

UNIVERSITÀ DI TRENTO

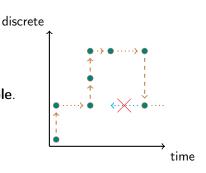
Formal Method Mod. 2 (Model Checking) Laboratory 11

Giuseppe Spallitta giuseppe.spallitta@unitn.it

Università degli studi di Trento

June 3, 2021

Timed systems

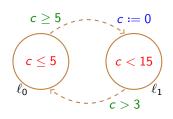

Real time systems

- Correctness depends not only on the logical result but also on the time required to compute it.
- Common in safety-critical domains like: defense, transportation, health-care, space and avionics.

Timed Transition System (TTS)

transitions are either discrete dis or time-elapses, all clocks increase of the same amount in time-elapses. Model checking for TTS is **undecidable**.

Timed Automata (TA) decidable restriction of TTS, finite time abstraction: clocks compared only to constants.


<u>a</u>

Timed Automata (TA)

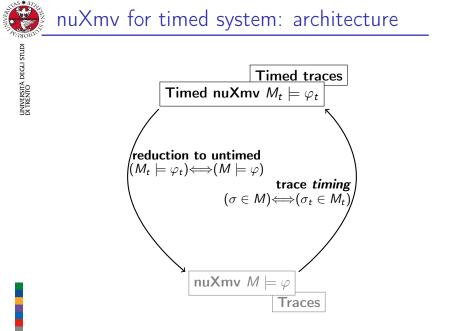
Explicit graph representation of discrete states (nodes) and transitions (edges). Symbolic representation of temporal aspects via (convex) constraints (location invariants, transition guards and resets).

Symbolic TTS

Logical formulae represent sets of states: $p := \{s \mid s \models p\}$. Transition system symbolically represented by formula $\varphi(X, X')$. There is a discrete transition from s_0 to s_1 iff $s_0(X), s_1(X') \models \varphi(X, X')$.

$$I = \ell_0 \rightarrow c \leq 5 \land$$

$$I = \ell_1 \rightarrow c < 15 \land$$


$$(I = \ell_1 \land I' = \ell_0) \rightarrow c > 3 \land$$

$$(I = \ell_0 \land I' = \ell_1) \rightarrow (c \geq 5 \land c' = 0)$$

1. Timed nuXmv

- 2. Timed and infinite traces
- 3. Exercises

Overview

- Must start with @TIME_DOMAIN continuous;
- Symbolic description of infinite transition system using: INIT, INVAR and TRANS to specify initial, invariant and transition conditions.
- Model described as a synchronous composition of MODULE instances.
- Clock variables,
- time: built-in clock variable,
- convex invariants over clocks,
- URGENT: forbid time elapse.

JNIVERSITÀ DEGLI STUD DI TRENTO

Timed nuXmv adds

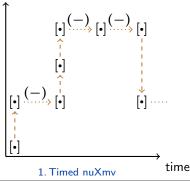
- clock variable type, all clocks increase of the same amount during timed transitions;
- time: built-in clock, can be used only in comparisons with constants;
- noncontinuous type modifier: symbol can change its assignment during timed transitions;
- URGENT: freeze time: when one of the URGENT conditions is satisfied only discrete transitions are allowed;
- $MTL_{0,\infty}$ specifications, by "extending" LTL;

Timed nuXmv updates

- TRANS constrain the discrete behaviour only,
- INVAR: clocks allowed in invariants with shape: no_clock_expr -> convex_clock_expr;
- ▶ LTL operators: X, Y, U, S,
- Bounded LTL operators.

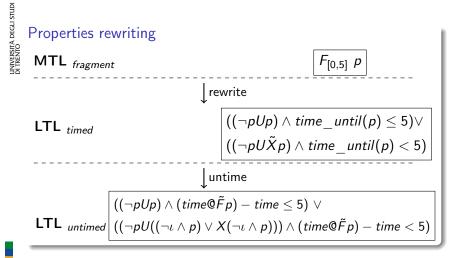
Specification

- Different operators to refer to the *discrete* next and *timed* next: X, X₂; symmetrically for the past: Y, Y₂.
- Time interval semantic to handle open intervals: a predicate p might hold in an interval (a, b] for a, b ∈ ℝ.
- Operators to retrieve value of expression the next/last time an expression will hold/held: time_until, time_since, @F~ and @O~.



