
Runtime Verification Using a Temporal
Description Logic

Franz Baader1 Andreas Bauer2 Marcel Lippmann1

1Technische Universität Dresden,
{baader,lippmann}@tcs.inf.tu-dresden.de

2The Australian National University,
baueran@rsise.anu.edu.au

7th International Symposium on Frontiers of Combining
Systems, FroCoS 2009

Outline

1 Introduction and motivation

2 Runtime verification for ALC-LTL with rigid names with respect
to incomplete knowledge

The temporal description logic ALC-LTL
Generalised Büchi automata for ALC-LTL formulae
The monitor construction
The complexity of the monitor construction

3 Conclusion

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 2

Outline

1 Introduction and motivation

2 Runtime verification for ALC-LTL with rigid names with respect
to incomplete knowledge

3 Conclusion

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 3

The motivation for runtime verification

Problems

Daily life depends on complex and dynamical hardware and
software systems.

Question: Does a system have the desired properties?

Safety-critical systems (aviation systems, power plants, . . .)
correct?

Commercially used systems correct?

Testing and simulation are not sufficient.

Solutions

Model checking (Complete system is known.)

Runtime verification (Aspects of the system behaviour can be
observed.)

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 4

The motivation for runtime verification

Problems

Daily life depends on complex and dynamical hardware and
software systems.

Question: Does a system have the desired properties?

Safety-critical systems (aviation systems, power plants, . . .)
correct?

Commercially used systems correct?

Testing and simulation are not sufficient.

Solutions

Model checking (Complete system is known.)

Runtime verification (Aspects of the system behaviour can be
observed.)

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 4

The motivation for runtime verification

Problems

Daily life depends on complex and dynamical hardware and
software systems.

Question: Does a system have the desired properties?

Safety-critical systems (aviation systems, power plants, . . .)
correct?

Commercially used systems correct?

Testing and simulation are not sufficient.

Solutions

Model checking (Complete system is known.)

Runtime verification (Aspects of the system behaviour can be
observed.)

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 4

The runtime-verification problem

Some observable system with the desired property φ yields a
finite prefix u of a trace at each point in time.

The three possible answers to the runtime-verification
problem (u, φ):

>, if all continuations of u to an infinite trace satisfy φ;
⊥, if all continuations of u to an infinite trace do not satisfy φ;
?, if none of the above holds, i. e. there is a continuation that
satisfies φ, and one that does not.

System

prefix u

Monitor

>, ⊥ or ?

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 5

The basic idea of runtime verification

Necessary preparations

Formalise the desired properties (or parts of it) as logical
formula (LTL, . . .).

Construct a monitor out of the formalisation of the desired
properties.
(Note: The monitor does not depend on the system.)

System

prefix u

Monitor

>, ⊥ or ?

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 6

The runtime-verification process

Properties of the monitor

It solves not a single problem (u, φ) prefix u is continuously
extended by observing the system behaviour over time.

The delay between answering (u, φ) and (uσ, φ) is constant (if
φ is assumed to be constant). Thus, the computation of the
answer to the next problem does not depend on the length of
the already processed prefix.

System

σ4σ3σ2σ1σ0

Monitor

>, ⊥ or ?

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 7

Why an extension of prop. LTL runtime verification?

Limitations of propositional LTL runtime verification

If the observations of the system have a complex internal
structure
 Extension of the approach to ALC-LTL.

If one can observe the the system behaviour only restricted /
(possibly) incomplete knowledge
 Input of the monitor: ALC-ABoxes.

System

A3A2A1A0

Monitor

>, ⊥ or ?

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 8

An application of ALC-LTL runtime verification

Emergency ward
The vital parameters of the patient are measured in short
intervals and additional information is available from the
patient record and added by medical staff.

Using a medical ontology, a
high-level view of the patient’s
medical status can be given by
ABoxes.

Critical situations requiring the
intervention by a doctor can then
be described by an ALC-LTL
formula.
As long as the monitor outputs ?, it continues monitoring. If it
outputs >, we raise an alarm and if it outputs ⊥, we shut it off.

