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Nonmonotonic KBS with External Sources 1. Introduction

Recent Developments

Traditional KR: monolithic, closed reasoning systems
The World Wide Web
Wealth of data / knowledge sources
Distributed, open systems

Urgent Need

access to external sources
cope with heterogenity
incompleteness
recurrent data access
dynamics

Issues:
Semantics
Algorithms, Implementations
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Nonmonotonic KBS with External Sources 1. Introduction

Aim of this Talk

Present some formalisms that combine possibly nonmonotonic
knowledge bases with external sources

Nonmonotonic formalisms have long tradition in Knowledge
Representation and Reasoning

Focus: recent work of KBS Group @ TU Vienna and colleagues

Observations:

• Principled issues
• Research problems (theory, implementation)
• On target for combining systems
• . . . to new frontiers
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Nonmonotonic KBS with External Sources 1. Introduction

Historic Background

Work @ KBS/DBAI groups of TU Vienna in the 1990’s:

Nonmonotonic Reasoning, Logic Progamming (DLV)

Logic programs with generalized quantifiers [E_ et al., 1997]

Incorporate Lindström type quantifiers (“majority”, ... ) into LPs

friendly_guy(X)← most[likes](X)

Similar to use of GQs in databases / finite model theory (avg, min, ...)

IMPACT agent platform [Subrahmanian et al., 2000]

Do notify(P, M)← P inform(P, M), in(P, db:getClients()), not urgent(M)

But: embryonic; limitations, drawbacks

Around 2000: Emergence of Answer Set Programming
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Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Answer Set Programming (ASP)

Answer Set Programming (ASP) is a recent declarative problem
solving approach.

The term was coined by Lifschitz [1999,2002].

Proposed by other people at about the same time, e.g. [Marek and
Truszczyński, 1999], [Niemelä, 1999].

It has roots in KR, logic programming, and nonmonotonic reasoning.

At an abstract level, relates to SAT solving and CSP.

Early book: [Baral, 2003]

To date, ASP languages and systems are a major tool for building
non-monotonic knowledge bases.
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Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Roadmap

1. Introduction

2. Answer Set Programming (ASP)

3. ASP with External Sources
3.1 HEX Programs
3.2 Modular LPs
3.3 Multi-Context Systems

4. Outlook and Conclusion
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Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Logic Programs with Negation

“War of Semantics” in Logic Programming (1980/90ies)

Meaning of programs with negation “not” like the following:

man(joe).
single(X)← man(X), not husband(X).
husband(X)← man(X), not single(X).

Intuitive models: M1 = {man(joe), single(joe)}, M2 = {man(joe), husband(joe)}.
Prolog: ???

Great Schism: Single model vs. multiple model semantics

• Well-Founded Semantics [Van Gelder et al., 1991]: partial model,
where man(joe) is true, single(joe), husband(joe) are unknown

• Answer Set (Stable Model) Semantics by Gelfond and Lifschitz
[1988,1991]: Alternative models M1, M2.

Shift in LP: compute Answer Sets (=models), not proofs!
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Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

ASP Paradigm

General idea: answer sets provide solutions!

Problem 

Instance I Program P
Encoding: Model(s)

Solution(s)
ASP Solver

1 Encode problem instance I as a (non-monotonic) logic program P, such
that solutions of I are represented by models of P

2 Compute some model M of P, using an ASP solver

3 Extract a solution for I from M.

Variant: Compute multiple models (for multiple / all solutions)

Often: Decompose I into problem specification and data

Note: Related to SAT Solving/CSP, but ASP offers special features
(variables, supports transitivity)
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Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Answer Set Solvers

DLV http://www.dbai.tuwien.ac.at/proj/dlv/ *
Smodels http://www.tcs.hut.fi/Software/smodels/ **

GnT http://www.tcs.hut.fi/Software/gnt/
Cmodels http://www.cs.utexas.edu/users/tag/cmodels/

ASSAT http://assat.cs.ust.hk/
NoMore(++) http://www.cs.uni-potsdam.de/~linke/nomore/

Platypus http://www.cs.uni-potsdam.de/platypus/
clasp http://www.cs.uni-potsdam.de/clasp/

XASP http://xsb.sourceforge.net, distributed with XSB v2.6
aspps http://www.cs.engr.uky.edu/ai/aspps/
ccalc http://www.cs.utexas.edu/users/tag/cc/

* + extensions (DLVHEX, DVLDB, DLT, ...) ** + Smodels_cc

Several provide a number of extensions to the language described here.