JNIVERSITÀ DEGLI STUD DI TRENTO

Timed nuXmv: untiming


Timed to untimed model

- clock symbols and time: variables of type real.
- \blacktriangleright $\delta:$ continuous positive variable, prescribes the amount of time elapse for every transition.
- *i*: prescribes the alternation of singular [•] and open (-) time intervals. discrete

Timed nuXmv: untiming

1. Timed nuXmv

2. Timed and infinite traces

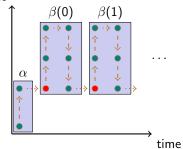
3. Exercises

à degli stud

Timed and infinite traces

From untimed model execution to timed trace.

lssue


nuXmv traces must have shape: $\alpha\beta^{\omega}$. α and β sequences of states. Complete for finite state systems. **TTS**: time monotonically increasing, infinite state system, **undecidable**. Identify traces expressible as: $\alpha\beta(i)^{\omega}$. Same problem can be found in infinite state transition systems.

Solution

Value assigned to variables at state *s* is function of the previous configuration assignments.

e.g. $next(time) := time + \delta$

discrete

iniversità degli stud di trento

Three main operations on traces: **simulation**, **execution** and **completion**.

Simulation

Build a possible execution of the model. The trace can be built automatically by the system or the user can choose each state from the list of possible ones.

Exploit SMT-solver to perform a discrete transition or time-elapse to obtain next configuration.

Execution

Check if a trace belongs to the language of the model. Exploit SMT-solver to prove that **for all** possible iterations all prescribed transition can be performed.

Completion

A partial trace is completed so that it belongs to the model language.

Sound and complete technique requires to check if there **exists** a possible completion so that the completed trace belongs to the model language: quantifier alternation $(\exists \forall)$. Adopt sound but incomplete approach.

- UNIVERSITÀ DEGLI STUDI DI TRENTO
- ./nuXmv -time -int: start nuXmv interactively and enable commands for timed models.
- go_time: process the model.
- write_untimed_model: dump SMV model corresponding to the input timed system.

- timed_check_invar: check invariants.
- timed_check_ltlspec: check LTL.
- Mostly the same command line options of the corresponding commands for untimed models.

- timed_pick_state: pick initial state.
- timed_simulate: simulate the model starting from a given
 state.
- execute_traces: re-execute stored traces.
- execute_partial_traces: try to complete stored traces.

Formally nuXmv uses a super-dense weakly-monotonic time model $T \subset \mathbb{N} \times \mathbb{R}_0^+$. A time point is a pair $\langle i, r \rangle$ where $i \in \mathbb{N}$ "counts the discrete steps" and $r \in \mathbb{R}_0^+$ is the time. We say that $\langle i, r \rangle < \langle i', r' \rangle$ iff i < i' or i = i' and r < r'.

università degli studi di trento

Semantics of temporal operators

 $\sigma,t\models\phi\text{ is defined recursively on the structure of }\phi\text{:}\\$ usual definition for predicates, conjunction and negation.

$$\begin{split} \sigma,t \models &\phi_1 U \phi_2 \text{ iff there exists } t' \geq t, \sigma, t' \models \phi_2 \text{ and} \\ &\text{for all } t'', t \leq t'' < t', \sigma, t'' \models \phi_1 \\ \sigma,t \models &\phi_1 S \phi_2 \text{ iff there exists } t' \leq t, \sigma, t' \models \phi_2 \text{ and} \\ &\text{for all } t'', t' < t'' \leq t, \sigma, t'' \models \phi_1 \\ \sigma,t \models &X \phi \text{ iff there exists } t' > t, \sigma, t' \models \phi \text{ and} \\ &\text{there exists no } t'', t < t'' < t' \\ \sigma,t \models &\tilde{X} \phi \text{ iff for all } t' > t, \text{ there exists } t'', t < t'' < t, \sigma, t'' \models \phi \\ \sigma,t \models &Y \phi \text{ iff for all } t' > t, \text{ there exists } t' < t, \sigma, t' \models \phi \text{ and} \\ &\text{there exists no } t'', t' < t'' < t \\ \sigma,t \models &Y \phi \text{ iff } t > 0 \text{ and there exists } t' < t, \sigma, t' \models \phi \text{ and} \\ &\text{there exists no } t'', t' < t'' < t \\ \end{split}$$

2. Timed and infinite traces

Let k, k1 and k2 be some constant real values such that $0 \le k \le k1 < k2$ and let b a boolean symbol. The following properties true or false? \tilde{Y}

Let k, k1 and k2 be some constant real values such that $0 \le k \le k1 < k2$ and let b a boolean symbol. The following properties true or false?

