
φT 0.00002 0.00002 0.00003 0.00003 0.00004
φone
T 0.00003 0.00002 0.00003 0.00004 0.00008

nMinA φone
T (on 5000) 0.00012 0.00027 0.00042 0.00369 0.05938

MinA φone
T (on 100)

− Load time 0.175 0.387 0.694 6.443 63.324
− Extract time 0.066 0.082 0.214 0.303 3.280
− DPLL Search time 0.004 0.004 0.002 0.010 0.093

MinA φall
T (po) (on 100)

− Load time 1.061 1.385 1.370 39.551 150.697
− DPLL Search time 0.023 0.027 0.036 0.331 0.351

allMinA φall
T (po)(on 30)

− 50% #MinA/time 1/1.50 1/1.76 4/1.79 3/53.40 15/274.70
− 90% #MinA/time 2/1.59 4/2.11 6/1.86 9/63.61 32/493.61
− 100% #MinA/time 2/1.64 8/2.79 9/2.89 15/150.95 40/588.33

Table 3. �XeN � is �X · 10N �. CPU times are in seconds.

5 Empirical Evaluation

In order to test the feasibility of our approach, we have implemented an early-
prototype version of the procedures of �3 (hereafter referred as EL+SAT) which
does not yet include all optimizations described here, and we performed a prelim-
inary empirical evaluation of EL+SAT on the ontologies of �1. 8 We have imple-
mented EL+SAT in C++, including and modifying the code of the SAT solver
8 The �rst four ontologies are available at http://lat.inf.tu-dresden.de/~meng/
toyont.html, whilst Snomed-CT'09 is courtesy of IHTSDO http://www.ihtsdo.
org/.

MiniSat2.0 070721 [11]. All tests have been run on a biprocessor dual-core
machine Intel Xeon 3.00GHz with 4GB RAM on Linux RedHat 2.6.9-11. 9

The results of the evaluation are presented in Table 3. The �rst block reports
the data of each ontology. The second and third blocks report respectively the
size of the encoded formula, in terms of variable and clause number, and the CPU
time taken to compute them. 10 The fourth block reports the time taken to load
the formulas and to initialize DPLL. The �fth block reports the average time (on
100000 sample queries) required by computing subsumptions. 11 (Notice that φT
and φone

T must be loaded and DPLL must be initialized only once for all queries.)
The sixth block reports the same data for the computation of one nMinA, on
5000 sample queries. 12 (Loading times are the same as above.) The seventh
block reports the average times on 100 samples required to compute one MinA
with φone

T , which computes the sequence of formulas φone
T , . . . , φone

S\ai
, 13 (In

order not to distinguish the loading time of the �rst formula with that of all the
others, we report the sum the loading times; the process of loading of the �rst
φone
T can be shared by di�erent samples.) The eighth block reports the average

times on 100 samples required to compute one MinA with φall
T (po). The ninth

block reports the results (50th, 90th and 100th percentiles) of running the all-
MinAs procedure on 30 samples, each with a timeout of 1000s (loading included),
and counting the number of MinAs generated and the time taken until the last
MinA is generated.14

Notice that, although huge, a Horn formula of up to 108 clauses is at the reach
of a SAT solver like MiniSAT (e.g., in [19,20] we handled non-Horn formulas of
3.5 · 107 clauses).

Although still very preliminary, there empirical results allow us to notice a
few facts: (i) once the formulas are loaded, concept subsumption and computa-
tion of nMinAs are instantaneous, even with very-big formulas φT and φone

T ; (ii)
in the computation of single MinAs, with both φone

T and φall
T (po), DPLL search

times are very low or even negligible: most time is taken by loading the main
formula (which can be performed only once for all) and by extracting the infor-
mation from intermediate results. Notice that EL+SAT succeeded in computing
9 EL+SAT is available from http://disi.unitn.it/~rseba/elsat/.
10 The classi�cation alone (excluding the time taken in encoding the problem and in

computing the additional rule clauses for pinpointing) required respectively: 0.60,
2.24, 2.84, 34.06 and 3738.82 seconds for φT , 0.99, 2.63, 4.13, 41.19 and 3893.20
seconds for φone

T . In the case of φall
T (po) the times are not distinguishable.