ASP Solver competition: see LPNMR conference (2009 edition this week!);

Benchmark platform: http://asparagus.cs.uni-potsdam.de/

Note: clasp wins the crafted instances categories a) SAT+UNSAT and b)
UNSAT instances of the SAT Competition 2009.
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Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Answer Set Programs

Disjunctive Logic Program

A (disjunctive) logic program P is a (finite) set of rules of the form

a1 ∨ · · · ∨ al ← b1, . . . , bm, not c1, . . . , not cn

where all ai, bj, ck are literals of the form p or ¬p, where p is a first-order atom
over a (classical) first-order vocabulary.

Standard ASP has no function symbols

“¬” is called strong negation (also written as “–”)

In normal programs, the rule head is a single literal (l = 1)

(Extended) Herbrand Base

HBP is the set of all ground (variable-free) literals p and ¬p with predicates and
ground terms constructible from P.
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Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Answer Sets

Answer Sets are based on 3-valued Herbrand Interpretations (=consistent
sets of ground literals M ⊆ HBP), with incomplete information

For programs without “¬,” they are also called “stable models” and viewed
2-valued, with complete information about the world.

Satisfaction

An interpretation M ⊆ HBP satisfies

• a ground rule a1 ∨ · · · ∨ ak ← b1, . . . , bm, not c1, . . . , not cn,

if {b1, . . . , bm} ⊆ M and M ∩ {c1, . . . , cn} = ∅ implies
M ∩ {a1, . . . , ak} 6= ∅.

• a ground program P, if M satisfies each r ∈ P.

• a rule r, if M satisfies each r′ ∈ grnd(r), where grnd(r) is the set of
of all ground instances of r.

• a program P, if M satisfies grnd(P) =
⋃

r∈P grnd(r).
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Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

For not-free (“positive”) programs, an intuitive semantics are minimal
models:

Minimal Model

An interpretation M ⊆ HBP is minimal model of P, if (i) M satisfies P and
(ii) no N ⊂ M satisfies P.

Key idea for arbitrary programs: elimination of not

Gelfond-Lifschitz (GL) reduct PM

Given program P, remove from grnd(P)

1 every rule a1 ∨ · · · ∨ ak ← b1, . . . , bm, not c1, . . . , not cn where
some ci is in M, and

2 all literals not cj from the remaining rules.

Use M as an assumption on how negation finally evaluates.
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Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Answer Set

M is an answer set of P iff M is a minimal model of PM.

M satisfies all rules of P

Moreover, P can “reproduce” M with an assumption on how
negation finally evaluates (stability)

Note: for normal P, “a minimal” = “the least”

For positive P, PM = P, so the answer sets coincide with the minimal
models

Many equivalent definitions of answer sets / stable models exist
[Lifschitz, 2008]

E.g., Answer sets can be reconstructed in the logic of Here and
There (Equilibrium Logic [Pearce, 2006])
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Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Example

P = { person(joey);

male(X) ∨ female(X)← person(X);

bachelor(X)← male(X), not married(X) }

Grounding of P

M1 = {person(joey), male(joey), bachelor(joey)} is “stable”

M1 is a minimal model of PM1

M2 = {person(joey), male(joey), married(joey)} is not stable

M2 is not a minimal model of PM2

Further answer set: M3 = {person(joey), female(joey)}
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Example

PM2 = { person(joey);

male(joey) ∨ female(joey)← person(joey);

((((((((((((((((((((
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Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

Constraints

Consider the program

P = { p← not p. }

This program has NO answer sets.

Let P be a program and p be a new atom.

Then, adding
p← not p, a1, . . . , an not b1, . . . , not bm.

to P “kills” each answer set M of P containing all ai and no bj.

Constraint

← a1, . . . , an not b1, . . . , not bm.
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Nonmonotonic KBS with External Sources 2. Answer Set Programming (ASP)

ASP Applications

See http://www.kr.tuwien.ac.at/projects/WASP/report.html

information integration

constraint satisfaction, configuration

planning, routing

diagnosis

security analysis

Semantic Web

computer-aided verification

biology / biomedicine

knowledge management

. . .

ASP Showcase: http://www.kr.tuwien.ac.at/projects/WASP/showcase.html
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Nonmonotonic KBS with External Sources 3. ASP with External Sources

ASP with External Sources

Issues

Interface / integrate with external sources.

Despite possible heterogenous semantics, keep ASP spirit for the
semantics.

