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Abstract

The problem of reasoning with quali�ed number restrictions in Description Logics (DLs)
has been investigated since the very �rst research steps in automated reasoning for DLs.
Moreover, developing techniques for optimized reasoning with quali�ed number restrictions
and has gained further importance since quali�ed number restrictions have been added to
the forthcoming standard OWL 2 for Semantic Web applications.

On the one hand, however, actual DL reasoning techniques, often lack of e�ciency in
handling those features, especially when the number of restrictions or the values involved are
high. On the other hand the manifold problem of reasoning including numerical constraints
is a well-established and thoroughly investigate problem in the SMT community, in which a
lot of e�ort is continuously spent in order to enhance the e�ciency of reasoning techniques
for such kind of problems.

In this paper we propose and investigate a novel approach for concept satis�ability in
acyclic ALCQ ontologies. The idea is to encode an ALCQ ontology into a formula in
Satis�ability Modulo the Theory of Costs (SMT(C)), which is a speci�c and computationally
much cheaper subcase of Linear Arithmetic under the Integers (LA(Z)), and to exploit
the power of modern SMT solvers to compute every concept-satis�ability query on a given
ontology. We have implemented and tested our approach (called ALCQ2SMTC) and some
optimizations on a wide set of synthesized benchmark formulas, comparing the approach with
the main state-of-the-art tools available. Our empirical evaluation con�rms the potential of
the approach.



1 Introduction

Description logics (DLs) form one of the major foundations of the semantic web and its web ontology
language (OWL). In fact, OWL 2, a recent W3C recommendation, is a syntactic variant of a very expressive
DL that supports reasoning with so-called quali�ed number restrictions (QNRs). A sound and complete
calculus for reasoning with the DL ALCQ that adds QNRs to the basic DL ALC was �rst proposed in
[19]. For example, this calculus decides the satis�ability of an ALCQ concept (≥5 s.C u ≥5 s.D u ≤2 s.E)
by trying to �nd a model with �llers for the role s such that at least 5 �llers are instances of C, at least
5 �llers are instances of D, and at most 2 �llers are instances of E. It satis�es the at-least restrictions by
creating 10 �llers for S, 5 of which are instances of C and 5 are instances of D. A concept choose rule
non-deterministically assigns E or ¬E to these �llers. In case the at-most restriction (≤2 s.E) is violated
a merge rule non-deterministically merges pairs of �llers for S that are instances of E [19]. Searching
for a model in such an arithmetically uninformed way can become very ine�cient especially when bigger
numbers occur in QNRs or several QNRs interact. To the best of our knowledge this calculus still serves
as reference in most OWL reasoners (e.g., Pellet [34], FaCT++ [35], HermiT [26]) for implementing
reasoning about QNRs. The only exception is Racer [15] where conceptual QNR reasoning is based on an
algebraic approach [17] that integrates integer linear programming with DL tableau methods.

In recent works, [31, 32] explored the idea of performing automated reasoning tasks in DLs by encoding
problems into Boolean formulas and by exploiting the power of modern SAT techniques. In particular, the
experiments in [31] showed that, in practice and despite the theoretical worst-case complexity limits, this
approach could handle most or all the ALC satis�ability problems which were at the reach of the other
approaches, with performances which were comparable with, and often better than, those of state-of-the-
art tools. Moreover, recently, a new algebraic approach was presented for ALCQ [8] and extended to deal
with SHQ [11] and SHOQ [9]. These approaches represent knowledge about interacting QNRs as systems
of linear inequations where variables represent cardinalities of sets of domain elements (e.g., role �llers)
divided into mutually disjoint decompositions. On a set of synthetic QNR benchmarks these algebraic
approaches demonstrated really a superior performance for most test cases [11, 10].

The work presented in this document was inspired by these two novel approaches, combined with the
progress in satis�ability modulo theory (SMT) solving techniques. The main idea of this work is thus to
encode an ALCQ ontology into a formula in Satis�ability Modulo the Theory of Costs (SMT(C)) [4], which
is a speci�c and computationally much cheaper subcase of Linear Arithmetic under the Integers (LA(Z)),
and to exploit the power of modern SMT solvers to compute every concept-satis�ability query on a given
ontology. We have implemented and tested our approach (called ALCQ2SMTC) and some optimizations on
a wide set of synthesized benchmark problems with QNRs, comparing our approach with main state-of-the-
art OWL reasoners. Our empirical evaluation demonstrates the potential of our approach and, compared
with the tested OWL reasoners, demonstrates a signi�cantly better performance in the case of benchmarks
having multiple/balanced sources of complexity.

1.1 Related Works

The problem of reasoning with quali�ed number restrictions in Description Logic has been throughly in-
vestigated since the very �rst research steps in the automated reasoning in Modal and Description Logics
till today [27, 28, 19, 21, 20, 14, 8, 11].

The quest of e�cient procedures to reason on very expressive Description Logics arising especially from
the �eld of Semantic Web, indeed, has given new vigor and prominence to this stream of research. In par-
ticular the research community is spending a lot of e�ort in �nding alternative solutions to the traditional
tableau-based method for handling quali�ed number restrictions.

Most DL tableau algorithms (e.g., [19, 20, 1]) check the satis�ability of concept including quali�ed
number restrictions by creating the necessary number of individuals (called �llers) satisfying all the at-least
restrictions and then they try to reduce the number of such individuals by non-deterministically merging
pairs of individuals until all the at-most restrictions are satis�ed. Many optimization like, e.g., dependency-
directed backtracking [20], has been proposed in order to improve this method (we refer the reader to the
literature [1]). However, searching for a model in such an arithmetically uninformed or blind way is usually
very ine�cient, especially in cases with bigger numbers occurring in quali�ed number restrictions.



For this reason various alternative algebraic methods to the traditional tableau algorithms has been
tried [28, 14, 17, 11] in order to enrich the tableau-based reasoning engine with calculus which bene�ts from
arithmetic methods. Haarslev et all. perform many attempts in this research direction [14, 17, 8, 11], a
wider literature on these attempts and other arithmetic-based approaches can be found in the lately cited
works.

In particular, in [8, 11, 9] has been recently developed a hybrid approach for SHOQ combining the
standard tableau methods with an inequation solver. Such hybrid calculus is based on a standard tableau
algorithm for SH modi�ed and extended to deal with quali�ed number restrictions and includes an in-
equation solver based on integer linear programming. The algorithm encodes number restrictions into a
set of inequations using the so-called atomic decomposition technique [28]. In a nutshell the idea is to
partition the possible role �llers in all the exponentially many conjunctions of the concepts involved in the
quali�ed number restrictions, and to encode the cardinality constraints for the partitions in a system of
integer inequations. The set of inequations is processed by the inequation solver which �nds, if possible, a
minimal non-negative integer solution (i.e. a distribution of role �llers constrained by number restrictions)
satisfying the inequations. The algorithm ensures that such a distribution of role �llers also satis�es the
logical restrictions.

Importantly the hybrid algorithm performs the arithmetic component of reasoning before creating any
role �ller, thus there is no need for a mechanism of merging role �llers. Moreover, it has the bene�t of being
not a�ected by the values of numbers occurring in number restrictions and of allowing for creating only
one, so-called, proxy individual (thus, only one branch in the tableau) representing a distinct set of role
�llers with the same logical properties. On the contrary, the main drawback of this approach is that atomic
decomposition always results in an exponential number of integer variables (and possible proxy-individuals)
wrt. the number of coexisting number restrictions.

We also mention the SMT-based approach of [12]. The idea is to develop an SMT-like DL reasoner for
the expressive logic SHOQ which follows the typical architecture of an SMT-solver (see Section 2.3). In
brief, [12] proposes to separate each problem in two components of reasoning: a propositional component
which is handled from the embedded SAT-solver and a �background theory� component handled by a speci�c
T -solver. Through the encoding proposed by [30, 31] the ALC part of the input SHOQ problem is reduced
to a Boolean abstraction including atoms in the other logical constructors which are not expressible in
ALC. Then a speci�c tableau-like solver is responsible to verify if an assignment to the Boolean abstraction
satis�es the logical axioms not expressible in ALC, hence the axioms which cannot be rewritten into a
SAT problem. Substantially, this approach is an extension of the DPLL-based approach for modal logic
proposed in[13],and it mostly di�erentiate from it and from the modern tableau-based approaches for the
expansion at the ALC level of the Boolean component of reasoning and for the tighter interactions between
the theory solver and the assignment enumerator. We are not aware of any further investigation or advance
in this approach, that in [12] is only at a preliminary level.

2 Background

2.1 The Description Logic ALCQ
The logic ALCQ extends the well known logic ALC adding the quali�ed number restriction constructors.
In more details, the concept descriptions in ALCQ (namely C,D, . . .) are inductively de�ned through the
constructors listed in the upper half of Table 1, starting from the non-empty and pair-wise disjoint sets of
concept names NC (we use the letters A,B, . . . for concept names) and role names NR (we use the letters
r, s, . . . for role names). It allows for negations, conjunctions/disjunctions, existential/universal restrictions
and, indeed, quali�ed number restrictions. An ALCQ TBox (or ontology) is a �nite set of general concept
inclusion (GCI) axioms as de�ned in the lower half of Table 1.

The semantic of ALCQ is de�ned in terms of interpretations. An interpretation I is a couple I =
(∆I , ·I), where ∆I is the domain, i.e. a non-empty set of individuals, and ·I is the interpretation function
which maps each concept name (atomic concept) A ∈ NC to a set AI ⊆ ∆I and maps each role name
(atomic role) r to a binary relation rI ⊆ ∆I × ∆I . In the right-most column of Table 1 the inductive
extensions of ·I to arbitrary concept descriptions are de�ned, where n and m are positive integer values
and FIL(r, x) is the set of the r-�llers of the individual x ∈ ∆I for the role r ∈ NR and is de�ned as



Syntax Semantic

bottom ⊥ ∅
top > ∆I

negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

existential
restriction

∃r.C {x ∈ ∆I | there exists y ∈ ∆I such that (x, y) ∈ rI and y ∈ CI}

universal
restriction

∀r.C {x ∈ ∆I | for all y ∈ ∆I such that (x, y) ∈ rI then y ∈ CI}

≥ number
restriction

≥nr.C {x ∈ ∆I | |FIL(r, x) ∩ CI | ≥ n}

≤ number
restriction

≤mr.C {x ∈ ∆I | |FIL(r, x) ∩ CI | ≤ m}

GCI C v D CI ⊆ DI

Table 1: Syntax and semantics of ALCQ (n ≥ 1 and m ≥ 0)s.

FIL(r, x) = {y ∈ ∆I |(x, y) ∈ rI}.
An interpretation I is a model of a given TBox T if and only if the conditions in the Semantic column

of Table 1 are respected for every axiom in T , if and only if this is the case the TBox T is said to be
consistent. A concept C is said to be satis�able wrt. T if and only if there exists a model I of T with
CI 6= ∅, i.e. there exists an individual x ∈ ∆I as an instance of C, i.e. such that x ∈ CI .

2.1.1 An ALCQ Normal Form

Given a TBox T , we denote with BCT the set of the basic concepts for T , i.e. the smallest set of concepts
containing: (i) the top and the bottom concepts > and ⊥; (ii) all the concepts of T in the form C and
¬C where C is a concept name in NC . We use simple letters like C,D, . . . , N,M, . . . to denote the basic
concepts in BCT (thus, C can be used to represent a concept ¬C ′ with C ′ ∈ BCT ), whilst we use the
notation Ĉ, D̂, . . . for complex concepts Ĉ, D̂ 6∈ BCT .

Wlog. we assume all the ALCQ concept de�nitions to be in negative normal form (NNF), thus negation
only applies to concept names. Starting from a generic concept de�nition C it is possible to obtain an
equivalent concept de�nition in NNF, applying the following linear transformations, where we represent
with ¬̇C the NNF transformation of ¬C:

¬(C uD) =⇒ ¬̇C t ¬̇D ¬(C tD) =⇒ ¬̇C u ¬̇D
¬∃r.C =⇒ ∀r.¬̇C ¬∀r.C =⇒ ∃r.¬̇C

¬≥nr.C =⇒ ≤n− 1r.C ¬≤mr.C =⇒ ≥m+ 1r.C

¬¬C =⇒ C ¬⊥ =⇒ > ¬> =⇒ ⊥

Then we restrict our attention to those ALCQ TBoxes in which all axioms are in the following normal
form:

C v D

C1 u C2 v D C v D1 uD2

C1 t C2 v D C v D1 tD2

<r.C v D C v <r.D

with C,C1, C2, D,D1, D2 ∈ BCT , r ∈ NR and where < ∈ {∃,∀,≥n,≤m}, i.e. it can be any of the possible
restriction operators allowed in ALCQ.

Any given TBox T can be turned into a normalized one T ′ that is a conservative extension of T by
introducing new concept names. A TBox T ′ is a conservative extension of the TBox T if every model of
T ′ is also a model of T , and every model of T can be extended to a model of T ′ by appropriately de�ning



the interpretations of the additional concept and role names. The transformation of a TBox T into a
normalized one T ′ can be done in linear time (and, thus, T ′ has no more than linear size w.r.t. the size of
T ) applying exhaustively the following transformation rules:

Ĉ v D̂ =⇒ {Ĉ v N, N vM, M v D̂}

C u Ĉ v D =⇒ {C uN v D, N v Ĉ} C v D u D̂ =⇒ {C v D uN, D̂ v N}
C t Ĉ v D =⇒ {C tN v D, N v Ĉ} C v D t D̂ =⇒ {C v D tN, D̂ v N}
<r.Ĉ v D =⇒ {<r.N v D, N v Ĉ} C v <r.D̂ =⇒ {C v <r.N, D̂ v N}

where < ∈ {∃,∀,≥ n,≤m}, C,D ∈ BCT , Ĉ, D̂ 6∈ BCT , and N,M 6∈ BCT are fresh concept names newly
introduced in order to de�ne complex concept descriptions. Notice that, during normalization, when a
complex concept description appears both at the left- and at the right-hand side of some concept inclusions
it can be better de�ned by mean of the same new concept name instead of by introducing two di�erent
fresh names for it.

Even if, for convenience and wlog., we sometimes restrict to binary conjunction/disjunction relations,
in practice we can relax such a constraint and allow for having n-ary conjunctions and disjunctions of basic
concepts that we represent respectively with uiCi and tiCi. Moreover, in order to safely reduce the number
of possible cases and to increase the number of equivalent concepts having the same description, we further
re�ne the considered normal form applying the following equivalence transformations to the axioms and
concepts of T ′:

C v D1 u . . . uDn =⇒ {C v D1, . . . , C v Dn} ∃r.C =⇒ ≥1r.C

C1 t . . . t Cn v D =⇒ {C1 v D, . . . , Cn v D} ≤0r.C =⇒ ∀r.¬̇C

thus, we avoid left-hand side disjunctions and right-hand side conjunctions and we handle existential and
zero at-most restrictions as special cases of, respectively, quali�ed number and universal restrictions. This
has been said the resulting considered normal form is the following:

C v D uiCi v D C v uiDi (1)

<r.C v D C v <r.D < ∈ {∀,≥n,≤m},with n,m ≥ 1 (2)

where C,Ci, D,Di are basic concepts. Finally, notice that the �rst normal form (1) is a special case of the
successive two normal forms with i = 1.

We call normal concept of a normal TBox T ′ every non-conjunctive and non-disjunctive concept de-
scription occurring in the concept inclusions T ′; we call NCT ′ the set of all the normal concepts of T ′.
Practically, an element of the set NCT ′ is either a concept C with C ∈ BCT ′ or a concept in the form
<r.C, with < ∈ {∃,∀,≥ n,≤ m}, C ∈ BCT ′ and r ∈ NR.

1 Given a non-normal concept Ĉ (that is a
conjunction or a disjunction of normal concepts) we identify with nc(Ĉ) the set of normal concepts of which
Ĉ is composed, where nc(Ĉ) = {Ĉ} if Ĉ is normal. 2

2.2 Basics on Con�ict-Driven Clause-Learning SAT Solving

For the best comprehension of the content of the next sections, we recall some notions on SAT and Con�ict-
Driven Clause-Learning (CDCL) SAT solving. For a much deeper description, we refer the reader to the
literature [33, 37, 7, 23].

We assume the standard syntactic and semantic notions of propositional logic. Given a non-empty set
of primitive propositions P = {p1, p2, . . .}, the language of propositional logic is the least set of formulas
containing P and the primitive constants > and ⊥ (�true� and �false�) and closed under the set of standard

1Note that if T ′ is a normal TBox, conservative extension of the non-normal TBox T , BCT ⊆ BCT ′ .
2We anticipate that, at the e�ect of the encoding we propose in this work, the normalization of the given TBox is not

strictly necessary since it is possible to recursively label non-normal concepts and their sub-concepts with fresh variables and
then encode with new clauses the relations between the main concept and their subconcepts, like done in [31]. However, we
introduced the exposed normal form in order to reduce the possible cases that must be considered, simplifying the exposition,
the encoding and the formal proofs.



1. SatValue DPLL (formula ϕ, assignment µ)
2. while (1) {

3. while (1) {

4. status = bcp(ϕ, µ);
5. if (status == sat)
6. return sat;
7. else if (status == conflict) {

8. blevel = analyze_conflict(ϕ, µ);
9. if (blevel == 0)

10. return unsat;
11. else backtrack(blevel,ϕ, µ);
12. }

13. else break;

14. }

15. decide_next_branch(ϕ, µ);
16. }

Figure 1: Schema of a CDCL DPLL SAT solver.

propositional connectives {¬,∧,∨,→,↔}. We call a propositional atom (also called propositional variable)
every primitive proposition in P, and a propositional literal every propositional atom (positive literal) or its
negation (negative literal). We implicitly remove double negations: e.g., if l is the negative literal ¬pi, by
¬l we mean pi rather than ¬¬pi. We represent a truth assignment µ as a conjunction of literals

∧
i li (or

analogously as a set of literals {li}i) with the intended meaning that a positive [resp. negative] literal pi
means that pi is assigned to true [resp. false].

A propositional formula is in conjunctive normal form, CNF, if it is written as a conjunction of disjunc-
tions of literals:

∧
i

∨
j lij . Each disjunction of literals

∨
j lij is called a clause. Notationally, we often write

clauses as implications: �(
∧

i li) → (
∨

j lj)� for �
∨

i ¬li ∨
∨

j lj�; also, if η is a conjunction of literals
∧

i li,
we write ¬η for the clause

∨
i ¬li, and vice versa. A unit clause is a clause with only one literal.

The problem of detecting the satis�ability of a propositional CNF formula, also referred as the SAT
problem, is NP-complete. A SAT solver is a tool able to solve the SAT problem.

Most state-of-the-art SAT procedures are evolutions of the Davis-Putnam-Longeman-Loveland (DPLL)
procedure [6, 5] and they are based on the CDCL paradigm [33, 36]. A high-level schema of a modern CDCL
DPLL engine, adapted from the one presented in [37], is shown in Figure 1. The propositional formula ϕ
is in CNF; the assignment µ is initially empty, and it is updated in a stack-based manner.

In the main loop, decide_next_branch(ϕ, µ) (line 15.) chooses an unassigned literal l from ϕ ac-
cording to some heuristic criterion, and adds it to µ. (This operation is called decision, l is called decision
literal and the number of decision literals in µ after this operation is called the decision level of l.) In
the inner loop, bcp(ϕ, µ) iteratively deduces literals l from the current assignment and updates ϕ and µ
accordingly; this step is repeated until either µ satis�es ϕ, or µ falsi�es ϕ, or no more literals can be
deduced, returning sat, conflict and unknown respectively. In the �rst case, DPLL returns sat. In the second
case, analyze_conflict(ϕ, µ) detects the subset η of µ which caused the con�ict (con�ict set) and the
decision level blevel to backtrack. (This process is called con�ict analysis, and is described in more details
below.) If blevel is 0, then a con�ict exists even without branching, so that DPLL returns unsat. Oth-
erwise, backtrack(blevel, ϕ, µ) adds the blocking clause ¬η to ϕ (learning) and backtracks up to blevel
(backjumping), popping out of µ all literals whose decision level is greater than blevel , and updating ϕ
accordingly. In the third case, DPLL exits the inner loop, looking for the next decision.

bcp is based on Boolean Constraint Propagation (BCP), that is, the iterative application of unit prop-
agation: if a unit clause l occurs in ϕ, then l is added to µ, all negative occurrences of l are declared false
and all clauses with positive occurrences of l are declared satis�ed. Current CDCL SAT solvers include ex-
tremely fast implementations of bcp based on the two-watched-literals scheme [24]. This scheme maintains
the property that only two di�erent unassigned literals on each clause are watched by a pointer. When
a watched literal is assigned to false, the pointer moves looking for another unassigned literal to watch;
if none is found, then a new unit clause is detected. Satis�ed clauses are not removed; rather, they are
lazily detected and ignored when performing propagations. This scheme requires, for every literal, only the



storage of its current assignment status (true, false, unassigned) and the list of the pointers to the clauses
it watches. Importantly, notice that a complete run of bcp requires an amount of steps which is linear in
the number of clauses containing the negation of some of the propagated literals.

analyze_conflict works as follows [33, 24, 36]. Each literal is tagged with its decision level, that is, the
literal corresponding to the nth decision and the literals derived by unit-propagation after that decision
are labeled with n; each non-decision literal l in µ is also tagged by a link to the clause ψl causing its
unit-propagation (called the antecedent clause of l). When a clause ψ is falsi�ed by the current assignment
�in which case we say that a con�ict occurs and ψ is the con�icting clause� a con�ict clause ψ′ is
computed from ψ s.t. ψ′ contains only one literal lu which has been assigned at the last decision level. ψ′

is computed starting from ψ′ = ψ by iteratively resolving ψ′ with the antecedent clause ψl of some literal
l in ψ′ (typically the last-assigned literal in ψ′, see [37]), until some stop criterion is met. E.g., with the
1st-UIP Scheme the last-assigned literal in ψ′ is the one always picked, and the process stops as soon as ψ′

contains only one literal lu assigned at the last decision level; with the Decision Scheme, ψ′ must contain
only decision literals, including the last-assigned one.

2.3 Satis�ability Modulo Theory

Satis�ability Modulo (the) Theory T , SMT(T ), is the problem of deciding the satis�ability of (typically)
ground formulas under a (combination of) background theory T . (Notice that T can also be a combination

of simpler theories: T def
=

⋃
i Ti.) We call an SMT(T ) solver any tool able to decide SMT(T ). We call a

theory solver for T , T -solver, any tool able to decide the satis�ability in T of sets/conjunctions of ground
atomic formulas and their negations (T -literals). If the input set of T -literals µ is T -unsatis�able, then
T -solver returns unsat and the subset η of T -literals in µ which was found T -unsatis�able (η is called a
T -con�ict set, and ¬η a T -con�ict clause). Ff µ is T -satis�able, then T -solver returns sat; it may also be
able to return some unassigned T -literal l s.t. {l1, ..., ln} |=T l, where {l1, ..., ln} ⊆ µ. We call this process
T -deduction and (

∨n
i=1 ¬li ∨ l) a T -deduction clause.

We adopt the following terminology and notation. The bijective function T 2B (�T -to-Boolean�), called
Boolean abstraction, maps propositional variables into themselves, ground T -atoms into fresh propositional
variables, and is homomorphic w.r.t. Boolean operators and set inclusion. The symbols ϕ, ψ, φ denote
T -formulas, and µ, η denote sets of T -literals. If T 2B(µ) |= T 2B(ϕ), then we say that µ propositionally
satis�es ϕ written µ |=p ϕ.

In a lazy SMT(T ) solver the truth assignments for ϕ are enumerated and checked for T -satis�ability,
returning either sat if one T -satis�able truth assignment is found, unsat otherwise. In practical imple-
mentations, ϕ is given as input to a modi�ed version of DPLL, and when an assignment µ is found s.t.
µ |=p ϕ µ is fed to the T -solver; if µ is T -consistent, then ϕ is T -consistent; otherwise, T -solver returns
the con�ict set η causing the inconsistency. Then the T -con�ict clause ¬η is fed to the backjumping and
learning mechanism of DPLL (T -backjumping and T -learning).