11 The queries have been generated randomly, extracting about 2000 primitive concept
names from each ontology and then randomly selecting 100000 queries from all the
possible combinations of these concept names.

12 We chose the �rst 5000 �unsatis�able� queries we encounter when analyzing all the
possible pairwise combinations of primitive concept names of each ontology.

13 The queries are selected randomly from the 5000 samples introduced above.
14 First, we sort the assertions computed for each ontology wrt. the number of oc-

currences as implicate in rule clauses then, following this order, we pick with a
probability of 0.25 (to avoid queries which are too similar) the 30 sample assertions
to be queried.

some MinAs even with the huge ontology Snomed-CT'09; (iii) although no sam-
ple concluded the full enumeration within the timeout of 1000s, the all-MinAs
procedure allowed for enumerating a set of MinAs. Remarkably, all MinAs are
all found in the very �rst part of the search, as expected.

6 Conclusions and Future Work
The current implementation of EL+SAT is still very naive to many extents. We
plan to implement an optimized version of EL+SAT, including all techniques
and optimizations presented here. (We plan to investigate and implement also a
SAT-based versions of the techniques based on reachability modules of [7].) Then
we plan to perform a very-extensive empirical analysis of the optimized tools,
We also plan to implement a user-friendly GUI for EL+SAT so that to make it
usable by domain experts. Research-wise, we plan to investigate alternative sets
of completion rules, which may be more suitable for producing smaller φall

T (po)

formulas, and to extend our techniques to richer logics and other reasoning ser-
vices.

References
1. F. Baader, S. Brandt, and C. Lutz. Pushing the EL Envelope. In Proc. IJCAI-05,

pages 364�369. Morgan-Kaufmann Publishers, 2005.
2. F. Baader, S. Brandt, and C. Lutz. Pushing the EL Envelope Further. In In Proc.

of the OWLED 2008 DC Workshop on OWL: Experiences and Directions, 2008.
3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, edi-

tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

4. F. Baader, C. Lutz, and B. Suntisrivaraporn. E�cient Reasoning in EL+. In Proc.
DL2006, volume 189 of CEUR-WS, 2006.

5. F. Baader and R. Penaloza. Axiom pinpointing in general tableaux. In Proceedings
of TABLEAUX 2007, LNAI, pages 11�27. Springer, 2007.

6. F. Baader, R. Peñaloza, and B. Suntisrivaraporn. Pinpointing in the Description
Logic EL+. In Proc. KI2007, volume 4667 of LNCS, pages 52�67. Springer, 2007.

7. F. Baader and B. Suntisrivaraporn. Debugging SNOMED CT Using Axiom Pin-
pointing in the Description Logic EL+. In Proc. KR-MED'08: Representing and
Sharing Knowledge Using SNOMED, volume 410 of CEUR-WS, 2008.

8. T. G. O. Consortium. Gene ontology: Tool for the uni�cation of biology. Nature
Genetics, 25:25�29, 2000.

9. M. Davis, G. Longemann, and D. Loveland. A machine program for theorem-
proving. Journal of the ACM, 5(7):394�397, 1962.

10. M. Davis and H. Putnam. A computing procedure for quanti�cation theory. Jour-
nal of the ACM, 7:201�215, 1960.

11. N. Eén and N. Sörensson. An Extensible SAT-solver. In Theory and Applications
of Satis�ability Testing (SAT'03), volume 2919 of LNCS, pages 502�518. Springer,
2004.

12. B. Konev, D. Walther, and F. Wolter. The logical di�erence problem for description
logic terminologies. In Proceedings of IJCAR 2008, Sydney, Australia, volume 5195
of Lecture Notes in Computer Science, pages 259�274. Springer, August 2008.

13. S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT techniques for fast predicate
abstraction. In Proc. CAV, volume 4144 of LNCS, pages 424�437. Springer, 2006.

14. I. Lynce and J. P. M. Silva. On Computing Minimum Unsatis�able Cores. In Proc.
SAT, 2004. http://www.satisfiability.org/SAT04/programme/110.pdf.

15. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Cha�: Engi-
neering an E�cient SAT Solver. In DAC, pages 530�535. ACM, 2001.