Scenarios

ASP Program External Source

Import of information: add facts

Bidirectional information flow:

• For ASP, a nontrivial aspect in general
• Specifically, in case of recursion (minimality, stability)
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Formalisms and Systems

A variety of formalisms and systems has been proposed, e.g.,
• GQLPs [E_ et al., 1997], MLPs [Dao Tran et al., 2009],

DLP Functions [Janhunen et al., 2007]

• DLVEX [Calimeri et al., 2007], HEX programs [E_ et al., 2005],
DLVDB [Terracina et al., 2008]

• Nonmonotonic Multi-Context Systems [Brewka and E_, 2007]

Related: Macros [Baral et al., 2006], Templates [Ianni et al., 2003],
MWeb [Analyti et al., 2008] etc.

The proposals are different, yet not unrelated. Superficially,
• MLPs can be viewed as special setting for HEX programs
• MCSs are a kind of generalization of HEX programs

But: relation not by intent; underlying philosophy/assumptions vary

Systematic view helps

T. Eiter et al. FroCoS 2009 18/51
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Two Major Aspects

reduct GL-style FLP

world view

local model GQLPs, HEX

globale state MCS, MLPs

Collection KB = KB1, . . . , KBn of knowledge bases / sources KBi

environment (world) view

• individual: purely local models Mi for each KBi; semantics of KB
emerges implicitly

• societal: global state S = (S1, . . . , Sn) of local models Si of KBi;
S is explicitly accessible⇒ global state preference

Loosely speaking, Nash equilibria vs Pareto-optimality.

T. Eiter et al. FroCoS 2009 19/51
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reduct

GL-style FLP

world view

local model

GQLPs HEX

globale state

MCS MLPs

Collection KB = KB1, . . . , KBn of knowledge bases

program reduct:

• GL-style reduct PI

• FLP reduct fPI [Faber et al., 2004]

fPI = {Head←Body ∈ grnd(P) | I satisfies Body }.

for ordinary ASP programs, GL and FLP reduct are equivalent

For ASP extensions, FLP retains minimality of models, but not GL.

Other formalisms fit (e.g., dl-programs (ASP+DL): GL-style/local model)

T. Eiter et al. FroCoS 2009 20/51
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HEX Programs

Designed to meet needs of heterogenous data access on the Web

Generalizes earlier description logic programs which provide ASP
programs with query access to an OWL logic ontology.

Allow to access sources of whatever type (no restriction; abstract
modeling)

Features:
• Higher-Order atoms: variables for predicate names (syntactic sugar)
• External atoms: access to external sources (increases expressivity)

Type: FLP reduct / local model
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An Example

invites(john, X) ∨ skip(X)←X 6= john,

&DL_Query[my_ontology, relativeOf ](john, X).
someInvited ←invites(john, X).

← not someInvited.

←&degs[invites](Min, Max), Max > 2.

Example
Input: Data about John’s relatives (from an ontology)

Output: Possible picks for persons John might want to invite, according
to some constraints (some evaluated externally)

T. Eiter et al. FroCoS 2009 22/51
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&DL_Query[my_ontology, relativeOf ](john, X) (1)

&degs[invites](Min, Max) (2)

External Atom

In general, an external atom a is of the form

&g[Y1, . . . , Yn](X1, . . . , Xm) , (3)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input and
output lists, respectively), and &g is an external predicate name.

External atoms may occur only in rule bodies; disregard ¬.

Each &g is associated with an evaluation function f&g
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Example

&DL_Query corresponds to f&DL_Query.

Informally,

&DL_Query[my_ontology, relativeOf ](john, c)

is true if relativeOf (john, c) is provable in my_ontology.

This is formally captured via f&DL_Query:

For a given interpretation I,

I |= &DL_Query[my_ontology, relativeOf ](john, c)

iff

f&DL_Query(I, my_ontology, relativeOf , john, c) = 1
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Semantics of HEX programs P

Higher order atoms T0(T1, . . . , Tn) are grounded to t0(t1, . . . , tn).

Herbrand base HBP: all ground (ordinary, external) atoms.

Interpretations

An interpretation is any subset I ⊆ HBP containing only ordinary atoms.

Satisfaction and Answer Sets

As for ordinary ASP programs, where

I satisfies any ground higher-order atom a ∈ HBP iff a ∈ I.

