
Combining Nonmonotonic Knowledge Bases with
External Sources

Thomas Eiter

Institute of Information Systems, TU Vienna
eiter@kr.tuwien.ac.at

with Gerhard Brewka (U Leipzig); Giovambattista Ianni (U Calabria);
Minh Dao-Tran, Michael Fink, Thomas Krennwallner (TU Vienna)

FroCoS, Trento, September 16-18, 2009

Austrian Science Fund (FWF) grant P20840, P20841

Vienna Science and Technology Fund (WWTF) grant ICT08-020.

ICT Ontorule (FP7 231875)

1/51

Nonmonotonic KBS with External Sources 1. Introduction

Recent Developments

Traditional KR: monolithic, closed reasoning systems
The World Wide Web
Wealth of data / knowledge sources
Distributed, open systems

Urgent Need

access to external sources
cope with heterogenity
incompleteness
recurrent data access
dynamics

Issues:
Semantics
Algorithms, Implementations

T. Eiter et al. FroCoS 2009 2/51

Nonmonotonic KBS with External Sources 1. Introduction

Aim of this Talk

Present some formalisms that combine possibly nonmonotonic
knowledge bases with external sources

Nonmonotonic formalisms have long tradition in Knowledge
Representation and Reasoning

Focus: recent work of KBS Group @ TU Vienna and colleagues

Observations:

• Principled issues
• Research problems (theory, implementation)
• On target for combining systems
• . . . to new frontiers

T. Eiter et al. FroCoS 2009 3/51

Nonmonotonic KBS with External Sources 1. Introduction

Historic Background

Work @ KBS/DBAI groups of TU Vienna in the 1990’s:

Nonmonotonic Reasoning, Logic Progamming (DLV)

Logic programs with generalized quantifiers [E_ et al., 1997]

Incorporate Lindström type quantifiers (“majority”, ...) into LPs

friendly_guy(X)← most[likes](X)

Similar to use of GQs in databases / finite model theory (avg, min, ...)

IMPACT agent platform [Subrahmanian et al., 2000]

Do notify(P, M)← P inform(P, M), in(P, db:getClients()), not urgent(M)

But: embryonic; limitations, drawbacks

Around 2000: Emergence of Answer Set Programming

T. Eiter et al. FroCoS 2009 4/51

Nonmonotonic KBS with External Sources 1. Introduction

Historic Background

Work @ KBS/DBAI groups of TU Vienna in the 1990’s:

Nonmonotonic Reasoning, Logic Progamming (DLV)

Logic programs with generalized quantifiers [E_ et al., 1997]

Incorporate Lindström type quantifiers (“majority”, ...) into LPs

friendly_guy(X)← most[likes](X)

Similar to use of GQs in databases / finite model theory (avg, min, ...)

IMPACT agent platform [Subrahmanian et al., 2000]

Do notify(P, M)← P inform(P, M), in(P, db:getClients()), not urgent(M)

But: embryonic; limitations, drawbacks

Around 2000: Emergence of Answer Set Programming

T. Eiter et al. FroCoS 2009 4/51

Nonmonotonic KBS with External Sources 1. Introduction

Historic Background

Work @ KBS/DBAI groups of TU Vienna in the 1990’s:

Nonmonotonic Reasoning, Logic Progamming (DLV)

Logic programs with generalized quantifiers [E_ et al., 1997]

Incorporate Lindström type quantifiers (“majority”, ...) into LPs

friendly_guy(X)← most[likes](X)

Similar to use of GQs in databases / finite model theory (avg, min, ...)

IMPACT agent platform [Subrahmanian et al., 2000]

Do notify(P, M)← P inform(P, M), in(P, db:getClients()), not urgent(M)

But: embryonic; limitations, drawbacks

Around 2000: Emergence of Answer Set Programming

T. Eiter et al. FroCoS 2009 4/51

Nonmonotonic KBS with External Sources 1. Introduction

Historic Background

Work @ KBS/DBAI groups of TU Vienna in the 1990’s:

Nonmonotonic Reasoning, Logic Progamming (DLV)

Logic programs with generalized quantifiers [E_ et al., 1997]

Incorporate Lindström type quantifiers (“majority”, ...) into LPs

friendly_guy(X)← most[likes](X)

Similar to use of GQs in databases / finite model theory (avg, min, ...)

IMPACT agent platform [Subrahmanian et al., 2000]

Do notify(P, M)← P inform(P, M), in(P, db:getClients()), not urgent(M)

But: embryonic; limitations, drawbacks

Around 2000: Emergence of Answer Set Programming

T. Eiter et al. FroCoS 2009 4/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Answer Set Programming (ASP)

Answer Set Programming (ASP) is a recent declarative problem
solving approach.

The term was coined by Lifschitz [1999,2002].

Proposed by other people at about the same time, e.g. [Marek and
Truszczyński, 1999], [Niemelä, 1999].

It has roots in KR, logic programming, and nonmonotonic reasoning.

At an abstract level, relates to SAT solving and CSP.

Early book: [Baral, 2003]

To date, ASP languages and systems are a major tool for building
non-monotonic knowledge bases.

T. Eiter et al. FroCoS 2009 5/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Roadmap

1. Introduction

2. Answer Set Programming (ASP)

3. ASP with External Sources
3.1 HEX Programs
3.2 Modular LPs
3.3 Multi-Context Systems

4. Outlook and Conclusion

T. Eiter et al. FroCoS 2009 6/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Logic Programs with Negation

“War of Semantics” in Logic Programming (1980/90ies)

Meaning of programs with negation “not” like the following:

man(joe).
single(X)← man(X), not husband(X).
husband(X)← man(X), not single(X).

Intuitive models: M1 = {man(joe), single(joe)}, M2 = {man(joe), husband(joe)}.
Prolog: ???

Great Schism: Single model vs. multiple model semantics

• Well-Founded Semantics [Van Gelder et al., 1991]: partial model,
where man(joe) is true, single(joe), husband(joe) are unknown

• Answer Set (Stable Model) Semantics by Gelfond and Lifschitz
[1988,1991]: Alternative models M1, M2.

Shift in LP: compute Answer Sets (=models), not proofs!

T. Eiter et al. FroCoS 2009 7/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Logic Programs with Negation

“War of Semantics” in Logic Programming (1980/90ies)

Meaning of programs with negation “not” like the following:

man(joe).
single(X)← man(X), not husband(X).
husband(X)← man(X), not single(X).

Intuitive models: M1 = {man(joe), single(joe)}, M2 = {man(joe), husband(joe)}.
Prolog: ???

Great Schism: Single model vs. multiple model semantics

• Well-Founded Semantics [Van Gelder et al., 1991]: partial model,
where man(joe) is true, single(joe), husband(joe) are unknown

• Answer Set (Stable Model) Semantics by Gelfond and Lifschitz
[1988,1991]: Alternative models M1, M2.

Shift in LP: compute Answer Sets (=models), not proofs!

T. Eiter et al. FroCoS 2009 7/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Logic Programs with Negation

“War of Semantics” in Logic Programming (1980/90ies)

Meaning of programs with negation “not” like the following:

man(joe).
single(X)← man(X), not husband(X).
husband(X)← man(X), not single(X).

Intuitive models: M1 = {man(joe), single(joe)}, M2 = {man(joe), husband(joe)}.
Prolog: ???

Great Schism: Single model vs. multiple model semantics

• Well-Founded Semantics [Van Gelder et al., 1991]: partial model,
where man(joe) is true, single(joe), husband(joe) are unknown

• Answer Set (Stable Model) Semantics by Gelfond and Lifschitz
[1988,1991]: Alternative models M1, M2.

Shift in LP: compute Answer Sets (=models), not proofs!

T. Eiter et al. FroCoS 2009 7/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Logic Programs with Negation

“War of Semantics” in Logic Programming (1980/90ies)

Meaning of programs with negation “not” like the following:

man(joe).
single(X)← man(X), not husband(X).
husband(X)← man(X), not single(X).

Intuitive models: M1 = {man(joe), single(joe)}, M2 = {man(joe), husband(joe)}.
Prolog: ???

Great Schism: Single model vs. multiple model semantics

• Well-Founded Semantics [Van Gelder et al., 1991]: partial model,
where man(joe) is true, single(joe), husband(joe) are unknown

• Answer Set (Stable Model) Semantics by Gelfond and Lifschitz
[1988,1991]: Alternative models M1, M2.

Shift in LP: compute Answer Sets (=models), not proofs!

T. Eiter et al. FroCoS 2009 7/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Logic Programs with Negation

“War of Semantics” in Logic Programming (1980/90ies)

Meaning of programs with negation “not” like the following:

man(joe).
single(X)← man(X), not husband(X).
husband(X)← man(X), not single(X).

Intuitive models: M1 = {man(joe), single(joe)}, M2 = {man(joe), husband(joe)}.
Prolog: ???

Great Schism: Single model vs. multiple model semantics

• Well-Founded Semantics [Van Gelder et al., 1991]: partial model,
where man(joe) is true, single(joe), husband(joe) are unknown

• Answer Set (Stable Model) Semantics by Gelfond and Lifschitz
[1988,1991]: Alternative models M1, M2.