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 9

Outline

1 Introduction and motivation

2 Runtime verification for ALC-LTL with rigid names with respect
to incomplete knowledge

The temporal description logic ALC-LTL
Generalised Büchi automata for ALC-LTL formulae
The monitor construction
The complexity of the monitor construction

3 Conclusion

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 10

The monitor construction in a nutshell

φ

Gφ

G¬φ

Ĝφ

Ĝ¬φ

Mφ Minc
φ

φ . . .ALC-LTL formula

Gφ, G¬φ . . . generalised Büchi automata (GBA) for φ and ¬φ
Ĝφ, Ĝ¬φ . . . GBA for φ and ¬φ respecting rigid names

Mφ . . . monitor for φ

Minc
φ . . . monitor for φ working with incomplete knowledge

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 11

The temporal description logic ALC-LTL (1)

φ := 2(GermanCitizen v ∃insured by.HealthInsurer) ∧
2(BOB : Male u GermanCitizen) ∧
32((BOB,TK) : insured by) ∧
3((BOB : ∃finding.Concussion) ∧
(BOB : Conscious) U (BOB : ∃procedure.Examination))

general concept inclusion axiom

concept assertion

role assertion

conjunction, negation and temporal modalities
(Usual abbreviations: 2ψ := (> v >)Uψ, 3ψ := ¬2¬ψ, . . .)

rigid concept or role name

flexible concept or role name

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 12

The temporal description logic ALC-LTL (1)

φ := 2(GermanCitizen v ∃insured by.HealthInsurer) ∧
2(BOB : Male u GermanCitizen) ∧
32((BOB,TK) : insured by) ∧
3((BOB : ∃finding.Concussion) ∧
(BOB : Conscious) U (BOB : ∃procedure.Examination))

general concept inclusion axiom

concept assertion

role assertion

conjunction, negation and temporal modalities
(Usual abbreviations: 2ψ := (> v >)Uψ, 3ψ := ¬2¬ψ, . . .)

rigid concept or role name

flexible concept or role name

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 12

The temporal description logic ALC-LTL (1)

φ := 2(GermanCitizen v ∃insured by.HealthInsurer) ∧
2(BOB : Male u GermanCitizen) ∧
32((BOB,TK) : insured by) ∧
3((BOB : ∃finding.Concussion) ∧
(BOB : Conscious) U (BOB : ∃procedure.Examination))

general concept inclusion axiom

concept assertion

role assertion

conjunction, negation and temporal modalities
(Usual abbreviations: 2ψ := (> v >)Uψ, 3ψ := ¬2¬ψ, . . .)

rigid concept or role name

flexible concept or role name

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 12

The temporal description logic ALC-LTL (1)

φ := 2(GermanCitizen v ∃insured by.HealthInsurer) ∧
2(BOB : Male u GermanCitizen) ∧
32((BOB,TK) : insured by) ∧
3((BOB : ∃finding.Concussion) ∧
(BOB : Conscious) U (BOB : ∃procedure.Examination))

general concept inclusion axiom

concept assertion

role assertion

conjunction, negation and temporal modalities
(Usual abbreviations: 2ψ := (> v >)Uψ, 3ψ := ¬2¬ψ, . . .)

rigid concept or role name

flexible concept or role name

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 12

The temporal description logic ALC-LTL (1)

φ := 2(GermanCitizen v ∃insured by.HealthInsurer) ∧
2(BOB : Male u GermanCitizen) ∧
32((BOB,TK) : insured by) ∧
3((BOB : ∃finding.Concussion) ∧
(BOB : Conscious) U (BOB : ∃procedure.Examination))

general concept inclusion axiom

concept assertion

role assertion

conjunction, negation and temporal modalities
(Usual abbreviations: 2ψ := (> v >)Uψ, 3ψ := ¬2¬ψ, . . .)

rigid concept or role name

flexible concept or role name

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 12

The temporal description logic ALC-LTL (1)