16. B. Motik and I. Horrocks. Individual reuse in description logic reasoning. In
Proceedings of IJCAR 2008, Sydney, Australia, volume 5195 of Lecture Notes in
Computer Science, pages 242�258. Springer, August 2008.

17. A. Rector and I. Horrocks. Experience Building a Large, Re-usable Medical Ontol-
ogy using a Description Logic with Transitivity and Concept Inclusions. In Proc.
of the Workshop on Ontological Engineering, AAAI'97. AAAI Press, 1997.

18. R. Sebastiani. Lazy Satis�ability Modulo Theories. Journal on Satis�ability,
Boolean Modeling and Computation, JSAT, 3:141�224, 2007.

19. R. Sebastiani and M. Vescovi. Encoding the Satis�ability of Modal and Description
Logics into SAT: The Case Study of K(m)/ALC. In Theory and Applications of
Satis�ability Testing - SAT 2006, 9th International Conference, 2006, Proceedings,
volume 4121 of LNCS, pages 130�135. Springer, 2006.

20. R. Sebastiani and M. Vescovi. Automated Reasoning in Modal and Description
Logics via SAT Encoding: the Case Study of K(m)/ALC-Satis�ability. Journal of
Arti�cial Intelligence Research, JAIR., 35, June 2009.

21. J. P. M. Silva and K. A. Sakallah. GRASP - A new Search Algorithm for Satis�-
ability. In Proc. ICCAD'96, 1996.

22. N. Sioutos, S. de Coronado, M. W. Haber, F. W. Hartel, W. Shaiu, and L. W.
Wright. NCI Thesaurus: A semantic model integrating cancer-related clinical and
molecular information. Journal of Biomedical Informatics, 40(1):30�43, 2007.

23. K. A. Spackman. Managing clinical terminology hierarchies using algorithmic cal-
culation of subsumption: Experience with SNOMED RT. J. of American Medical
Informatics Association (Fall Symposium Special Issue), 2000.

24. K. A. Spackman, K. Campbell, and R. Cote. SNOMED RT: A reference ter-
minology for healt care. J. of American Medical Informatics Association (Fall
Symposium Supplement), pages 640�644, 1997.

25. B. Suntisrivaraporn. Polynomial-Time Reasoning Support for Design and Main-
tenance of Large-Scale Biomedical Ontologies. PhD thesis, University of Dresden,
2009.

26. B. Suntisrivaraporn, F. Baader, S. Schulz, and K. Spackman. Replacing sep-triplets
in snomed ct using tractable description logic operators. In Proceedings of the
11th Conference on Arti�cial Intelligence in Medicine (AIME'07), LNCS. Springer-
Verlag, 2007.

27. L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. E�cient Con�ict Driven
Learning in Boolean Satis�ability Solver. In ICCAD, pages 279�285, 2001.

28. L. Zhang and S. Malik. The quest for e�cient boolean satis�ability solvers. In
Proc. CAV'02, number 2404 in LNCS, pages 17�36. Springer, 2002.

A Appendix: Proofs

In this section we de�ne and prove formally all the results stated along this work

We start proving that solving the Horn-SAT problem φT (see �3.1) under
some assumptions we decide concept subsumption in EL+.

Theorem 1. Given an EL+ TBox T in normal form, for every pair of concept
names C,D in PCT , C vT D if and only if the Horn propositional formula
φT ∧ p[C] ∧ ¬p[D] is unsatis�able.

Proof. By construction the clause p[C] → p[D] (that is EL+2sat(C v D)) is
in φT if and only if C v D is added to A, that is, by the properties of the
classi�cation algorithm of �2.1, if and only if C vT D. Thus, if C vT D then
φT ∧ p[C] ∧ ¬p[D] is unsatis�able.