Shift in LP: compute Answer Sets (=models), not proofs!

T. Eiter et al. FroCoS 2009 7/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

ASP Paradigm

General idea: answer sets provide solutions!

Problem

Instance I Program P
Encoding: Model(s)

Solution(s)
ASP Solver

1 Encode problem instance I as a (non-monotonic) logic program P, such
that solutions of I are represented by models of P

2 Compute some model M of P, using an ASP solver

3 Extract a solution for I from M.

Variant: Compute multiple models (for multiple / all solutions)

Often: Decompose I into problem specification and data

Note: Related to SAT Solving/CSP, but ASP offers special features
(variables, supports transitivity)

T. Eiter et al. FroCoS 2009 8/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Answer Set Solvers

DLV http://www.dbai.tuwien.ac.at/proj/dlv/ *
Smodels http://www.tcs.hut.fi/Software/smodels/ **

GnT http://www.tcs.hut.fi/Software/gnt/
Cmodels http://www.cs.utexas.edu/users/tag/cmodels/

ASSAT http://assat.cs.ust.hk/
NoMore(++) http://www.cs.uni-potsdam.de/~linke/nomore/

Platypus http://www.cs.uni-potsdam.de/platypus/
clasp http://www.cs.uni-potsdam.de/clasp/

XASP http://xsb.sourceforge.net, distributed with XSB v2.6
aspps http://www.cs.engr.uky.edu/ai/aspps/
ccalc http://www.cs.utexas.edu/users/tag/cc/

* + extensions (DLVHEX, DVLDB, DLT, ...) ** + Smodels_cc

Several provide a number of extensions to the language described here.

ASP Solver competition: see LPNMR conference (2009 edition this week!);

Benchmark platform: http://asparagus.cs.uni-potsdam.de/

Note: clasp wins the crafted instances categories a) SAT+UNSAT and b)
UNSAT instances of the SAT Competition 2009.

T. Eiter et al. FroCoS 2009 9/51

http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.tcs.hut.fi/Software/smodels/
http://www.tcs.hut.fi/Software/gnt/
http://www.cs.utexas.edu/users/tag/cmodels/
http://assat.cs.ust.hk/
http://www.cs.uni-potsdam.de/~linke/nomore/
http://www.cs.uni-potsdam.de/platypus/
http://www.cs.uni-potsdam.de/clasp/
http://xsb.sourceforge.net
http://www.cs.engr.uky.edu/ai/aspps/
http://www.cs.utexas.edu/users/tag/cc/
http://asparagus.cs.uni-potsdam.de/

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Answer Set Programs

Disjunctive Logic Program

A (disjunctive) logic program P is a (finite) set of rules of the form

a1 ∨ · · · ∨ al ← b1, . . . , bm, not c1, . . . , not cn

where all ai, bj, ck are literals of the form p or ¬p, where p is a first-order atom
over a (classical) first-order vocabulary.

Standard ASP has no function symbols

“¬” is called strong negation (also written as “–”)

In normal programs, the rule head is a single literal (l = 1)

(Extended) Herbrand Base

HBP is the set of all ground (variable-free) literals p and ¬p with predicates and
ground terms constructible from P.

T. Eiter et al. FroCoS 2009 10/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Answer Sets

Answer Sets are based on 3-valued Herbrand Interpretations (=consistent
sets of ground literals M ⊆ HBP), with incomplete information

For programs without “¬,” they are also called “stable models” and viewed
2-valued, with complete information about the world.

Satisfaction

An interpretation M ⊆ HBP satisfies

• a ground rule a1 ∨ · · · ∨ ak ← b1, . . . , bm, not c1, . . . , not cn,

if {b1, . . . , bm} ⊆ M and M ∩ {c1, . . . , cn} = ∅ implies
M ∩ {a1, . . . , ak} 6= ∅.

• a ground program P, if M satisfies each r ∈ P.

• a rule r, if M satisfies each r′ ∈ grnd(r), where grnd(r) is the set of
of all ground instances of r.

• a program P, if M satisfies grnd(P) =
⋃

r∈P grnd(r).

T. Eiter et al. FroCoS 2009 11/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

For not-free (“positive”) programs, an intuitive semantics are minimal
models:

Minimal Model

An interpretation M ⊆ HBP is minimal model of P, if (i) M satisfies P and
(ii) no N ⊂ M satisfies P.

Key idea for arbitrary programs: elimination of not

Gelfond-Lifschitz (GL) reduct PM

Given program P, remove from grnd(P)

1 every rule a1 ∨ · · · ∨ ak ← b1, . . . , bm, not c1, . . . , not cn where
some ci is in M, and

2 all literals not cj from the remaining rules.

Use M as an assumption on how negation finally evaluates.

T. Eiter et al. FroCoS 2009 12/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

For not-free (“positive”) programs, an intuitive semantics are minimal
models:

Minimal Model

An interpretation M ⊆ HBP is minimal model of P, if (i) M satisfies P and
(ii) no N ⊂ M satisfies P.

Key idea for arbitrary programs: elimination of not

Gelfond-Lifschitz (GL) reduct PM

Given program P, remove from grnd(P)

1 every rule a1 ∨ · · · ∨ ak ← b1, . . . , bm, not c1, . . . , not cn where
some ci is in M, and

2 all literals not cj from the remaining rules.

Use M as an assumption on how negation finally evaluates.

T. Eiter et al. FroCoS 2009 12/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Answer Set

M is an answer set of P iff M is a minimal model of PM.

M satisfies all rules of P

Moreover, P can “reproduce” M with an assumption on how
negation finally evaluates (stability)

Note: for normal P, “a minimal” = “the least”

For positive P, PM = P, so the answer sets coincide with the minimal
models

Many equivalent definitions of answer sets / stable models exist
[Lifschitz, 2008]

E.g., Answer sets can be reconstructed in the logic of Here and
There (Equilibrium Logic [Pearce, 2006])

T. Eiter et al. FroCoS 2009 13/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Answer Set

M is an answer set of P iff M is a minimal model of PM.

M satisfies all rules of P

Moreover, P can “reproduce” M with an assumption on how
negation finally evaluates (stability)

Note: for normal P, “a minimal” = “the least”

For positive P, PM = P, so the answer sets coincide with the minimal
models

Many equivalent definitions of answer sets / stable models exist
[Lifschitz, 2008]

E.g., Answer sets can be reconstructed in the logic of Here and
There (Equilibrium Logic [Pearce, 2006])

T. Eiter et al. FroCoS 2009 13/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Answer Set

M is an answer set of P iff M is a minimal model of PM.

M satisfies all rules of P

Moreover, P can “reproduce” M with an assumption on how
negation finally evaluates (stability)

Note: for normal P, “a minimal” = “the least”

For positive P, PM = P, so the answer sets coincide with the minimal
models

Many equivalent definitions of answer sets / stable models exist
[Lifschitz, 2008]

E.g., Answer sets can be reconstructed in the logic of Here and
There (Equilibrium Logic [Pearce, 2006])

T. Eiter et al. FroCoS 2009 13/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Answer Set

M is an answer set of P iff M is a minimal model of PM.

M satisfies all rules of P

Moreover, P can “reproduce” M with an assumption on how
negation finally evaluates (stability)

Note: for normal P, “a minimal” = “the least”

For positive P, PM = P, so the answer sets coincide with the minimal
models

Many equivalent definitions of answer sets / stable models exist
[Lifschitz, 2008]

E.g., Answer sets can be reconstructed in the logic of Here and
There (Equilibrium Logic [Pearce, 2006])

T. Eiter et al. FroCoS 2009 13/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Answer Set

M is an answer set of P iff M is a minimal model of PM.

M satisfies all rules of P

Moreover, P can “reproduce” M with an assumption on how
negation finally evaluates (stability)

Note: for normal P, “a minimal” = “the least”

For positive P, PM = P, so the answer sets coincide with the minimal
models

Many equivalent definitions of answer sets / stable models exist
[Lifschitz, 2008]

E.g., Answer sets can be reconstructed in the logic of Here and
There (Equilibrium Logic [Pearce, 2006])

T. Eiter et al. FroCoS 2009 13/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Answer Set

M is an answer set of P iff M is a minimal model of PM.

