UNIVERSITÀ DI TRENTO

Formal Method Mod. 2 (Model Checking)
 Laboratory 9

Giuseppe Spallitta giuseppe.spallitta@unitn.it

Università degli studi di Trento

May 12, 2021

Outline

1. Planning problem
 Blocks Example

2. Examples
3. Exercises

位

Planning Problem

Planning Problem

Given $\langle I, G, T\rangle$, where

- I: (representation of) initial state
- G: (representation of) goal state
- \mathbf{T} : transition relation
find a sequence of transitions t_{1}, \ldots, t_{n} leading from the initial state to the goal state.

Idea
Encode planning problem as a model checking problem, such that plan is provided as counter-example for the property.

1. impose \mathbf{I} as initial state
2. encode \mathbf{T} as transition relation system
3. verify the LTL property ! P (F goal state)

Example: blocks [1/9]

Init :
$\operatorname{On}(A, B), \operatorname{On}(B, C), \operatorname{On}(C, T), \operatorname{Clear}(A)$
Goal: $\quad \operatorname{On}(C, B), \operatorname{On}(B, A), \operatorname{On}(A, T)$
Move (a, b, c)
Precond: $\operatorname{Block}(a) \wedge \operatorname{Clear}(a) \wedge O n(a, b) \wedge$ $($ Clear $(c) \vee$ Table $(c)) \wedge$
$a \neq b \wedge a \neq c \wedge b \neq c$
Effect: $\quad \operatorname{Clear}(b) \wedge \neg \operatorname{On}(a, b) \wedge$
$\operatorname{On}(a, c) \wedge \neg \operatorname{Clear}(c)$

1. Planning problem

Example: blocks [2/9]

```
MODULE block(id, ab, bl)
VAR
    above : {none, a, b, c}; -- the block above this one
    below : {none, a, b, c}; -- the block below this one
DEFINE
    clear := (above = none);
INIT
    above = ab &
    below = bl
-- a block can't be above or below itself
INVAR below != id & above != id
```

MODULE main
VAR
-- at each step only one block moves
move : \{move_a, move_b, move_c\};
block_a : block(a, none, b);
block_b : block(b, a, c);
block_c : block(c, b, none);

Example: blocks [3/9]

- a block cannot move if it has some other block above itself

TRANS

```
(!next(block_a.clear) -> next(move) != move_a) &
(!next(block_b.clear) -> next(move) != move_b) &
(!next(block_c.clear) -> next(move) != move_c)
```


Example: blocks [3/9]

- a block cannot move if it has some other block above itself

TRANS

```
(!next(block_a.clear) -> next(move) != move_a) &
(!next(block_b.clear) -> next(move) != move_b) &
(!next(block_c.clear) -> next(move) != move_c)
```

- Q: what's wrong with following formulation?

TRANS

```
(next(block_a.clear) -> next(move) = move_a) &
(next(block_b.clear) -> next(move) = move_b) &
(next(block_c.clear) -> next(move) = move_c)
```


Example: blocks [3/9]

- a block cannot move if it has some other block above itself

TRANS

```
(!next(block_a.clear) -> next(move) != move_a) &
(!next(block_b.clear) -> next(move) != move_b) &
(!next(block_c.clear) -> next(move) != move_c)
```

- Q: what's wrong with following formulation?

TRANS

```
(next(block_a.clear) -> next(move) = move_a) &
(next(block_b.clear) -> next(move) = move_b) &
(next(block_c.clear) -> next(move) = move_c)
```

A:

- move can only have one valid value \Longrightarrow inconsistency whenever there are two clear blocks at the same time
- any non-clear block would still be able to move
- same for "iff" formulation

Example: blocks [4/9]

- a moving block changes location and remains clear TRANS

```
(move = move_a -> next(block_a.clear) &
        next(block_a.below) != block_a.below) &
(move = move_b -> next(block_b.clear) &
        next(block_b.below) != block_b.below) &
(move = move_c -> next(block_c.clear) &
        next(block_c.below) != block_c.below)
```

- a non-moving block does not change its location TRANS

```
(move != move_a -> next(block_a.below) = block_a.below) &
(move != move_b -> next(block_b.below) = block_b.below) &
(move != move_c -> next(block_c.below) = block_c.below)
```


Example: blocks [5/9]