Important optimizations are early pruning and T -propagation: the T -solver is invoked also on an in-
termediate assignment µ: if it is T -unsatis�able, then the procedure can backtrack; if not, and if the
T -solver performs a T -deduction {l1, ..., ln} |=T l, then l can be unit-propagated, and the T -deduction
clause (

∨n
i=1 ¬li ∨ l) can be used in backjumping and learning. The above schema is a coarse abstraction

of the procedures underlying all the state-of-the-art lazy SMT tools. The interested reader is pointed to,
e.g., [29, 2], for details and further references.

2.3.1 The Theory of Costs

The language of the Theory of Costs allows for express multiple cost functions and, for each of these, allows
for de�ne cost increases and both lower- and upper-bounds depending on arbitrary Boolean conditions. In
particular, in this work we consider a theory of costs over the integer in which every cost function is a
Boolean cost function.

Let T be a �rst-order theory. We consider a pair 〈ϕ,F〉, where F def
= {costi | i = 1, . . . ,M} is a set of

M distinct integer cost functions and where ϕ is a Boolean combination of ground T -atoms and atoms in
the form

(costi ≤ c), (3)



with c is an integer value. 3 We focus on problems in which every costi is a Boolean cost function (over
the integers) in the form:

costi =

Ni∑
j=1

if-then-else(ψi,j , c
>
i,j , c

⊥
i,j) (4)

sucht that, for every i and every j, ψi,j is a formula in T , c>i,j , c⊥i,j are integer constant values and if-then-else
is a function such that if-then-else(ψi,j , c

>
i,j , c

⊥
i,j) returns c

>
i,j if ψi,j holds, c⊥i,j otherwise. Wlog. we can

restrict our attention to problems 〈ϕ,F〉 in which, for every i:

costi =

Ni∑
j=1

if-then-else(Ai,j , ci,j , 0) (5)

and such that, for every j, Ai,j is a Boolean literal and ci,j > 0. In fact, any problem with cost functions
in form (4) can be convert straightforwardly and in linear time into another problem with cost functions
in form (5), not a�ecting the solutions of the problem [4].

The problem consists in to decide the satis�ability of the formula ϕ under the background theory T
and satisfying all the cost constraints of the form (3), i.e. �nding a satisfying assignment for ϕ having a
cost within the admissible range. Every function (5) can be easily encoded into subformulas in the theory
of linear arithmetic over the integers (LA(Z)), and the whole problem 〈ϕ,F〉 into a ground T ∪ LA(Z)-
formula, with T ,LA(Z) completely-disjoint theories, so that to be handled by an SMT solver [4]. However,
for e�ciency reasons the problem has been addressed in SMT by introducing an ad-hoc Theory of Costs
C [4] (which, wrt. the use of linear arithmetic, also results in a much more clear and compact formalism)
consisting in:

• a collection V of M fresh integer variables V = {vcost1 , . . . , vcostM }, that we call cost variables, respec-
tively denoting the �nal output of the functions cost1, . . . , costM of type (5);

• a fresh binary predicate BC (bounded cost) de�ned over the set of the cost variables and the set of the
integers, such that BC(vcosti , c) represents the constraint �(costi ≤ c)� (3), i.e. the predicate is true
if the cost function costi (whose �nal cost is represented by vcosti ) is upper-bounded by the integer
value c, and false vice versa.

• a fresh ternary predicate IC (incur cost) de�ned over the sets of the cost variables, of the integers
and of the naturals, such that every IC(vcosti , ci,j , j) represents the jth element of sum (5), i.e. the
predicate is true if Ai,j in (5) is true so that the amount ci,j is added to the cost function costi
(corresponding to an increment of ci,j of the cost variable vcosti ), and false vice versa. 4For every
function of type (5) exactly Ni distinct atoms IC(v

cost
i , ci,j , j) must be introduced.

We call C-atoms all the BC and IC atoms, and C-literals all C-atoms and their negations. We call a C∪T -
formula any Boolean combination of ground T - and C-atoms. We call C-solver a decision procedure (theory
solver) for the Theory of Costs C above exposed. Given a C∪T -formula ϕ the C-solver takes as input a
truth assignment µC to the C-literals of ϕ and checks whether µC is C-satis�able, i.e. if the assignment µC
is consistent wrt. to the Theory of Costs. Informally speaking, the assignment µC is consistent wrt. to the
Theory of Costs if, for every cost variable vcosti , the sum (5) of the incur costs determined by the assignment
of the IC-literals respect the constraints (3) determined by the assignment of the respective BC-literals. In
this work we are interested only in the case in which T is pure propositional logic; we simply call C-formula
every C∪T -formula in which T is pure propositional logic and we call SMT(C) solver the solver including
the C-solver for the Theory of Costs.

With this formalism, notice that:

• to force a C-atom BC(vcosti , c) to be true mean to state an upper-bound of c for the cost function
represented by vcosti ;

3Notice that every atom in the form (costi ./ c) with ./∈ {=, 6=, <,≤, >,≥} can be expressed as a Boolean combination of
j ≥ 1 atoms in the form (costi ./ cj), for some cj integer values derived from c. For instance (costi 6= c) can be expressed as
(costi ≤ c− 1) ∨ ¬(costi ≤ c).

4The index j in IC(vcosti , ci,j , j) is necessary to avoid using exactly the same predicate instantiation (atom) for two constants
ci,j and ci,j′ with the same value but di�erent indexes j and j′.



• similarly, it is possible to state a lower-bound (with value c+1) for vcosti by forcing to true the C-literal
¬BC(vcosti , c);

• the jth incur cost for vcosti represented by the C-atom IC(vcosti , ci,j , j) contributes to the �nal cost of
vcosti with an amount of ci,j only if such an atom is assigned to true;

• if in an SMT(C) formula every stated incur cost IC for the variable vcosti has value ci,j = 1, then �xing
an upper-bound [resp. lower-bound] of value c for vcosti through a BC literal, forces at-most [resp.
at-least] c IC-atoms for vcosti to be assigned to true, in order to satisfy the formula.

3 Concept Satis�ability in ALCQ via SMT(C) solving
3.1 Possible solutions

In [31, 32] it has been shown that it is possible to e�ciently perform reasoning in Description Logic via the
encoding into SAT problems. SAT-based technologies have proved to be very mature and largely successful
in a wide range of domains. In particular, state-of-the-art SAT solvers, nowadays, are tools able to solve
problems of hundreds of millions of variables and clauses. We aim at exploiting the capabilities of the state-
of-the-art Boolean reasoning techniques proposing a convenient alternative to the traditional tableau based
algorithms. In particular, following the experience acquired from [31, 32] we think that also the rising SMT
technologies can be, in practice, very powerful and suitable tools to reason on Description Logic problems,
combining the adaptability and scalability of SAT with the expressivity of the many embedded theories. The
idea is to use SMT in the development of new techniques for optimized reasoning with numerical constraints
in Description Logics, especially for what concerns those logics which provide language constructors that
are somewhat similar to those of the theories that SMT includes.

So we open this research stream, starting from the encoding of concept satis�ability in the logic ALCQ,
(which extends ALC with quali�ed number restrictions) into Satis�ability Modulo Theory. With this
objective in mind, seen the previous approaches to the problem in literature and given the many kinds of
numerical reasoning available in SMT (including solving inequations, counting and others), we identi�ed
two main possible alternative encoding solutions:

- To follow the hybrid approach exposed in [8, 9] and to use the theories of SMT in order to perform
numerical reasoning on the cardinality of sets of individuals. The approach of [8, 9] is based on the
idea of partitioning the space of the possible individuals modeling the given problem in disjoint sets.
Every partition represents a unique combination of features the individuals match, i.e. a di�erent
intersection of the interpretations of the concepts involved in the numerical restrictions. Then it
veri�es the satis�ability of quali�ed number restrictions through a set of linear integer inequations
on the values of the partitions' cardinalities. The approach is called hybrid because it combines the
typical tableau approach together with a inequations solver handling the arithmetical part of the
problem. This approach has the bene�t of being not a�ected by the values of numbers occurring
in number restrictions and of allowing for creating only one, so-called, proxy individual representing
the whole set of individuals with the same features, instead of creating many di�erent equivalent
individuals with the need of mechanism of merging.

An encoding of this approach into SMT (LA(Z)) (i.e. Satis�ability Modulo the Theory of Linear
Arithmetic over the integers) is quite intuitive. Here we don't expose the details, but the idea is to
exploit the Boolean component of SMT in order to represent the satis�ability of proxy individuals and
the implications among proxy individuals of di�erent partitions, while to rely on the LA(Z)-solver to
check the numerical consistency of the partitions cardinalities wrt. the existing restrictions.

- To devise a tableau-like approach, in which many individuals are created in order to individually
satisfy the concepts and quali�ed number restrictions in the given problem, and to use the theories
of SMT in order to count and bound those individuals. In this case the idea should be to exploit the
Boolean component of SMT in order to represent the satis�ability of every individual, the relations
among individuals and their membership to concept interpretations. The counting of individuals
performed by the SMT theories, instead, forces the existence or non-existence of individuals and
their membership to some concept interpretations, so that if many equivalent individuals exist only



a number of individuals that is consistent wrt. the existing lower- or upper-bounds, respectively, is
�enabled�.

It is possible to encode this approach into SMT (LA(Z)) or, even better, in SMT modulo the The-
ory of Costs [4] (SMT(C)), that we think more naturally �ts the required expressivity of numerical
restrictions. The Theory of Costs (C), in fact, is a subset of linear arithmetic over the integer
(LA(Z)), in which it is possible to de�ne multiple cost variables/functions and de�ne both increases
and lower/upper-bounds on such costs. Being C a subset of LA(Z), further than being a more direct
and easy formalism, should have a lighter and more specialized theory solver.

Between these two alternatives we privilege the encoding into SMT (C), due to the following reasons:

• The Theory of Costs C is a really simple theory who needs a lightweight and simple solver (based
on sums and checks wrt. given bounds) while Linear Arithmetic LA is much more complicated and
needs a, likely, much more time-consuming theory solver.

• The consideration above, also, meets the idea of to move as much reasoning as possible in a �rst,
expensive but �done-once-for-all� encoding phase (performed by a speci�c tool), in order to lighten as
much as possible the single but numerous queries (performed on SMT), for which a fast response is
more important.

• The approach based on partitioning leads a-priori to an exponential number of individuals and vari-
ables for every di�erent set of quali�ed number restrictions that must be encoded. In fact the num-
ber of possible distinct intersection of n distinct concepts is 2n. Encoding such an approach in
SMT (LA(Z)) would a�ect exponentially both in the number of the Boolean variables and in the
number of the integer ones. On the contrary, in the SMT (C) encoding, the number of integer vari-
ables introduced for every group of restrictions is linear in the number of restrictions, the number of
individuals is linear in the values included in the number restrictions and the total number of Boolean
variables and cost contributions polynomial in these values.

• The linear dependence of the second approach from the values included in the restrictions, when
replicated at every encoding level, can be more negatively impacting than the exponentiality of the
�rst approach wrt. the number of restrictions, but we think that:

- in real world, ontologies more commonly have a high number of quali�ed number restrictions
than big values occurring in them (that, further, can be rationalized in some cases):

- given the power of the underlying SAT-solvers in SMT, a huge number of Boolean variables can
be more a�ordable than a huge number of integer variables in the theory solvers;

- The second approach allows for heuristics or enhanced encodings in which the big numerical
intervals generated by the values of the number restrictions can be handled introducing groups
of individual, in place of single individuals, resulting in an even smaller number of variables.

Notice that, somehow, also our approach can be de�ned �hybrid�. In fact, even if it simulates the tableau
approach, it combines two orthogonal components of reasoning by mean of the SMT solver.

3.2 Encoding ALCQ into SMT(C)
We encode the problem of concept satis�ability in description logic ALCQ wrt. acyclic TBoxes into an
SMT(C) (Satis�ability Modulo the Theory of Costs) problem. Given an acyclic ALCQ TBox T we denote
with ALCQ2SMTC(T ) the encoding of T into SMT(C). We also assume that every axiom/concept descrip-
tion in T is in the normal form exposed in Section 2.1.1, thus, in particular, in NNF. In a nutshell, the
encoding simulates the construction of an interpretation I observing the semantic of the encoded TBox T ,
by:

• introducing possible individuals for the domain ∆I of the interpretation I;

• representing with Boolean variables whether an individual is in ∆I and whether it belongs to the
interpretation of one speci�c concept;



• using C-atoms in order to count the number of individuals and to express the bounds imposed in T
by mean of the quali�ed number restrictions.

If a satisfying truth assignment µ for ALCQ2SMTC(T ) exists, then from µ it is possible to obtain a model
for T , thus, in particular, the number of individuals in such a model respects all the numerical constraints
given by the quali�ed number restrictions in T .

We represent uniquely individuals in ∆I by means of labels σ, represented as non-empty sequences of
positive integer values and role names in NR. A label σ can be either the label 1 or a label in the form σ′.r.n,
where σ′ is another label, r ∈ NR and n ≥ 1 an integer value. With a small abuse of notation, hereafter we
may say �the individual σ� meaning �the individual labeled by σ�. Moreover, we call instantiated concept a
pair 〈σ,C〉, such that σ is an individual and C is an ALCQ normal concept, representing the fact that the
individual σ is an instance of the concept C in the hypothetical interpretation I, i.e., brie�y, σ ∈ CI .

De�nition 1. We de�ne A〈 , 〉 an injective function which maps one instantiated concept 〈σ,C〉 such
that C is not a negation (i.e. it is in the form ¬C ′), into a Boolean variable A〈σ, C〉 that we call concept
variable. Let the literal L〈σ, C〉, that we call concept literal, denote ¬A〈σ, C′〉 if C is in the form ¬C ′, A〈σ, C〉
otherwise.

The truth value of the concept literal L〈σ, C〉 states whether the instantiation relation between σ and C
[resp. ¬C] holds, i.e. if 〈σ,C〉 [resp. 〈σ,¬C〉 ] is an existing instantiated concept. We conventionally assume
that A〈σ, ⊥〉 is ⊥. Notice also that 〈σ,>〉 means σ ∈ ∆I , i.e. that if A〈σ, >〉 is assigned to true then the
individual σ exists in the domain of the interpretation. We informally say that and individual σ (meaning
〈σ,>〉) or an instantiated concept 〈σ,C〉 is �enabled� meaning that the respective literal is assigned to true.

De�nition 2. We de�ne indiv a function which maps one instantiated concept 〈σ,<r.C〉, such that < ∈ {≥
n,≤m} and C is a basic concept (since we are considering concepts in normal form), into a cost variable
indivCσ.r in the Theory of Costs, that we call individuals cost variable.

Notice that the function indiv is not injective since the same cost variable indivCσ.r is �shared� among all
the instantiated concepts which refer both to the same individual σ and to quali�ed number restrictions
involving the same role r and the same basic concept C. However, notice also that 〈σ,<r.C〉 and 〈σ,<r.¬C〉
are mapped to di�erent cost variables. Given the individuals cost variable indivCσ.r, the �nal value of the
variable represents the number of individuals which are in relation with the individual σ via the role r
and which are in the interpretation of C, in other words the �nal value of indivCσ.r exactly represents the
cardinality of FIL(r, σ) ∩ CI .

De�nitions 1 and 2 are at the base of the ALCQ2SMTC(T ) encoding. They allow for mapping couples
made up of individuals and concepts to Boolean and cost variables in the encoding. Given those de�nitions,
the encoding simulates the construction of an interpretation by introducing new individuals, by establishing
relations between individuals and by regulating the membership of individuals to the interpretations of
concepts in T , counting the occurrences. The encoding works essentially by mean of the following principles:

• Uses 1 as the root individual.

• The semantic of the concept inclusions stated by the axioms of T is maintained through Boolean
implications between the variables representing instantiated concepts.

• Given an individual σ every at-least quali�ed number restriction 〈σ,≥nr.C〉 is handled by introducing
exactly n new possible individuals σ.r.i in relation with σ through r and speci�cally satisfying the
concept C. This ensures that it there exists the required minimum number of individuals satisfying
the number restriction. The existence of the individuals is forced by binding each of them to an incur
cost for the respective cost variable of value 1, and then �xing a lower-bound for cost variable.

• When many at-least restrictions coexist wrt. the same individual σ, many di�erent new individuals
are introduced in order to trivially satisfy all such at-least restrictions. However, if also at-most
restrictions 〈σ,≤mr.C〉 exist, the number of individuals σ.r.i that can really exist in the interpretation
of C is not unlimited but bounded by the values m. Every at-most restriction is handled by �xing
an upper-bound for the respective cost variables indivCσ.r which �counts� the individuals in relation
with σ through r and satisfying C. Thus, in order to allow for satisfying both at-least and at-most



restrictions, the encoding must allow for sharing the individuals independently introduced for distinct
at-least restrictions, so that one single individual can satisfy more than one at-least restriction and
can concur to more than one cost variable. This reduces the total number of distinct individuals that
must be enabled and counted.

Now we give a formal description of such an encoding.

De�nition 3. Let T being an acyclic ALCQ TBox in normal form 5 and, wlog., assume that every axiom
of T is in the form Ĉ v D̂, with Ĉ = uiCi, D̂ = tjDj , where i, j ≥ 1 and i = 1 [resp. j = 1] in the case in

which Ĉ [resp. D̂] is a basic concept.
The SMT(C) encoding ALCQ2SMTC(T ) for T is de�ned as the sextuple 〈ΣT , IT

− , IT
+ , A〈 , 〉, indiv, ϕ

T 〉,
where:

• ΣT is the set of all the possible individuals introduced;

• IT
− , IT

+ are two sets containing all the possible instantiated concepts represented by the encoding,
which combines the individuals of ΣT with the basic concept of T , and which represents respectively
implicant and implied instantiated concepts.

• A〈 , 〉 is the function uniquely mapping possible instantiated concepts to Boolean variables de�ned
in De�nition 1;

• indiv is the function mapping possible instantiated concepts to individuals cost variables de�ned in
De�nition 2;

• ϕT is a CNF Boolean combination of propositional- and C-literals encoding T into SMT(C). 6

Since ϕT is in CNF, it is a conjunction of a set of clauses made up of disjunctions of propositional- and
C-literals. Thus we represent ϕT as such a set of clauses.

The sets ΣT , IT
− , IT

+ and ϕT are incrementally de�ned as the minimum sets such that:

1. 1 ∈ ΣT , 〈1,>〉 ∈ IT
− , 〈1,>〉 ∈ IT

+ and (A〈1, >〉) ∈ ϕT .

2. {〈1, Ci〉 | Ci ∈ nc(Ĉ)} ⊆ IT
− , for every axiom Ĉ v D̂ ∈ T .

3. If σ ∈ ΣT , for every axiom uiCi v tjDj ∈ T such that {〈σ, Ci〉 | Ci ∈ nc(Ĉ)} ⊆ IT
− ∪ IT

+ , then

{ 〈σ,Dj〉 | Dj ∈ nc(D̂) } ⊆ IT
+

and
(
∧
i

L〈σ, Ci〉) → (
∨
j

L〈σ, Dj〉) ∈ ϕT . (6)

4. If σ ∈ ΣT and 〈σ,<′.r.C ′〉 ∈ IT
+ , with <′ ∈ {≥n′,≤m′,∀}, then

{ 〈σ,<r.C〉 | <r.C v D̂ ∈ T } ⊆ IT
− ,

for every < ∈ {≥n,≤m,∀}.

5. If σ ∈ ΣT and 〈σ,≥nr.C〉 ∈ IT
+ [resp. 〈σ,≤n−1r.C〉 ∈ IT

− , or 〈σ,∀r.¬C〉 ∈ IT
− assuming n = 1], then

{ σ.r.kCi | i = 1, . . . , n } ⊂ ΣT ,

{ 〈σ.r.kCi , C〉 | i = 1, . . . , n } ∪ { 〈σ.r.kCi ,>〉 | i = 1, . . . , n } ⊂ IT
−

and

{ IC(indivCσ.r, 1, k
C
i ) → L〈σ.r.kC

i , C〉 | i = 1, . . . , n } ⊂ ϕT , (7)

{ IC(indivCσ.r, 1, k
C
i ) → A〈σ.r.kC

i , >〉 | i = 1, . . . , n } ⊂ ϕT , (8)

where kC1 ≥ 1, kCi+1 = kCi +1 and kCi 6= kDj for every 〈σ,≥n′r.D〉 ∈ IT
+ [resp. 〈σ,≤n′−1r.D〉 ∈ IT

− ...],
with C 6= D and i = 1, . . . , n, j = 1, . . . , n′. We assume only consecutive values for the individuals
σ.r.j, thus either kC1 = 1 or kC1 = kDn′ + 1, for some 〈σ,≥n′r.D〉 ∈ IT

+ [resp. 〈σ,≤n′−1r.D〉 ∈ IT
− ...].

5See Section 2.1.1.
6All the clauses of ALCQ2SMTC(T ) are intended to be in CNF even if we reported them in form of implications.



6. If σ ∈ ΣT and 〈σ,≥nr.C〉 ∈ IT
+ , then

((A〈σ, ≥nr.C〉 ∧A〈σ, >〉) → ¬BC(indivCσ.r, n− 1)) ∈ ϕT , (9)

while, if σ ∈ ΣT and 〈σ,≥nr.C〉 ∈ IT
− , then

((¬BC(indivCσ.r, n− 1) ∧A〈σ, >〉) → A〈σ, ≥nr.C〉) ∈ ϕT . (10)

7. If σ ∈ ΣT , 〈σ,≤mr.E〉 ∈ IT
+ [resp. 〈σ,≥mr.E〉 ∈ IT

− ], 〈σ,≥nr.C〉 ∈ IT
+ , [resp. 〈σ,≤n−1r.C〉 ∈ IT

− ]
and 〈σ,≥n′r.D〉 ∈ IT

+ [resp. 〈σ,≤n′−1r.D〉 ∈ IT
− or 〈σ,∀r.¬C〉 ∈ IT

− assuming n′ = 1], then

{ 〈σ.r.kCi , D〉 | i = 1, . . . , n } ∪ { 〈σ.r.kDi , C〉 | i = 1, . . . , n′ } ⊂ IT
−

and

{ IC(indivDσ.r, 1, k
C
i ) → L〈σ.r.kC

i , D〉 | i = 1, . . . , n } ∪

{ IC(indivCσ.r, 1, k
D
i ) → L〈σ.r.kD

i , C〉 | i = 1, . . . , n′ } ⊂ ϕT , (11)

{ IC(indivDσ.r, 1, k
C
i ) → A〈σ.r.kC

i , >〉 | i = 1, . . . , n } ∪

{ IC(indivCσ.r, 1, k
D
i ) → A〈σ.r.kD

i , >〉 | i = 1, . . . , n′ } ⊂ ϕT . (12)

8. If σ ∈ ΣT and 〈σ,≤mr.C〉 ∈ IT
+ [resp. 〈σ,≥nr.C〉 ∈ IT

− ], then

{ 〈σ.r.j, C〉 | σ.r.j ∈ ΣT } ⊂ IT
−

and
{ (L〈σ.r.j, C〉 ∧A〈σ.r.j, >〉) → IC(indivCσ.r, 1, j) | σ.r.j ∈ ΣT } ⊂ ϕT . (13)

9. If σ ∈ ΣT and 〈σ,≤mr.C〉 ∈ IT
+ , then

((A〈σ, ≤mr.C〉 ∧A〈σ, >〉) → BC(indivCσ.r,m)) ∈ ϕT , (14)

while, if σ ∈ ΣT and 〈σ,≤mr.C〉 ∈ IT
− , then

((BC(indivCσ.r,m) ∧A〈σ, >〉) → A〈σ, ≤mr.C〉) ∈ ϕT . (15)

10. if σ ∈ ΣT and 〈σ,∀r.C〉 ∈ IT
+ , then

{ 〈σ.r.j, C〉 | σ.r.j ∈ ΣT } ⊂ IT
−

and
{ ((A〈σ, ∀r.C〉 ∧A〈σ.r.j, >〉) → L〈σ.r.j, C〉) | σ.r.j ∈ ΣT } ⊂ ϕT , (16)

while, if σ ∈ ΣT and 〈σ,∀r.C〉 ∈ IT
− , then

((BC(indiv¬C
σ.r , 0) ∧A〈σ, >〉) → A〈σ, ∀r.C〉) ∈ ϕT . (17)

3

Importantly, ALCQ2SMTC as de�ned in De�nition 3, allow to solve the TBox consistency and concept
satis�ability problems via encoding into SMT(C), as stated by the following results. In order to not break
the �ow of the exposition, the proof have been moved to Appendix A,

Theorem 1. An ALCQ acyclic TBox T in normal form is consistent if and only if the SMT(C)-formula
ϕT of ALCQ2SMTC(T ) (De�nition 3) is satis�able.