M satisfies all rules of P

Moreover, P can “reproduce” M with an assumption on how
negation finally evaluates (stability)

Note: for normal P, “a minimal” = “the least”

For positive P, PM = P, so the answer sets coincide with the minimal
models

Many equivalent definitions of answer sets / stable models exist
[Lifschitz, 2008]

E.g., Answer sets can be reconstructed in the logic of Here and
There (Equilibrium Logic [Pearce, 2006])

T. Eiter et al. FroCoS 2009 13/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Example

P = { person(joey);

male(X) ∨ female(X)← person(X);

bachelor(X)← male(X), not married(X) }

Grounding of P

M1 = {person(joey), male(joey), bachelor(joey)} is “stable”

M1 is a minimal model of PM1

M2 = {person(joey), male(joey), married(joey)} is not stable

M2 is not a minimal model of PM2

Further answer set: M3 = {person(joey), female(joey)}

T. Eiter et al. FroCoS 2009 14/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Example

grnd(P) = { person(joey);

male(joey) ∨ female(joey)← person(joey);

bachelor(joey)← male(joey), not married(joey) }

Grounding of P

M1 = {person(joey), male(joey), bachelor(joey)} is “stable”

M1 is a minimal model of PM1

M2 = {person(joey), male(joey), married(joey)} is not stable

M2 is not a minimal model of PM2

Further answer set: M3 = {person(joey), female(joey)}

T. Eiter et al. FroCoS 2009 14/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Example

grnd(P) = { person(joey);

male(joey) ∨ female(joey)← person(joey);

bachelor(joey)← male(joey), not married(joey) }

Grounding of P

M1 = {person(joey), male(joey), bachelor(joey)} is “stable”

M1 is a minimal model of PM1

M2 = {person(joey), male(joey), married(joey)} is not stable

M2 is not a minimal model of PM2

Further answer set: M3 = {person(joey), female(joey)}

T. Eiter et al. FroCoS 2009 14/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Example

PM1 = { person(joey);

male(joey) ∨ female(joey)← person(joey);

bachelor(joey)← male(joey),((((((((
not married(joey) }

Grounding of P

M1 = {person(joey), male(joey), bachelor(joey)} is “stable”

M1 is a minimal model of PM1

M2 = {person(joey), male(joey), married(joey)} is not stable

M2 is not a minimal model of PM2

Further answer set: M3 = {person(joey), female(joey)}

T. Eiter et al. FroCoS 2009 14/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Example

grnd(P) = { person(joey);

male(joey) ∨ female(joey)← person(joey);

bachelor(joey)← male(joey), not married(joey) }

Grounding of P

M1 = {person(joey), male(joey), bachelor(joey)} is “stable”

M1 is a minimal model of PM1

M2 = {person(joey), male(joey), married(joey)} is not stable

M2 is not a minimal model of PM2

Further answer set: M3 = {person(joey), female(joey)}

T. Eiter et al. FroCoS 2009 14/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Example

PM2 = { person(joey);

male(joey) ∨ female(joey)← person(joey);

((((((((((((((((((((

bachelor(joey)← male(joey), not married(joey) }

Grounding of P

M1 = {person(joey), male(joey), bachelor(joey)} is “stable”

M1 is a minimal model of PM1

M2 = {person(joey), male(joey), married(joey)} is not stable

M2 is not a minimal model of PM2

Further answer set: M3 = {person(joey), female(joey)}

T. Eiter et al. FroCoS 2009 14/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Example

P = { person(joey);

male(X) ∨ female(X)← person(X);

bachelor(X)← male(X), not married(X) }

Grounding of P

M1 = {person(joey), male(joey), bachelor(joey)} is “stable”

M1 is a minimal model of PM1

M2 = {person(joey), male(joey), married(joey)} is not stable

M2 is not a minimal model of PM2

Further answer set: M3 = {person(joey), female(joey)}

T. Eiter et al. FroCoS 2009 14/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Constraints

Consider the program

P = { p← not p. }

This program has NO answer sets.

Let P be a program and p be a new atom.

Then, adding
p← not p, a1, . . . , an not b1, . . . , not bm.

to P “kills” each answer set M of P containing all ai and no bj.

Constraint

← a1, . . . , an not b1, . . . , not bm.

T. Eiter et al. FroCoS 2009 15/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Constraints

Consider the program

P = { p← not p. }

This program has NO answer sets.

Let P be a program and p be a new atom.

Then, adding
p← not p, a1, . . . , an not b1, . . . , not bm.

to P “kills” each answer set M of P containing all ai and no bj.

Constraint

← a1, . . . , an not b1, . . . , not bm.

T. Eiter et al. FroCoS 2009 15/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Constraints

Consider the program

P = { p← not p. }

This program has NO answer sets.

Let P be a program and p be a new atom.

Then, adding
p← not p, a1, . . . , an not b1, . . . , not bm.

to P “kills” each answer set M of P containing all ai and no bj.

Constraint

← a1, . . . , an not b1, . . . , not bm.

T. Eiter et al. FroCoS 2009 15/51

Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

ASP Applications

See http://www.kr.tuwien.ac.at/projects/WASP/report.html

information integration

constraint satisfaction, configuration

planning, routing

diagnosis

security analysis

Semantic Web

computer-aided verification

biology / biomedicine

knowledge management

. . .

ASP Showcase: http://www.kr.tuwien.ac.at/projects/WASP/showcase.html

T. Eiter et al. FroCoS 2009 16/51

http://www.kr.tuwien.ac.at/projects/WASP/report.html
http://www.kr.tuwien.ac.at/projects/WASP/showcase.html

Nonmonotonic KBS with External Sources 3. ASP with External Sources

ASP with External Sources

Issues

Interface / integrate with external sources.

Despite possible heterogenous semantics, keep ASP spirit for the
semantics.

Scenarios

ASP Program External Source

Import of information: add facts

Bidirectional information flow:

• For ASP, a nontrivial aspect in general
• Specifically, in case of recursion (minimality, stability)

T. Eiter et al. FroCoS 2009 17/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources

ASP with External Sources

Issues

Interface / integrate with external sources.

Despite possible heterogenous semantics, keep ASP spirit for the
semantics.

Scenarios

ASP Program External Source

Import of information: add facts

Bidirectional information flow:

• For ASP, a nontrivial aspect in general
• Specifically, in case of recursion (minimality, stability)

T. Eiter et al. FroCoS 2009 17/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources

ASP with External Sources

Issues

Interface / integrate with external sources.

Despite possible heterogenous semantics, keep ASP spirit for the
semantics.

Scenarios

ASP Program ? External Source

Import of information: add facts

Bidirectional information flow:

• For ASP, a nontrivial aspect in general
• Specifically, in case of recursion (minimality, stability)

T. Eiter et al. FroCoS 2009 17/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources

Formalisms and Systems

A variety of formalisms and systems has been proposed, e.g.,
• GQLPs [E_ et al., 1997], MLPs [Dao Tran et al., 2009],

DLP Functions [Janhunen et al., 2007]

• DLVEX [Calimeri et al., 2007], HEX programs [E_ et al., 2005],
DLVDB [Terracina et al., 2008]

• Nonmonotonic Multi-Context Systems [Brewka and E_, 2007]

Related: Macros [Baral et al., 2006], Templates [Ianni et al., 2003],
MWeb [Analyti et al., 2008] etc.

The proposals are different, yet not unrelated. Superficially,
• MLPs can be viewed as special setting for HEX programs
• MCSs are a kind of generalization of HEX programs

But: relation not by intent; underlying philosophy/assumptions vary

Systematic view helps

T. Eiter et al. FroCoS 2009 18/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources

Two Major Aspects

reduct GL-style FLP

world view

local model GQLPs, HEX

globale state MCS, MLPs

Collection KB = KB1, . . . , KBn of knowledge bases / sources KBi

environment (world) view

• individual: purely local models Mi for each KBi; semantics of KB
emerges implicitly

• societal: global state S = (S1, . . . , Sn) of local models Si of KBi;
S is explicitly accessible⇒ global state preference

Loosely speaking, Nash equilibria vs Pareto-optimality.

T. Eiter et al. FroCoS 2009 19/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources

Two Major Aspects

reduct GL-style FLP

world view

local model

GQLPs, HEX

globale state MCS, MLPs

Collection KB = KB1, . . . , KBn of knowledge bases / sources KBi

environment (world) view
• individual: purely local models Mi for each KBi; semantics of KB

emerges implicitly

• societal: global state S = (S1, . . . , Sn) of local models Si of KBi;
S is explicitly accessible⇒ global state preference

Loosely speaking, Nash equilibria vs Pareto-optimality.

T. Eiter et al. FroCoS 2009 19/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources

Two Major Aspects

reduct GL-style FLP

world view

local model GQLPs, HEX

globale state MCS, MLPs

Collection KB = KB1, . . . , KBn of knowledge bases / sources KBi

environment (world) view
• individual: purely local models Mi for each KBi; semantics of KB

emerges implicitly

• societal: global state S = (S1, . . . , Sn) of local models Si of KBi;
S is explicitly accessible⇒ global state preference

Loosely speaking, Nash equilibria vs Pareto-optimality.

T. Eiter et al. FroCoS 2009 19/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources

Two Major Aspects

reduct GL-style FLP

world view

local model GQLPs, HEX

globale state

MCS, MLPs

Collection KB = KB1, . . . , KBn of knowledge bases / sources KBi

environment (world) view
• individual: purely local models Mi for each KBi; semantics of KB

emerges implicitly

• societal: global state S = (S1, . . . , Sn) of local models Si of KBi;
S is explicitly accessible⇒ global state preference

Loosely speaking, Nash equilibria vs Pareto-optimality.