Vice versa, if φT ∧ p[C] ∧ ¬p[D] is unsatis�able, then it follows that φT |=
p[C] → p[D]. Thus, there must be a resolution derivation P of p[C] → p[D] from
some subset of clauses ψ1, ..., ψn in φT . By construction, and since φT is a de�nite
Horn formula, every resolution step can be written in the form

(
∧

i p[Xi]) → p[Xk] (p[Xk] ∧
∧

j p[Xj]) → p[Xn]

(
∧

i p[Xi] ∧
∧

j p[Xj]) → p[Xn]
(10)

s.t. all X's are concepts. Each corresponding derivation step

(
d

iXi) v Xk (Xk u
d

j Xj) v Xn

(
d

iXi u
d

j Xj) v Xn
(11)

is valid in EL+; moreover, by construction, each ψi is EL+2SAT (ai) for some ai

which is either in T or has been derived from T . Hence, there is a valid derivation
of C v D from T in EL+, so that C vT D. (Notice that from the latter fact
we can also infer that p[C] → p[D] belongs to φT , that is, that the derivation P
consists in no step.) ut

Next, we prove that runningDPLL on φall
T under the assumption of the query

literals and of the axiom selector variables still decides concept subsumption.

Theorem 2. Given an EL+ TBox T in normal form, for every pair of concept
names C,D in PCT , C vT D if and only if the Horn propositional formula
φall
T ∧∧

ai∈T s[ai] ∧ p[C] ∧ ¬p[D] is unsatis�able.

Theorem 2 is a straightforward corollary of the following stronger result.

Theorem 3. Given an EL+ TBox T in normal form, for every S ⊆ T and
for every pair of concept names C,D in PCT , C vS D if and only if the Horn
propositional formula φall

T ∧∧
ai∈S s[ai] ∧ p[C] ∧ ¬p[D] is unsatis�able.

Proof. Due to the soundness and completeness of the classi�cation algorithm
of �2.1, C vS D if and only if there exists a sequence of rule applications
r1, . . . , rk generating C v D from S. If and only if this is the case, by construc-
tion, φall

T contains the clause

(s[CvD] → (p[C] → p[D])) (12)

of type (8) and all the clauses of type (9) corresponding to all the rule applica-
tions r1, . . . , rk.

Thus, on the one hand, if C vS D, then
∧

ai∈S s[ai] and all the clauses of
type (9) corresponding to all the rule applications r1, . . . , rk force s[CvD] to be
true and p[C] ∧ ¬p[D] forces p[C] and ¬p[D] to be true, which falsi�es the clause
(12) in φall

T . Thus φall
T ∧∧

ai∈S s[ai] ∧ p[C] ∧ ¬p[D] is unsatis�able.
On the other hand, suppose φall

T ∧∧
ai∈S s[ai] ∧ p[C] ∧ ¬p[D] is unsatis�able.

Since φall
T is a de�nite Horn formula, φall

T ∧∧
ai∈S is satis�able. Let φ∗T be the

result of assigning in φall
T all s[ai] in S to > and unit-propagation the values. We

notice that, by construction of φall
T and φ∗T , all and only the variables s[ai] s.t.

ai can be derived from S are unit-propagated in this process. (Notice that φ∗T
cannot be ⊥ since φall

T ∧∧
ai∈S is satis�able.) Thus φ∗T consists only on clauses

in the forms:
(i) EL+2SAT (ai) s.t. ai is derived from S (assertion clauses (8)),
(ii) (s[ai] → EL+2SAT (ai)) s.t. ai is not derived from S (assertion clauses (8)),
and
(iii) (

∧
i s[ai]) → s[aj] s.t. ai, aj are not derived from S (rule clauses (9)).

Since φall
T ∧ ∧

ai∈S s[ai] ∧ p[C] ∧ ¬p[D] is unsatis�able, φ∗T ∧ p[C] ∧ ¬p[D] is also
unsatis�able, i.e., φ∗T |= p[C] → p[D]. Thus, like in the proof of Theorem 1, there
must be a resolution derivation P of p[C] → p[D] from some subset of clauses
ψ1, ..., ψn in φ∗T . We notice that all ψi's must be in form (i), because only the
EL+2SAT (ai)'s can contain p[C], p[D] and there would be no way of resolving
away the selector variables s[ai] from clauses (ii) and (iii) without reintroducing
other ones. Thus, since φ∗T is a de�nite Horn formula, every resolution step in P
can be written in the form

(
∧

i p[Xi]) → p[Xk] (p[Xk] ∧
∧

j p[Xj]) → p[Xn]

(
∧

i p[Xi] ∧
∧

j p[Xj]) → p[Xn]
(13)

s.t. all X's are concepts. Each corresponding derivation step
(
d

iXi) v Xk (Xk u
d

j Xj) v Xn

(
d

iXi u
d

j Xj) v Xn
(14)

is valid in EL+; moreover, by construction, each ψi is EL+2SAT (ai) for some ai

which is either in S or has been derived from S. Hence, there is a valid derivation
of C v D from S in EL+, so that C vS D.