φ := 2(GermanCitizen v ∃insured by.HealthInsurer) ∧
2(BOB : Male u GermanCitizen) ∧
32((BOB,TK) : insured by) ∧
3((BOB : ∃finding.Concussion) ∧
(BOB : Conscious) U (BOB : ∃procedure.Examination))

general concept inclusion axiom

concept assertion

role assertion

conjunction, negation and temporal modalities
(Usual abbreviations: 2ψ := (> v >)Uψ, 3ψ := ¬2¬ψ, . . .)

rigid concept or role name

flexible concept or role name

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 12

The temporal description logic ALC-LTL (1)

φ := 2(GermanCitizen v ∃insured by.HealthInsurer) ∧
2(BOB : Male u GermanCitizen) ∧
32((BOB,TK) : insured by) ∧
3((BOB : ∃finding.Concussion) ∧
(BOB : Conscious) U (BOB : ∃procedure.Examination))

general concept inclusion axiom

concept assertion

role assertion

conjunction, negation and temporal modalities
(Usual abbreviations: 2ψ := (> v >)Uψ, 3ψ := ¬2¬ψ, . . .)

rigid concept or role name

flexible concept or role name

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 12

The temporal description logic ALC-LTL (1)

φ := 2(GermanCitizen v ∃insured by.HealthInsurer) ∧
2(BOB : Male u GermanCitizen) ∧
32((BOB,TK) : insured by) ∧
3((BOB : ∃finding.Concussion) ∧
(BOB : Conscious) U (BOB : ∃procedure.Examination))

general concept inclusion axiom

concept assertion

role assertion

conjunction, negation and temporal modalities
(Usual abbreviations: 2ψ := (> v >)Uψ, 3ψ := ¬2¬ψ, . . .)

rigid concept or role name

flexible concept or role name

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 12

The temporal description logic ALC-LTL (2)

Semantics: ALC-LTL structure I = (Ii)i=0,1,...

sequence of ALC-interpretations Ii = (∆Ii , ·Ii)

straight-forward extension of LTL-structures

I respects rigid names if the Ii interpret rigid concept and role
names always in the same manner.

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 13

Generalised Büchi automata for ALC-LTL formulae (1)

For propositional LTL-formulae:

well-known construction (by Vardi, Wolper and Sistla)

For ALC-LTL formulae without rigid names:

We basically follow the same idea as for propositional LTL.
Alphabet Σφ:

Not ALC-interpretations infinite alphabet
ALC-types for φ (maximal, consistent sets of φ-literals)
Type for ALC-interpretation: τφ(I) = {α ∈ Σφ | I |= α}

Correctness of Gφ:

For every w ∈ (Σφ)ω, we have w ∈ Lω(Gφ) iff there exists an
I such that τφ(I) = w and I, 0 |= φ.

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 14

Generalised Büchi automata for ALC-LTL formulae (2)

For ALC-LTL formulae with rigid names:

Gφ does not respect rigid names, since there is no guarantee
that for w ∈ Lω(Gφ) a corresponding I respects rigid names.

Ĝφ, which is an extension of Gφ, enforces this.
Ĝφ keeps track of which ALC-types it has already read.
Ĝφ allows only transitions if the set of such ALC-types is
consistent w. r. t. rigid names.
State space of Ĝφ:

First component: works like Gφ.
Second component: collects all ALC-types which were read.

Correctness of Ĝφ:

For every w ∈ (Σφ)ω, we have w ∈ Lω(Ĝφ) iff there exists an
I respecting rigid names such that τφ(I) = w and I, 0 |= φ.

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 15

The monitor construction in the case of complete
knowledge

The monitorMφ:

is defined as a deterministic Moore automaton (finite
automaton with state output).

solves the runtime-verification problem: for input w it outputs
at the reached state the answer to (w , φ).

The construction ofMφ:

View Ĝφ and Ĝ¬φ as automata working on finite words and
make them deterministic.

Build the product automaton of the deterministic automata
obtained this way.

The output is determined through emptiness tests for Ĝφ and
Ĝ¬φ varying the initial states.

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 16

The monitor construction in the case of complete
knowledge

The monitorMφ:

is defined as a deterministic Moore automaton (finite
automaton with state output).

solves the runtime-verification problem: for input w it outputs
at the reached state the answer to (w , φ).