- a block remains connected to any non-moving block TRANS

```
(move != move_a \& block_b.above = a
    -> next(block_b.above) = a) \&
(move != move_a \& block_c.above = a
    -> next(block_c.above) = a) \&
(move != move_b \& block_a.above = b
    -> next (block_a.above) = b) \&
(move != move_b \& block_c.above = b
    -> next (block_c.above) = b) \&
(move != move_c \& block_a.above = c
    -> next(block_a.above) = c) \&
(move != move_c \& block_b.above = c
    -> next (block_b.above) = c)
```


Example: blocks [5/9]

- a block remains connected to any non-moving block TRANS

```
(move != move_a \& block_b.above = a
    -> next(block_b.above) = a) \&
(move != move_a \& block_c.above = a
    -> next(block_c.above) = a) \&
(move != move_b \& block_a.above = b
    -> next (block_a.above) = b) \&
(move != move_b \& block_c.above = b
    -> next (block_c.above) = b) \&
(move != move_c \& block_a.above = c
    -> next(block_a.above) = c) \&
(move != move_c \& block_b.above = c
    -> next (block_b.above) = c)
```

- Q: what about "below block'?

Example: blocks [5/9]

- a block remains connected to any non-moving block TRANS

```
(move != move_a \& block_b.above = a
    -> next(block_b.above) = a) \&
(move != move_a \& block_c.above = a
    -> next(block_c.above) = a) \&
(move != move_b \& block_a.above = b
    -> next (block_a.above) = b) \&
(move != move_b \& block_c.above = b
    -> next (block_c.above) = b) \&
(move != move_c \& block_a.above = c
    -> next(block_a.above) = c) \&
(move != move_c \& block_b.above = c
    -> next (block_b.above) = c)
```

- Q: what about "below block'?

A: covered in previous slide!

Example: blocks [6/9]

- positioning of blocks is symmetric: above and below relations must be symmetric.
INVAR

```
    (block_a.above = b <-> block_b.below = a)
    & (block_a.above = c <-> block_c.below = a)
    & (block_b.above = a <-> block_a.below = b)
    & (block_b.above = c <-> block_c.below = b)
    & (block_c.above = a <-> block_a.below = c)
    & (block_c.above = b <-> block_b.below = c)
```

 \& (block_a.above = none ->
 (block_b.below != a \& block_c.below != a))
 \& (block_b.above = none ->
 (block_a.below != b \& block_c.below != b))
 \& (block_c.above = none ->
 (block_a.below != c \& block_b.below != c))
 \& (block_a.below = none ->
 (block_b.above != a \& block_c.above != a))
 \& (block_b.below = none ->
 (block_a.above != b \& block_c.above != b))
 \& (block_c.below = none ->

Example: blocks [7/9]

Remark
A plan is a sequence of transitions/actions leading from the initial state to an accepting/goal state.

Idea

- assert property p : "goal state is not reachable"
- if a plan exists, nuXmv produces a counterexample for p
- the counterexample for p is a plan to reach the goal

Example: blocks [8/9]

Examples

- get a plan for reaching "goal state"

LTLSPEC

! F (block_a.below = none \& block_a.above = b \&
block_b.below = a \& block_b.above = c \& block_c.below = b \& block_c.above = none)

Example: blocks [8/9]

Examples

- get a plan for reaching "goal state"

LTLSPEC

```
! F(block_a.below = none \& block_a.above = b \&
block_b.below = a \& block_b.above = c \&
block_c.below = b \& block_c.above = none)
```

get a plan for reaching a configuration in which all blocks are placed on the table

LTLSPEC -- look for a way to reach a configuration in which all the blocks
-- the table
! F(block_a.below = none \& block_b.below = none \& block_c.below = none)

1. Planning problem

- at any given time, at least one block is placed on the table INVARSPEC
block_a.below = none | block_b.below = none |
block_c.below = none

Example: blocks [9/9]

- at any given time, at least one block is placed on the table INVARSPEC

```
block_a.below = none | block_b.below = none |
block_c.below = none
```

- at any given time, at least one block has nothing above INVARSPEC

```
block_a.above = none | block_b.above = none |
block_c.above = none
```


Outline

ıanus ITDヨa villialilinn

1. Planning problem

2. Examples

The Tower of Hanoi
Ferryman
Tic-Tac-Toe
3. Exercises

Example：tower of hanoi $[1 / 5]$

$\overline{3}$
可
号
Eame with 3 poles and N disks of触fferent sizes：
－initial state：stack of disks with decreasing size on pole A
－goal state：move stack on pole C
－rules：
－only one disk may be moved at each transition
－only the upper disk can be moved
－a disk can not be placed on top
 of a smaller disk