T. Eiter et al. FroCoS 2009 19/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources

Two Major Aspects

reduct GL-style FLP

world view

local model GQLPs, HEX

globale state MCS, MLPs

Collection KB = KB1, . . . , KBn of knowledge bases / sources KBi

environment (world) view
• individual: purely local models Mi for each KBi; semantics of KB

emerges implicitly

• societal: global state S = (S1, . . . , Sn) of local models Si of KBi;
S is explicitly accessible⇒ global state preference

Loosely speaking, Nash equilibria vs Pareto-optimality.

T. Eiter et al. FroCoS 2009 19/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources

Two Major Aspects

reduct GL-style FLP

world view

local model GQLPs, HEX

globale state MCS, MLPs

Collection KB = KB1, . . . , KBn of knowledge bases / sources KBi

environment (world) view
• individual: purely local models Mi for each KBi; semantics of KB

emerges implicitly

• societal: global state S = (S1, . . . , Sn) of local models Si of KBi;
S is explicitly accessible⇒ global state preference

Loosely speaking, Nash equilibria vs Pareto-optimality.

T. Eiter et al. FroCoS 2009 19/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources

reduct

GL-style FLP

world view

local model

GQLPs HEX

globale state

MCS MLPs

Collection KB = KB1, . . . , KBn of knowledge bases

program reduct:

• GL-style reduct PI

• FLP reduct fPI [Faber et al., 2004]

fPI = {Head←Body ∈ grnd(P) | I satisfies Body }.

for ordinary ASP programs, GL and FLP reduct are equivalent

For ASP extensions, FLP retains minimality of models, but not GL.

Other formalisms fit (e.g., dl-programs (ASP+DL): GL-style/local model)

T. Eiter et al. FroCoS 2009 20/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources

reduct GL-style

FLP

world view

local model

GQLPs HEX

globale state

MCS MLPs

Collection KB = KB1, . . . , KBn of knowledge bases

program reduct:

• GL-style reduct PI

• FLP reduct fPI [Faber et al., 2004]

fPI = {Head←Body ∈ grnd(P) | I satisfies Body }.

for ordinary ASP programs, GL and FLP reduct are equivalent

For ASP extensions, FLP retains minimality of models, but not GL.

Other formalisms fit (e.g., dl-programs (ASP+DL): GL-style/local model)

T. Eiter et al. FroCoS 2009 20/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources

reduct GL-style

FLP

world view

local model GQLPs

HEX

globale state MCS

MLPs

Collection KB = KB1, . . . , KBn of knowledge bases

program reduct:

• GL-style reduct PI

• FLP reduct fPI [Faber et al., 2004]

fPI = {Head←Body ∈ grnd(P) | I satisfies Body }.

for ordinary ASP programs, GL and FLP reduct are equivalent

For ASP extensions, FLP retains minimality of models, but not GL.

Other formalisms fit (e.g., dl-programs (ASP+DL): GL-style/local model)

T. Eiter et al. FroCoS 2009 20/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources

reduct GL-style FLP
world view

local model GQLPs

HEX

globale state MCS

MLPs

Collection KB = KB1, . . . , KBn of knowledge bases

program reduct:

• GL-style reduct PI

• FLP reduct fPI [Faber et al., 2004]

fPI = {Head←Body ∈ grnd(P) | I satisfies Body }.

for ordinary ASP programs, GL and FLP reduct are equivalent

For ASP extensions, FLP retains minimality of models, but not GL.

Other formalisms fit (e.g., dl-programs (ASP+DL): GL-style/local model)

T. Eiter et al. FroCoS 2009 20/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources

reduct GL-style FLP
world view

local model GQLPs HEX

globale state MCS MLPs

Collection KB = KB1, . . . , KBn of knowledge bases

program reduct:

• GL-style reduct PI

• FLP reduct fPI [Faber et al., 2004]

fPI = {Head←Body ∈ grnd(P) | I satisfies Body }.

for ordinary ASP programs, GL and FLP reduct are equivalent

For ASP extensions, FLP retains minimality of models, but not GL.

Other formalisms fit (e.g., dl-programs (ASP+DL): GL-style/local model)

T. Eiter et al. FroCoS 2009 20/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources

reduct GL-style FLP
world view

local model GQLPs HEX

globale state MCS MLPs

Collection KB = KB1, . . . , KBn of knowledge bases

program reduct:

• GL-style reduct PI

• FLP reduct fPI [Faber et al., 2004]

fPI = {Head←Body ∈ grnd(P) | I satisfies Body }.

for ordinary ASP programs, GL and FLP reduct are equivalent

For ASP extensions, FLP retains minimality of models, but not GL.

Other formalisms fit (e.g., dl-programs (ASP+DL): GL-style/local model)

T. Eiter et al. FroCoS 2009 20/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.1 HEX Programs

HEX Programs

Designed to meet needs of heterogenous data access on the Web

Generalizes earlier description logic programs which provide ASP
programs with query access to an OWL logic ontology.

Allow to access sources of whatever type (no restriction; abstract
modeling)

Features:
• Higher-Order atoms: variables for predicate names (syntactic sugar)
• External atoms: access to external sources (increases expressivity)

Type: FLP reduct / local model

T. Eiter et al. FroCoS 2009 21/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.1 HEX Programs

An Example

invites(john, X) ∨ skip(X)←X 6= john,

&DL_Query[my_ontology, relativeOf](john, X).
someInvited ←invites(john, X).

← not someInvited.

←°s[invites](Min, Max), Max > 2.

Example
Input: Data about John’s relatives (from an ontology)

Output: Possible picks for persons John might want to invite, according
to some constraints (some evaluated externally)

T. Eiter et al. FroCoS 2009 22/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.1 HEX Programs

An Example

invites(john, X) ∨ skip(X)←X 6= john,

&DL_Query[my_ontology, relativeOf](john, X).
someInvited ←invites(john, X).

← not someInvited.

←°s[invites](Min, Max), Max > 2.

Example
Input: Data about John’s relatives (from an ontology)

Output: Possible picks for persons John might want to invite, according
to some constraints (some evaluated externally)

T. Eiter et al. FroCoS 2009 22/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.1 HEX Programs

An Example

invites(john, X) ∨ skip(X)←X 6= john,

&DL_Query[my_ontology, relativeOf](john, X).
someInvited ←invites(john, X).

← not someInvited.

←°s[invites](Min, Max), Max > 2.

Example
Input: Data about John’s relatives (from an ontology)

Output: Possible picks for persons John might want to invite, according
to some constraints (some evaluated externally)

T. Eiter et al. FroCoS 2009 22/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.1 HEX Programs

An Example

invites(john, X) ∨ skip(X)←X 6= john,

&DL_Query[my_ontology, relativeOf](john, X).
someInvited ←invites(john, X).

← not someInvited.

←°s[invites](Min, Max), Max > 2.

Example
Input: Data about John’s relatives (from an ontology)

Output: Possible picks for persons John might want to invite, according
to some constraints (some evaluated externally)

T. Eiter et al. FroCoS 2009 22/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.1 HEX Programs

&DL_Query[my_ontology, relativeOf](john, X) (1)

°s[invites](Min, Max) (2)

External Atom

In general, an external atom a is of the form

&g[Y1, . . . , Yn](X1, . . . , Xm) , (3)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input and
output lists, respectively), and &g is an external predicate name.

External atoms may occur only in rule bodies; disregard ¬.

Each &g is associated with an evaluation function f&g

T. Eiter et al. FroCoS 2009 23/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.1 HEX Programs

Example

&DL_Query corresponds to f&DL_Query.

Informally,

&DL_Query[my_ontology, relativeOf](john, c)

is true if relativeOf (john, c) is provable in my_ontology.

This is formally captured via f&DL_Query:

For a given interpretation I,

I |= &DL_Query[my_ontology, relativeOf](john, c)

iff

f&DL_Query(I, my_ontology, relativeOf , john, c) = 1

T. Eiter et al. FroCoS 2009 24/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.1 HEX Programs

Semantics of HEX programs P

Higher order atoms T0(T1, . . . , Tn) are grounded to t0(t1, . . . , tn).

Herbrand base HBP: all ground (ordinary, external) atoms.

Interpretations

An interpretation is any subset I ⊆ HBP containing only ordinary atoms.

Satisfaction and Answer Sets

As for ordinary ASP programs, where

I satisfies any ground higher-order atom a ∈ HBP iff a ∈ I.

I satisfies any ground a = &g[y1, . . . , yn](x1, . . . , xm) iff
f&g(I, y1, . . . , yn, x1, . . . , xm) = 1, where f&g is a fixed (n+m+1)-ary function
with range {0, 1} for &g (I ⊆ HBP, xi, yj ground terms).

For answer sets, use FLP reduct instead of GL reduct:

Interpretation I is an answer set of P, iff I is a minimal model of fPI .

T. Eiter et al. FroCoS 2009 25/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.1 HEX Programs

Choice of FLP Reduct

Proposition

Every answer set of a HEX-program P is a minimal model of P.

This fails for the GL-reduct PI in place of fPI .