Theorem 2. Given an ALCQ acyclic TBox T in normal form and the encoding ALCQ2SMTC(T ) =
〈ΣT , IT

− , IT
+ , A〈 , 〉, indiv, ϕ

T 〉 of De�nition 3, then the normal concept Ĉ, such that Ĉ v D̂ ∈ T , is
satis�able wrt. T if and only if the SMT(C)-formula ϕT ∧ L〈1, Ĉ〉 is satis�able.



We remark some facts on the above exposed encoding of De�nition 3:

• Notice that, at the e�ect of the encoding, at-most restrictions occurring at the left-hand side of an
axiom behave in the same way right-hand side at-least restrictions behave, and vice versa (see points
5. and 8.). This is due to the Theory of Costs. In fact in the Theory of Costs the �nal value of
a cost variable is determined by the sum of its enabled (i.e., assigned to true) incur costs. Thus,
if no incur costs are de�ned for a given cost variable, then the �nal cost for such a variable is due
to be zero. Henceforth, while the clauses at point 5. are introduced in order to allow for satisfying
implied at-least restrictions, they are also necessary in order to allow for �unsatisfying� the occurring
implicant at-most restrictions. In other words only introducing some individuals and incur costs a
left-hand side at-most restriction is guaranteed to be potentially falsi�ed, avoiding some axioms to
be applied (while applying the same axioms could lead to unsatis�ability). In contrast, the clauses
at point 8. work in the opposite way: the are introduced to allow detecting the unsatis�ability of
right-hand side at-most restrictions and, vice versa, to potentially force the application of the axioms
of T having an at-least restriction on the left-hand side. Last, notice that left-hand side universal
restrictions behave in the same way of at-most left-hand side restrictions (where ∀r.C is equivalent
to ≤0r.¬C).

• Point 4. is necessary to force the encoding of axioms having on the left-hand side restrictions wrt. the
role r, when other restrictions wrt. r are involved. Such kind of axioms can easily create cycles in
TBoxes, thus we remark that our encoding ensures termination only for acyclic TBoxes. Under this
hypothesis it is not necessary to encode such axioms in other circumstances, since axioms are already
encoded and checked for mutual inconsistency wrt. the root individual 1.

• In the clauses of type (7), (8), (11), (12) and (7), (13), every IC-literal has cost value 1 and has index
equal to the index of the individual the incur cost refers to. This ensures that all the indexes of
distinct IC-literals (incur costs) for the same cost variable indivCσ.r di�er each other, and easily allows
for associating every instantiated concept always to the same (and only) incur cost.

• Notice that if, for the same σ, r and C, many 〈σ,≥nr.C〉 ∈ IT
+ or 〈σ,≤nr.C〉 ∈ IT

− fall in the
conditions of point 5. for di�erent values of n, then, being n∗ the highest value of n, only exactly
n∗ new individuals and n∗ instances of clauses of type (7) and (8) are required to be in ϕT . In
contrast, one distinct clause of type (9) must be included in ϕT for every di�erent value of n, in fact
to every di�erent concept instantiation, e.g. 〈σ,≥nr.C〉, corresponds a di�erent Boolean variable, e.g.
A〈σ, ≥nr.C〉 (the same observation holds for the clauses of type (14) in the case of di�erent values of
m for the same σ, r and C).

• Point 7. is meaningful when C 6= D, in fact if C = D then clauses (11) and (12) exactly correspond
to clauses (7) and (8).

• By way of the Theory of Costs clauses (9) and (14), are those concretely ensuring the numerical
satis�ability of both at-least and at-most restrictions. Whilst, in order to be satis�ed, a clause of
type (9) forces some IC-literals to be assigned to true (explaining the fact that the implications (7)
and (11) work only in one direction), a clause of type (14) bounds the number of IC-literals that can
be enabled (motivating the implications (13) and their opposite direction).

Importantly, wlog., hereafter we generically refer to at-least and at-most restrictions or, respectively,
to generic instantiated concepts 〈σ,≥nr.C〉 or 〈σ,≤mr.C〉 occurring during the encoding, meaning the
right-side (implied) ones, but implicitly including also the cases of left-side at-most (or universal) and,
respectively, left-side at-least restrictions.

Example 3.1. Consider the two TBoxes composed of the following four axioms:

C v (≥1 t.A u ∀t.B u ∀t.D),

A v ≥1 r.X, B v ≥1 r.¬X, D v ∀s.¬Y,

and, alternately, of one further axiom between the following axioms:

≥2r.> v ≥1 s.Y (18)

≤2r.> v ≥1 s.Y (19)



We call T unsat the TBox including (18) and not including (19), vice versa we call T sat the TBox obtained
considering (19) instead of (18). In this example we consider the problem of determining the satis�ability
of the concept C in T unsat and T sat.

Here below we report the relevant parts wrt. the satis�ability of C of both the encodings ϕT unsat

and ϕT sat

.
First, we consider the encoding of the �rst axiom de�ning C, and the encoding of the included restrictions
concerning the role t; then we show the encoding of the axioms de�ning A,B and D when instantiated in
the individual 1.t.1:

A〈1, C〉 → A〈1, ≥1t.A〉 ∧ (A〈1, ≥1t.A〉 ∧A〈1, >〉) → ¬BC(indivA1.t, 0)

∧A〈1, C〉 → A〈1, ∀t.B〉 ∧ IC(indivA1.t, 1, 1) → A〈1.t.1, A〉

∧A〈1, C〉 → A〈1, ∀t.D〉 ∧ IC(indivA1.t, 1, 1) → A〈1.t.1, >〉

∧ (A〈1, ∀t.B〉 ∧A〈1.t.1, >〉) → A〈1.t.1, B〉 ∧A〈1.t.1, A〉 → A〈1.t.1, ≥1r.X〉

∧ (A〈1, ∀t.D〉 ∧A〈1.t.1, >〉) → A〈1.t.1, D〉 ∧A〈1.t.1, B〉 → A〈1.t.1, ≥1r.¬X〉

∧A〈1.t.1, D〉 → A〈1.t.1, ∀s.¬Y 〉

Second, we consider the encoding of the at-least number restrictions wrt. the role r instantiated in the
individual 1.t.1:

∧ (A〈1.t.1, ≥1r.X〉 ∧A〈1.t.1.r.1, >〉) → ¬BC(indivX1.t.1.r, 0) ∧ (A〈1.t.1, ≥1r.¬X〉 ∧A〈1.t.1.r.2, >〉) → ¬BC(indiv¬X
1.t.1.r, 0)

∧ IC(indivX1.t.1.r, 1, 1) → A〈1.t.1.r.1, X〉 ∧ IC(indiv¬X
1.t.1.r, 1, 2) → ¬A〈1.t.1.r.2, X〉

∧ IC(indivX1.t.1.r, 1, 1) → A〈1.t.1.r.1, >〉 ∧ IC(indiv¬X
1.t.1.r, 1, 2) → A〈1.t.1.r.2, >〉

In the case of the TBox T unsat, i.e. when including axiom (18), also the following clauses are encoded into

ϕT unsat

:

∧ (¬BC(indiv>1.t.1.r, 1) ∧A〈1.t.1, >〉) → A〈1.t.1, ≥2r.>〉 ∧A〈1.t.1.r.1, >〉 → IC(indiv>1.t.1.r, 1, 1) (20)

∧A〈1.t.1, ≥2r.>〉 → A〈1.t.1, ≥1s.Y 〉 ∧A〈1.t.1.r.2, >〉 → IC(indiv>1.t.1.r, 1, 2)

Notice that the coexistence of the restrictions 〈1.t.1,≥1 r.X〉, 〈1.t.1,≥1 r.¬X〉 ∈ IT unsat

+ and 〈1.t.1,≥2 r.>〉 ∈
IT unsat

− causes the introduction in the complete formula ϕT unsat

of the clauses encoding the sharing of the
individuals 1.t.1.r.1 and 1.t.1.r.2 between the (con�icting) concepts X and ¬X. However, here we don't
show these clauses because they are not relevant for the satis�ability/unsatis�ability of C. If, instead, T sat

is considered, i.e. when the TBox includes the axiom (19) instead of axiom (18), the following clauses are

encoded into ϕT sat

:

∧ (BC(indiv>1.t.1.r, 2) ∧A〈1.t.1, >〉) → A〈1.t.1, ≤2r.>〉 ∧ IC(indiv>1.t.1.r, 1, 3) → A〈1.t.1.r.3, >〉 (21)

∧A〈1.t.1, ≤2r.>〉 → A〈1.t.1, ≥1s.Y 〉 ∧ IC(indiv>1.t.1.r, 1, 4) → A〈1.t.1.r.4, >〉

∧ IC(indiv>1.t.1.r, 1, 5) → A〈1.t.1.r.5, >〉

Finally, the following clauses are included both in ϕT unsat

and ϕT sat

, because of the encoding of the restrictions
instantiated in 1.t.1 and concerning the role s:

∧ (A〈1.t.1, ≥1s.Y 〉 ∧A〈1.t.1, >〉) → ¬BC(indivY1.t.1.s, 0) ∧ IC(indivY1.t.1.s, 1, 1) → A〈1.t.1.s.1, Y 〉 (22)

∧ (A〈1.t.1, ∀s.¬Y 〉 ∧A〈1.t.1.s.1, >〉) → ¬A〈1.t.1.s.1, Y 〉 ∧ IC(indivY1.t.1.s, 1, 1) → A〈1.t.1.s.1, >〉

Thus, while ϕT unsat

includes the clauses (20) and (22), ϕT unsat

includes the clauses (21) and (22). Notice

that the SMT(C) formula ϕT unsat ∧A〈1, C〉 is unsatis�able because both the distinct individuals 1.t.1.r.1 and
1.t.1.r.2must exist forcing, via the Theory of Costs in the clauses (20), both A〈1.t.1, ≥2r.>〉 and A〈1.t.1, ≥1s.Y 〉

to be true; such assignment leads to a con�ict in the clauses of the group (22). On the contrary ϕT sat ∧



A〈1, C〉 is satis�able. In fact, clauses (21) allow for the existence of at least a third individual (among

1.t.1.r.3, 1.t.1.r.4 and 1.t.1.r.5) such that, if existing, causes the literal BC(indiv>1.t.1.r, 2) in the �rst clause
of the group (21) to be assigned to false, so that also the literals A〈1.t.1, ≤2r.>〉 and A〈1.t.1, ≥1s.>〉 can be

assigned to false, and so that the clauses of the group (22) do not con�ict in ϕT sat ∧A〈1, C〉. 3

3.3 An Encoding Algorithm

Here we sketch an algorithm for building the encoding de�ned in the previous section.
We follow De�nition 3 which already outlines the structure of a possible algorithm buildingALCQ2SMTC(T ).
The algorithm is based on expansion rules which mimic De�nition 3 by extending the set ΣT with

new individuals and by adding new clauses to the SMT(C) formula ϕzT . The sets of the Boolean literals
encoding instantiated concepts that have been introduced in ϕT at the left-hand side and at the right-
hand side of the implications automatically represent, respectively, the sets IT

− and IT
+ . Each time a new

individual is introduced in ΣT it is enqueued into a queue of individuals Q. Expansion rules are then
applied individual-by-individual wrt. the last individual σ dequeued from Q, so that all the expansion rules
concerning σ are applied consecutively and before all the rules concerning any other di�erent individual (in
particular any �child� individual σ.r.i). Henceforth, the algorithm handles individuals in a BFS manner,
and in more details works as follows:

Initialization ΣT and the queue Q are initialized with the root individual 1, while ϕT is initially set to
the unit clause �A〈1, >〉�. Then ϕT is extended encoding all the TBox axioms in 1 with clauses of
type (6), as consequence of the points 2. and 3. of the de�nition of ALCQ2SMTC(T ).

Iteration For every individual σ of ΣT extracted from Q, �ve expansions phases are applied following
De�nition 3:

(a) This phase realizes the points 3. and 4. of the de�nition. In the �rst phase pure propositional
clauses are added to ALCQ2SMTC(T ), exhaustively encoding all the implications of type (6)
for σ due to the axioms of T . Every axiom is ensured to be encoded at most once only if it is
not yet �σ-expanded� and if the premises of the axioms are fully matched in σ (as stated by the
conditions of point 3. for simple axioms and by the conditions of point 4. for axioms involving
left-hand side quali�ed number restrictions).

Then, (quali�ed number/universal) restrictions are partitioned wrt. the role r they refer to, and for
every partition of restrictions the next four phases are applied:

(b) This phase realizes the points 5. and 6. [resp. 9.] of the de�nition. At-least restrictions are
handled before all the other restrictions since they are the responsible of the introduction of new
individuals. Given r, the di�erent at-least restrictions 〈σ,≥nir.C〉 wrt. the same concept C are
grouped and sorted in decreasing order wrt. their numerical value ni. This has been done, new
individuals and clauses of type (7) and (8) (point 5.) are introduced once for every di�erent
concept C only for the restriction with the highest value of ni. Instead, one di�erent clause of
type (9) [resp. (15) or (17)] is added for every di�erent C and every di�erent kind of restriction
or value of ni.

(c) If, wrt. σ and r, more than one at-least restriction coexist with some at-most restrictions, then
a further encoding phase is necessary in order to allowing for sharing the newly introduced
individuals σ.r.i, as provided by point 7. of De�nition 3. Thus, all the clauses of type (11)
and (12) are introduced for every at-least restriction 〈σ,≥njr.Cj〉 and every individual σ.r.i.

(d) This phase handles at-most restrictions and realizes the points 8. and 9. [resp. 6.] of the de�nition.
Given r, the di�erent at-most restrictions 〈σ,≤mir.C〉 wrt. the same concept C are grouped.
The clauses of type (13) (point 8.) are introduced only once for every di�erent concept C, while
one clause of type (14) [resp. (10)] is added for every di�erent C and every di�erent kind of
restriction or value of mi.

(e) At last, universal restrictions are handled realizing the point 10. of the de�nition. Given r,
for each restriction 〈σ,∀r.C〉 and every individual σ.r.i, the algorithm introduces one clause of
type (16).



We avoid to show a pseudocode for the exposed algorithm, because it would be very long without adding
any useful information wrt. De�nition 2 and the textual description above.

Proposition 3. Given a normal-form, acyclic ALCQ TBox T , the above exposed encoding algorithm
terminates.

Proof. Notice that the expansion rules building ΣT and ϕT from T are of two kinds: either (a) they
propositionally expand an axiom of T (when the premises of the axioms are already included in the encoding)
or (b)-(e) they encode restrictions introducing new individuals and concept names in those individuals.
Termination is guaranteed due to the following:

- every axiom of T is expanded at most once for every σ encountered during the algorithm;

- a bounded number of individuals is introduced every time a quali�ed number restriction is handled;

- the expansion rules reduce the complexity of the concepts they handle until they reduce only to
concept names;

- the TBox T is assumed to be acyclic, thus a concept name can not recur cyclically during the encoding.

Since ALCQ has the �nite tree model property [22]. a (worst-case exponential in the size of T ) �nite
model for T is ensured to exist. In particular, no blocking techniques are necessary to �nd such a module
since T is acyclic. While the number of expansion of the �rst kind performed by our encoding algorithm
is linear in the size of T for every di�erent σ, the number of expansions of the second kind depends on the
size of T and on the number of new individuals introduced, i.e. from the numerical values of the encoded
quali�ed number restrictions. Overall the size of ϕT is bounded by the product of the sum of the values in
the quali�ed number restrictions of T with the size of a model for T (that is worst-case exponential in the
size of T ). It is easy to see that the complexity of our encoding algorithm is polynomial in the size of the
output formula ϕT since every encoding phase can be trivially performed in polynomial time.

4 Smart Individuals Partitioning

4.1 The Need of Partitioning

A main drawback of the basic ALCQ2SMTC encoding is that for every encoded σ, it introduces exactly as
much new individuals as is the sum of the values included in all the at-least restrictions instantiated in σ.
Thus, even in presence of a small number of restrictions but which include large numerical values, the total
number of individuals introduced by the encoding can be huge. Furthermore, the e�ect of this drawback is
signi�cantly increased because it is replicated at many levels in the encoding (i.e. these individuals might be
further expanded leading to introduction of other numerous individuals), and, more importantly, because
of the sharing of the individuals (when necessary). This latter fact leads to the introduction of an even
larger number of clauses and propositional variables, which signi�cantly increases the hardness of reasoning
on the resulting SMT(C) formula.

However, it is quite intuitive that it is not strictly necessary to introduce in the ALCQ2SMTC encoding
exactly as many individuals as many they are in the interpretation satisfying the formula or, even worst, in
all the values included in the quali�ed number restrictions. In general, it is possible to divide the individuals
in groups which have identical properties (belongs to the same concepts' interpretations), i.e. to compute
a partitioning of the individuals, and then use only one single �proxy individual� (one single label in the
encoding) as representative for all the individuals of one speci�c partition. So called proxy individual has
been used, e.g., in [8, 9], each representing one of the exponentially-many intersections of the concepts
(interpretations) having a restriction in common wrt. the same role. Independently from the cardinality of
the intersection, the proxy individual is �the witness� of the consistency/inconsistency of the intersection.

As stated above, partitions must be made of individuals with identical properties. Looking at De�nition 3
we point out the following facts:

- Except for the root individual 1, new individuals σ.r.i are introduced (like in a tree model) in order to
encode at-least restrictions 〈σ,≥nr.C〉. Importantly, since ALCQ doesn't allow for role hierarchies,
�rst of all individuals are naturally partitioned in groups wrt. σ and wrt. the role r they refer to.



- If, for the given σ and r, only one single at-least restriction 〈σ,≥nr.C〉 exists, then all the individuals
σ.r.kCi , with i = 1, . . . , n, have identical properties and can form one single partition, being represented
by only one proxy individual. The same consideration holds for many at-least restrictions if no at-most
restriction exists. Every group of individuals referring to a distinct at-least restriction can represent
a distinct partition, cause the sharing of individuals is not necessary.

- If, for the same σ and r, at least one at-most restriction and many di�erent at-least restrictions
〈σ,≥njr.Cj〉 coexist exactly N di�erent individuals σ.r.i, with i = 1, . . . , N and N =

∑
j nj , are

introduced and shared among the interpretations of all the concepts Cj . Thus, in this scenario, a
partitioning of the N individuals introduced should be able to represent all the possible intersections
between the di�erent concept interpretations.

However, in the latter case, it is not important to consider all the possible cardinalities of these inter-
sections. Instead, it is su�cient to distinguish between an empty intersection and some other �limit� cases,
where the cardinality of the intersections in these limit cases depends on the speci�c values of the quali�ed
number restrictions involved. Summarizing, partitions of individuals (and representative proxy individuals)
can be used in our encoding in place of many more single individuals, where one di�erent partitioning of
the individuals is computed for every group of quali�ed number restrictions referring to the same σ and
the same role r, by taking into account the speci�c values included in the quali�ed number restrictions of
the group.

Example 4.1. For instance, suppose that it is necessary to encode the restrictions: 〈σ,≥10r.C〉 and
〈σ,≥1000r.D〉. The basic ALCQ2SMTC encoding would introduce 1010 distinct individuals. Applying the
above explained idea, instead, we could divide these 1010 individuals in, e.g., three partitions of respectively
10, 990 and again 10 individuals. This partitioning allows for representing both (but not only) the con�g-
uration in which 10 individuals belong to CI and other 1000 (i.e., 990 plus 10) distinct individuals belong
to DI and also the con�guration in which the 10 individuals of CI are in common with DI , not enabling
the other 10 individuals. If, for example, also 〈σ,≤1005r.>〉 must be encoded, then the last 10 individuals
could be further divided into two distinct partitions. This partitioning allows for sharing 0, 5 or 10 of these
last 10 individuals between CI and DI , covering (in general) the cases in which exactly 0, 5, 10, 15, 20,
990, 995, 1000, 1005 or 1010 of these individuals exist in ∆I . Notice that, for the sample restrictions, many
other possible combinations of the 1010 introduced individuals and many possible satisfying/unsatisfying
interpretations would be possible in theory, but these �limit� combinations are enough to represent the
signi�cant cases concerning satis�ability.

4.2 Proxy Individuals and Smart Partitioning

In order to handle partitions of individuals we extend the ALCQ2SMTC formalism by introducing cumu-
lative labels and proxy individuals. Given a normal/cumulative label σ′ and a role r, a cumulative label
σ′.r.(i→ j) represents a group of consecutive individuals by mean of the range of integer values i → j,
with i ≤ j, thus the label represent a set of individuals whose cardinality is j − i + 1. A normal label is
a special case of a cumulative label, with i = j and, thus, cardinality 1. For a normal label we can both
write σ′.r.(i→ i) and σ′.r.i. For instance, in the encoding we can represent all the c distinct individuals:
σ.r.i+1, . . . , σ.r.i+c, having the same characteristics, by mean of only one cumulative label σ.r.(i+1→ i+c)
representing all of them. With a small abuse of notation, in the following we call proxy individual any
σ.r.(i→j), meaning both: (i) the cumulative label representing the set of individuals σ.r.i, σ.r.i+1, . . . , σ.r.j
and (ii) that σ.r.(i→j) can be one/any of these individuals acting as proxy for all the other individuals of
the set. Hereafter we generally speak of individuals meaning, indi�erently, either normal or proxy individ-
uals. In particular, we can consider every individual like a proxy individual where a normal individual is
proxy only of itself.

This has been said, the idea is to compute smart partitioning of the individuals that must be encoded
in ALCQ2SMTC and, in such a way, to use a smaller set of proxy individuals (one for every group of
individuals in the partitioning) in place of the larger set of all the original single possible individuals.
With smart we mean a �safe but as small as possible� partitioning, i.e. a partitioning which reduces as
much as possible the number of the partitions but which safely preserves the semantic of the problem, so
that the cardinalities of the computed partitions allow for representing every relevant case wrt. satis�ability.



Now we formally de�ne a possible smart partitioning for the individuals introduced in the ALCQ2SMTC
encoding.

De�nition 4. Let T being an acyclic ALCQ TBox in normal form and ALCQ2SMTC(T ) be the SMT(C)
encoding for T de�ned in De�nition 3. Given the individual σ ∈ ΣT and the role r of T we de�ne the
arrays: 7

N≥
σ.r

def
= { ni | 〈σ,≥nir.Ci〉 ∈ IT

+ or 〈σ,≤ni−1r.Ci〉 ∈ IT
− }i 8 and

N≤
σ.r

def
= { mj | 〈σ,≤mjr.Dj〉 ∈ IT

+ or 〈σ,≥mjr.Dj〉 ∈ IT
− }j

representing the collections of all the numerical values included in the quali�ed number restrictions occurring
in σ wrt. r. From N≥

σ.r and N≤
σ.r, respectively, we de�ne the integer values:

N≥
σ.r

def
= Σ

ni∈N≥
σ.r

ni and N≤
σ.r

def
= Σ

mj∈N≤
σ.r

mj .