I satisfies any ground a = &g[y1, . . . , yn](x1, . . . , xm) iff
f&g(I, y1, . . . , yn, x1, . . . , xm) = 1, where f&g is a fixed (n+m+1)-ary function
with range {0, 1} for &g (I ⊆ HBP, xi, yj ground terms).

For answer sets, use FLP reduct instead of GL reduct:

Interpretation I is an answer set of P, iff I is a minimal model of fPI .
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Choice of FLP Reduct

Proposition

Every answer set of a HEX-program P is a minimal model of P.

This fails for the GL-reduct PI in place of fPI .

Example

p(a)← not &neg[p](a)

Suppose f&neg(I, p) computes the complement of p (negation)

Under GL-reduct, both ∅ and {p} are answer sets

Under FLP-reduct, only ∅ is an answer set

However, GL and FLP reduct are equivalent for monotonic external atoms.

Theorem

Suppose in P all external atoms α are monotonic, i.e., for each α′ ∈ grnd(α),
I ⊆ J ⊆ HBP ∧ I |= α′ implies J |= α′. Then ansGL(P) = ansFLP(P).
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Implementation

Algorithms: reduction to ordinary ASP, generalization of techniques

System prototype: dlvhex
http://www.kr.tuwien.ac.at/research/systems/dlvhex/

Flexible, modular architecture

External atoms are realized by plugins (loaded at run-time)

Pool of plugins available

New plugins can be defined by the user

T. Eiter et al. FroCoS 2009 27/51
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Applications

Fuzzy ASP [Nieuwenborgh et al., 2007a], [Heymans and Toma,
2008]

Planning with Sensing [Nieuwenborgh et al., 2007b]

Biomedical ontologies [Hoehndorf et al., 2007]

Haplotype inference

Web querying (SPARQL) [Polleres, 2007]

Data integration

Trust management [Schindlauer, 2006]

Process management in building construction [Rybenko, 2009]
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Modular Nonmonotonic Logic Programs (MLPs)

Goal: Structured programming

In ASP, different directions:

• Programming in the large: compositional operators

E.g., DLP-functions [Janhunen et al., 2007]

• Programming in the small: abstraction and scoping

E.g., Generalized Quantifiers [E_ et al., 1997], Macros [Baral et al.,
2006], Templates [Ianni et al., 2003]

Our aim: Provide module (“procedure”) concept as in ordinary
programming
• realize libraries, code reuse

MLPs: look like special HEX programs, but are different

Type: FLP reduct / global state
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Program Modules

Conventional programming:

Definition:
proc p(var x, y: int): int

begin
...

end p;

Use: x := p(y, z);

Nonmonotonic LP:

Definition:

Module m = (P[q1, q2], R), where
• P is a module name
• q1, q2 are predicate names
• R is a set of rules

Use: p(X)← P[r, s].even

Modular Logic Program

A modular (nonmonotonic) logic program (MLP) P = (m1, . . . , mn), n ≥ 1,
consists of modules mi = (Pi[~qi], Ri) where at least one mi has void ~qi.

Rule bodies may contain module atoms P[p1, . . . , pk].o(t1, . . . , tl), where
p1, . . . , pk are predicate names and o(t1, . . . , tl) is an ordinary atom.
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Semantics (Essentials)

For module mi = (Pi[~qi]; Ri), each interpretation S of ~qi yields an
instance of mi, named Pi[S].
An interpretation M = (Mi/S | Pi[S]) of P consists of ordinary
interpretations Mi/S for all instances Pi[S] of all modules mi in P.

(global state)
In Pi[S],
• ordinary o(~t) evaluates to o(~t) ∈ Mi/S;
• Pj[~pj].o(~t) evaluates to o(~t) ∈ Mj/S′ where S′ takes the value of ~p in

Mi/S (call by value).

For answer sets, extend notion of minimal model and FLP reduct to
P (componentwise, i.e., for all Pi[S]).

Natural Question

Can’t each module be simply cast to a HEX program
(module atom = external atom)?
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Difference: Global minimization (essential for loops, recursion)

Example

P1 : a← P2[ ].b P2 : b← P1[ ].a

Answer set: M1 = (∅, ∅)

Non-minimal model: M2 = ({a}, {b})

As HEX programs, P1 and P2 have also M2 as answer set.

Note: MLPs exclude infinite recursion.

Still the semantics is very expressive (2-NEXPNP vs. NEXPNP).

Preliminary GQLPs had no recursion, used GL reduct and local models

Refined MLP semantics takes relevant module calls into account.
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Multi-Context Systems

In AI, McCarthy [1987] first investigated contexts.