Example

p(a)← not &neg[p](a)

Suppose f&neg(I, p) computes the complement of p (negation)

Under GL-reduct, both ∅ and {p} are answer sets

Under FLP-reduct, only ∅ is an answer set

However, GL and FLP reduct are equivalent for monotonic external atoms.

Theorem

Suppose in P all external atoms α are monotonic, i.e., for each α′ ∈ grnd(α),
I ⊆ J ⊆ HBP ∧ I |= α′ implies J |= α′. Then ansGL(P) = ansFLP(P).

T. Eiter et al. FroCoS 2009 26/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.1 HEX Programs

Choice of FLP Reduct

Proposition

Every answer set of a HEX-program P is a minimal model of P.

This fails for the GL-reduct PI in place of fPI .

Example

p(a)← not &neg[p](a)

Suppose f&neg(I, p) computes the complement of p (negation)

Under GL-reduct, both ∅ and {p} are answer sets

Under FLP-reduct, only ∅ is an answer set

However, GL and FLP reduct are equivalent for monotonic external atoms.

Theorem

Suppose in P all external atoms α are monotonic, i.e., for each α′ ∈ grnd(α),
I ⊆ J ⊆ HBP ∧ I |= α′ implies J |= α′. Then ansGL(P) = ansFLP(P).

T. Eiter et al. FroCoS 2009 26/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.1 HEX Programs

Choice of FLP Reduct

Proposition

Every answer set of a HEX-program P is a minimal model of P.

This fails for the GL-reduct PI in place of fPI .

Example

p(a)← not &neg[p](a)

Suppose f&neg(I, p) computes the complement of p (negation)

Under GL-reduct, both ∅ and {p} are answer sets

Under FLP-reduct, only ∅ is an answer set

However, GL and FLP reduct are equivalent for monotonic external atoms.

Theorem

Suppose in P all external atoms α are monotonic, i.e., for each α′ ∈ grnd(α),
I ⊆ J ⊆ HBP ∧ I |= α′ implies J |= α′. Then ansGL(P) = ansFLP(P).

T. Eiter et al. FroCoS 2009 26/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.1 HEX Programs

Implementation

Algorithms: reduction to ordinary ASP, generalization of techniques

System prototype: dlvhex
http://www.kr.tuwien.ac.at/research/systems/dlvhex/

Flexible, modular architecture

External atoms are realized by plugins (loaded at run-time)

Pool of plugins available

New plugins can be defined by the user

T. Eiter et al. FroCoS 2009 27/51

http://www.kr.tuwien.ac.at/research/systems/dlvhex/

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.1 HEX Programs

Applications

Fuzzy ASP [Nieuwenborgh et al., 2007a], [Heymans and Toma,
2008]

Planning with Sensing [Nieuwenborgh et al., 2007b]

Biomedical ontologies [Hoehndorf et al., 2007]

Haplotype inference

Web querying (SPARQL) [Polleres, 2007]

Data integration

Trust management [Schindlauer, 2006]

Process management in building construction [Rybenko, 2009]

T. Eiter et al. FroCoS 2009 28/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.2 Modular LPs

Modular Nonmonotonic Logic Programs (MLPs)

Goal: Structured programming

In ASP, different directions:

• Programming in the large: compositional operators

E.g., DLP-functions [Janhunen et al., 2007]

• Programming in the small: abstraction and scoping

E.g., Generalized Quantifiers [E_ et al., 1997], Macros [Baral et al.,
2006], Templates [Ianni et al., 2003]

Our aim: Provide module (“procedure”) concept as in ordinary
programming
• realize libraries, code reuse

MLPs: look like special HEX programs, but are different

Type: FLP reduct / global state

T. Eiter et al. FroCoS 2009 29/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.2 Modular LPs

Program Modules

Conventional programming:

Definition:
proc p(var x, y: int): int

begin
...

end p;

Use: x := p(y, z);

Nonmonotonic LP:

Definition:

Module m = (P[q1, q2], R), where
• P is a module name
• q1, q2 are predicate names
• R is a set of rules

Use: p(X)← P[r, s].even

Modular Logic Program

A modular (nonmonotonic) logic program (MLP) P = (m1, . . . , mn), n ≥ 1,
consists of modules mi = (Pi[~qi], Ri) where at least one mi has void ~qi.

Rule bodies may contain module atoms P[p1, . . . , pk].o(t1, . . . , tl), where
p1, . . . , pk are predicate names and o(t1, . . . , tl) is an ordinary atom.

T. Eiter et al. FroCoS 2009 30/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.2 Modular LPs

Program Modules

Conventional programming:

Definition:
proc p(var x, y: int): int

begin
...

end p;

Use: x := p(y, z);

Nonmonotonic LP:

Definition:

Module m = (P[q1, q2], R), where
• P is a module name
• q1, q2 are predicate names
• R is a set of rules

Use: p(X)← P[r, s].even

Modular Logic Program

A modular (nonmonotonic) logic program (MLP) P = (m1, . . . , mn), n ≥ 1,
consists of modules mi = (Pi[~qi], Ri) where at least one mi has void ~qi.

Rule bodies may contain module atoms P[p1, . . . , pk].o(t1, . . . , tl), where
p1, . . . , pk are predicate names and o(t1, . . . , tl) is an ordinary atom.

T. Eiter et al. FroCoS 2009 30/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.2 Modular LPs

Semantics (Essentials)

For module mi = (Pi[~qi]; Ri), each interpretation S of ~qi yields an
instance of mi, named Pi[S].
An interpretation M = (Mi/S | Pi[S]) of P consists of ordinary
interpretations Mi/S for all instances Pi[S] of all modules mi in P.

(global state)
In Pi[S],
• ordinary o(~t) evaluates to o(~t) ∈ Mi/S;
• Pj[~pj].o(~t) evaluates to o(~t) ∈ Mj/S′ where S′ takes the value of ~p in

Mi/S (call by value).

For answer sets, extend notion of minimal model and FLP reduct to
P (componentwise, i.e., for all Pi[S]).

Natural Question

Can’t each module be simply cast to a HEX program
(module atom = external atom)?

T. Eiter et al. FroCoS 2009 31/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.2 Modular LPs

Semantics (Essentials)

For module mi = (Pi[~qi]; Ri), each interpretation S of ~qi yields an
instance of mi, named Pi[S].
An interpretation M = (Mi/S | Pi[S]) of P consists of ordinary
interpretations Mi/S for all instances Pi[S] of all modules mi in P.

(global state)
In Pi[S],
• ordinary o(~t) evaluates to o(~t) ∈ Mi/S;
• Pj[~pj].o(~t) evaluates to o(~t) ∈ Mj/S′ where S′ takes the value of ~p in

Mi/S (call by value).

For answer sets, extend notion of minimal model and FLP reduct to
P (componentwise, i.e., for all Pi[S]).

Natural Question

Can’t each module be simply cast to a HEX program
(module atom = external atom)?

T. Eiter et al. FroCoS 2009 31/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.2 Modular LPs

Difference: Global minimization (essential for loops, recursion)

Example

P1 : a← P2[].b P2 : b← P1[].a

Answer set: M1 = (∅, ∅)

Non-minimal model: M2 = ({a}, {b})

As HEX programs, P1 and P2 have also M2 as answer set.

Note: MLPs exclude infinite recursion.

Still the semantics is very expressive (2-NEXPNP vs. NEXPNP).

Preliminary GQLPs had no recursion, used GL reduct and local models

Refined MLP semantics takes relevant module calls into account.

T. Eiter et al. FroCoS 2009 32/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.2 Modular LPs

Difference: Global minimization (essential for loops, recursion)

Example

P1 : a← P2[].b P2 : b← P1[].a

Answer set: M1 = (∅, ∅)

Non-minimal model: M2 = ({a}, {b})

As HEX programs, P1 and P2 have also M2 as answer set.

Note: MLPs exclude infinite recursion.

Still the semantics is very expressive (2-NEXPNP vs. NEXPNP).

Preliminary GQLPs had no recursion, used GL reduct and local models

Refined MLP semantics takes relevant module calls into account.

T. Eiter et al. FroCoS 2009 32/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.2 Modular LPs

Difference: Global minimization (essential for loops, recursion)

Example

P1 : a← P2[].b P2 : b← P1[].a

Answer set: M1 = (∅, ∅)

Non-minimal model: M2 = ({a}, {b})

As HEX programs, P1 and P2 have also M2 as answer set.

Note: MLPs exclude infinite recursion.

Still the semantics is very expressive (2-NEXPNP vs. NEXPNP).

Preliminary GQLPs had no recursion, used GL reduct and local models

Refined MLP semantics takes relevant module calls into account.

T. Eiter et al. FroCoS 2009 32/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.3 Multi-Context Systems

Multi-Context Systems

In AI, McCarthy [1987] first investigated contexts.

Intuitively, a multi-context system describes the information available in
several contexts (to people / agents/ databases etc)

The Trento School (Giunchiglia, Serafini et al.):

Information flow via bridge rules between contexts

• Heterogeneous MCS [Giunchiglia and Serafini, 1994]
• Nonmonotonic bridge rules [Roelofsen and Serafini, 2005]
• Extension to Contextual Default Logic [Brewka et al., 2007]

Nonmonotonic Multi-Context Systems [Brewka and E_, 2007]:

• abstract “logics” (description / modal / default logics, ASP, . . .)