• $\tilde{Y} \top$: false in the initial state.

$$\blacktriangleright \ (\neg Xb) \to (X \neg b)$$

Let k, k1 and k2 be some constant real values such that $0 \le k \le k1 < k2$ and let b a boolean symbol. The following properties true or false?

- $\tilde{Y}\top$: false in the initial state.
- (¬Xb) → (X¬b) : false, the first one holds in every time elapse, the second one holds only in discrete steps where ¬b holds in the next state.

$$\blacktriangleright \ (\neg \tilde{X} \ b) \to (\tilde{X} \neg b)$$

Let k, k1 and k2 be some constant real values such that $0 \le k \le k1 < k2$ and let b a boolean symbol. The following properties true or false?

- $\tilde{Y}\top$: false in the initial state.
- (¬Xb) → (X¬b) : false, the first one holds in every time elapse, the second one holds only in discrete steps where ¬b holds in the next state.
- $(\neg \tilde{X} \ b) \rightarrow (\tilde{X} \neg b)$: false, as above but for time elapses. • $(X \neg b) \rightarrow (\neg Xb)$

Let k, k1 and k2 be some constant real values such that $0 \le k \le k1 < k2$ and let b a boolean symbol. The following properties true or false?

- $\tilde{Y}\top$: false in the initial state.
- (¬Xb) → (X¬b) : false, the first one holds in every time elapse, the second one holds only in discrete steps where ¬b holds in the next state.
- $(\neg \tilde{X} \ b) \rightarrow (\tilde{X} \neg b)$: false, as above but for time elapses.
- (X¬b) → (¬Xb) : true, the first one holds iff there is a discrete step and ¬b holds in the next state, hence Xb is false.
 (X̃¬b) → (¬X̃b)

Let k, k1 and k2 be some constant real values such that $0 \le k \le k1 < k2$ and let b a boolean symbol. The following properties true or false?

- $\tilde{Y}\top$: false in the initial state.
- (¬Xb) → (X¬b) : false, the first one holds in every time elapse, the second one holds only in discrete steps where ¬b holds in the next state.
- $(\neg \tilde{X} \ b) \rightarrow (\tilde{X} \neg b)$: false, as above but for time elapses.
- (X¬b) → (¬Xb) : true, the first one holds iff there is a discrete step and ¬b holds in the next state, hence Xb is false.
- $(\tilde{X} \neg b) \rightarrow (\neg \tilde{X}b)$: true, as above but for time elapses.
- ► $(G\tilde{X}\top) \rightarrow ((Gb) \lor (G\neg b))$

Let k, k1 and k2 be some constant real values such that $0 \le k \le k1 < k2$ and let b a boolean symbol. The following properties true or false?

- $\tilde{Y} \top$: false in the initial state.
- (¬Xb) → (X¬b) : false, the first one holds in every time elapse, the second one holds only in discrete steps where ¬b holds in the next state.
- $(\neg \tilde{X} \ b) \rightarrow (\tilde{X} \neg b)$: false, as above but for time elapses.
- (X¬b) → (¬Xb) : true, the first one holds iff there is a discrete step and ¬b holds in the next state, hence Xb is false.
- $(\tilde{X} \neg b) \rightarrow (\neg \tilde{X}b)$: true, as above but for time elapses.
- (GX̃⊤) → ((Gb) ∨ (G¬b)) : true, the first part implies that we never perform a discrete transition and the truth value of b can only change in discrete transitions.

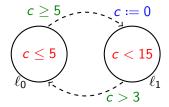
See files in examples.

2. Timed and infinite traces

Giuseppe Spallitta

19/2

1. Timed nuXmv


- 2. Timed and infinite traces
- 3. Exercises

università degli studi di trento

Simple timed automaton

Write the SMV model corresponding to the timed automaton in the figure.

Properties

- from location ℓ_0 we always reach ℓ_1 within 5 time units;
- if we are in ℓ_1 then for the next 3 time units we remain in ℓ_1 ;
- if just arrived in ℓ_1 then for the next 3 time units we remain in ℓ_1 .

Timed thermostat

- a thermostat has 2 states: on and off;
 - if the temperature is below 18 degrees the thermostat switches on.
 - if the temperature is above 18 degrees the thermostat switches off.
- Every time the thermostat misure the temperature in the room, the temperature increases (if on) or decreases (if off) by dt (with respect to the previous check);
- the thermostat measures the temperature at most (<) every max_dt time units.</p>
- ▶ the temperature initially is in [18 max_dt; 18 + max_dt]. Verify that the temperature is always in [18 - 2max_dt; 18 + 2max_dt]

Try to encode the timed automata shown in the theoretical slide about timed automata.