Being 2X the power set for the set/array X, we de�ne the set Pσ.r
def
= P≥

σ.r ∪P≤
σ.r as the smart partitioning

for the N≥
σ.r individuals of Σ

T of the form σ.r.k, where:

P≥
σ.r

def
= { nS | S ∈ 2N

≥
σ.r , nS = 0 + Σnk∈S nk } and

P≤
σ.r

def
= { mS | S ∈ 2N

≤
σ.r , mS = 0 + Σmk∈S mk }.

Finally, we de�ne pi ∈ Pσ.r the i-th sorted element of Pσ.r, so that pi < pi+1, and, in particular, p1 = 0
and p|Pσ.r| = max{N≥

σ.r, N
≤
σ.r}.

Concerning De�nition 4 notice the following facts. Given σ and r, N≥
σ.r represents the number of individ-

uals of the form σ.r.i introduced in ALCQ2SMTC and which we want to partition in groups. Assuming to
include in each computed partition consecutive individuals among σ.r.1, . . . , σ.r.N≥

σ.r, the smart partitioning
Pσ.r represents the set of the indexes of the last individual of every partition, so that every partition can
be represented by the proxy individual σ.r.(pj−1 + 1→ pj), with j > 1. Notice also that P≥

σ.r,P≤
σ.r,Pσ.r

are sets, thus, equal values are uniquely represented in them. In particular, the values of p1 and p|Pσ.r| are
guaranteed to be the ones mentioned in De�nition 4 by the fact that ∅, X ∈ 2X , for any set X. The two
partitioning shown in Example 4.1 are computed in accordance with De�nition 4.

De�nition 4 de�nes a safe partitioning, in fact:

• It takes into account all the values of the quali�ed number restrictions instantiated for σ and wrt. r.

• It considers all the possible sums of the values ni [resp. mj ] for all the at-least [resp. at-most]
restrictions, which allows for representing all the possible lower-bounds [resp. upper-bounds] in case
of disjoint (i.e. with empty intersection) concept interpretations.

• The union of P≥
σ.r with P≤

σ.r represents the combination of lower- and upper-bounds, respectively.

• By sorting all the possible sums and by considering the distance between these values as the size of a
partition (from pj−1+1 to pj), it also allows for representing all the possible (non-empty) intersections
of concept interpretations.

• Not all the cardinality of the non-empty intersections are possible with the partitioning, but �limit�
cases are guaranteed to be represented. In particular, including or not a partition of individuals in
one interpretation corresponds to pass from one limit case (for some quali�ed number restrictions) to
another limit case (for some other restrictions).

7Equal ni or mj values can repeat as many time as they occur.
8The instantiated concepts 〈σ,∀r.Ci〉 ∈ IT

− must be considered like 〈σ,≤0r.¬Ci〉 ∈ IT
− .



4.3 Exploit Smart Partitioning in ALCQ2SMTC

Using partitions and proxy individuals doesn't e�ect the ALCQ2SMTC encoding thanks to the fact that
the Theory of Costs allows for arbitrary incur costs. So, for example, if we assume that they are all
part of the same partition, then it is possible to substitute n clauses referring to the distinct individuals
σ.r.kC1 , . . . , σ.r.k

C
n , but identical to each other in structure, with one single clause referring to the proxy

individual σ.r.(kCi →kCn ). Moreover, if each of the original clauses produce an incur cost of value 1 (e.g., with
the literals IC(indivCσ.r, 1, k

C
i )) the unique cumulative clause will produce an incur cost of n (e.g., including

the literal IC(indivCσ.r, n, k
C
1 ))

Concretely, we can enhance De�nition 3 as follows by taking advantage of the partitioning technique
de�ned in De�nition 4. First of all the set ΣT , and the instantiated concepts included in IT

− and IT
− must

be assumed, generically, to be made of proxy individuals. Then, by consequence, also the functions A〈 , 〉
and indiv are assumed to map proxy individuals to, respectively, Boolean and cost variables. Without
going into too much details, and repeat the whole De�nition 3 we point out only the necessary di�erences,
assuming that, for any σ and r, the partitioning Pσ.r is available.

Second, the n clauses of the types (7) and (8) at point 5. are replaced by the following:

{ IC(indivCσ.r, costj , idxj) → L〈σproxyj
, C〉 | pj ∈ Pσ.r, 0 < pj ≤ n } ⊂ ϕT , (23)

{ IC(indivCσ.r, costj , idxj) → A〈σproxyj
, >〉 | pj ∈ Pσ.r, 0 < pj ≤ n } ⊂ ϕT , (24)

costj = pj − p(j−1), idxj = kC1 + p(j−1), σproxyj = σ.r.kC1 +p(j−1) → kC1 +pj−1.

Thus the value of every incur cost is given by the number of individuals included in each partition, i.e.
included in between the indexes pj−1 and pj . Notice that since Pσ.r includes all the possible sums among
all the other possible restrictions' values and n, then n, kC1 − 1, kC1 + n− 1 ∈ Pσ.r (i.e., if partitioned, n is
exactly partitioned). The values of idxj and σproxyj , instead, can be explained remembering that each pj
represents the last index of a partition and that the �rst index p1 is 0, while kC1 ≥ 1 represents the index
of the �rst individual introduced for C. Clauses (11), (12) at point 7. are modi�ed accordingly.

Third, the clauses of type (13) de�ned at point 8. must take into account proxy individuals and the
relative incur cost, potentially bigger than 1. Hence those clauses are replaced by the following ones:

{ (L〈σ.r.(i → j), C〉 ∧A〈σ.r.(i → j), >〉) → IC(indivCσ.r, j−i+1, i) | σ.r.(i→j) ∈ ΣT }. (25)

Clauses (16) at point 10. are substituted by clauses handling proxy individuals, in the same way. Finally,
the di�erences in the de�nitions of IT

− , IT
+ and ΣT for all these points of De�nition 3 trivially come by

consequence.
We make the following observations on what here above stated:

- If, for the given σ and r, the conditions of point 7. of De�nition 3 do not hold (e.g. no at-most
restriction exists), then, with an even more e�cient partitioning, we can require only the following
two clauses:

IC(indivCσ.r, n, k
C
1 ) → L〈σ.r.(kC

1→kC
1+n−1), C〉,

IC(indivCσ.r, n, k
C
1 ) → A〈σ.r.(kC

1→kC
1+n−1), >〉

to be part of ϕT , for every 〈σ,≥nr.C〉.

- Otherwise, if the conditions of point 7. hold, then ϕT contains all the clauses:

{ IC(indivCσ.r, pj − pj−1, pj−1 + 1) → L〈σ.r.(pj−1+1→ pj), C〉 | pj ∈ Pσ.r, j > 1 } ∪
{ IC(indivCσ.r, pj − pj−1, pj−1 + 1) → A〈σ.r.(pj−1+1→ pj), >〉 | pj ∈ Pσ.r, j > 1 }

for every 〈σ,≥nr.C〉, as consequence of point 5. and of the sharing of (proxy) individuals performed
at point 7..

From these two observations we can conclude that it is convenient to compute a smart partitioning of the
the N≥

σ.r new individuals introduced for σ and r only when the sharing of individuals is performed (point 7.),
otherwise one single proxy individual for each at-least restriction can be directly used.



IntList compute-Combinations (IntVector N)

// P and Q are both initially empty and are, respectively, a list and a queue of integers
1. insert 0 in P as first element;

2. for each number ni in N
3. move P to the first element;

4. while not end-of P
5. let m be the current element of P;
6. enqueue ni +m into Q;
7. move P to the next element;

8. while (Q is not empty) and
(end-of P or s ≤ m, with s,m current elements of Q,P)

9. dequeue s from Q;
10. if end-of P or s < m then
11. insert s in P before the current element;

12. return P;

IntVector compute-Partitioning (IntVectors N≥
σ.r, N≤

σ.r)

// Dσ.r is a vector of integer values
13. P≥

σ.r = compute-Combinations(N≥
σ.r);

14. P≤
σ.r = compute-Combinations(N≤

σ.r);

15. Pσ.r = merge(P≥
σ.r, P≤

σ.r);

16. let s be the size of Pσ.r; i = 2; j = 1;
17. while i ≤ s
18. d = Pσ.r[i]−Pσ.r[i− 1]; i = i+ 1;
19. if d > 0 then
20. Dσ.r[j] = d; j = j + 1;
21. set to j the size of Dσ.r;

22. return Dσ.r;

Figure 2: Exponential-time algorithm computing smart partitioning.

4.4 Partitioning Algorithm

G iven the individual σ, the role r and the respective arrays N≥
σ.r and N≤

σ.r, in Figure 2 we expose the
pseudocode of the algorithm computing the smart partitioning of De�nition 4. In particular, instead of
computing Pσ.r, in the pseudocode of Figure 2 we compute the array Dσ.r of the partitions sizes represented
by Pσ.r, which are the values in which we are interested (the j-th element of Dσ.r represents pj − pj−1).

Proposition 4. Given the individual σ and the role r, the algorithm of Figure 2, which takes as input the
arrays N≥

σ.r and N≤
σ.r and computes the smart partitioning Pσ.r of De�nition 4, has worst-case complexity

O(2max {|N≥
σ.r|,|N

≤
σ.r|}).

Proof. We analyze the complexity of the algorithm of Figure 2. Let ni be the number of the listN handled at
the i-th iteration of the outer-most cycle (starting at instruction 2.) of the procedure compute-Combinations.
At each iteration, from 3. to 7., a number of operations linear in the current size of the list P is performed,
that is, in the worst case, the number of the di�erent possible combinations of k previously handled num-
bers n1, . . . , ni−1, with k from 0 to i − 1. Thus the i-th iteration of the procedure executes a number of
operations linear in:

i−1∑
k=0

(
i− 1

k

)
=

i−1∑
k=0

(
i− 1

k

)
1k · 1i−1−k = (1 + 1)i−1 = 2i−1.

Since each combination computed is inserted in the queue Q once, at the instruction 7., and the number of
all the operations 8-11. is linear in the size of P and Q, then the cost of compute-Combinations (counting
all the iterations from 1 to |N |) is of worst-case complexity O(2|N |), consistently with the size of the power

set for N . Accordingly, the cost of compute-Partitioning is O(2max {|N≥
σ.r|,|N

≤
σ.r|}).



However, notice that instructions 10-11. avoid saving repeated combinations already present in P (in
fact N≥

σ.r and N≤
σ.r are arrays, while P≥

σ.r and P≤
σ.r are sets). This can lead to a sensible cost reduction

in the average case, when many values repeat frequently in the handled quali�ed number restrictions. We
believe that, despite the worst-case cost of the smart partitioning algorithm, the reduction in the number of
clauses and, especially, the reduction in the number of individuals encoded (which can impact exponentially,
when repeated at any nesting level), would signi�cantly enhance the whole performance of our approach.
In fact, not only we can gain a signi�cant reduction in the size of the encoding ALCQ2SMTC(T ), but,
especially partitioning can strongly reduce the hardness of the SMT(C) reasoning on the encoded problem.
Furthermore, partitioning yields our approach more independent from the values of the quali�ed number re-
strictions in the TBox. With smart partitioning the magnitude of the values doesn't e�ect the size/hardness
of the encoding, which, instead, is e�ected by the interactions among the values (e.g., the frequency of the
values or of the di�erences among them matter).

5 Empirical Evaluation

In order to verify empirically the e�ectiveness of our novel approach, we have performed a preliminary
empirical test session on about 600 synthesized and parametrized ALCQ problems, on which we solved
concept satis�ability wrt. a non-empty TBox.

We have implemented the encoder called ALCQ2SMT in C++, in which, the smart partitioning tech-
nique of Section 4 can be optionally enabled. In the following, when exposing the results of our evaluation,
we distinguish with the abbreviation S.P. the results referring to ALCQ2SMT with enabled smart parti-
tioning. In combination with ALCQ2SMT, we have applied on the resulting SMT(C) formulas MathSat
(version 3.4.1) [3], that actually is the �rst SMT-solver including the Theory of Costs [4].

We have downloaded the available versions of state-of-the-art tools FaCT++ (version v1.4.0) [35],
Pellet (version 2.1.1) [34], and Racer (version 1-9-0) [15, 16] in order to compare their performance
wrt. those of our tool on every presented test case. We have not included in the comparison HermiT [26],
that is a hypertableau reasoner and thus its handling of quali�ed number restrictions is not comparable with
standard tableau reasoners (it is much worse), and the hybrid approach of [11], which is still a prototype
and not yet publically available.

All the tests presented in this section have been performed on a biprocessor dual-core Intel Xeon 2.66

GHz machine, with 16 GB of RAM, running Debian Linux 2.6.18-6-amd64, where four processes can run
in parallel. We set a 1000 seconds timeout for every tool and every concept satis�ability query. We also
�xed a bound of 1 GB of disk space for the SMT(C) encoding in output from ALCQ2SMT (however, in
the test cases here reported the bound has never been reached).

When reporting the results for oneALCQ2SMT+MathSat con�guration (either including or not smart
partitioning), the CPU times reported are the sums of both the ALCQ2SMT encoding and MathSat

solving times (both including the loading and parsing of the input problem). We anticipate that, for all
test problems, all tools under examination (i.e. all the variants of ALCQ2SMT+MathSat and all the
state-of-the-art DL reasoners) agreed on the satis�ability/unsatis�ability results when terminating within
the timeout.

5.1 Test Descriptions

In this section we present the sets of test cases we chose for our evaluation.
As discussed in [11] one major problem with benchmarking in this case is the lack of real-world on-

tologies including meaningful and signi�cant uses of quali�ed number restrictions. The current well-known
benchmarks are not well suited to address typical real-world needs; there exist not many comprehensive
real-world ontologies suitable as benchmarks for hard Description Logics and they mostly do not contain
non-trivial numerical constraints. In fact, the current techniques for reasoning with quali�ed number re-
striction in Description Logic often lacks of e�ciency, especially when the number of the restrictions is
higher or when the values involved in the restrictions their selves are big. For this reason ontology design-
ers most likely avoid the use of these constructors, even if they are very natural (sometimes essential) in
many domains. Moreover, the design of benchmarks ontologies, in the last years, concentrated on those
constructors that can be described with OWL, while quali�ed number restrictions are expressive and hard



to handle constructors added only to the second and recent standard OWL 2 [25].
Thus, in this preliminary analysis, we chose to follow the same benchmarking approach of [11] and rely

on synthesized test cases to empirically evaluate the performance of our novel approach under di�erent
perspectives. Therefore, we have adapted to ALCQ the SHQ problems from [11]. These problems focus
on concept expressions only containing quali�ed number restrictions and de�ne di�erent sets of problems
stressing on di�erent source of complexity of the reasoning in ALCQ, which are:

1. the size of values occurring in number restrictions (namely, n and m in the restrictions of the form
≥nr.C and ≤mr.C);

2. the number of quali�ed number restrictions;

3. the ratio between the number of at-least restrictions and the number of at-most restrictions;

4. the satis�ability versus the unsatis�ability of the input concept expression.

In the following we describe with more details the six groups of di�erent test cases de�ned. Wrt.
to [11], we add a further group of problems with tests the e�ect of having a large variety of di�erent
values occurring in number restrictions. While this characteristic shouldn't a�ect the other reasoners,
it represents a signi�cant factor for the e�ectiveness of our partitioning technique. Every di�erent test
problem is characterized by an index i, which a�ect on one of the above mentioned complexity sources,
for instance by determining the number of quali�ed number restrictions, and so on and so forth. The high
is the index i the hard is the problem. Since values occurring in quali�ed number restrictions are one of
the sources of complexity which can strongly in�uence the performance of reasoning on the test cases, we
further parametrized the test cases of [11], adding in many cases the parameter n which varies those number
when they are not directly related to i. When listing the chosen values for n we will underline the value
originally used in[11].

This has been said, in our evaluation we test the satis�ability of the concept C wrt. the following groups
of TBoxes:

Increasing Values of Numbers Occurring in Restrictions.
First we analyze the e�ect of having increasingly high values occurring in the quali�ed number restrictions.
We de�ne the TBox:

C v ≥2ir.(A tB) u ≤i r.A u ≤i r.B u ((≤i−1 r.¬A) t (≤j r.¬B)),

with j = i for satis�able problems and j = i−1 for unsatis�able ones, and where the values included in
number restrictions increment gradually with i.

In order to be satis�ed, the concept C requires to have at least 2i r-successors in (A t B) for every
individuals in its own interpretation. The two at-most restrictions ≤i r.A and ≤i r.B bound to i the number
of successor that can be in A and, respectively, in B. Thus i successors are in (¬A u B) and the other i
must belong to (A u ¬B). Therefore, it can be concluded that if j = i then C is satis�ed by choosing i
individuals in B, otherwise it is unsatis�able.

We call increasing_lin_sati and increasing_lin_unsati the satis�able and, respectively, unsat-
is�able version of this problem, where i represents the index (and hardness) of the problem and ranges in
the interval i = 1, 2, 3, . . . , 100. Moreover, we call increasing_exp_sati and increasing_exp_unsati
the satis�able and, respectively, unsatis�able version of an exponential variant of this benchmark, in which
i (and accordingly j) is replaced by 10i.

Backtracking.
One of the major well-known optimization techniques addressing the complexity of reasoning with number
restrictions is dependency-directed backtracking or backjumping. Backjumping or con�ict-directed back-
jumping are well-known improved backtracking methods that were adapted to DL-reasoning as dependency-
directed backtracking [20]. In tableau methods, these techniques detect the sources of an encountered clash
and try to bypass during backtracking branching points that are not related to the sources of the clash. By
means of this method, an algorithm can prune branches that will end up with the same sort of clash. In
particular, this technique shown [20] to signi�cantly improved the performance of DL systems in dealing
quali�ed number restrictions.



This test suite test the performance of the compared systems on some cases in which the e�ect of
backtracking could be particularly important. In order to observe the impact of backtracking, we tested
the unsatis�able concept C in the following TBoxes:

C v ≥n r.D1 u · · · u ≥n r.Di u ≤ni−1 r.>,
Dj uDk v ⊥, 1 ≤ j < k ≤ i.

Due to at-least restrictions an individual in C must have n r-successors in every Di. Since these n · i
successors are instances of mutually disjoint concepts Di and at most ni−1 successor are allowed, we can
conclude that C cannot be satis�ed. Plain tableau algorithms, without dependency-directed backtracking,
could incur in an exponential number of branching ending in a clash for a failed merging of distinct
successors.

In this test suite, every increase of i results in more number of restrictions and therefore in a larger num-
ber of variables. We call backtrackingi(n) these problems, where i ranges in the interval i = 1, 2, 3, . . . , 20
and where n (n = 1, 2, 3, 10) regulates the combined e�ect of the values occurring in number restrictions.
In particular the case n = 1 shows the pure e�ect of backtracking, which might be further increased by
incrementing n.

Satis�able vs. Unsatis�able Concepts.
In this experiment we compare the performance of reasoning on problems which ranges form satis�able
to unsatis�able ones, depending on the values included in the number restrictions. The test cases are
concepts containing four quali�ed at-least restrictions and one unquali�ed at-most restriction according to
the following pattern:

C v ≥3n r.(A uB) u ≥3n r.(¬A uB) u ≥3n r.(A u ¬B) u ≥3n r.(¬A u ¬B)

u ≤in r.>.

Since the four at-least restrictions require mutual disjoint groups of �llers, C requires at-least 12n distinct
r-successor to be satis�ed. Thus C is satis�able for problems with i ≥ 12, unsatis�able otherwise. 9

We call these problems sat_unsati(n), for which we chose the values i = 1, 2, 4, 6, . . . , 24 and n = 1, 10.

Increasing Number of Quali�ed Number Restrictions.
The number of quali�ed number restriction occurring in the problems is one of the factors which mostly
in�uences the complexity of reasoning. Therefore, in this experiment the concept C is built starting from
one at-least restriction and then it is extended gradually, at the growing of the index i. In order to keep
the ratio between the number of at-least and at-most restrictions �xed, at every step one new at-least and
one now at-most restriction are added:

C v ≥4n r.> u ≥2n r.D1 u ≥2n r.D2 u · · · u ≥2n r.Di

u ≤n r.(¬D1 t ¬D2) u ≤n r.(¬D2 t ¬D3) u · · ·
. . . u ≤n r.(¬Di t ¬Di+1).

Notice that every such a problem contains exactly 2i + 1 number restrictions. We call these problems
restr_numi(n); C is satis�able for every i, n ≥ 1, Being a central experiment in our benchmarking, we let
i range in i = 1, 2, 3, . . . , 100 and we chose n = 1, 5, 50, so that we test the performance of all the tools also
in a very extreme case, where the quali�ed number restrictions include very high values (n = 50).

Increasing Number of Quali�ed Number Restrictions with Variable Values.
We think that our smart partitioning technique could be very e�ective in improving the performance of
the ALCQ2SMT + MathSat approach. As discussed in the complexity analysis of Section 4.4, the
e�ectiveness of smart partitioning increases when the values included into number restrictions repeats
frequently, leading both to a smaller number of partitions and to a faster execution of the partitioning

9In [11] a second variant of this problem is proposed. In this alternative version the concept name D replaces > and is
conjoint in all the four at-least restrictions. This variant has been introduced in order to study an unexpected behavior of
their hybrid approach (due to the integrated arithmetic reasoner) in the limit cases i ≤ 3n. However, at the e�ect of the
system we are comparing here, this second variant do not present signi�cant di�erences wrt. the �rst one above proposed.



algorithm. On the contrary, the performance of our smart partitioning algorithm should deteriorate when
the input problem presents a combination of a great number of restrictions (which directly a�ects the
complexity of the partitioning algorithm) and in each restriction occurrs a di�erent value. In particular,
the more di�erent are the values the more the complexity of the algorithm approaches to the worst-case
complexity and the more the output encoding results in a greater number of partitions and, thus, in a larger
and harder SMT problem. So we propose the following variant of the restr_numi(n) benchmark, that we
call var_restr_numi(n):

C v ≥4n r.> u ≥2n r.D1 u ≥2(n−1) r.D2 u · · · u ≥2(n−i+1) r.Di

u ≤n r.(¬D1 t ¬D2) u ≤n−1 r.(¬D2 t ¬D3) u · · ·
. . . u ≤(n−i+1) r.(¬Di t ¬Di+1).

This group of problems introduces variable values in the quali�ed number restrictions (notice that all the
restrictions includes mutually di�erent values) and an increasing number of restrictions following the in-
dex i. In this case it must be n ≥ i. We chose n = 100 and i = 1, 2 . . . , n. 10 Notice that C is still satis�able.

Number of At-least vs. Number of At-most Restrictions.
In addition to the pure number of quali�ed number restrictions, the ratio between the number of at-least and
the number of at-most restrictions could a�ect the complexity of reasoning. Therefore, in this experiment,
for a �xed total number of restrictions we evaluate the performance of the various systems wrt. such a ratio.
The structure of the concept expression is similar to the previous ones (restr_numi(n)) and the concept
expressions C are easily satis�able:

C v ≥4n r.> u ≥2n r.D1 u ≥2n r.D2 u · · · u ≥2n r.Di

u ≤n r.(¬D1 t ¬D2) u ≤n r.(¬D2 t ¬D3) u · · ·
. . . u ≤n r.(¬Dm−i t ¬Dm−i+1).

We call these problems restr_ratioi(n), and we chose for i the same values proposed in [11], i.e.
i = 0, 1, . . . ,m, with m = 14 and where n = 1, 5. Notice that the number of quali�ed number restric-
tions is �xed and is set to m + 1, that in our case is 15. Thus, the �rst problem with index i = 0 has a
ratio of �at-least�-�at-most� restrictions of 1-14, the second with index i = 1 has a ratio of 2-13, and so on
and so forth till i = m = 14 where the ratio is 15-0.