Example: tower of hanoi [2/5]

- base system model

```
MODULE main
```

VAR
d1 : \{left,middle,right\}; -- smallest
d2 : \{left,middle,right\};
d3 : \{left,middle,right\};
d4 : \{left,middle,right\}; -- largest
move : 1..4; -- possible moves

Example: tower of hanoi [2/5]

- base system model

MODULE main
VAR

```
d1 : {left,middle,right}; -- smallest
```

d2 : \{left,middle,right\};
d3 : \{left,middle,right\};
d4 : \{left,middle,right\}; -- largest
move : 1..4; -- possible moves

- disk i is moving DEFINE

```
move_d1 := (move = 1);
move_d2 := (move = 2);
move_d3 := (move = 3);
move_d4 := (move = 4);
```


Example: tower of hanoi $[2 / 5]$

- base system model MODULE main
VAR

```
d1 : {left,middle,right}; -- smallest
d2 : {left,middle,right};
d3 : {left,middle,right};
d4 : {left,middle,right}; -- largest
move : 1..4; -- possible moves
```

- disk i is moving DEFINE

```
move_d1 := (move = 1);
move_d2 := (move = 2);
move_d3 := (move = 3);
move_d4 := (move = 4);
```

- disk d_{i} can move if a smaller disk is above him (i.e. they share the same column)

```
clear_d1 := TRUE;
clear_d2 := d2!=d1;
clear_d3 := d3!=d1 & d3!=d2;
clear_d4 := d4!=d1 & d4!=d2 & d4!=d3;
```


Example: tower of hanoi $[3 / 5]$

- initial state

INIT
d1 = left \&
d2 = left \&
d3 = left \&
d4 = left \& move = 1;

Example: tower of hanoi $[3 / 5]$

- initial state

INIT
d1 = left \&
d2 = left \&
d3 $=$ left \&
$\mathrm{d} 4=$ left \& move $=1$;

- move description for disk 4

TRANS

```
move_d4 ->
-- disks location changes
next(d1) = d1 &
next(d2) = d2 &
next(d3) = d3 &
next(d4) != d4 &
-- d4 can not move on top of smaller disks
next(d4) != d1 &
next(d4) != d2 &
next(d4) != d3
```


Example: tower of hanoi $[4 / 5]$

- If in the next iteration a disk is not clear, you cannot move it.

TRANS
(next (clear_d3) = FALSE) -> (next (move) $!=3$)
TRANS
(next (clear_d2) = FALSE) -> (next (move) ! = 2)
TRANS
(next(clear_d1) = FALSE) -> (next(move) != 1)
TRANS
(next(clear_d4) = FALSE) -> (next(move) != 4)

Example: tower of hanoi $[4 / 5]$

- If in the next iteration a disk is not clear, you cannot move it.

TRANS
(next (clear_d3) = FALSE) -> (next (move) $!=3$)
TRANS
(next(clear_d2) = FALSE) -> (next(move) ! = 2)
TRANS
(next(clear_d1) = FALSE) -> (next(move) != 1)
TRANS
(next (clear_d4) = FALSE) -> (next(move) != 4)

- If all columns are being used, do not choose as next move the largest disk (or we would reach a deadlock).
TRANS
(next(clear_d1) \& next(clear_d2) \& next(clear_d3)) -> next(move) != 3 TRANS
(next(clear_d1) \& next(clear_d2) \& next(clear_d4)) -> next(move) != 4 TRANS
(next(clear_d4) \& next(clear_d2) \& next(clear_d3)) -> next(move) != 4 TRANS
(next(clear_d1) \& next(clear_d3) \& next(clear_d4)) -> next(move) != 4

Example: tower of hanoi $[4 / 5]$

- get a plan for reaching "goal state" LTLSPEC
! F(d1=right \& d2=right \& d3=right \& d4=right) INVARSPEC
! (d1=right \& d2=right \& d3=right \& d4=right)

Example: ferryman [1/4]

A ferryman has to bring a sheep, a cabbage, and a wolf safely across a river.

- initial state: all animals are on the right side
- goal state: all animals are on the left side
- rules:
- the ferryman can cross the river with at most one passenger on his boat
- the cabbage and the sheep can not be left unattended on the same side of the river
- the sheep and the wolf can not be left unattended on the same side of the river

侕
Q: can the ferryman transport all the goods to the other side safely?