T. Eiter et al. FroCoS 2009 33/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.3 Multi-Context Systems

Nonmonotonic Multi-Context Systems (MCSs)

Multi-Context System

Formally, a Multi-Context System

M = (C1, . . . , Cn)

consists of contexts

Ci = (Li, kbi, bri), i ∈ {1, . . . , n},
where

each Li is a “logic,”

each kbi is a knowledge base in Li, and

each bri is a set of Li-bridge rules over M’s logics.

T. Eiter et al. FroCoS 2009 34/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.3 Multi-Context Systems

Logic

A logic L is a tuple L = (KBL, BSL, ACCL), where

KBL is a set of well-formed knowledge bases, each being a set (of
formulas)

BSL is a set of possible belief sets, each being a set (of formulas)

ACCL : KBL → 2BSL assigns each KB a set of acceptable belief sets

Thus, logic L caters for multiple extensions of a knowledge base.

Bridge Rules

A Li-bridge rule over logics L1, . . . , Ln, 1 ≤ i ≤ n, is of the form

s← (r1 : p1), . . . , (rj : pj), not (rj+1 : pj+1), . . . , not (rm : pm)

where kb ∪ {s} ∈ KBi for each kb ∈ KBi, each rk ∈ {1, . . . , n}, and each pk is in
some belief set of Lrk .

Note: Such rules are akin to rules of normal logic programs!

T. Eiter et al. FroCoS 2009 35/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.3 Multi-Context Systems

Logic

A logic L is a tuple L = (KBL, BSL, ACCL), where

KBL is a set of well-formed knowledge bases, each being a set (of
formulas)

BSL is a set of possible belief sets, each being a set (of formulas)

ACCL : KBL → 2BSL assigns each KB a set of acceptable belief sets

Thus, logic L caters for multiple extensions of a knowledge base.

Bridge Rules

A Li-bridge rule over logics L1, . . . , Ln, 1 ≤ i ≤ n, is of the form

s← (r1 : p1), . . . , (rj : pj), not (rj+1 : pj+1), . . . , not (rm : pm)

where kb ∪ {s} ∈ KBi for each kb ∈ KBi, each rk ∈ {1, . . . , n}, and each pk is in
some belief set of Lrk .

Note: Such rules are akin to rules of normal logic programs!
T. Eiter et al. FroCoS 2009 35/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.3 Multi-Context Systems

Example

Suppose a MCS M = (C1, C2) has contexts that express the individual
views of a paper by the two authors.

C1:

• L1 = Classical Logic
• kb1 = { unhappy ⊃ revision }
• br1 = { unhappy← (2 : work) }

C2:

• L2 = Reiter’s Default Logic
• kb2 = { good : accepted/accepted }
• br2 = { work← (1 : revision),

good ← not (1 : unhappy) }

T. Eiter et al. FroCoS 2009 36/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.3 Multi-Context Systems

Equilibrium Semantics

Belief State
A belief state is a sequence S = (S1, . . . , Sn) of belief sets Si in Li

Applicable Bridge Rules

For M = (C1, . . . , Cn) and belief state S = (S1, . . . , Sn), the bridge rule

s← (r1 : p1), . . . , (rj : pj), not (rj+1 : pj+1), . . . , not (rm : pm)

is applicable in S iff (1) pi ∈ Sri , for 1 ≤ i ≤ j, and (2) pk 6∈ Srk , for j < k ≤ m.

Equilibrium

A belief state S = (S1, . . . , Sn) of M is an equilibrium iff for all i = 1, . . . , n,

Si ∈ ACCi(kbi ∪ {head(r) | r ∈ bri is applicable in S}) .

Note: Interpretable as Nash-equilibrium of an n-player game

T. Eiter et al. FroCoS 2009 37/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.3 Multi-Context Systems

Example (ctd)

Reconsider M = (C1, C2):

kb1 = { unhappy ⊃ revision } (Classical Logic)

br1 = { unhappy← (2 : work) }

kb2 = { good : accepted/accepted } (Default Logic)

br2 = { work← (1 : revision),
good ← not (1 : unhappy) }

M has two equilibria:

E1 = (Th({unhappy, revision}), Th({work})) and

E2 = (Th({unhappy ⊃ revision}), Th({good, accepted}))

T. Eiter et al. FroCoS 2009 38/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.3 Multi-Context Systems

Groundedness

Problem: Equilibria admit self-justifying beliefs (loops)

Example (ctd)

Intuitively, E1 is ungrounded, since unhappy has a cyclic justification:

Accept unhappy in C1, since work is accepted in C2, since revision is
accepted in C1, since unhappy is accepted in C1.

“Groundedness” may be achieved if the logics Li have monotonic
cores MLi (kbi has a single, monotonically growing belief set).

M = (C1, . . . , Cn) has a unique minimal equilibrium wrt. the MLi.

Reduce M, given a belief state S, to MS = (CS
1, . . . , CS

n) in the MLi’s.

For bridge rules, a GL-style reduct brS
i is used.

T. Eiter et al. FroCoS 2009 39/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.3 Multi-Context Systems

Groundedness

Problem: Equilibria admit self-justifying beliefs (loops)

Example (ctd)

Intuitively, E1 is ungrounded, since unhappy has a cyclic justification:

Accept unhappy in C1, since work is accepted in C2, since revision is
accepted in C1, since unhappy is accepted in C1.

“Groundedness” may be achieved if the logics Li have monotonic
cores MLi (kbi has a single, monotonically growing belief set).

M = (C1, . . . , Cn) has a unique minimal equilibrium wrt. the MLi.

Reduce M, given a belief state S, to MS = (CS
1, . . . , CS

n) in the MLi’s.

For bridge rules, a GL-style reduct brS
i is used.

T. Eiter et al. FroCoS 2009 39/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.3 Multi-Context Systems

MCS vs. HEX programs

MCSs take a global state view, HEX programs a local model view

Modeling M = (C1, . . . , Cn)
• as a collection (P1, . . . , Pn) of HEX programs is not feasible.
• in a single HEX program PM is feasible (under conditions).

Idea: Model formulas (rl : pl) in bridge rules by external atoms
&con_rl[](apl) being true iff pl is in belief set Srl (apl is a name for pl).

Subtle problem: nondeterminism in context Ci

For the same kbi, Ci might have multiple possible belief sets;

How to ensure that different atoms &con_rl[](·) model access to
the same belief set?

Possible, if each belief set Si is uniquely identified by a (small)
subset (kernel, exists in many logics)

T. Eiter et al. FroCoS 2009 40/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.3 Multi-Context Systems

MCS vs. HEX programs

MCSs take a global state view, HEX programs a local model view

Modeling M = (C1, . . . , Cn)
• as a collection (P1, . . . , Pn) of HEX programs is not feasible.
• in a single HEX program PM is feasible (under conditions).

Idea: Model formulas (rl : pl) in bridge rules by external atoms
&con_rl[](apl) being true iff pl is in belief set Srl (apl is a name for pl).

Subtle problem: nondeterminism in context Ci

For the same kbi, Ci might have multiple possible belief sets;

How to ensure that different atoms &con_rl[](·) model access to
the same belief set?

Possible, if each belief set Si is uniquely identified by a (small)
subset (kernel, exists in many logics)

T. Eiter et al. FroCoS 2009 40/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.3 Multi-Context Systems

MCS vs. HEX programs

MCSs take a global state view, HEX programs a local model view

Modeling M = (C1, . . . , Cn)
• as a collection (P1, . . . , Pn) of HEX programs is not feasible.
• in a single HEX program PM is feasible (under conditions).

Idea: Model formulas (rl : pl) in bridge rules by external atoms
&con_rl[](apl) being true iff pl is in belief set Srl (apl is a name for pl).

Subtle problem: nondeterminism in context Ci

For the same kbi, Ci might have multiple possible belief sets;

How to ensure that different atoms &con_rl[](·) model access to
the same belief set?

Possible, if each belief set Si is uniquely identified by a (small)
subset (kernel, exists in many logics)

T. Eiter et al. FroCoS 2009 40/51

Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.3 Multi-Context Systems

MCS vs. HEX programs

MCSs take a global state view, HEX programs a local model view

Modeling M = (C1, . . . , Cn)
• as a collection (P1, . . . , Pn) of HEX programs is not feasible.
• in a single HEX program PM is feasible (under conditions).

Idea: Model formulas (rl : pl) in bridge rules by external atoms
&con_rl[](apl) being true iff pl is in belief set Srl (apl is a name for pl).

Subtle problem: nondeterminism in context Ci

For the same kbi, Ci might have multiple possible belief sets;

How to ensure that different atoms &con_rl[](·) model access to
the same belief set?