Intuitively, a multi-context system describes the information available in
several contexts (to people / agents/ databases etc)

The Trento School (Giunchiglia, Serafini et al.):

Information flow via bridge rules between contexts

• Heterogeneous MCS [Giunchiglia and Serafini, 1994]
• Nonmonotonic bridge rules [Roelofsen and Serafini, 2005]
• Extension to Contextual Default Logic [Brewka et al., 2007]

Nonmonotonic Multi-Context Systems [Brewka and E_, 2007]:

• abstract “logics” (description / modal / default logics, ASP, . . . )

T. Eiter et al. FroCoS 2009 33/51



Nonmonotonic KBS with External Sources 3. ASP with External Sources 3.3 Multi-Context Systems

Nonmonotonic Multi-Context Systems (MCSs)

Multi-Context System

Formally, a Multi-Context System

M = (C1, . . . , Cn)

consists of contexts

Ci = (Li, kbi, bri), i ∈ {1, . . . , n},
where

each Li is a “logic,”

each kbi is a knowledge base in Li, and

each bri is a set of Li-bridge rules over M’s logics.
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Logic

A logic L is a tuple L = (KBL, BSL, ACCL), where

KBL is a set of well-formed knowledge bases, each being a set (of
formulas)

BSL is a set of possible belief sets, each being a set (of formulas)

ACCL : KBL → 2BSL assigns each KB a set of acceptable belief sets

Thus, logic L caters for multiple extensions of a knowledge base.

Bridge Rules

A Li-bridge rule over logics L1, . . . , Ln, 1 ≤ i ≤ n, is of the form

s← (r1 : p1), . . . , (rj : pj), not (rj+1 : pj+1), . . . , not (rm : pm)

where kb ∪ {s} ∈ KBi for each kb ∈ KBi, each rk ∈ {1, . . . , n}, and each pk is in
some belief set of Lrk .

Note: Such rules are akin to rules of normal logic programs!
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Example

Suppose a MCS M = (C1, C2) has contexts that express the individual
views of a paper by the two authors.

C1:

• L1 = Classical Logic
• kb1 = { unhappy ⊃ revision }
• br1 = { unhappy← (2 : work) }

C2:

• L2 = Reiter’s Default Logic
• kb2 = { good : accepted/accepted }
• br2 = { work← (1 : revision),

good ← not (1 : unhappy) }
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Equilibrium Semantics

Belief State
A belief state is a sequence S = (S1, . . . , Sn) of belief sets Si in Li

Applicable Bridge Rules

For M = (C1, . . . , Cn) and belief state S = (S1, . . . , Sn), the bridge rule

s← (r1 : p1), . . . , (rj : pj), not (rj+1 : pj+1), . . . , not (rm : pm)

is applicable in S iff (1) pi ∈ Sri , for 1 ≤ i ≤ j, and (2) pk 6∈ Srk , for j < k ≤ m.

Equilibrium

A belief state S = (S1, . . . , Sn) of M is an equilibrium iff for all i = 1, . . . , n,

Si ∈ ACCi(kbi ∪ {head(r) | r ∈ bri is applicable in S}) .

Note: Interpretable as Nash-equilibrium of an n-player game
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Example (ctd)

Reconsider M = (C1, C2):

kb1 = { unhappy ⊃ revision } (Classical Logic)

br1 = { unhappy← (2 : work) }

kb2 = { good : accepted/accepted } (Default Logic)

br2 = { work← (1 : revision),
good ← not (1 : unhappy) }

M has two equilibria:

E1 = (Th({unhappy, revision}), Th({work})) and

E2 = (Th({unhappy ⊃ revision}), Th({good, accepted}))
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Groundedness

Problem: Equilibria admit self-justifying beliefs (loops)

Example (ctd)

Intuitively, E1 is ungrounded, since unhappy has a cyclic justification:

Accept unhappy in C1, since work is accepted in C2, since revision is
accepted in C1, since unhappy is accepted in C1.

“Groundedness” may be achieved if the logics Li have monotonic
cores MLi (kbi has a single, monotonically growing belief set).

M = (C1, . . . , Cn) has a unique minimal equilibrium wrt. the MLi.

Reduce M, given a belief state S, to MS = (CS
1, . . . , CS

n) in the MLi’s.