Notice that, in all the test cases, the concept expressions involving C are always complex concept expres-
sions. Thus after normalization every concept expression reduces to a non-empty TBox with a certain
number of axioms.

5.2 Comparison wrt. State-of-the-art Tools

We �rst compare our novel approach wrt. the other state-of-the-art reasoners, evaluating on all the bench-
marks described in the previous section the performance of ALCQ2SMT+MathSat against those of the
other tools above listed.

The results of our experiments are graphically summarized in Figures 3, 4, 5, 6, 7, and 8. In order to
make the plots clearly readable in the �gures, we have chosen to maximize the surface of every plot by
moving to the �gure's caption all the information and parameters concerning the represented test cases.
For each distinct test set and parameters con�guration we compared the total CPU times required by each
tool to solve the i-th problem. Plots referring the the same group of benchmarks are grouped in the same
�gure.

From the the exposed results we notice a few facts:

- ALCQ2SMT+MathSat with enabled smart partitioning (shortly ALCQ2SMT+MathSat S.P.)
results one of the best performer in all the test cases but in the artful backtracking problems
(Figure 5) and in the var_restr_num problems (Figure 7) that have been speci�cally designed to
counteract smart partitioning.

10For instance, if n = 100 and i = 3 then var_restr_num3(100) = C v ≥400r.> u ≥200r.D1 u ≥198r.D2 u ≥196r.D3 u
≤100r.(¬D1 t ¬D2) u ≤99r.(¬D2 t ¬D3) u ≤98r.(¬D3 t ¬D4), and so on and so forth.
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Figure 3: 1st column: increasing_lin_sati; 2nd column: increasing_lin_unsati. 1st row: 20
problems; 2nd row: 100 problems. X axis: test case index; Y axis: CPU time (sec).
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Figure 4: Left: increasing_exp_sati; right: increasing_exp_unsati. X axis: test case index; Y
axis: CPU time (sec).
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Figure 5: backtrackingi(n). Top,left: n = 1; top,right: n = 2; bot,left: n = 3; bot,right: n = 10. X
axis: test case index; Y axis: CPU time (sec).
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Figure 6: restr_ratioi(n). Left: n = 1; right: n = 5. X axis: test case index; Y axis: CPU time
(sec).
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Figure 7: Top,left: restr_numi(1); top,right: restr_numi(5); bot,left: restr_numi(50); bot,right:
var_restr_numi(100). 1st row: 20 problems; 2nd row: 100 problems. X axis: test case index; Y axis:
CPU time (sec).

 0.01

 0.05
 0.1

 0.5
 1

 5
 10

 50
 100

 500
 1000

 4  8  12  16  20  24

Racer
FaCT
Pellet

ALCQ2SMT+MathSat
ALCQ2SMT+MathSat S.P.

 0.01

 0.05
 0.1

 0.5
 1

 5
 10

 50
 100

 500
 1000

 4  8  12  16  20  24

Racer
FaCT
Pellet

ALCQ2SMT+MathSat
ALCQ2SMT+MathSat S.P.

Figure 8: sat_unsati(n). Left: n = 1; right: n = 10. X axis: test case index; Y axis: CPU time (sec).



- ALCQ2SMT+MathSat S.P. is the absolute best performer in the very hard test set restr_numi(50)
(Figure 7), while, together with either Racer or FaCT++, it is the best performing tool in:

� all the increasing test sets (Figures 3 and 4) (both satis�able/unsatis�able and linearly/exponentially
increasing);

� all the restr_ratio and all the sat_unsat benchmarks (Figures 6 and 8 respectively), indepen-
dently from the values of the parameter n.

Notice that, even if graphically Racer seems to have slightly worst performance wrt. other tools, it
takes less than 0.1 sec. to solve most of the benchmark problems. This very small gap is only due to
the standard overhead of Racer, that is a very complex and strongly optimized system (it includes
a wide set of optimizations, also some speci�c for quali�ed number restrictions ones).

- Overall Pellet seems to be the less e�cient system, even if it is not the worst performing tool in
each speci�c test case. This is almost due to the fact that it has a basic overhead of about 1 second
on every input problem. 11 FaCT++, instead, performs very well in general, except for unsatis�able
problems and problems including high values in number restrictions. To the best of our knowledge
both FaCT++ and Pellet have no speci�c optimization technique for dealing with quali�ed number
restrictions.

- Smart partitioning strongly enhances the performance of the basic ALCQ2SMT+MathSat con�gu-
ration often by reducing the cumulative CPU times of orders of magnitude, or even better �grounding
them to zero�. However, in many experiments, ALCQ2SMT+MathSat scores not worse than some
other tools. In particular, ALCQ2SMT+MathSat performs better than Racer in all the restr_num
and restr_ratio test cases, and better than FaCT++ and Pellet (on average) in all the possible
increasing benchmark problems.

In more details:

- In the increasing_lin test sets (Figure 3) ALCQ2SMT+MathSat is one of the best perform-
ers. It performs comparably with Racer and better than the other reasoners even without smart
partitioning. In particular, the basic variant of the approach it is able to solve up to 100 satis-
�able problems and 10 unsatis�able ones. Despite the hardness of the problem the ability of the
SAT/SMT techniques in handling large-size problems shows e�ective. Unsatis�able benchmarks are
much more complex to reason on, in fact (if no speci�c optimization techniques for number restric-
tions are applied) they require that all the possible attempts to merge/share individuals fail before to
detect unsatis�ability. Thanks to smart partitioning, instead, these problems results straightforward
for ALCQ2SMT+MathSat, being the encoded problems trivial and absolutely indipendent from
the values occurring in the quali�ed number restrictions. The exponentially increasing test cases
increasing_exp con�rm this analysis; the plots of Figure 4 show even more clearly the evidenced
e�ectiveness of smart partitioning.

- The backtrackingi(n) benchmark problems (Figure 5) are the most challenging forALCQ2SMT+MathSat
approach. Also the ALCQ2SMT+MathSat S.P. variant cannot solve any backtracking problem
with index i ≥ 12, whichever value for the parameter n we chose. In this experimentALCQ2SMT+MathSat
is the worst performer because, even if not huge in size, the encoded backtracking problems result
very hard to be solved inMathSat. In fact the artful structure of these problems acts on the Boolean
component of reasoning and leads to an exponential number of branching decisions and subsequent
backtrackings, due to the attempts of merging/sharing disjoint individuals. If we considering the
Boolean abstraction of the SMT(C) problem generated by ALCQ2SMT, the e�ect of the encoded
backtracking problems for SMT is similar to that of the well-known Halpern & Moses branching
formulas for modal logic Km/ALC [18] for SAT when encoded following the approach of [31]. In this
latter case the exponentiality is caused by a combination of nested existential/universal restrictions
and opposite-polarity propositional variables, while in the case of the ALCQ backtracking problems
it is caused by the combination of at-least and at-most numerical restrictions involving disjoint con-
cepts. Notice, at last, ALCQ2SMT+MathSat and ALCQ2SMT+MathSat S.P. coincide in the

11We think that this high overhead is probably due to the fact that Pellet looks for unsatis�able concepts instead of
checking the speci�c satis�ability of the queried concept.



base case n = 1, but the performance of ALCQ2SMT+MathSat gradually degrade following the
increase of the parameter n. With smart partitioning, instead, the hardness of the resulting problem
is indipendent from n, but MathSat never succeeds for indexes greater than i = 11.

- In the restr_ratioi(n) test cases our tools are the best performers together with FaCT++ (Fig-
ure 6). The total CPU time taken by ALCQ2SMT+MathSat with no partitioning gradually in-
creases following the increase in the number of the encoded individuals. In fact, restr_ratioi(n)
problems are easily satis�able, 'cause at-least and at-most restrictions do not mutually con�ict in
them. Therefore, for our approach, the only source of complexity in the case of these problems is
their size. This has been said, the high is the index i of the problem the high is the number of at-least
restrictions included in C and, thus, the high is the number of clauses in the SMT(C) formula produced
by ALCQ2SMT. Notice that if (at least) one at-most restriction is in the concept expression then the
number of variables and clauses signi�cantly increase due to the the sharing of the individuals and
to the encoding of the at-most operator it self. The problem with index i = m = 14 which presents
no at-most restriction is trivially satis�able because no merge/sharing operations are neither encoded
nor performed during the solving phase. While Pellet is very stable for these problems and takes
(on average) 1 second for each of them, Racer is surprisingly the worst performer. The higher is the
number of at-most restrictions the more the performance of Racer deteriorate.

- Overall, the restr_numi(n) and var_restr_numi(n) benchmarks are likely the most challenging
problems, especially when combined with high values of the parameter n. From Figure 7, it is easy to
see that in restr_numi(n) the harder is the reasoning (due to the increase of the index i and of the
parameter n) the more ALCQ2SMT+MathSat S.P. outperforms the other tools. This is almost
smart partitioning's merit (e.g., compare the �rst three plots of Figure 7 with the bottom-right one
representing var_restr_numi(100) in which smart partitioning is partially inhibited).

In the case of var_restr_numi(100), wrt. restr_numi(50), basic ALCQ2SMT+MathSat, as far
as Pellet, seem to su�er the transition of n from 50 to 100. While ALCQ2SMT+MathSat and
Pellet solve 32 and 59 problems, respectively, of the �rst mentioned benchmark, they succeed in
solving only the �rst 21 and 42 problems, respectively, of the second one. In var_restr_numi(100),
even if ALCQ2SMT+MathSat S.P. solves some more problems than the basic variant (respectively
31 against 21), CPU times quickly increase with i due to the lower e�ectiveness of smart partition-
ing (due to the variability of the values in number restrictions). Finally, notice that: (i) in the
var_restr_numi(100) test set FaCT++ is the only tool able to solve all the problems, (ii) in all
the benchmarks of Figure 7 Racer is the worst performing system (in fact, for every test case with
n > 1 Racer solves only 14 problems and its trends seems to be indipendent from n). Considering
also the results of Figures 3, 4 and 6 we can guess that Racer is more sensible to the number of
quali�ed number restrictions than to the values occurring in the restrictions themselves.

- The sat_unsati(n) problems (Figure 8) con�rm the well-known fact that reasoning on unsatis�able
concepts is more di�cult than on satis�able ones. ALCQ2SMT+MathSat in fact, as far as Pellet
and FaCT++, presents signi�cantly worse performance in the �rst unsatis�able cases than in the
second satis�able ones. This behavior is much more visible for n = 10, whereALCQ2SMT+MathSat
does not succeed in solve all but one the unsatis�able problems. The encoding performed byALCQ2SMT,
in e�ect, inherits some drawbacks of the standard tableau-based approaches. As a matter of fact our
encoding indirectly simulates the merging of individuals in the tableau-based algorithm, by mean
of the sharing of individuals. Nevertheless, smart partitioning strongly reduces the number of indi-
viduals necessary to represent each problem, so that they all result extremely easy for MathSat,
independently from n.

5.3 Analysis of ALCQ2SMT
We proceed in this section by analyzing the speci�c behavior of ALCQ2SMT. In particular, we look in
more details at the performance of the encoding phase and at the nature of the encoded problems.

In the previous section we have discussed the general performance of ALCQ2SMT+MathSat, without
distinguishing between the time spend by ALCQ2SMT in the encoding phase and the time spent by
MathSat in the solving one. So, we �rst analyze the practical impact of the encoding phase by considering
the performance of ALCQ2SMT alone.
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Figure 9: CPU times of ALCQ2SMT. Left: increasing_exp_sati, i = 1, . . . , 6; right:
restr_numi(50), var_restr_numi(100), i = 1, . . . , 100. X axis: test case index; Y axis: CPU time (sec).

In the very majority of the tested problems the time spent by ALCQ2SMT in the encoding phase have
resulted negligible (less or equal to 10−2 sec.). In Figure 9 we plot the only signi�cant test cases in which
ALCQ2SMT taken more than one hundredth of a second. Notice, from the left-side plot of Figure 9,
that in encoding the increasing_exp_sat problems ALCQ2SMT takes linear CPU time wrt. the values
occurring in the quali�ed number restrictions of every problem. In fact, the ALCQ2SMT CPU time
grows exponentially with i exactly as the values grows with a rate of 10i. On the contrary, ALCQ2SMT
results absolutely indipendent from such values (i.e. the encoding time is unchanged for every problem's
index) when smart partitioning is applied. The precisely same results have been noticed in handling the
increasing_exp_unsat group of problems; in fact the satis�ability/unsatis�ability of the problem only
a�ects the solving phase of the problem, while the ALCQ2SMTC encoding is almost identical (except for
the upper-bound value �xed for the cost variables relative to the only at-most restriction included).

From the right-side plot of Figure 9, instead, we observe the di�erent e�ectiveness of smart partitioning
on the similar in structure but numerically di�erent benchmarks restr_numi(50) and var_restr_numi(100).
While smart partitioning succeeds in cutting down the encoding times for restr_numi(50), the gain pro-
duced by the partitioning technique in the var_restr_numi(100) cases is not signi�cant. Nevertheless,
this is not a bad news. In fact, in this last case the possibly onerous cost of the partitioning algorithm does
not increase the whole encoding time. As expected, the bene�ts produced by smart partitioning technique
in reducing the number of individuals compensates the computational cost of the partitioning procedure
it self, also in the cases in which the technique is not particularly e�ective. Notice, at last, that the time
spent by ALCQ2SMT never exceedes 4 seconds even if the number of restrictions in such problems can be
huge.

In Figures 10, 11, 12, 13, 14, and 15, instead we compare in plots the number of variables and clauses
produced in output by ALCQ2SMT in di�erent test cases. In particular, we compare these values for
the two variants of ALCQ2SMT, the basic one and the one including smart partitioning (S.P.). In the
plots we identify with �total� the total number of variables or, respectively, the total number of clauses,
forming each encoded problem. Instead, we identify with �cost� the number of cost variables or, respec-
tively, the number of clauses containing C-literals. Therefore, the di�erence between the total and cost

curves represents, respectively, the number of Boolean variables and the number of purely propositional
clauses generated by ALCQ2SMT. Due to the big number of di�erent benchmarks, we have limited the
number of plots included in this section by considering only the most meaningful cases, i.e. we have in-
cluded the plots concerning particularly challenging benchmarks and some representative ones for every
di�erent kind of concept expressions. In fact, from the point of view of the number of variables and clauses,
the increasing_lin_sat (Figure 10) and the increasing_lin_unsat problems presents exactly the same
characteristics (the same argument is valid for the exponentially increasing problems). In this case we
plot only the problem indexes i up to 20 instead of up to 100, cause they are more clearly readable and
equivalently represent the trends of the plotted quantities. For the backtracking benchmarks (Figure 11),
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Figure 10: 1st column: increasing_lin_sati, i = 1, . . . , 20; 2nd column: increasing_exp_sati,
i = 1, . . . , 6. 1st row: variables; 2nd row: clauses. X axis: test case index; Y axis: #variables/clauses.
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Figure 11: backtrackingi(n). 1st column: n = 3; 2nd column: n = 10. 1st row: variables; 2nd row:
clauses. X axis: test case index; Y axis: #variables/clauses.
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Figure 12: restr_ratioi(5). Left: variables; right: clauses. X axis: test case index; Y axis:
#variables/clauses.
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Figure 13: restr_numi(n). 1st column: n = 5; 2nd column: n = 50. 1st row: variables; 2nd row:
clauses. X axis: test case index; Y axis: #variables/clauses.
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Figure 14: var_restr_numi(100). Left: variables; right: clauses. X axis: test case index; Y axis:
#variables/clauses.
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Figure 15: sat_unsati(n). 1st column: n = 1; 2nd column: n = 10. 1st row: variables; 2nd row:
clauses. X axis: test case index; Y axis: #variables/clauses.

instead, we chose two representative groups of problems with n = 3 and n = 10. The case n = 1 shows
no di�erences between the use or not of smart partitioning, while in the case n = 2 the di�erences are less
clearly osservable than in the reported cases. For similar reasons we don't show in Figures 12 and 13 the
con�guration n = 1 for the restr_ratio and the restr_num benchmarks respectively. In fact, comparing
with the higher values of n, these test cases show the same trend for the two variants of ALCQ2SMT but
with much less visible di�erences. For the sake of the reader's convenience, however, all the other plots are
available in the Appendix C.

From the exposed plots we highlight some facts:

- In all the di�erent test cases ALCQ2SMT and ALCQ2SMT S.P. produce exactly the same number
of cost variables. In fact, smart partitioning impacts in reducing the number of individuals but does
not change the logic of the encoded SMT(C) problem. In particular, the number of cost variables
encoded only depends from the structure of the problem, a new cost variable is uniquely introduced
for every distinct combination of individual, concept name and role name occurring in the quali�ed
number restrictions of the problem. Notice that, if the encoded TBox provide nested quali�ed number
restrictions then the reduction in the number of individuals would lead also to a sensible reduction of
the cost variables, increasingly with the number of nested restrictions.

- Cost variables never depends on the value of the extra parameter n, di�erently from the number of
clauses and of Boolean variables that scrictly depend from the number of introduced individuals.



- Many test sets present a very low and �xed number of cost variables, due to the structure of concept
expressions which often include a �xed number of quali�ed number restrictions. For instance, in the
increasing and sat_unsat benchmarks (Figures 10 and 15), the number of quali�ed number restric-
tions and of encoded cost variables is �xed to 5, while it is equal to 15 in the restr_ratio benchmarks
(Figure 12), having chosen m = 14. However, the number of Boolean variables is predominant in
all the test cases, also in the backtracking, restr_num and var_restr_num cases (Figure 11, 13
and 14), where the number of cost variables linearly increases with the index i.

- As can be easily predicted from the de�nition of our encoding, the number of total clauses is tightly
related to the number of Boolean variables introduced. For this reason, smart partitioning positively
a�ects both in reducing the number of individual/Boolean variables in the encoding and in reducing
the total size of the encoded problem.

- The major part of the clauses encoded by ALCQ2SMT contains C-literals. This property is even
more evident for the the restr_num and var_restr_num benchmarks (Figures 13 and 14). On the
contrary, the only exception to this observation is in the backtracking test cases (Figure 11), where
the encoding of the mutual disjunctions conditions between concepts produces also a high number of
purely Boolean implications.

- Generally, without smart partitioning, the numbers of variables and clauses linearly follow the value
of the index i and/or the value of the parameter n. For instance, the relation with the index i (and,
thus, with the values included in quali�ed number restrictions) is particularly clear in the increasing
problems. Similarly, we can notice increases in the number of variables and clauses proportional to
the increase in the value of n, e.g., in the sat_unsat test cases (Figure 15) where, instead, the size
of the problem is indipendent from i. In such benchmark an increase of one order of magnitude in
n, from 1 to 10, determines an increase of one order of magnitude also in the number of clauses and
variables.

- Curiously, in the sat_unsat benchmark (Figure 15) one peculiarity of our partitioning technique
is slightly perceptible. Notice, in fact, that enabling smart partitioning the number of variables
and clauses are not absolutely unchanged, but present some minimum for the indexes equal to 6
or greater than 12. This tricky behavior depends from smart partitioning, where the combinations
of values occurring in at-least restrictions are merged with the combinations of values occurring in
at-most restrictions. In the sat_unsat problems, the �rst are multiple of 3 for a maximum of 12,
and the second follow exactly i, with i = 1, 2, 4, 6, . . . , 24. Thus, when i is 6 or is greater than 12 the
merging of these values generates one less partition, explaining the slight di�erence with the other
values of i.

- The size of encoded and solved problems can be very large. E.g., ALCQ2SMT+MathSat solves all
the problems of the rest_numi(5) benchmark, which present up to 104 variables and clauses (Fig-
ure 13). Moreover, both with and without smart partitioning, ALCQ2SMT+MathSat has shown
able to solve problems with more than 105 variables and clauses in the very hard var_rest_numi(100)
test set (see, e.g., the problem of index i = 20 in the plots of Figure 14). Nevertheless, as previously dis-
cussed, the size of the problem is not the only source of complexity. For instance, without smart parti-
tioning, the unsatis�able problems of sat_unsat results extremely hard for ALCQ2SMT+MathSat,
even if, for every i, they are stable in the order of �only� 1000 variables and clauses (Figure 15).

5.4 Discussion

As similarly discussed in [31] wrt. ALC, the concept satis�ability problem in logics like ALCQ is character-
ized by the alternation of many orthogonal components of reasoning. In terms of the semantic of the input
problem, i.e. in terms of �nding an interpretation for the given TBox/concept, we individuate the following
components of reasoning: (i) a propositional component, performing reasoning within each individual, in
order to satisfy the concepts involved, conjunctions, disjunctions and/or negations; (ii) a modal component,
generating the successor individuals of each individual, in order to satisfy existential/at-least restrictions;
(iii) an arithmetical component performing reasoning on the whole space of the possible successor indi-
viduals, in order to satisfy the numerical constraints imposed by both at-least and at-most (or universal)



restrictions. The �rst component (i) must cope with the fact that there may be exponentially many candi-
date models to explore. The second component (ii) must face with the fact that the candidate models may
be exponentially big wrt. the nesting depth of restrictions in the input TBox, and (without optimization)
wrt. the values occurring in the number restrictions. The last component (iii) must cope to the numerical
consistency of all the possible models. This component of reasoning is strongly correlated with the former
ones causing a further source of exponentiality when the bounds on the number of individuals cause that
exponentially many more models (given by all the possible partitioning of individuals) must be explored.

In the ALCQ2SMT+MathSat approach the encoder has to handle the whole component (ii), whilst
the handling of the propositional (i) and arithmetical components (iii) are delegated to the SMT solver
(if we except for their interactions with (ii), which result in the encoding of the sharing of individuals).
Notice that, with our encoding, the interactions among the three components are regulated in two main
ways. The Boolean component of SMT assigns the Boolean abstraction of the given SMT(C) formula, and
assigns also the C-literals, determining the existence of individuals and the sharing/merging of them. The
C-solver checks the consistency of the assignment wrt. the Theory of Costs C, verifying that all the numer-
ical constraints are satis�ed. In the unfavorable case it forces and guides (through theory propagation and
theory backjumping, see Section 2.3) the generation of a new assignment.

From the results reported in this section we notice that the performances of our approach strongly
depends from the application, or not, of smart partitioning. Even if there are problems in which basic
ALCQ2SMT+MathSat is competitive or even outperforms the other tools, the bene�ts given by smart
partitioning are outstanding. The e�ectiveness of smart partitioning lays in the drastic reduction it produces
in the size of the output problems. In particular, the more is the logical complexity of the encoded problem
(e.g. unsatis�able problems) the more prominent are the bene�ts of smart partitioning, cause the sensible
reductions in size a�ect exponentially during the SMT(C)-solving phase.

The relative performances of ALCQ2SMT+MathSat S.P. wrt. other state-of-the-art reasoners range
from a very few arti�cial cases where it is much less e�cient than other state-of-the-art systems (e.g., the
backtracking and var_restr_num benchmarks) up to formulas where it is much more e�cient of all the
other tools (e.g., in the increasing and restr_num test cases). In many cases our novel approach competes
well against the other state-of-the art tools, reporting comparable performance.

A simple explanation of the former observation could be that the ALCQ2SMT+MathSat approach
su�ers, in particular, in two cases. First, in the problems in which there is a strong interaction between
either the (i) or the (ii) component of reasoning and the (iii) one, so that the possible exponentiality in
the propositional component or in the number of successors causes a huge number of inconsistent calls
to the C-solver, which can not be pro�tably exploited to guide the propositional component via theory
backjumping because the encoding is decoupled from the search. Second, wrt. the other approaches,
ALCQ2SMT+MathSat relatively lose e�ciency in those cases in which a consistent increase in the size of
the encoded problem is not balanced by a signi�cant increase in the hardness of the input problem, so that
our approach is a�ected by the size of the encoding (due to the (ii) component of the reasoning) while the
other state-of-the-art tools can exploit speci�c optimization or reasoning techniques. Smart partitioning
speci�cally acts on reducing the weight of the (ii) component.