Notice also that from the latter fact we can also infer that p[C] → p[D] belongs
to φ∗T . Thus, (12) belongs to φall

T . ut

The same result holds straightforwardly also for φall
T (po) (see �3.2).

Theorem 4. Given an EL+ TBox T in normal form, for every S ⊆ T and
for every pair of concept names C,D in PCT , C vS D if and only if the Horn
propositional formula φall

T (po) ∧
∧

ai∈S s[ai] ∧ ¬s[CvD] is unsatis�able.

Proof. Due to the soundness and completeness of the classi�cation algorithm
of �2.1, C vS D if and only if there exists a sequence of rule applications
r1, . . . , rk generating C v D from S. If and only if this is the case, by construc-
tion, φall

T (po) contains all the clauses of type (9) corresponding to all the rule
applications r1, . . . , rk.

Thus, on the one hand, if C vS D, then
∧

ai∈S s[ai] and all the clauses of
type (9) corresponding to all the rule applications r1, . . . , rk force s[CvD] to be
true, which falsi�es the unit clause ¬s[CvD]. Thus φall

T (po)∧
∧

ai∈S s[ai]∧¬s[CvD]

is unsatis�able.
On the other hand suppose φall

T (po)∧
∧

ai∈S s[ai]∧¬s[CvD] is unsatis�able. Let
φ∗T be the result of assigning in φall

T (po) all s[ai] in S to > and unit-propagation
the values. (Notice that φ∗T cannot be ⊥ since φall

T (po) ∧
∧

ai∈S is satis�able.) We
notice that, by construction of φall

T (po) and φ∗T , all and only the variables s[ai]

s.t. ai can be derived from S are unit-propagated in this process. Thus, if by
absurd C v D could not be derived from S, then s[CvD] would not be unit-
propagated in this process, so that φ∗T ∧ ¬s[CvD] would be satis�able; hence
φall
T (po)∧

∧
ai∈S s[ai]∧¬s[CvD] would be satis�able, violating the hypothesis. ut

Notice that, in one direction, the result of Theorem 3 holds also for φone
T

(see �3.2). In the other direction, instead, the result of Theorem 3 doesn't hold
for every subset S of T , but only for some of these subsets (since not all the
possible sequence of rule applications deducing the same subsumption relation
are encoded in φone

T).

Corollary 1. Given an EL+ TBox T in normal form, for every pair of concept
names C,D in PCT , the following facts hold:

(i) for every S ⊆ T , if φone
T ∧ ∧

ai∈S s[ai] ∧ p[C] ∧ ¬p[D] is unsatis�able then
C vS D;

(ii) if C vT D then there exists at least a (possibly proper) subset S ⊆ T such
that φone

T ∧∧
ai∈S s[ai] ∧ p[C] ∧ ¬p[D] is unsatis�able.

Proof.

(i) If φone
T ∧∧

ai∈S s[ai]∧p[C]∧¬p[D] is unsatis�able, then also if φall
T ∧

∧
ai∈S s[ai]∧

p[C] ∧ ¬p[D] is unsatis�able, so that C vS D by Theorem 3.

(ii) If C vT D, then the classi�cation algorithm of �2.1 �nds a sequence of
rule applications r1, . . . , rk generating C v D from S. If this is the case, by
construction, φone

T contains the assertion clause (12) and all the rule clauses
corresponding to all the rule applications r1, . . . , rk. Thus,

∧
ai∈T s[ai] and all

the rule clauses corresponding to the rule applications r1, . . . , rk force s[CvD]

to be true and p[C] ∧ ¬p[D] forces p[C] and ¬p[D] to be true, which falsi�es
the clause (12) in φone

T . Thus φone
T ∧∧

ai∈S s[ai] ∧ p[C] ∧¬p[D] is unsatis�able
for some S ⊆ T . ut