For bridge rules, a GL-style reduct brS
i is used.
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MCS vs. HEX programs

MCSs take a global state view, HEX programs a local model view

Modeling M = (C1, . . . , Cn)
• as a collection (P1, . . . , Pn) of HEX programs is not feasible.
• in a single HEX program PM is feasible (under conditions).

Idea: Model formulas (rl : pl) in bridge rules by external atoms
&con_rl[ ](apl) being true iff pl is in belief set Srl (apl is a name for pl).

Subtle problem: nondeterminism in context Ci

For the same kbi, Ci might have multiple possible belief sets;

How to ensure that different atoms &con_rl[ ](·) model access to
the same belief set?

Possible, if each belief set Si is uniquely identified by a (small)
subset (kernel, exists in many logics)
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Nonmonotonic KBS with External Sources 4. Outlook and Conclusion

Ongoing Work at KBS

Modular HEX programs:

• Formalisms and reasoning techniques
• Algorithms (local and distributed)
• Reasoning framework (e.g., host for distributed SPARQL)

Inconsistency Management for Knowledge Integration Systems:

• A general formalism and basic methods for inconsistency
management in MCSs.

• Algorithms for their practical realization.
• Applications; e.g., Argumentation Context Systems (ACSs) [Brewka

and E_, 2009]

integrate individual Dung-style argumentation frameworks A1, . . . ,An

mediator Mi configures Ai with input from Aj’s and manages arising
inconsistency.

Theory, proofs of concepts, prototypes
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Nonmonotonic KBS with External Sources 4. Outlook and Conclusion

Conclusion

Summary

Need for knowledge bases with access to external sources

Several ASP extensions address this, featuring non-monotonicty

Different types and settings (environment view, reduct)

An interesting area of research

Issues

Formalisms and semantics: incompleteness, approximation

Algorithms and methods: heterogenity, distribution, optimization
(e.g., source access)

Implementation: reasoning platforms

Applications
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Nonmonotonic KBS with External Sources 6. Appendix 6.1 Nonmonotonic Modular Logic Programs

Example MLP: Checking Even

P = (m1, m2, m3), where m1 = (P1, R1),
m2 = (P2[q2], R2), m3 = (P3[q3], R3).

R1 = {q(a). q(b). ok← P2[q].even.}

R2 =


q′2(X)∨q′2(Y)← q2(X), q2(Y),

X 6= Y.

skip2 ← q2(X), not q′2(X).
even ← not skip2.

even ← skip2, P3[q′2].odd.



R3 =


q′3(X)∨q′3(Y)← q3(X), q3(Y),

X 6= Y.

skip3 ← q3(X), not q′3(X).
odd ← skip3, P2[q′3].even.



main():

n := |q|
if even(n) then return ok

even(n):

n′ := n− 1
if n′ < 0 then return true
if n′ = 0 then return false
if odd(n′) then return true
else return false

odd(n):

n′ := n− 1
if even(n′) then return true
else return false
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skip2 ← q2(X), not q′2(X).
even ← not skip2.

even ← skip2, P3[q′2].odd.



R3 =


q′3(X)∨q′3(Y)← q3(X), q3(Y),

X 6= Y.

skip3 ← q3(X), not q′3(X).
odd ← skip3, P2[q′3].even.



M

M1/∅ : {ok, q(a), q(b)}

M2/{q2(a), q2(b)} :{
even, skip2,
q2(a), q2(b), q′2(b)

}
M2/∅ : {even}

...

M3/{q3(b)} :

{odd, skip3, q3(b)}
...

T. Eiter et al. FroCoS 2009 48/51



Nonmonotonic KBS with External Sources 6. Appendix 6.2 Nonmonotonic Multi Context Systems

Argumentation Context Systems (ACSs)

Nonmonotonic MCS neglect two important aspects:

1 What if information provided by different contexts is conflicting?
2 What if a context does not only add information?

ACSs provide an answer to these questions.

Focus on a particular type of local reasoners:
Dung-style argumentation frameworks [Dung, 1995]

Goals are achieved by introducing mediators.
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Argumentation Modules

Med

A

An argumentation moduleM is equipped with a mediator Med
which can “listen" to other modules and “talk" to the argumentation
framework A ofM.
Med sets an argumentation context for A (semantics, reasoning
mode, etc) expressed in a description language, depending on local
and imported information, using bridge rules
inconsistencies in the setting are treated using a parametric
inconsisteny handling method
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Example ACS

Med3 Med4

Med1 Med2

A1 A2

A3 A4

An argumentation context system.
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