On the contrary, when enhanced with smart partitioning, our approach dominates in the problems
where the high values occurring in quali�ed number restrictions or the high number of quali�ed number
restrictions undermine the other approaches. Moreover, when smart partitioning reduces even very hard
problems to a reasonable-size SMT(C) problem, our approach is extremely e�cient and outperforms all
the other systems. This is due to the power of SAT/SMT techniques which relies on extremely e�cient
and well-engineered tools (able to solve large size problems) and on speci�c and optimized theory solvers.
Summarizing our approach have shown to be very e�ective also in huge or really complex problems in the
cases in which the three component of reasoning are well-balanced, or in which either the (i) or the (iii)
components prevail, without a too thick interaction with the (ii) one.

A strength of our approach is that, thanks to smart partitioning, it works independently from the values
occurring in the quali�ed number restrictions. As we have predicted and shown, the more values repeats
in quali�ed number restrictions the more smart partitioning results e�ective. Even if the e�ectiveness of
smart partitioning may reduce depending from the properties of the values included in the restrictions, in
particular from their combinations and their variability, the important fact is that the resulting encoding



does not depend from the order of magnitude of such values. For instance, if the same variability in the
values occurs with either a ratio or an o�set of 1 or, instead, of 1 million the result of smart partitioning
(i.e. the number of distinct partitions that must be encoded) is the same. However, we think that in
real-world ontologies extreme cases as those of the var_restr_num benchmark rarely occurs. Furthermore,
even if theoretically and potentially expensive, in practice smart partitioning have shown computationally
e�cient. We think that the time spent in executing the smart partitioning routine is compensated from
the gain it gives in the encoding steps that can be avoided.

Finally, notice that, in terms of performance, the encoding phase performed by ALCQ2SMT mostly
results negligible, while the major source of computational complexity lay in the solving phase. This shows
that encoding can be convenient when a scalable and e�cient solving phase is guaranteed. From this point
of view, notice also that the solving time of MathSat (that is a complex and well established SMT solver,
di�erently from ALCQ2SMT that is a prototype) is also often negligible, without any overhead. Thus we
think that the integration of such techniques and tools in a wider context may lead to successful results.

5.4.1 Scalability

We close our experimental evaluation by discussing the scalability issue.
We have chosen to face this issue here and separately for two main reasons. First, the scalability issue

can be seen under many di�erent perspectives. In particular it involves all the di�erent component of
reasoning we previously analyzed and all the di�erent sources of complexity we disjointly examined in
this experimental evaluation. Thus, it is helpful having previously discussed all such points. Second, the
only way of correctly analyze the scalability of our approach in comparison with the other state-of-the-art-
tools should be try the performances of the various systems in increasingly larger and harder real-world
ontologies. Unfortunately, as discussed in Section 5.1 and in [11], currently this is not possible due to the
lack of signi�cant and meaningful real-world ontologies making use of quali�ed number restrictions. Thus
we can only try to combine the �ingredients� that we have previously analyzed separately.

One way of evaluating scalability could be analyze the e�ect of increasingly more nested restrictions.
With this aim we need to introduce a further set of benchmark problems which completely di�ers from
all the benchmarks proposed by the approach of [11] and that we have adapted in this work. Notice that
having nested occurrences of quali�ed number restrictions is a further source of complexity, that much more
signi�cantly impacts in our approach than in traditional the tableau-based algorithms, because we handle
the component (ii) of reasoning via encoding. This has been said, we add the following class of benchmark
problems.

Nesting Depth of Quali�ed Number Restrictions.
We evaluate the e�ect of having nested occurrences of quali�ed number restrictions by solving the satis�a-
bility of C in the following TBoxes indexed by i:

C v ≥2n r.A1 u ≥2n r.B1 u ≤3n r.>,
A1 uB1 v ≥2n r.A2 u ≥2n r.B2 u ≤3n r.>, . . . ,

. . . , Ai−1 uBi−1 v ≥2n r.Ai u ≥2n r.Bi u ≤3n r.>.

In these TBoxes the number or nested quali�ed number restrictions is equal to the value of the index i.
The combined e�ect of the two at-least and of the one at-most restrictions de�ned in the j-th axiom of
the TBox is that of forcing the existence of at least n distinct r-successors in (Aj u Bj). Consequently,
this forces the application of the next (j+1)-th axiom, which introduces a deeper nested restriction, and
so on and so forth till the i-th (last) axiom. C is satis�able in every such TBox. We call these problems
nested_restr_sati(n), while we call nested_restr_unsati(n) the respective unsatis�able variants, ob-
tained by adding to each TBox the axiom �Ai uBi v ⊥�. This latter axiom, in fact, con�icts with the ith
(last) axiom of the TBox at the deepest nesting level i. We run these test cases with i = 1, . . . , 20 and
n = 5, 50, in the same system con�guration exposed in the �rst part of Section 5.

In Figure 16 we expose all the plots concerning the experimental results for the nested_restr_sati(5)
benchmark. From top-left to bottom-right we respectively plot: the performance comparison among
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Figure 16: nested_restr_sati(5). Top,left: comparison against other tools; top,right: ALCQ2SMT
times; bot,left: # enc. variables; bot,right: # enc. clauses. X axis: test case index; Y axis: 1st row: CPU
time (sec), 2nd row: #variables/clauses.

ALCQ2SMT+MathSat and the other considered reasoners, the encoding time taken by ALCQ2SMT
alone, the numbers of variables and the number of clauses resulting in the encoded problems. In the three
latter plots we include only a few problems, in fact the basic and the S.P. variants of ALCQ2SMT both
exceed the limit of 1 GB �le size for all the test cases with i ≥ 5 and i ≥ 7, respectively. In fact, nested
restrictions exponentially a�ects the size of our encoding.

From Figure 16 we notice a couple of facts. First, as predicted, from the last three plots we can see how
smart partitioning drastically reduces also the number of cost variables, if number restrictions acts at more
than one nesting depth. In the examined case, the two variants of ALCQ2SMT exponentially di�ers each
other both in the numbers of clauses and in the number of Boolean/cost variables (and, consequently, in
the CPU times required during the encoding phase). In a few test cases the gap between the two variants
increases up to three orders of magnitude. Second, from the �rst plot, we notice that the performance of
two variants of ALCQ2SMT+MathSat are way far from the performances of the other systems, solving
only the �rst 3 and, respectively, 5 test cases within the 1000 sec. timeout.

However, in order to con�rm that the scalability issue is very controversial, in Figure 17 we report the
tools comparison in other two slightly di�erent test cases: nested_restr_sati(50) and nested_restr_unsati(5)
respectively, from left to right. From the �rst plot it can be noticed how the performances of Pellet and
FaCT++ gradually and signi�cantly deteriorate having increased n (while our S.P. variants have iden-
tical performances). From the second plot, instead, it can be noticed that ALCQ2SMT+MathSat S.P.

dominates the other tools, except for Racer, when we pass from nested_restr_sati(5) to the unsatis�-
able cases nested_restr_unsati(5). Notice that the only di�erence between the two benchmarks consists
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Figure 17: Left: nested_restr_sati(50); right: nested_restr_unsati(5). X axis: test case index; Y
axis: CPU time (sec).

in one simple axiom, acting exclusively at the deepest level of nesting. Nevertheless, this is enough to
transform the original problem into a non-trivial one and inhibit speci�c optimization techniques. In this
latter benchmark Pellet solves only 1 problem (in this benchmark Pellet has given unsound results
incorrectly returning �sat� in some of the problems with i > 1) against the 3 of FaCT++ and the 5 of
ALCQ2SMT+MathSat S.P..

This analysis shows how the scalability of the di�erent tools can not be precisely evaluated only on the
basis of the nesting depth of quali�ed number restrictions, but should take into account all the possible
combinations and interactions of all the sources of complexity (including the number of quali�ed number
restrictions, the values occurring in them, and so on and so forth). E.g. Racer could have scalability
problems if a relatively low nesting depth combines with a high number of restrictions. Wrt. possible
real-world ontologies, in which the di�erent sources of complexity should be somehow balanced and not
degenerating, we think that, overall, the performance shown by ALCQ2SMT+MathSat S.P. in the
distinct problems are promising for a good scalability on real ontologies. ALCQ2SMT+MathSat S.P.

have proved of being able to handle a big number of quali�ed number restrictions, of being able to solve
both satis�able and unsatis�able problems up to �ve �full� nesting levels of number restrictions and, mainly,
to be indipendent from the order of magnitude of the values occurring in number restrictions. We remark
that is only a preliminary analysis since we do not dispose of real practical problems.

6 Conclusions

In this work we propose a new approach to solve concept satis�ability in the Description Logic ALCQ
wrt. acyclic TBoxes. We encode such a problem into SMT modulo the Theory of Costs then we propose a
further optimization, called smart partitioning, aiming at signi�cantly reducing the size and the complexity
of the encoded problems.

We implemented our novel approach called ALCQ2SMTC , into a tool ALCQ2SMT that we run in
combination of the SMT solver MathSat. In an extensive empirical test session, performed on synthe-
sized concept satis�ability problems stressing di�erent sources of reasoning complexity, we evaluate the
performance of our approach against the other state-of-the-art reasoners FaCT++, Pellet and Racer.

The best version of our approach ALCQ2SMT+MathSat S.P. (including smart partitioning), have
shown to perform extremely well on benchmarks presenting multiple/balanced sources of complexity (that
we think well-�t the requirements of real-world problems). In particular, we have noticed that the size of
the encoding is not the main complexity issue for our approach, which has shown to be very e�ective also
on large or really complex problems (e.g., MathSat scales up to encoded problems with more than 105

Boolean variables and clauses, and 104 cost variables, in very hard problems having nested quali�ed number
restrictions).Finally, smart partitioning turns out to be extremely e�ective, being able to drastically (and
exponentially) reduce the size of the output SMT(C) problems, up to three orders of magnitude in the more



challenging test cases wrt. basic ALCQ2SMT (it exponentially impacts also in the number of cost variables
in case of nested number restrictions). We remark that partitioning makes our approach independent from
the magnitude/o�set of the values occurring in quali�ed number restrictions.



A Appendix: Proof of the Theorems

Theorem 1. An ALCQ acyclic TBox T in normal form is consistent if and only if the SMT(C)-formula
ϕT of ALCQ2SMTC(T ) (De�nition 3) is satis�able.

Proof. It is a direct consequence of the following Lemmas 5 and 7.

Lemma 5 (Soundness). Given an ALCQ acyclic TBox T in normal form and the encoding ALCQ2SMTC(T ) =
〈ΣT , IT

− , IT
+ , A〈 , 〉, indiv, ϕ

T 〉 of De�ntion 3, if the SMT(C)-formula ϕT is satis�able then T is consistent.

Proof. Let µ by a total truth assignment satisfying ϕT , where we represent with L〈σ, C〉 ∈ µ the fact that
the literal L〈σ, C〉 is assigned true in µ. Notice that, since ϕT is an SMT(C)-formula µ assigns truth value
also to the C-literals (BC- and IC-literals) of ϕT . We must prove that it also exists a model for T .

From µ, we de�ne Iµ being the following interpretation:

∆Iµ
def
= { σ | A〈σ, >〉 occurs true in µ }, (26)

ĈIµ
def
= { σ | σ ∈ ∆Iµ and L〈σ, Ĉ〉 occurs true in µ }, (27)

rIµ
def
= { (σ, σ.r.i) | σ, σ.r.i ∈ ∆Iµ }, (28)

for every normal concept Ĉ and every role r in T . In particular, by construction, it follows for every σ:

σ ∈ ĈIµ if and only if L〈σ, Ĉ〉 ∈ µ and A〈σ, >〉 ∈ µ. (29)

For non-normal concepts we de�ne Iµ such that:

(ui Ci)
Iµ

def
= { σ | σ ∈ ∆Iµ and µ satis�es ∧i L〈σ, Ci〉 }, (30)

(tjDj)
Iµ

def
= { σ | σ ∈ ∆Iµ and µ satis�es ∨j L〈σ, Dj〉 }. (31)

Notice that in normal form only concept description in NNF are considered. Thus in ϕT the literal
L〈σ, Ĉ〉 always corresponds to the positive Boolean variables A〈σ, Ĉ〉, but for a basic concepts which can
corresponds either to A〈σ, C〉 or to ¬A〈σ, C〉 for some concept name C.

We prove by induction on the structure of T that Iµ is semantically consistent and that it is a model for

T . With this purpose, for every axiom Ĉ v D̂ ∈ T in normal form and every individual σ we must prove
that Iµ satis�es the following conditions:

(a) if σ respect the semantic of Ĉ then σ ∈ ĈIµ ;

(b) if σ ∈ ĈIµ then σ ∈ D̂Iµ (i.e. ĈIµ ⊆ ĈIµ , respecting the semantic of the axiom Ĉ v D̂);

(c) if σ ∈ D̂Iµ then σ respect the semantic of D̂.

When we talk about the semantic of concepts and axioms we always refer to Table 1. Notice that, if T is
empty ϕT is the unit clause A〈1, >〉 and, thus, there is only one possible truth assignment µ = {A〈1, >〉}.
The interpretation Iµ, which is made of the non empty domain ∆Iµ = {1}, trivially satis�es T .

(a) Let's �rst prove the condition (a). We prove it by induction on the structure of the concept Ĉ

Base. The base cases when Ĉ is a basic concept: >,⊥ or the concept name C, are trivially satis�ed by,
respectively, (26) and (27) of the de�nition of Iµ (remember that A〈σ, ⊥〉 is assumed to be ⊥ for every σ).

Inductive Step. Now we prove the claim for every possible kind of non-basic concept Ĉ allowed from
the axiom normal form of Section 2.1.1. By hypothesis the generic individual σ respects the semantic of Ĉ
reported in the right-most column of Table 1.



¬C : By hypothesis we have σ ∈ ∆Iµ\CIµ . By construction of Iµ (27), for every concept name C, (¬C)Iµ =
{σ | σ ∈ ∆Iµ and ¬A〈σ, C〉 occurs true in µ}, that is (¬C)Iµ = {σ | σ ∈ ∆Iµ and A〈σ, C〉 occurs false in µ}.
Since, instead, CIµ = {σ | σ ∈ ∆Iµ and A〈σ, C〉 occurs true in µ}, then CIµ ∩ (¬C)Iµ = ∅, CIµ ∪
(¬C)Iµ = ∆Iµ and, thus, ∆Iµ \ CIµ = (¬C)Iµ . It follows σ ∈ (¬C)Iµ .

C1 u C2 : By hypothesis we have σ ∈ C
Iµ

1 ∩ CIµ

2 . So, since both σ ∈ C
Iµ

1 and σ ∈ C
Iµ

2 then, by (29), we
have that the literals L〈σ, C1〉 and L〈σ, C2〉 are in ϕ

T and they are both, as well as A〈σ, >〉, assigned
to true in µ. It follows σ ∈ (C1 u C2)

Iµ by de�nition of Iµ (30).

We prove the other following three cases under the hypothesis that: 〈σ,<r.C〉 ∈ IT
− , with < ∈ {≥n,≤m,∀},

assuming that point 4. of De�nition 3 applies. This because in our encoding we only consider acyclic
TBoxes.

≥nr.C : By hypothesis it there exist a set of individuals Fσ,r,C = {σ.r.j | σ.r.j ∈ ∆Iµ , σ.r.j ∈ CIµ and (σ, σ.r.j) ∈
rIµ}, which has at least cardinality n. Suppose, wlog., that Fσ,r,C = {σ.r.1, . . . , σ.r.n}. From the hy-
pothesis and by de�nition of Iµ (29) it follows L〈σ.r.j, C〉, A〈σ.r.j, >〉 ∈ µ for every j = 1, . . . , n. From

〈σ,≥nr.C〉 ∈ IT
− it follows (point 6.) that ϕT contains the clause ((¬BC(indivCσ.r, n− 1) ∧A〈σ, >〉) →

A〈σ, ≥nr.C〉) of type (10) and (point 8.) at least the n distinct implications ((L〈σ.r.j, C〉∧A〈σ.r.j, >〉) →
IC(indivCσ.r, 1, j)) of type (13) for all the distinct σ.r.j. Thus the variable indivCσ.r has at least cost n
so that the A〈σ, ≥nr.C〉 must be assigned to true. It follows by de�nition of Iµ that σ ∈ (≥nr.C)Iµ .

≤mr.C : By hypothesis, since σ respect the semantic of ≤mr.C, the set of individuals {σ.r.j | σ.r.j ∈
∆Iµ , σ.r.j ∈ CIµ and (σ, σ.r.j) ∈ rIµ}, has a cardinality not greater than m. Thus no more than m
literals in the forms L〈σ.r.j, C〉 can be assigned to true in µ. Since we assume 〈σ,≤mr.C〉 ∈ IT

− , the

formula ϕT (point 9.) contains the clause ((BC(indivCσ.r,m)∧A〈σ, >〉) → A〈σ, ≤mr.C〉) of type (15) and

(point 5.) the m + 1 distinct implications (IC(indivCσ.r, 1, k
C
i ) → L〈σ.r.kC

i , C〉) of type (7), for all the

distinct σ.r.kCi , with i = 1, . . . ,m+1. Thus, in ϕT , more than m clause of type (7) exist. Suppose by
contradiction that the value of the cost variable indivCσ.r is greater than m. Thus more than m distinct
C-literals IC(indivCσ.r, 1, j) must be assigned to true in µ. But if these IC-literals are those occuring in
clauses of type (7), like those above mentioned of index kCi , i = 1, . . . ,m+1, we get a contradiction,
'cause more than m distinct literals L〈σ.r.j, C〉 should be assigned to true in µ in order to satisfy
those clauses. Notice that IC-literals may occur in clauses of type (13), introduced for right-hand side
at-most restrictions (or left-hand side at-least ones). However these clauses are introduced only for
the individuals σ.r.j already in ΣT ; thus, if other individuals σ.r.j di�erent from the σ.r.kCi ones are
in ΣT , then there are the conditions of point 7 of De�nition 3, forcing the sharing of individuals and
the introduction in ϕT of all the implications (11) and (12) for every σ.r.j. Those clauses forces the
assignment to true of every literal L〈σ.r.j, C〉 such that IC(indiv

C
σ.r, 1, j) is assigned to true, contradicting

the fact that at most m of those individuals can be assigned to true. Hence, indivCσ.r must have a
value not greater than m. It follows from the clause ((BC(indivCσ.r,m) ∧A〈σ, >〉) → A〈σ, ≤mr.C〉) (15)
that A〈σ, ≤mr.C〉 must be assigned to true, and thus, by de�nition of Iµ, that σ ∈ (≤mr.C)Iµ .

∀r.C : By hypothesis, since σ respect the semantic of ∀r.C, the set of individuals Fσ,r = {σ.r.j | σ.r.j ∈
∆Iµ , (σ, σ.r.j) ∈ rIµ} is such that Fσ,r ⊆ CIµ , i.e. for every σ.r.j ∈ ∆Iµ it holds σ.r.j ∈ CIµ and,
thus, σ.r.j 6∈ (¬C)Iµ . Thus there can not exist literals L〈σ.r.j, ¬C〉 assigned to true in µ. Since we

assume 〈σ,∀r.C〉 ∈ IT
− , the formula ϕ

T (point 10.) contains the clause ((BC(indiv¬C
σ.r , 0) ∧A〈σ, >〉) →

A〈σ, ∀r.C〉) of type (17) and (point 5.) the single implication (IC(indiv¬C
σ.r , 1, k

¬C
1 ) → L〈σ.r.k¬C

i , ¬C〉)

of type (7). Since a left-hand side ∀r.C behaves like a left-hand side ≤mr.C, we can use the same
arguments of the previous point in the proof in order to prove that indiv¬C

σ.r must have value 0; In
fact, otherwise, we could get a contradiction with the the fact (by hypothesis) that there cannot
exist true literals L〈σ.r.j, ¬C〉 in < mu. Thus, it follows from the clause ((BC(indiv¬C

σ.r , 0)∧A〈σ, >〉) →
A〈σ, ∀r.C〉) (17) that A〈σ, ∀r.C〉 must be assigned to true, and thus, by de�nition of Iµ, that σ ∈
(∀r.C)Iµ .

(b) The condition (b) trivially follows from point 7. of De�nition 3. Let us consider the following cases of
axioms: (i) Ĉ v D̂, (ii) uiCj v D and (iii) C v tjDj , with Ĉ, D̂ normal concepts and C,Ci, D,Dj basic
concepts. Any axiom of T in normal form is a sub-case of one among (i), (ii) and (iii). We already proved
in (a) that the de�nition of Iµ is consistent wrt. the semantic of every left-hand side concept.



(i) By hypothesis we have σ ∈ ĈIµ and, thus, L〈σ, Ĉ〉 ∈ µ by de�nition of Iµ (29). Since L〈σ, Ĉ〉 is in

ϕT , then (point 7.) ϕT contains the clause (L〈σ, Ĉ〉 → L〈σ, D̂〉) of type (6). It follows L〈σ, D̂〉 ∈ µ

because ϕT is satis�able and, thus, σ ∈ D̂Iµ , by de�nition of Iµ (27).

(ii) Similarly, by hypothesis we have σ(uiCi)
Iµ and, thus, that

∧
i L〈σ, Ci〉 is satis�ed by µ, by de�nition of

Iµ (30). Since every L〈σ, Ci〉 is in ϕ
T , then (point 7.) ϕT contains the clause ((

∧
i L〈σ, Ci〉) → L〈σ, D〉)

of type (6). It follows L〈σ, D〉 ∈ µ because ϕT is satis�able and, thus, σ ∈ DIµ by (27).

(iii) In the last case, if σ ∈ CIµ by hypothesis, then L〈σ, C〉 ∈ µ by de�nition of Iµ (29). Since L〈σ, C〉
is in ϕT , then (point 7.) ϕT contains the clause (L〈σ, C〉 → (

∨
j L〈σ, Dj〉)) of type (6). Since ϕT is

satis�able it follows that
∨

j L〈σ, Dj〉 must be satis�ed by µ and, thus, that σ ∈ (tjDj)
Iµ by de�nition

of Iµ (31).

(c) Finally, let's prove by induction on the structure of the concept D̂ that if σ ∈ D̂Iµ then σ respect the
semantic of D̂

Base. When D̂ is a basic concept: >,⊥ or the concept name D, the claim is trivially satis�ed by the
de�nition of Iµ, similarly to (a).

Inductive Step. We prove the claim for every possible kind of non-basic concept D̂ considered in the
normal form of Section 2.1.1. By hypothesis the σ ∈ D̂Iµ .

¬D : Let σ ∈ (¬D)Iµ . By de�nition (31) σ ∈ ∆Iµ and L〈σ, ¬D〉 is true in µ, i.e. ¬L〈σ, D〉 ∈ µ It follows
σ 6∈ DIµ and, thus, σ ∈ ∆Iµ \DIµ .

D1 tD2 : Let σ ∈ (D1tD2)
Iµ . By (31), A〈σ, D1〉∨A〈σ, D2〉 is satis�ed by µ and σ ∈ ∆Iµ , thus A〈σ, >〉 ∈ µ.

It follows that at least one of the literals L〈σ, D1〉 and L〈σ, D2〉 is true in µ. Hence, since we already

have σ ∈ ∆Iµ , by (29) either σ ∈ D
Iµ

1 or σ ∈ D
Iµ

2 , which let us to conclude that σ ∈ D
Iµ

1 ∪DIµ

2 , i.e.
σ ∈ (D1 tD2)

Iµ .