Possible, if each belief set Si is uniquely identified by a (small)
subset (kernel, exists in many logics)

T. Eiter et al. FroCoS 2009 40/51

Nonmonotonic KBS with External Sources 4. Outlook and Conclusion

Ongoing Work at KBS

Modular HEX programs:

• Formalisms and reasoning techniques
• Algorithms (local and distributed)
• Reasoning framework (e.g., host for distributed SPARQL)

Inconsistency Management for Knowledge Integration Systems:

• A general formalism and basic methods for inconsistency
management in MCSs.

• Algorithms for their practical realization.
• Applications; e.g., Argumentation Context Systems (ACSs) [Brewka

and E_, 2009]

integrate individual Dung-style argumentation frameworks A1, . . . ,An

mediator Mi configures Ai with input from Aj’s and manages arising
inconsistency.

Theory, proofs of concepts, prototypes

T. Eiter et al. FroCoS 2009 41/51

Nonmonotonic KBS with External Sources 4. Outlook and Conclusion

Conclusion

Summary

Need for knowledge bases with access to external sources

Several ASP extensions address this, featuring non-monotonicty

Different types and settings (environment view, reduct)

An interesting area of research

Issues

Formalisms and semantics: incompleteness, approximation

Algorithms and methods: heterogenity, distribution, optimization
(e.g., source access)

Implementation: reasoning platforms

Applications

T. Eiter et al. FroCoS 2009 42/51

References I

Anastasia Analyti, Grigoris Antoniou, and Carlos Viegas Damásio.

A principled framework for modular web rule bases and its semantics.

In Proc. 11th Int’l Conf. Principles of Knowledge Representation and
Reasoning (KR2008), pages 390–400. AAAI Press, September 2008.

Chitta Baral, Juraj Dzifcak, and Hiro Takahashi.

Macros, Macro calls and Use of Ensembles in Modular Answer Set
Programming.

In Proceedings of the 22th International Conference on Logic Programming
(ICLP 2006), number 4079 in LNCS, pages 376–390. Springer, 2006.

Chitta Baral.

Knowledge Representation, Reasoning and Declarative Problem Solving.

Cambridge University Press, 2003.

References II

Gerd Brewka and Thomas Eiter.

Equilibria in Heterogeneous Nonmonotonic Multi-Context Systems.

In AAAI-2007, pages 385–390. AAAI Press, 2007.

Gerd Brewka and Thomas Eiter.

Argumentation context systems: A framework for abstract group
argumentation.

In Esra Erdem, Fangzhen Lin, and Torsten Schaub, editors, Proceedings of
the 10th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2009), volume 5753 of LNCS, pages
44–57. Springer, 2009.

G. Brewka, F. Roelofsen, and L. Serafini.

Contextual default reasoning.

In International Joint Conference on Artificial Intelligence (IJCAI 07), 2007.

References III

Francesco Calimeri, Susanna Cozza, and Giovambattista Ianni.

External sources of knowledge and value invention in logic programming.

Annals of Mathematics and Artificial Intelligence, 50(3-4):333–361, 2007.

Minh Dao Tran, Thomas Eiter, Michael Fink, and Thomas Krennwallner.

Modular nonmonotonic logic programming revisited.

In P.M. Hill and D.S. Warren, editors, Proceedings 25th International
Conference on Logic Programming (ICLP 2009), number 5649 in LNCS,
pages 145–159. Springer, 2009.

Phan Minh Dung.

On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games.

Artif. Intell., 77(2):321–358, 1995.

References IV

Thomas Eiter, Georg Gottlob, and Helmuth Veith.

Modular Logic Programming and Generalized Quantifiers.

In LPNMR-1997, volume 1265 of LNCS, pages 290–309. Springer, 1997.

Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans
Tompits.

A Uniform Integration of Higher-Order Reasoning and External Evaluations
in Answer Set Programming.

In IJCAI-05, pages 90–96. Professional Book Center, 2005.

Wolfgang Faber, Nicola Leone, and Gerald Pfeifer.

Recursive aggregates in disjunctive logic programs: Semantics and
complexity.

In JELIA 2004, volume 3229 of LNCS, pages 200–212. Springer,
September 2004.

References V

Michael Gelfond and Vladimir Lifschitz.

The Stable Model Semantics for Logic Programming.

In ICLP-1988, pages 1070–1080, Cambridge, Mass., 1988. MIT Press.

Michael Gelfond and Vladimir Lifschitz.

Classical negation in logic programs and deductive databases.

New Generation Computing, 9:365–385, 1991.

F. Giunchiglia and L. Serafini.

Multilanguage hierarchical logics, or: How we can do without modal logics.

Artificial Intelligence, 65(1):29–70, 1994.

Stijn Heymans and Ioan Toma.

Ranking services using fuzzy hex-programs.

In Diego Calvanese and Georg Lausen, editors, RR 2008, volume 5341 of
LNCS, pages 181–196. Springer, 2008.

References VI

Robert Hoehndorf, Frank Loebe, Janet Kelso, and Heinrich Herre.

Representing default knowledge in biomedical ontologies: Application to
the integration of anatomy and phenotype ontologies.

BMC Bioinformatics, 8(1):377, 2007.

Giovambattista Ianni, Guiseppe Ielpa, Adriana Pietramala, and
Maria Carmela Santoro.

Answer Set Programming with Templates.

In Proceedings of the 2nd International Answer Set Programming
Workshop (ASP’03), CEUR Workshop Proceedings. CEUR WS, 2003.

Tomi Janhunen, Emilia Oikarinen, Hans Tompits, and Stefan Woltran.

Modularity Aspects of Disjunctive Stable Models.

In Proceedings of the 9th International Conference on Logic Programming
and Nonmonotonic Reasoning, volume 4483 of LNCS, pages 175–187.
Springer, May 2007.

References VII

Vladimir Lifschitz.

Answer set planning.

In ICLP, pages 23–37, 1999.

Vladimir Lifschitz.

Answer Set Programming and Plan Generation.

Artificial Intelligence, 138:39–54, 2002.

Vladimir Lifschitz.

Twelve definitions of a stable model.

In ICLP 2008, pages 37–51, 2008.

Victor W. Marek and Mirosław Truszczyński.

Stable Models and an Alternative Logic Programming Paradigm.

In K. Apt, V. W. Marek, M. Truszczyński, and D. S. Warren, editors, The
Logic Programming Paradigm – A 25-Year Perspective, pages 375–398.
Springer, 1999.

References VIII

J. McCarthy.

Generality in artificial intelligence.

Commun. ACM, 30(12):1029–1035, 1987.

Ilkka Niemelä.

Logic Programming with Stable Model Semantics as Constraint
Programming Paradigm.

Annals of Mathematics and Artificial Intelligence, 25(3–4):241–273, 1999.

Davy Van Nieuwenborgh, Martine De Cock, and Dirk Vermeir.

Computing Fuzzy Answer Sets Using dlvhex.

In ICLP 2007, volume 4670 of LNCS, pages 449–450. Springer, 2007.

Davy Van Nieuwenborgh, Thomas Eiter, and Dirk Vermeir.

Conditional Planning with External Functions.

In LPNMR 2007, volume 4483 of LNCS, pages 214–227. Springer, 2007.

References IX

David Pearce.

Equilibrium logic.

Annals of Mathematics and Artificial Intelligence, 47(1-2):3–41, 2006.

Axel Polleres.

From SPARQL to rules (and back).

In Proceedings of the 16th International Conference on World Wide Web
(WWW), pages 787–796. ACM, 2007.

F. Roelofsen and L. Serafini.

Minimal and absent information in contexts.

In Proc. IJCAI-05, 2005.

Ksenia Rybenko.

Collaborative process management in construction by means of rules and
ontologies, June 2009.

References X

Roman Schindlauer.

Answer-Set Programming for the Semantic Web.

PhD thesis, Vienna University of Technology, Austria, December 2006.

V.S. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Ozcan, and
R. Ross.

Heterogeneous Agent Systems: Theory and Implementation.

MIT Press, 2000.

Giorgio Terracina, Nicola Leone, Vincenzino Lio, and Claudio Panetta.

Experimenting with recursive queries in database and logic programming
systems.

TPLP, 8(2):129–165, 2008.

Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf.

The Well-Founded Semantics for General Logic Programs.

Journal of the ACM, 38(3):620–650, 1991.

Nonmonotonic KBS with External Sources 6. Appendix 6.1 Nonmonotonic Modular Logic Programs

Example MLP: Checking Even

P = (m1, m2, m3), where m1 = (P1, R1),
m2 = (P2[q2], R2), m3 = (P3[q3], R3).

R1 = {q(a). q(b). ok← P2[q].even.}

R2 =


q′2(X)∨q′2(Y)← q2(X), q2(Y),

X 6= Y.

skip2 ← q2(X), not q′2(X).
even ← not skip2.

even ← skip2, P3[q′2].odd.