The construction ofMφ:

View Ĝφ and Ĝ¬φ as automata working on finite words and
make them deterministic.

Build the product automaton of the deterministic automata
obtained this way.

The output is determined through emptiness tests for Ĝφ and
Ĝ¬φ varying the initial states.

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 16

The monitor construction in the case of incomplete
knowledge (1)

The representation of incomplete knowledge

A consistent ALC-ABox A represents incomplete knowledge
(OWA). We have these three possiblities:

A |= α A |= ¬α A 6|= α and A 6|= ¬α

The monitorMinc
φ :

The construction is almost identical to the one ofMφ.

Alphabet: consistent ALC-ABoxes over the vocabulary
occurring in φ.
Transitions:

All we know: the observations of the system are a model of A.
Minc

φ must consider all the transitions in Ĝφ and Ĝ¬φ that can
be induced by such models.

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 17

The monitor construction in the case of incomplete
knowledge (1)

The representation of incomplete knowledge

A consistent ALC-ABox A represents incomplete knowledge
(OWA). We have these three possiblities:

A |= α A |= ¬α A 6|= α and A 6|= ¬α

The monitorMinc
φ :

The construction is almost identical to the one ofMφ.

Alphabet: consistent ALC-ABoxes over the vocabulary
occurring in φ.
Transitions:

All we know: the observations of the system are a model of A.
Minc

φ must consider all the transitions in Ĝφ and Ĝ¬φ that can
be induced by such models.

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 17

The monitor construction in the case of incomplete
knowledge (2)

Properties ofMinc
φ :

No real Moore machine due to the infinite alphabet.
 The definition of a deterministic Moore automaton can
easily be extended.

It is not possible to precompute such an infinite monitor.
 Given some state and an input ABox, one then needs to
compute the transition on-the-fly.

The state space of the monitor, however, is finite.

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 18

The complexity of the monitor construction w. r. t. the
number of states

Complexity of constructing the GBA:

Gφ and G¬φ can be constructed in exponential time.

Ĝφ and Ĝ¬φ can be constructed in double exponential time.

The overall complexity for constructing the state space of the
monitor:

The state space ofMφ (Minc
φ) can be constructed in triple

exponential time.

The state space ofMφ (Minc
φ) can be constructed in double

exponential time, if we do not allow rigid names.

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 19

Outline

1 Introduction and motivation

2 Runtime verification for ALC-LTL with rigid names with respect
to incomplete knowledge

3 Conclusion

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 20

Conclusion

We extended the three-valued approach to runtime
verification in propositional LTL to ALC-LTL and the case
where the observed system behaviour is described
(incompletely) by ALC-ABoxes.
The complexity of the monitor construction is quite high, . . .

. . . but it should be noted that this is worse-case complexity.
One could use minimisation techniques for the GBA and the
monitor.
. . . but the size of the formula is usually quite small, whereas
the system is monitored over a long period of time.
. . . the large size of the monitor can probably not be avoided:
The construction of Gφ and Ĝφ is optimal.
Also for runtime verification in propositional LTL, the
constructed monitors have actually a size that is one
exponential higher than the size of the GBA.

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 21

Literature
Recommendations for further reading

Franz Baader, Silvio Ghilardi, and Carsten Lutz.
LTL over Description Logic Axioms.
In Proceedings of the 11th International Conference on
Principles of Knowledge Representation and Reasoning
(KR2008), 2008.

Andreas Bauer, Martin Leucker, and Christian Schallhart.
Monitoring of real-time properties.
In Proceedings of the 26th Conference on Foundations of
Software Technology and Theoretical Computer Science
(FSTTCS’06), volume 4337 of Lecture Notes in Computer
Science, Kolkata, India, December 2006. Springer-Verlag.

F. Baader, A. Bauer, M. Lippmann: Runtime Verification Using a Temporal Description Logic FroCoS’09 Slide: 22

	Outline
	Introduction and motivation
	Runtime verification for ALC-LTL with rigid names with respect to incomplete knowledge
	The temporal description logic ALC-LTL
	Generalised Büchi automata for ALC-LTL formulae
	The monitor construction
	The complexity of the monitor construction

	Conclusion