≥nr.D : Let σ ∈ (≥nr.D)Iµ by hypothesis, then we must prove that there exist at least n distinct
individuals σ.r.j ∈ ∆Iµ such that (σ, σ.r.j) ∈ rIµ and σ.r.j ∈ DIµ . By de�nition of Iµ (29) we have
L〈σ, ≥nr.D〉, A〈σ, >〉 ∈ µ. Further, since ≥nr.D occurs at the right-hand side of the axiom so that
〈σ,≥nr.D〉 ∈ IT

+ , ϕ
T contains the clauses (7), (8) [resp. (11), (12)] and (9) due to the application

wrt. σ and ≥nr.D of the points 5. [resp. 7.] and 6., respectively, of De�nition 3. Due to the clause (9):
(A〈σ, ≥nr.D〉 ∧ A〈σ, >〉) → ¬BC(indivDσ.r, n − 1) the SMT(C) formula ϕT can be satis�able only if the

C-literal BC(indivDσ.r, n − 1) is assigned to false, that is only if at least n di�erent incur-cost literals
IC(indivDσ.r, 1, . . .) are assigned true in µ (because all the IC-literals in ϕT have cost 1). Notice that
these IC-literals certainly belong to clauses of type (7) [resp. (11)]. In fact, they can belong also to
clauses of type (13), but those clauses either refer to individuals σ.r.kDi introduced because of ≥nr.D
or to di�erent individuals σ.r.kEj . In this second case, the coexistence of more than one at-least
restriction and one at-most forces the sharing of the individuals, causes the sharing of individuals due
tu the point 7. of De�nition 3. By consequence every IC-literal of the type IC(indivDσ.r, 1, . . .) occur
also as left-hand side literal in the implications of type (11). By these implications, it follows that at
least n of the correspondent literals L〈σ.r.j, D〉 must be assigned true in µ. Further, it follows from
the implications (8) [resp. (12)] that also at least n literals of the form A〈σ.r.j, >〉 are assigned to true
in µ. Hence, by (29), we have at least n distinct individuals σ.r.j such that σ.r.j ∈ ∆Iµ , σ.r.j ∈ DIµ

and such that (σ, σ.r.j) ∈ rIµ by construction of rIµ (28).

≤mr.D : Let σ ∈ (≤mr.D)Iµ by hypothesis, then we must prove that there exist at most m distinct
individuals σ.r.j ∈ ∆Iµ such that (σ, σ.r.j) ∈ rIµ and σ.r.j ∈ DIµ . By de�nition of Iµ (29) we
have L〈σ, ≤nr.D〉, A〈σ, >〉 ∈ µ. Further, since ≤nr.D occurs at the right-hand side of the axiom
so that 〈σ,≤nr.D〉 ∈ IT

+ , ϕ
T contains all the clauses of type (13) and the clause (14) due to the

application wrt. σ and ≤mr.D of the points 8. and 6., respectively, of De�nition 3. Due to the the
clause (14) (A〈σ, ≤mr.D〉 ∧A〈σ, >〉) → BC(indivDσ.r,m), the SMT(C) formula ϕT is satis�ed if and only

if at most m di�erent incur-cost literals ICindivDσ.r1. . . are assigned to true in µ. Let us suppose by
contradiction that even if σ ∈ (≤mr.D)Iµ there exist more than m distinct individuals σ.r.j ∈ DIµ .



Then, by (29), it follows that there are more than m di�erent literals L〈σ.r.j, D〉 and more than m
di�erent literals A〈σ.r.j, >〉 assigned to true in µ. Since ϕT includes one clause (13) of the type:

(L〈σ.r.j, D〉 ∧ A〈σ.r.j, >〉) → IC(indivDσ.r, 1, . . .), for every σ.r.j ∈ ΣT , then it follows that more than

m distinct IC-literals wrt. to indivDσ.r must be assigned to true. But this con�icts in the Theory of
Costs with the fact that ϕT is satis�able and indivDσ.r is bounded by m as previously stated (since
BC(indivDσ.r,m) is true in µ). Thus we get a contradiction, proving the claim.

∀r.D : Let σ ∈ (∀r.D)Iµ . We must prove that, for every individual σ.r.j ∈ ∆Iµ such that (σ, σ.r.j) ∈
rIµ , σ.r.j ∈ DIµ . Since L〈σ, ∀r.D〉 is in ϕT , ϕT must include also the clauses (16): (A〈σ, ∀r.D〉 ∧
A〈σ.r.j, >〉) → A〈σ.r.j, D〉, for every σ.r.j ∈ ΣT , from point 10. of De�nition 3. By de�nition of
∆Iµ (26), σ.r.j ∈ ∆Iµ if and only if A〈σ.r.j, >〉 is assigned to true in µ. Thus, since, by construc-
tion (28), (σ, σ.r.j) ∈ rIµ if and only if σ, σ.r.j ∈ ∆Iµ , we have A〈σ.r.j, >〉 ∈ µ for every (σ, σ.r.j) ∈ rIµ .
Since L〈σ, ∀r.D〉 ∈ µ by hypothesis, and A〈σ.r.j, >〉 ∈ µ for every (σ, σ.r.j) ∈ rIµ , then also A〈σ.r.j, D〉
must be assigned to true µ in order to satisfy the clauses (16) of ϕT (that is satis�able). It follows (29)
that σ.r.j ∈ DIµ for every (σ, σ.r.j) ∈ rIµ .



Lemma 6. Given an ALCQ acyclic TBox T in normal form and the encoding ALCQ2SMTC(T ) =
〈ΣT , IT

− , IT
+ , A〈 , 〉, indiv, ϕ

T 〉 of De�ntion 3, if there exists a model I for T then it also exists a model IΣ
for T , such that ∆IΣ ⊆ ΣT and that rIΣ ⊆ {(σ, σ.r.i) | σ, σ.r.i ∈ ΣT }, for every role r ∈ T .

Proof. We remark that here we don't discuss about the properties of ALCQ2SMTC , we only show that ΣT

is a super set of ∆IΣ for some model IΣ for T . Suppose that T is consistent. It is known that ALCQ has
the �nite (and) tree model property [22]. Thus suppose that I is a �nite tree model for T . Wlog., among
the many possible �nite tree model for T , we can safely chose a model I for T such that:

(a) quali�ed number restrictions wrt. di�erent roles are satis�ed by distinct individuals;

(b) if a given individual x, does not belong to the interpretation of any at-most quali�ed number restric-
tions, then every di�erent at-least quali�ed number restriction that x must satisfy is satis�ed by mean
of relations with always di�erent (each other) individuals;

(c) every at-least number restriction ≥nr.C in T is satis�ed through the minimum possible number of
relations between individuals in I, that could be n, when possible.

This has been said we map the individuals of I to the individuals of ΣT and we call IΣ the model resulting
from this mapping. The mapping is de�ned recursively as follows:

Base. The root individual of the tree model I is mapped to the individual 1 ∈ ΣT .

Step. Given an individual x ∈ ∆I mapped to the individual σ ∈ ∆IΣ and, thus, σ ∈ ΣT by inductive
hypothesis, we must provide a mapping for every �child� individual yi of x in the tree model I (i.e. every
individual yi ∈ ∆I such that (x, yi) ∈ rI , for some role r) to one individual of ΣT .
Let us consider the generic role r. Thanks to (a) for every r we can de�ne a di�erent mapping. If x must
not satisfy any at-least number restriction in r then there are no individuals in relation with x through r
in I, due to the hypothesis (c). Thus we can distinguish the following remaining two cases:

- The individual x must satisfy only at-least number restrictions and no at-most number restrictions
wrt. r. Formally, consider the case x ∈ (≥njr.Cj)

I for some integer values nj , some concepts Cj with
j ≥ 1, and x 6∈ (≤mr.D)I for any integer m and any concept D. Then, for every j, by the hypothesis
(a), (b) and (c) there are exactly nj distinct individuals y

j
i , with i = 1, . . . , nj , s.t. y

j
i ∈ ∆I , yji ∈ (Cj)

I

and (x, yji ) ∈ rI . Notice that, due to hypothesis (b), it holds yji 6=y
j′

i′ for every j 6=j′ or i 6= i′.
By inductive hypothesis we have σ ∈ (≥njr.Cj)

IΣ for every j, and, by de�nition of ALCQ2SMTC(T )

(point 5.) there exist exactly nj distinct individuals σ.r.k
Cj

i ∈ ΣT , with i = 1, . . . , nj . For every j

and for i = 1, . . . , nj we map the individual yji of ∆I to the respective individual σ.r.k
Cj

i of ΣT .

- Otherwise x ∈ (≥njr.Cj)
I and x ∈ (≤mkr.Dk)

I , for some integer values nj ,mk, and some concepts
Cj , Dk, with j, k ≥ 1. As stated above I is model for T and it complies with the hypothesis (a)

and (c). So, for every j, there are exactly nj distinct individuals yji , with i = 1, . . . , nj , such that

yji ∈ ∆I , yji ∈ CI
j and (x, yji ) ∈ rI and, for every k, there are at-most mk distinct individuals yki′ ,

with i′ = 1, . . . ,mk such that yki′ ∈ ∆I , yki′ ∈ DI
k and (x, yki′) ∈ rI . Due to at-most restrictions, for

which the hypothesis (b) do not hold, notice that individuals can be shared, i.e. it is possible to have

yji = yj
′

i′ (or yki = yk
′

i′ ) for some j 6= j′ (or k 6= k′) and some values of i, i′.

For every j and k, by inductive hypothesis we have σ ∈ (≥njr.Cj)
IΣ and σ ∈ (≤mkr.Dk)

IΣ . By

de�nition of ALCQ2SMTC(T ) (point 5.) there are exactly nj distinct individuals σ.r.k
Cj

i ∈ ΣT , with
i = 1, . . . , nj , for every ≥njr.Cj , (so there are enough individuals in order to satisfy all the at-least
restrictions). Notice that, in the hypothesis that both σ ∈ (≥njr.Cj)

I and σ ∈ (≤mkr.Dk)
I , ϕT

is then extended with the clauses (11) and (12) (point 7.) for every i = 1, . . . ,
∑

j nj (allowing for

sharing individuals). Thus all the individuals of ΣT in the form σ.r.i, with i = 1, . . . ,
∑

j nj above

mentioned are equivalently expressive to each other, and any mapping between the individuals yjh and

these individuals of ΣT is suitable, provided that it must be a function, i.e. that if yjh = yj
′

h′ , for some

j 6= j′ and some values h, h′, then yjh and yj
′

h′ are mapped to the same individual of ΣT .

Notice that the mapping from I to IΣ we shown respect the property: rIΣ ⊆ {(σ, σ.r.i) | σ, σ.r.i ∈ ΣT }.



Lemma 7 (Completeness). Given an ALCQ acyclic TBox T in normal form and the encoding ALCQ2SMTC(T ) =
〈ΣT , IT

− , IT
+ , A〈 , 〉, indiv, ϕ

T 〉 of De�ntion 3, if T in is consistent then the SMT(C)-formula ϕT is satis�-
able.

Proof. Given that T is consistent, it exists a model I for T such that ∆I ⊆ ΣT and that rIΣ ⊆
{(σ, σ.r.i) | σ, σ.r.i ∈ ΣT }, for every role r ∈ T , as stated in Lemma 6. We built from I a total truth
assignment µ satisfying ϕT , as follows:

µ
def
= µI ∪ µI (32)

µI
def
= µ∆ ∪ µX ∪ µ≥∪ µ≤∪ µ∀ ∪ µIC (33)

µ∆
def
= { A〈σ, >〉 | A〈σ, >〉 literal of ϕ

T, σ ∈ ∆I} (34)

µX
def
= { L〈σ, X〉 | L〈σ, X〉 literal of ϕ

T, σ ∈ ∆I and σ ∈ XI}
∪ {¬L〈σ, X〉 | L〈σ, X〉 literal of ϕ

T, σ ∈ ∆I and σ 6∈ XI} (35)

µ≥
def
= {¬BC(indivCσ.r, n−1) | ¬BC(indivCσ.r, n−1), L〈σ, ≥nr.C〉 ∈ c, with c ∈ ϕT,

σ ∈ ∆I and σ ∈ (≥nr.C)I}
∪ { BC(indivCσ.r, n−1) | ¬BC(indivCσ.r, n−1), L〈σ, ≥nr.C〉 ∈ c, with c ∈ ϕT,

σ ∈ ∆I and σ 6∈ (≥nr.C)I} (36)

µ≤
def
= { BC(indivCσ.r,m) | BC(indivCσ.r,m), L〈σ, ≤mr.C〉 ∈ c, with c ∈ ϕT,

σ ∈ ∆I and σ ∈ (≤mr.C)I}
∪ {¬BC(indivCσ.r,m) | BC(indivCσ.r,m), L〈σ, ≤mr.C〉 ∈ c, with c ∈ ϕT,

σ ∈ ∆I and σ 6∈ (≤mr.C)I} (37)

µ∀
def
= { BC(indivCσ.r, 0) | BC(indiv

¬C
σ.r , 0), L〈σ, ∀r.C〉 ∈ c, with c ∈ ϕT,

σ ∈ ∆I and σ ∈ (∀r.C)I}
∪ {¬BC(indivCσ.r, 0) | BC(indiv

¬C
σ.r , 0), L〈σ, ∀r.C〉 ∈ c, with c ∈ ϕT,

σ ∈ ∆I and σ 6∈ (∀r.C)I} (38)

µIC
def
= { IC(indivCσ.r, 1, i) | IC(indiv

C
σ.r, 1, i), L〈σ.r.i, C〉 ∈ c, with c ∈ ϕT,

σ ∈ ∆I , and σ.r.i ∈ ∆I and σ.r.i ∈ CI}
∪ {¬IC(indivCσ.r, 1, i) | IC(indiv

C
σ.r, 1, i), L〈σ.r.i, C〉 ∈ c, with c ∈ ϕT,

σ ∈ ∆I , but σ.r.i 6∈ ∆I or σ.r.i 6∈ CI} (39)

µI
def
= µ∆ ∪ µX ∪ µBC ∪ µIC (40)

µ∆

def
= {¬A〈σ, >〉 | A〈σ, >〉 literal of ϕ

T, σ 6∈ ∆I} (41)

µBC

def
= { BC(indivCσ.r, n) | BC(indiv

C
σ.r, . . .) literal of ϕ

T, σ 6∈ ∆I , for any n} (42)

µIC

def
= {¬IC(indivCσ.r, 1, i) | IC(indiv

C
σ.r, 1, . . .) literal of ϕ

T, σ 6∈ ∆I , for any i} (43)

where µX is a consistent truth assignment satisfying all the clauses of type (6) of ϕT in the case σ 6∈ ∆I .

We remark that every clause of ϕT is de�ned wrt. to a speci�c individual σ. By construction µI and
µI assign the two complementary partitions of the Boolean- and C-literals of ϕT , those referring to some
σ ∈ ∆I and, respectively, those referring to some σ 6∈ ∆I . In particular, also µIC and µIC assigns the two

di�erent partitions of IC-literals. In fact µIC assigns those literals involving cost variables indivCσ.r referring
to some σ ∈ ∆I (but also possibly related to non enabled individuals σ.r.i ∈ ΣT , but σ.r.i 6∈ ∆I), while
µIC assigns the IC-literals involving a cost variable indivCσ.r for some σ 6∈ ∆I . This is necessary because



ALCQ2SMTC(T ) encodes a super-set ΣT of possible individuals, with the aim of include a consistent set
of individuals de�ning a model for T .

It is easy to see that µ is a total and consistent truth assignment for ϕT .

First we show that µ, and in particular µI ∪ µ∆, propositionally satis�es all the clauses of ϕT such
that σ ∈ ∆I , for every type of clause from (6) to (17).

(6): Clauses of type (6) represents the propositional encoding of the concept inclusions of T . We can
distinguish three cases:

� An axiom Ĉ v D̂, for two generic normal concepts Ĉ and D̂, is encoded into the clause L〈σ, Ĉ〉 →
L〈σ, D̂〉. Since σ ∈ ∆I and I is a model for T , then it holds ĈI ⊆ D̂I . Thus, if σ ∈ ĈI then

σ ∈ D̂I , from which it follows, by (35), that either L〈σ, X〉, L〈σ, Y 〉 ∈ µX , or ¬L〈σ, X〉 ∈ µX . In
both cases the clause is satis�ed.

� An axiom C1 uC2 v D, with C1, C2 and D basic concepts, is encoded into the clause (L〈σ, C1〉 ∧
L〈σ, C2〉) → L〈σ, D〉. Since σ ∈ ∆I and I is a model for T it holds (C1uC2)

I ⊆ DI . Thus if σ ∈
CI

1 ∩CI
2 then σ ∈ DI , from which it follows, by (35), that either L〈σ, C1〉, L〈σ, C2〉, L〈σ, D〉 ∈ µX

or at least one between ¬L〈σ, C1〉 and ¬L〈σ, C2〉 is in µX . In both cases the clause is satis�ed.

� An axiom C v D1 tD2 with D1, D2 and C basic concepts, is encoded into the clause L〈σ, C〉 →
(L〈σ, D1〉 ∨ L〈σ, D2〉). Since σ ∈ ∆I and I is a model for T it holds CI ⊆ (D1 t D2)

I . Thus
if σ ∈ CI then σ ∈ DI

1 ∪DI
2 , from which it follows, by 35, that either L〈σ, C〉 and at least one

between L〈σ, D1〉 and L〈σ, D2〉 is in µX or ¬L〈σ, C〉 ∈ µX . In both cases the clause is satis�ed.

(7), (8), (11), (12): Wlog. let us consider the case in which the index of the IC-literal is i and, thus, it
is associated to the individual σ.r.i, for some role r, some basic concept C, the integer values i and
σ ∈ ∆I . Thus we must show that the clauses: IC(indivCσ.r, 1, i) → L〈σ.r.i, C〉 of type (7))/(11), and

IC(indivCσ.r, 1, i) → A〈σ.r.i, >〉 of type (8)/(12), are satis�ed. We can distinguish two cases:

� if both σ.r.i ∈ ∆I and σ.r.i ∈ CI , then we have A〈σ.r.i, >〉 ∈ µ∆ from (34), L〈σ.r.i, C〉 ∈ µX

from (35) and IC(indivCσ.r, 1, i) ∈ µIC from (39), so that µ satis�es both the clauses;

� if, on the contrary, either σ.r.i 6∈ ∆I or σ.r.i 6∈ CI , then we have ¬IC(indivCσ.r, 1, i) ∈ µIC from 39,
which trivially satis�es both the clauses.

(9), (10): Let us consider the clause (A〈σ, ≥nr.C〉 ∧ A〈σ, >〉) → ¬BC(indivCσ.r, n − 1) of type (9) and the

clause (¬BC(indivCσ.r, n − 1) ∧ A〈σ, >〉) → A〈σ, ≥nr.C〉 of type (10). Since σ ∈ ∆I by hypothesis then

A〈σ, >〉 ∈ µ∆ by (34). If also σ ∈ (≥nr.C)I , then A〈σ, ≥nr.C〉 ∈ µX by (35) and ¬BC(indivCσ.r, n−1) ∈
µ≥ by (36) satisfying both the clauses. Otherwise, if σ 6∈ (≥nr.C)I , then the clause (9) is trivially

satis�ed since ¬A〈σ, ≥nr.C〉 ∈ µX by (35), while BC(indivCσ.r, n − 1) ∈ µ≥ by (36) which satis�es the
clause (10).

(13): Wlog. let us consider the case in witch the index of the IC-literal is i and, thus, it is associated to
the individual σ.r.i, for some role r, some basic concept C, the integer value i and σ ∈ ∆I . Thus we
must show that the clause: (L〈σ.r.i, C〉 ∧ A〈σ.r.i, >〉) → IC(indivCσ.r, 1, i) of type (13) is satis�ed. We
can distinguish three cases:

� if both σ.r.i ∈ ∆I and σ.r.i ∈ CI , then we have A〈σ.r.i, >〉 ∈ µ∆ from (34), L〈σ.r.i, C〉 ∈ µX

from (35) and IC(indivCσ.r, 1, j) ∈ µIC from (39), so that µ satis�es the clause;

� if, on the contrary, σ.r.i 6∈ CI , then we have ¬L〈σ.r.i, C〉 ∈ µX from (35), which trivially satis�es
the clause;

� otherwise, if σ.r.i 6∈ ∆I , then we have ¬A〈σ.r.i, >〉 ∈ µ∆ from (41), which trivially satis�es the
clause.

(14), (15): Let us consider the clause (A〈σ, ≤mr.C〉 ∧ A〈σ, >〉) → BC(indivCσ.r,m) of type (14). and the

clause (BC(indivCσ.r,m) ∧ A〈σ, >〉) → A〈σ, ≤mr.C〉 of type (15). Since σ ∈ ∆I by hypothesis, then

A〈σ, >〉 ∈ µ∆ by (34). If also σ ∈ (≤mr.C)I , then A〈σ, ≤mr.C〉 ∈ µX by (35) and BC(indivCσ.r,m) ∈ µ≤



by (37) satisfying both the clauses. Otherwise, if σ 6∈ (≤mr.C)I , then the clause (14) is trivially
satis�ed since ¬A〈σ, ≤mr.C〉 ∈ µX by (35), while ¬BC(indivCσ.r,m) ∈ µ≤ by (37) which satis�es the
clause (15).

(16): Wlog. let us consider the generic clause of type (16): (A〈σ, ∀r.C〉 ∧ A〈σ.r.i, >〉) → L〈σ.r.i, C〉, for some
role r, some basic concept C, the integer value i, σ ∈ ∆I and σ.r.i ∈ ΣT . Further, let us consider
the case in which σ ∈ (∀r.C)I ; otherwise, the clause is trivially satis�ed from ¬A〈σ, ∀r.C〉 ∈ µX , due
to (35). If σ ∈ (∀r.C)I then we have A〈σ, ∀r.C〉 ∈ µX from (35) and we can distinguish two more
cases:

� if σ.r.i 6∈ ∆I the clause is trivially satis�ed from ¬A〈σ.r.i, >〉 ∈ µ∆, due to (41);

� if, on the contrary, σ.r.i ∈ ∆I , since I is a model for T , then σ ∈ (∀r.C)I implies σ.r.i ∈ CI for
every (σ, σ.r.i) ∈ rI , from which it follows L〈σ.r.i, C〉 ∈ µX , due to (35). Further, from σ.r.i ∈ ∆I

we have A〈σ.r.i, >〉 ∈ µ∆ (34) satisfying the clause.

(17): Let us consider the clause (BC(indiv¬C
σ.r , 0) ∧ A〈σ, >〉) → A〈σ, ∀r.C〉 of type (17). Since σ ∈ ∆I by

hypothesis, then A〈σ, >〉 ∈ µ∆ by (34). Then, by de�nition of µX (35) and µ∀ (38) respectively, either

σ ∈ (∀r.C)I and both A〈σ, ∀r.C〉, BC(indiv
¬C
σ.r , 0) are true in µ, or σ 6∈ (∀r.C)I and they are both false

in µ. In both cases µ satis�es the clause (15).

Second we show that µ, and in particular µI , propositionally satis�es all the clauses of ϕ
T such that σ 6∈ ∆I .

We prove this fact for every type of clause from (6) to (17).

(7), (8), (11), (12): All the clauses of these types are trivially satis�ed by µIC, since, by (43), we have

¬IC(indivCσ.r, 1, . . .) ∈ µIC for every literal IC(indivCσ.r, 1, . . .) such that σ 6∈ ∆I .

(9), (10), (14), (15), (17): All the clauses of these types are trivially satis�ed by µ∆, in fact, since σ 6∈ ∆I ,
then ¬A〈σ, >〉 ∈ µ∆ by (41).

(13), (16): The same argument of the previous point can be spent for these clauses. In fact, since I is a
model for T , if σ 6∈ ∆I then also σ.r.i 6∈ ∆I for every σ.r.i ∈ ΣT . Thus we have ¬A〈σ.r.i, >〉 ∈ µ∆ by
(41), which trivially satis�es the clauses.