R3 =


q′3(X)∨q′3(Y)← q3(X), q3(Y),

X 6= Y.

skip3 ← q3(X), not q′3(X).
odd ← skip3, P2[q′3].even.



main():

n := |q|
if even(n) then return ok

even(n):

n′ := n− 1
if n′ < 0 then return true
if n′ = 0 then return false
if odd(n′) then return true
else return false

odd(n):

n′ := n− 1
if even(n′) then return true
else return false

T. Eiter et al. FroCoS 2009 47/51

Nonmonotonic KBS with External Sources 6. Appendix 6.1 Nonmonotonic Modular Logic Programs

Example MLP: Checking Even

P = (m1, m2, m3), where m1 = (P1, R1),
m2 = (P2[q2], R2), m3 = (P3[q3], R3).

R1 = {q(a). q(b). ok← P2[q].even.}

R2 =


q′2(X)∨q′2(Y)← q2(X), q2(Y),

X 6= Y.

skip2 ← q2(X), not q′2(X).
even ← not skip2.

even ← skip2, P3[q′2].odd.



R3 =


q′3(X)∨q′3(Y)← q3(X), q3(Y),

X 6= Y.

skip3 ← q3(X), not q′3(X).
odd ← skip3, P2[q′3].even.



main():

n := |q|
if even(n) then return ok

even(n):

n′ := n− 1
if n′ < 0 then return true
if n′ = 0 then return false
if odd(n′) then return true
else return false

odd(n):

n′ := n− 1
if even(n′) then return true
else return false

T. Eiter et al. FroCoS 2009 47/51

Nonmonotonic KBS with External Sources 6. Appendix 6.1 Nonmonotonic Modular Logic Programs

Example MLP: Checking Even

P = (m1, m2, m3), where m1 = (P1, R1),
m2 = (P2[q2], R2), m3 = (P3[q3], R3).

R1 = {q(a). q(b). ok← P2[q].even.}

R2 =


q′2(X)∨q′2(Y)← q2(X), q2(Y),

X 6= Y.

skip2 ← q2(X), not q′2(X).
even ← not skip2.

even ← skip2, P3[q′2].odd.



R3 =


q′3(X)∨q′3(Y)← q3(X), q3(Y),

X 6= Y.

skip3 ← q3(X), not q′3(X).
odd ← skip3, P2[q′3].even.



main():

n := |q|
if even(n) then return ok

even(n):

n′ := n− 1
if n′ < 0 then return true
if n′ = 0 then return false
if odd(n′) then return true
else return false

odd(n):

n′ := n− 1
if even(n′) then return true
else return false

T. Eiter et al. FroCoS 2009 47/51

Nonmonotonic KBS with External Sources 6. Appendix 6.1 Nonmonotonic Modular Logic Programs

Example MLP: Checking Even

P = (m1, m2, m3), where m1 = (P1, R1),
m2 = (P2[q2], R2), m3 = (P3[q3], R3).

R1 = {q(a). q(b). ok← P2[q].even.}

R2 =


q′2(X)∨q′2(Y)← q2(X), q2(Y),

X 6= Y.

skip2 ← q2(X), not q′2(X).
even ← not skip2.

even ← skip2, P3[q′2].odd.



R3 =


q′3(X)∨q′3(Y)← q3(X), q3(Y),

X 6= Y.

skip3 ← q3(X), not q′3(X).
odd ← skip3, P2[q′3].even.



main():

n := |q|
if even(n) then return ok

even(n):

n′ := n− 1
if n′ < 0 then return true
if n′ = 0 then return false
if odd(n′) then return true
else return false

odd(n):

n′ := n− 1
if even(n′) then return true
else return false

T. Eiter et al. FroCoS 2009 47/51

Nonmonotonic KBS with External Sources 6. Appendix 6.1 Nonmonotonic Modular Logic Programs

Example MLP: Checking Even

P = (m1, m2, m3), where m1 = (P1, R1),
m2 = (P2[q2], R2), m3 = (P3[q3], R3).

R1 = {q(a). q(b). ok← P2[q].even.}

R2 =


q′2(X)∨q′2(Y)← q2(X), q2(Y),

X 6= Y.

skip2 ← q2(X), not q′2(X).
even ← not skip2.

even ← skip2, P3[q′2].odd.



R3 =


q′3(X)∨q′3(Y)← q3(X), q3(Y),

X 6= Y.

skip3 ← q3(X), not q′3(X).
odd ← skip3, P2[q′3].even.



main():

n := |q|
if even(n) then return ok

even(n):

n′ := n− 1
if n′ < 0 then return true
if n′ = 0 then return false
if odd(n′) then return true
else return false

odd(n):

n′ := n− 1
if even(n′) then return true
else return false

T. Eiter et al. FroCoS 2009 47/51

Nonmonotonic KBS with External Sources 6. Appendix 6.1 Nonmonotonic Modular Logic Programs

Example MLP: Checking Even

P = (m1, m2, m3), where m1 = (P1, R1),
m2 = (P2[q2], R2), m3 = (P3[q3], R3).

R1 = {q(a). q(b). ok← P2[q].even.}

R2 =


q′2(X)∨q′2(Y)← q2(X), q2(Y),

X 6= Y.

skip2 ← q2(X), not q′2(X).
even ← not skip2.

even ← skip2, P3[q′2].odd.



R3 =


q′3(X)∨q′3(Y)← q3(X), q3(Y),

X 6= Y.

skip3 ← q3(X), not q′3(X).
odd ← skip3, P2[q′3].even.



main():

n := |q|
if even(n) then return ok

even(n):

n′ := n− 1
if n′ < 0 then return true
if n′ = 0 then return false
if odd(n′) then return true
else return false

odd(n):

n′ := n− 1
if even(n′) then return true
else return false

T. Eiter et al. FroCoS 2009 47/51

Nonmonotonic KBS with External Sources 6. Appendix 6.1 Nonmonotonic Modular Logic Programs

Example MLP: Checking Even

P = (m1, m2, m3), where m1 = (P1, R1),
m2 = (P2[q2], R2), m3 = (P3[q3], R3).

R1 = {q(a). q(b). ok← P2[q].even.}

R2 =


q′2(X)∨q′2(Y)← q2(X), q2(Y),

X 6= Y.

skip2 ← q2(X), not q′2(X).
even ← not skip2.

even ← skip2, P3[q′2].odd.



R3 =


q′3(X)∨q′3(Y)← q3(X), q3(Y),

X 6= Y.

skip3 ← q3(X), not q′3(X).
odd ← skip3, P2[q′3].even.



main():

n := |q|
if even(n) then return ok

even(n):

n′ := n− 1
if n′ < 0 then return true
if n′ = 0 then return false
if odd(n′) then return true
else return false

odd(n):

n′ := n− 1
if even(n′) then return true
else return false

T. Eiter et al. FroCoS 2009 47/51

Nonmonotonic KBS with External Sources 6. Appendix 6.1 Nonmonotonic Modular Logic Programs

Checking Even (ctd)

P = (m1, m2, m3), where m1 = (P1, R1),
m2 = (P2[q2], R2), m3 = (P3[q3], R3).

R1 = {q(a). q(b). ok← P2[q].even.}

R2 =


q′2(X)∨q′2(Y)← q2(X), q2(Y),

X 6= Y.

skip2 ← q2(X), not q′2(X).
even ← not skip2.

even ← skip2, P3[q′2].odd.



R3 =


q′3(X)∨q′3(Y)← q3(X), q3(Y),

X 6= Y.

skip3 ← q3(X), not q′3(X).
odd ← skip3, P2[q′3].even.



M

M1/∅ : {ok, q(a), q(b)}

M2/{q2(a), q2(b)} :{
even, skip2,
q2(a), q2(b), q′2(b)

}
M2/∅ : {even}

...

M3/{q3(b)} :

{odd, skip3, q3(b)}
...

T. Eiter et al. FroCoS 2009 48/51

Nonmonotonic KBS with External Sources 6. Appendix 6.2 Nonmonotonic Multi Context Systems

Argumentation Context Systems (ACSs)

Nonmonotonic MCS neglect two important aspects:

1 What if information provided by different contexts is conflicting?
2 What if a context does not only add information?

ACSs provide an answer to these questions.

Focus on a particular type of local reasoners:
Dung-style argumentation frameworks [Dung, 1995]

Goals are achieved by introducing mediators.

T. Eiter et al. FroCoS 2009 49/51

Nonmonotonic KBS with External Sources 6. Appendix 6.2 Nonmonotonic Multi Context Systems

Argumentation Modules

Med

A

An argumentation moduleM is equipped with a mediator Med
which can “listen" to other modules and “talk" to the argumentation
framework A ofM.
Med sets an argumentation context for A (semantics, reasoning
mode, etc) expressed in a description language, depending on local
and imported information, using bridge rules
inconsistencies in the setting are treated using a parametric
inconsisteny handling method

T. Eiter et al. FroCoS 2009 50/51

Nonmonotonic KBS with External Sources 6. Appendix 6.2 Nonmonotonic Multi Context Systems

Example ACS

Med3 Med4

Med1 Med2

A1 A2

A3 A4

An argumentation context system.

T. Eiter et al. FroCoS 2009 51/51

	Introduction
	Answer Set Programming (ASP)
	ASP with External Sources
	HEX Programs
	Modular LPs
	Multi-Context Systems

	Outlook and Conclusion
	Appendix
	References
	Appendix
	
	