(6): Finally, we consider the case of all the clauses of type (6) in which σ 6∈ ∆I . The clauses of type (6)
are the propositional correspondence of the concept inclusions of T and in particular, by de�nition of
ϕT , a clause of type (6) can exist in ϕT wrt. the individual σ only if the same clause exists in ϕT wrt.
the individual 1 (because every axiom is encoded in 1). But, since 1 ∈ ∆I and we have already proved
that every clause of ϕT wrt. some σ such that σ ∈ ∆I is satis�able, then there exists a satisfying
truth assignment for all the literals occurring in all the clauses of type (6) wrt. the individual 1. If
such an assignment exists, then there exists also a consistent truth assignment, that we called µX , for
all the literals occuring in clauses of type (6) wrt. any other individual σ 6∈ ∆I , such that it satis�es
all these clauses. In fact, notice that the clauses of type (6) wrt. any individual σ are a subset of
those of the same kind wrt. 1. Notice also (as shown above) that all the other clauses di�erent
from type (6) are already satis�ed by sub-assignments of µI which do not include any of the literals
assigned by µX . Thus µX exists and satis�es all the clauses of type (6) in the cases of σ 6∈ ∆I .

Finally we show that µ satis�es ϕT with respect to the Theory of Costs C.
So we must prove that µ satis�es all the constraints introduced by the C-literals, that is if a bound (BC-
literal) wrt. the cost variable indivCσ.r is assigned to true [resp. false] then the sum of all the incur costs
for indivCσ.r does not [resp. does] exceed the bound. Since all the incur costs de�ned in ϕT have value 1,
it means that the number of IC-literals assigned to true is not [resp. is] greater than the �xed bound. We
prove this fact distinguishing some cases:

- First, we consider all the clauses containing C-literals referring to some cost variable indivCσ.r, with
σ 6∈ ∆I . Notice that µBC (42) assigns to true every bound BC(indivCσ.r, . . .) such that σ 6∈ ∆I while,

instead, µIC (43) assigns to false every incur cost IC(indivCσ.r, 1, . . .) for the same σ. This assigment
is consistent wrt. the Theory of Costs. In fact, by assigning to true all the BC-literals, only upper-
bounds are �xed, and these upper-bounds are all trivially satis�ed because (with no enabled incur
costs) every cost variable indivCσ.r valuates to zero.



- Second, we consider the case σ ∈ ∆I . Notice that the sub-assignments µ≥, µ≤ and µ∀, all assign
values to the BC-literals when σ ∈ ∆I . First of all, they assign a value to all such BC-literals, in
fact they cover all the possible cases of clauses in which BC-literals can appear. Second, even if they
possibly assign the same BC-literal twice, (for the same σ, r and C, when n − 1 = m or n − 1 = 0)
they are mutually consistent. In fact they are guarateed by the semantic of I, which is a model for
< T . Thus, in the case n− 1 = m if σ ∈ (≥nr.C)I , then there are at least n individuals σ.r.i ∈ CI ,
and thus σ 6∈ (≤mr.C)I . And, vice versa, if σ ∈ (≤mr.C)I and m = n − 1 then σ 6∈ (≥nr.C)I .
Similarly µ≥ and µ∀ can assign the same BC-literals, while µ∀ and µ≤ can never intersect. But, also in

this case, if n = 1 and σ ∈ (≥1r.¬C)I , then it exists at least one individual σ.r.i ∈ (¬C)I , and thus

σ 6∈ (∀r.C)I , and vice versa. Further, the semantic of < I guarantees that it could never happen, e.g.,
σ 6∈ (≤mr.C)I and σ 6∈ (≥nr.C)I , with n − 1 = m, for σ ∈ ∆I . Notice at last that, by de�nition of
ALCQ2SMTC , if BC-literals are introduced for some σ with the respective literals L〈σ, <r.C〉 for some
restriction <, then also the many respective IC-literals and possible individuals σ.r.i are introduced
wrt. the same σ.

With these premises let as prove the other following exhaustive sub-cases, in the cases in which the
mentioned literals occur in ϕT :

� Let consider either the case σ ∈ (≥nr.C)I or σ 6∈ (≤mr.C)I for a generic value of n and
m = n − 1. It follows, either by (36) for µ≥ or by (37) for µ≤, ¬BC(indivCσ.r, n − 1) ∈ µ, thus

there must be at least n distinct enabled incur costs of value 1 wrt. indivCσ.r, in order to be
consistent wrt. the Theory of Costs. Given σ ∈ (≥nr.C)I (or, respectively, σ 6∈ (≤mr.C)I),
since I is a model for T , there must be at least n distinct individuals σ.r.i such that σ.r.i ∈ ∆I

and σ.r.i ∈ CI . Hence, by (39), µIC consistently assigns to true at least n distinct literals in the
form IC(indivCσ.r, 1, i), as required.

� In the opposite case, if σ 6∈ (≥nr.C)I or σ ∈ (≤mr.C)I for a generic value of n and m = n− 1,
we have BC(indivCσ.r,m) ∈ µ either by (37) for µ≤ or by (36) for µ≥. Given σ ∈ (≤mr.C)I (or,
respectively, σ 6∈ (≥nr.C)I), there can not exist more than m distinct individuals σ.r.i such that
σ.r.i ∈ ∆I and σ.r.i ∈ CI . Hence, by (39), µIC assigns to true at most m distinct literals in the
form IC(indivCσ.r, 1, i), satisfying the �xed bound in the Theory of Costs.

� If it holds σ ∈ (∀r.C)I , then BC(indiv¬C
σ.r , 0) ∈ µ∀ by (38), so there can not be any incur cost wrt.

indiv¬C
σ.r assigned to true. Since I is a model for T , σ ∈ (∀r.C)I implies that for every individual

σ.r.i ∈ ∆I it holds σ.r.i ∈ CI (in fact, by Lemma 6, the individuals in relation with σ through
rI are all and only those in the form σ.r.i ∈ ∆I). Consequently, for every σ.r.i ∈ ∆I it holds
σ.r.i 6∈ (¬C)I , thus no literals IC(indiv¬C

σ.r , 1, i) can be assigned to true neither by µIC (39) nor by
µIC (43), consistently with the Theory of Costs.

� If, on the contrary, σ 6∈ (∀r.C)I , then ¬BC(indiv¬C
σ.r , 0) ∈ µ∀ by (38). Since I is a model for T ,

σ ∈ (∀r.C)I implies that it exists at least one individual σ.r.i ∈ ∆I such that σ.r.i ∈ (¬C)I
Consequently, at least one literal IC(indiv¬C

σ.r , 1, i) is assigned to true by µIC (39), consistently
with the Theory of Costs.

Moreover, we prove the following result.

Theorem 2.Given an ALCQ acyclic TBox T in normal form and the encoding ALCQ2SMTC(T ) =
〈ΣT , IT

− , IT
+ , A〈 , 〉, indiv, ϕ

T 〉 of De�nition 3, then the normal concept Ĉ, such that Ĉ v D̂ ∈ T , is
satis�able wrt. T if and only if the SMT(C)-formula ϕT ∧ L〈1, Ĉ〉 is satis�able.

Proof. First let us prove that our approach is sound, that is if ϕT ∧L〈1, Ĉ〉 is satis�able then Ĉ is satis�able

wrt. T . In other words, we prove that if ϕT ∧ L〈1, Ĉ〉 is satis�able then it there exists an interpretation

I, such that I is a model for T and ĈI 6= ∅. Notice that ϕT ∧ L〈1, Ĉ〉 is satis�able if and only if ϕT is

satis�able. Let us call µ the truth assignment satisfying ϕT and such that L〈1, Ĉ〉 ∈ µ. This has been said,
we chose the interpretation Iµ by Lemma 5 as a model for T . Since we have L〈1, Ĉ〉 ∈ µ, it is a direct

consequence of the Lemma 5 that 1 ∈ ĈIµ , so that ĈIµ 6= ∅, i.e. Ĉ is satis�able wrt. T .



Then we prove that our approach is complete. We must prove that if Ĉ is satis�able wrt. T then
ALCQ2SMTC(T ) ∧ L〈1, C〉 is satis�able. We assume that T is consistent (otherwise it follows trivially by

Theorem 1 that ϕT is unsatis�able), and that the interpretation I is a model for T such that ĈI 6= ∅ (i.e. Ĉ
is satis�able wrt. T ). Further, we can assume ∆I ⊆ ΣT (Lemma 6) from which it follows, by Lemma 7,
that there exists a truth assignment µ satisfying ϕT build up as in (32). In particular, since Ĉ v D̂ ∈ T
and Ĉ is consistent and has been encoded in 1 with 1 ∈ ∆I , we have 1 ∈ ĈI . From this latter fact it follows
L〈1, Ĉ〉 ∈ µX ⊆ µ due to Lemma 7 (35).

B Appendix: An Encoding Example

Consider the acyclic ALCQ TBox T ∗ composed of the following axioms (for briefness, in the rest of this
example we refer to the right-side short version of the axioms of T ∗ and we skip to transform them in
normal form):

HappyFather v ≥2 hasSon.Professor F v ≥2 s.P

HappyFather v ≥2 hasSon.Medic F v ≥2 s.M

HappyFather v ≥2 hasSon.Rich F v ≥2 s.R

HappyFather v ≤3 hasSon.> F v ≤3 s.>
Professor v ∃hasIncome.LowSalary P v ≥1 r.L

Professor v ≤2 hasIncome.> P v ≤2 r.>
Rich v ∃ hasIncome.> u (∀ hasIncome.HighSalary t ≥3 hasIncome.>) R v ≥1 r.> u (∀r.H t ≥3 r.>)

LowSalary v ¬HighSalary L v ¬H

The formula ϕT ∗
of ALCQ2SMTC (T ∗) is generated as follows:

1. Encoding of the TBox axioms (6) in the root individual 1:

A〈1, >〉

∧ A〈1, F 〉 → A〈1, ≥2s.P 〉 ∧ A〈1, P 〉 → A〈1, ≥1r.L〉

∧ A〈1, F 〉 → A〈1, ≥2s.M〉 ∧ A〈1, P 〉 → A〈1, ≤2r.>〉

∧ A〈1, F 〉 → A〈1, ≥2s.R〉 ∧ A〈1, R〉 → A〈1, ≥1r.>〉

∧ A〈1, F 〉 → A〈1, ≤3s.>〉 ∧ A〈1, R〉 → (A〈1, ∀r.H〉 ∨A〈1, ≥3r.>〉)

∧ A〈1, L〉 → ¬A〈1, H〉

2. Encoding of the at-least number restrictions wrt. the role r and the individual 1 (i.e. 〈1,≥n r.C〉),
through the clauses (9) and (7), (8):

∧ (A〈1, ≥1r.L〉 ∧A〈1, >〉) → ¬BC(indivL1.r, 0)

∧ IC(indivL1.r, 1, 1) → A〈1.r.1, L〉 ∧ IC(indivL1.r, 1, 1) → A〈1.r.1, >〉

∧ (A〈1, ≥3r.>〉 ∧A〈1, >〉) → ¬BC(indiv>1.r, 2)

∧ (A〈1, ≥1r.>〉 ∧A〈1, >〉) → ¬BC(indiv>1.r, 0)

∧ IC(indiv>1.r, 1, 2) → A〈1.r.2, >〉 ∧ >

∧ IC(indiv>1.r, 1, 3) → A〈1.r.3, >〉 ∧ >

∧ IC(indiv>1.r, 1, 4) → A〈1.r.4, >〉 ∧ >

Notice that when an at-least restriction applies to the concept > (see, e.g., the encoding of the
〈1,≥3 r.>〉) the clauses of type (8) are identical to the clause of type (7), thus the �rst can be avoided
(here we replace them with >). Notice also that, for what concerns the introduction of new individuals
and the relative IC-clauses, only the at-least restriction with the greater value of n must be encoded,
when many at-least restrictions refer to the same concept and role (e.g., for the instantiated concepts
〈1,≥3 r.>〉 and 〈1,≥1 r.>〉 only three individuals, instead of four, must be introduced).

3. Encoding of the at-most restrictions wrt. the role r and in the root label 1 (i.e. 〈1,≤m r.C〉). The
expansion (14) introduces in ϕT ∗

the clause:

∧ (A〈1, ≤2r.>〉 ∧A〈1, >〉) → BC(indiv>1.r, 2)



while the interaction with the previously encoded at-least restrictions for r and 1 is handled by sharing
the individuals, as done through the expansions (11) and (12):

∧ IC(indivL1.r, 1, 2) → A〈1.r.2, L〉 ∧ IC(indivL1.r, 1, 2) → A〈1.r.2, >〉

∧ IC(indivL1.r, 1, 3) → A〈1.r.3, L〉 ∧ IC(indivL1.r, 1, 3) → A〈1.r.3, >〉

∧ IC(indivL1.r, 1, 4) → A〈1.r.4, L〉 ∧ IC(indivL1.r, 1, 4) → A〈1.r.4, >〉

∧ IC(indiv>1.r, 1, 1) → A〈1.r.1, >〉 ∧ >

Finally, for every previously generated individual one clause of type (13) is introduced:

∧ A〈1.r.1, >〉 → IC(indiv>1.r, 1, 1) ∧ A〈1.r.3, >〉 → IC(indiv>1.r, 1, 3)

∧ A〈1.r.2, >〉 → IC(indiv>1.r, 1, 2) ∧ A〈1.r.4, >〉 → IC(indiv>1.r, 1, 4)

Notice that these latter clauses of type (13) are simpler wrt. their expected form, because their two
implying literals are identical each other (they both refer to >), and thus only one literal is necessary.

4. Encoding of the universal restrictions wrt. the role r and in the root label 1 (〈1,∀r.C〉), by mean of
clauses of type (16):

∧ (A〈1, ∀r.H〉 ∧A〈1.r.1, >〉) → A〈1.r.1, H〉 ∧ (A〈1, ∀r.H〉 ∧A〈1.r.3, >〉) → A〈1.r.3, H〉

∧ (A〈1, ∀r.H〉 ∧A〈1.r.2, >〉) → A〈1.r.2, H〉 ∧ (A〈1, ∀r.H〉 ∧A〈1.r.4, >〉) → A〈1.r.4, H〉

5. Expansion of the TBox axioms (6) in the individuals 1.r.1, . . . , 1.r.4:

∧ A〈1.r.1, L〉 → ¬A〈1.r.1, H〉 ∧ A〈1.r.3, L〉 → ¬A〈1.r.3, H〉

∧ A〈1.r.2, L〉 → ¬A〈1.r.2, H〉 ∧ A〈1.r.4, L〉 → ¬A〈1.r.4, H〉

6. Encoding of the at-least restrictions wrt. the role s instantiated in 1 by mean of the clauses (9) and
(7), (8):

∧ (A〈1, ≥2s.P 〉 ∧A〈1, >〉) → ¬BC(indivP1.s, 1)

∧ IC(indivP1.s, 1, 1) → A〈1.s.1, P 〉 ∧ IC(indivP1.s, 1, 1) → A〈1.s.1, >〉

∧ IC(indivP1.s, 1, 2) → A〈1.s.2, P 〉 ∧ IC(indivP1.s, 1, 2) → A〈1.s.2, >〉

∧ (A〈1, ≥2s.M〉 ∧A〈1, >〉) → ¬BC(indivM1.s, 1)

∧ IC(indivM1.s, 1, 3) → A〈1.s.3, M〉 ∧ IC(indivM1.s, 1, 3) → A〈1.s.3, >〉

∧ IC(indivM1.s, 1, 4) → A〈1.s.4, M〉 ∧ IC(indivM1.s, 1, 4) → A〈1.s.4, >〉

∧ (A〈1, ≥2s.R〉 ∧A〈1, >〉) → ¬BC(indivR1.s, 1)

∧ IC(indivR1.s, 1, 5) → A〈1.s.5, R〉 ∧ IC(indivR1.s, 1, 5) → A〈1.s.5, >〉

∧ IC(indivR1.s, 1, 6) → A〈1.s.6, R〉 ∧ IC(indivR1.s, 1, 6) → A〈1.s.6, >〉

7. Encoding of the at-most restrictions wrt. the role s in the root label 1; by mean of the clause (14):

∧ (A〈1, ≤3s.>〉 ∧A〈1, >〉) → BC(indiv>1.s, 3)

the clauses (11) and (12):

∧ IC(indivP1.s, 1, 3) → A〈1.s.3, P 〉 ∧ IC(indivP1.s, 1, 3) → A〈1.s.3, >〉

∧ IC(indivP1.s, 1, 4) → A〈1.s.4, P 〉 ∧ IC(indivP1.s, 1, 4) → A〈1.s.4, >〉

∧ IC(indivP1.s, 1, 5) → A〈1.s.5, P 〉 ∧ IC(indivP1.s, 1, 5) → A〈1.s.5, >〉

∧ IC(indivP1.s, 1, 6) → A〈1.s.6, P 〉 ∧ IC(indivP1.s, 1, 6) → A〈1.s.6, >〉

∧ IC(indivM1.s, 1, 1) → A〈1.s.1, M〉 ∧ IC(indivM1.s, 1, 1) → A〈1.s.1, >〉

∧ IC(indivM1.s, 1, 2) → A〈1.s.2, M〉 ∧ IC(indivM1.s, 1, 2) → A〈1.s.2, >〉

∧ IC(indivM1.s, 1, 5) → A〈1.s.5, M〉 ∧ IC(indivM1.s, 1, 5) → A〈1.s.5, >〉

∧ IC(indivM1.s, 1, 6) → A〈1.s.6, M〉 ∧ IC(indivM1.s, 1, 6) → A〈1.s.6, >〉

∧ IC(indivR1.s, 1, 1) → A〈1.s.1, R〉 ∧ IC(indivR1.s, 1, 1) → A〈1.s.1, >〉

∧ IC(indivR1.s, 1, 2) → A〈1.s.2, R〉 ∧ IC(indivR1.s, 1, 2) → A〈1.s.2, >〉

∧ IC(indivR1.s, 1, 3) → A〈1.s.3, R〉 ∧ IC(indivR1.s, 1, 3) → A〈1.s.3, >〉

∧ IC(indivR1.s, 1, 4) → A〈1.s.4, R〉 ∧ IC(indivR1.s, 1, 4) → A〈1.s.4, >〉



which allow to share individuals, and of the clauses (13) wrt. all the introduced successor individuals:

∧ A〈1.s.1, >〉 → IC(indiv>1.s, 1, 1) ∧ A〈1.s.4, >〉 → IC(indiv>1.s, 1, 4)

∧ A〈1.s.2, >〉 → IC(indiv>1.s, 1, 2) ∧ A〈1.s.5, >〉 → IC(indiv>1.s, 1, 5)

∧ A〈1.s.3, >〉 → IC(indiv>1.s, 1, 3) ∧ A〈1.s.6, >〉 → IC(indiv>1.s, 1, 6)

8. Expansion of the TBox axioms (6) in every 1.s.i individual, with i = 1, . . . 6: 12

∧ A〈1.s.i, P 〉 → A〈1.s.i, ≥1r.L〉

∧ A〈1.s.i, P 〉 → A〈1.s.i, ≤2r.>〉

∧ A〈1.s.i, R〉 → A〈1.s.i, ≥1r.>〉

∧ A〈1.s.i, R〉 → (A〈1.s.i, ∀r.H〉 ∨A〈1.s.i, ≥3r.>〉)

9. For i = 1, . . . 6, encoding of the clauses (9) and (7), (8) for the at-least restrictions concerning the
role r instantiated in 1.s.i:

∧ (A〈1.s.i, ≥1r.L〉 ∧A〈1.s.i, >〉) → ¬BC(indivL1.s.i.r, 0)

∧ IC(indivL1.s.i.r, 1, 1) → A〈1.s.i.r.1, L〉 ∧ IC(indivL1.s.i.r, 1, 1) → A〈1.s.i.r.1, >〉

∧ (A〈1.s.i, ≥3r.>〉 ∧A〈1.s.i, >〉) → ¬BC(indiv>1.s.i.r, 2)

∧ (A〈1.s.i, ≥1r.>〉 ∧A〈1.s.i, >〉) → ¬BC(indiv>1.s.i.r, 0)

∧ IC(indiv>1.s.i.r, 1, 2) → A〈1.s.i.r.2, >〉 ∧ >

∧ IC(indiv>1.s.i.r, 1, 3) → A〈1.s.i.r.3, >〉 ∧ >

∧ IC(indiv>1.s.i.r, 1, 4) → A〈1.s.i.r.4, >〉 ∧ >

10. For i = 1, . . . 6, encoding of the at-most restrictions wrt. the role r and instantiated in every individual
1.s.i; �rst an upper bound is �xed via the clause (14):

∧ (A〈1.s.i, ≤2r.>〉 ∧A〈1.s.i, >〉) → BC(indiv>1.s.i.r, 2)

then, through the clauses (11) and (12), it is encoded the sharing of the individuals previously intro-
duced by the di�erent at-least restrictions:

∧ IC(indivL1.s.i.r, 1, 2) → A〈1.s.i.r.2, L〉 ∧ IC(indivL1.s.i.r, 1, 2) → A〈1.s.i.r.2, >〉

∧ IC(indivL1.s.i.r, 1, 3) → A〈1.s.i.r.3, L〉 ∧ IC(indivL1.s.i.r, 1, 3) → A〈1.s.i.r.3, >〉

∧ IC(indivL1.s.i.r, 1, 4) → A〈1.s.i.r.4, L〉 ∧ IC(indivL1.s.i.r, 1, 4) → A〈1.s.i.r.4, >〉

∧ IC(indiv>1.s.i.r, 1, 1) → A〈1.s.i.r.1, >〉 ∧ >

and, at last, the clauses of type (13) are introduced for all the previously generated individuals:

∧ A〈1.s.i.r.1, >〉 → IC(indiv>1.s.i.r, 1, 1) ∧ A〈1.s.i.r.3, >〉 → IC(indiv>1.s.i.r, 1, 3)

∧ A〈1.s.i.r.2, >〉 → IC(indiv>1.s.i.r, 1, 2) ∧ A〈1.s.i.r.4, >〉 → IC(indiv>1.s.i.r, 1, 4)

11. For i = 1, . . . 6 encoding of the universal restrictions wrt. the role r instantiated in every individual
1.s.i:

∧ (A〈1.s.i, ∀r.H〉 ∧A〈1.s.i.r.1, >〉) → A〈1.s.i.r.1, H〉 ∧ (A〈1.s.i, ∀r.H〉 ∧A〈1.s.i.r.3, >〉) → A〈1.s.i.r.3, H〉

∧ (A〈1.s.i, ∀r.H〉 ∧A〈1.s.i.r.2, >〉) → A〈1.s.i.r.2, H〉 ∧ (A〈1.s.i, ∀r.H〉 ∧A〈1.s.i.r.4, >〉) → A〈1.s.i.r.4, H〉

12. For i = 1, . . . 6, expansion of the TBox axioms (6) in the individuals 1.s.i.r.1, . . . , 1.s.i.r.4:

∧ A〈1.s.i.r.1, L〉 → ¬A〈1.s.i.r.1, H〉 ∧ A〈1.s.i.r.3, L〉 → ¬A〈1.s.i.r.3, H〉

∧ A〈1.s.i.r.2, L〉 → ¬A〈1.s.i.r.2, H〉 ∧ A〈1.s.i.r.4, L〉 → ¬A〈1.s.i.r.4, H〉

12We remark that practically, despite our exposition in this example, the expansion of the encoding for every individual is
fully performed before than any expansion concerning other individuals.



C Appendix: Additional plots on ALCQ2SMTC
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Figure 18: 1st column: increasing_lin_unsati, i = 1, . . . , 20; 2nd column: increasing_exp_unsati,
i = 1, . . . , 6. 1st row: variables; 2nd row: clauses. X axis: test case index; Y axis: #variables/clauses.
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Figure 19: restr_numi(1). Left: variables; right: clauses. X axis: test case index; Y axis: #vari-
ables/clauses.
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Figure 20: backtrackingi(n). 1st column: n = 1; 2nd column: n = 2. 1st row: variables; 2nd row:
clauses. X axis: test case index; Y axis: #variables/clauses.
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Figure 21: restr_ratioi(1). Left: variables; right: clauses. X axis: test case index; Y axis:
#variables/clauses.
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