Example: ferryman [2/4]

- base system model

```
MODULE main
VAR
cabbage : {right,left};
sheep : {right,left};
wolf : {right,left};
man : {right,left};
move : {c, s, w, e}; -- possible moves
DEFINE
carry_cabbage := (move = c);
```


Example: ferryman [2/4]

- base system model

```
MODULE main
VAR
        cabbage : {right,left};
        sheep : {right,left};
        wolf : {right,left};
        man : {right,left};
        move : {c, s, w, e}; -- possible moves
```

DEFINE

```
carry_cabbage := (move = c);
carry_sheep := (move = s);
carry_wolf := (move = w);
no_carry := (move = e);
```

- initial state

```
ASSIGN
    init(cabbage) := right;
    init(sheep) := right;
    init(wolf) := right;
    init(man) := right;
```


Example: ferryman [3/4]

ㅇ

ferryman carries cabbage

TRANS
carry_cabbage ->
next(cabbage) != cabbage \& next (man) $!=\operatorname{man} \&$ next (sheep) $=$ sheep \& next(wolf) $=$ wolf

Example: ferryman [3/4]

ferryman carries cabbage

TRANS

```
carry_cabbage ->
next(cabbage) != cabbage &
next(man) != man &
next(sheep) = sheep &
next(wolf) = wolf
```

- ferryman carries sheep

TRANS

```
carry_sheep ->
    next(sheep) != sheep &
    next(man) != man &
    next(cabbage) = cabbage &
    next(wolf) = wolf
```


Example: ferryman [3/4]

ferryman carries cabbage
TRANS

```
carry_cabbage ->
next(cabbage) != cabbage &
next(man) != man &
next(sheep) = sheep &
next(wolf) = wolf
```

- ferryman carries sheep

TRANS

```
carry_sheep ->
    next(sheep) != sheep &
    next(man) != man &
    next(cabbage) = cabbage &
    next(wolf) = wolf
```

- ferryman carries wolf TRANS

```
carry_wolf ->
    next(wolf) != wolf &
    next(man) != man &
    next(sheep) = sheep &
    next(cabbage) = cabbage
```


Example: ferryman [3/4]

ferryman carries cabbage
TRANS

```
carry_cabbage ->
        next(cabbage) != cabbage &
        next(man) != man &
        next(sheep) = sheep &
        next(wolf) = wolf
```

- ferryman carries sheep

TRANS

```
carry_sheep ->
    next(sheep) != sheep &
    next(man) != man &
    next(cabbage) = cabbage &
    next(wolf) = wolf
```

- ferryman carries wolf TRANS

```
carry_wolf ->
next(wolf) != wolf &
    next(man) != man &
    next(sheep) = sheep &
    next(cabbage) = cabbage
```

- ferryman carries nothing TRANS

```
no_carry ->
    next(man) != man &
    next(sheep) = sheep &
    next(cabbage) = cabbage &
    next(wolf) = wolf
```


Example: ferryman [4/4]

- If the man is not in the same side of an animal, we cannot choose it for the next movement (otherwise deadlock).
TRANS

```
next(man) != next(cabbage) -> next(move) != c
```

TRANS

```
next(man) != next(sheep) -> next(move) != s
```

TRANS

```
next(man) != next(wolf) -> next(move) != w
```

- get a plan for reaching "goal state"

DEFINE
safe_state $:=$ (sheep $=$ wolf \mid sheep $=$ cabbage) $->$ sheep $=$ man;
goal := cabbage = left \& sheep = left \& wolf = left;

LTLSPEC
! (safe_state U goal)

Example: tic-tac-toe $[1 / 5]$

Tic-tac-toe is a turn-based game for two adversarial players (X and O) marking the squares of a board (\rightarrow a 3×3 grid). The player who succeeds in placing three respective marks in a horizontal, vertical or diagonal row wins the game.

- Example: 0 wins

- we model tic-tac-toe puzzle as an array of size nine

2. Examples

Example: tic-tac-toe $[2 / 5]$

- base system model

MODULE main
VAR
B : array $1 . .9$ of $\{0,1,2\}$;
player : 1..2;
move : 0..9;

Example: tic-tac-toe $[2 / 5]$

- base system model

```
MODULE main
VAR
B : array 1..9 of {0,1,2};
player : 1..2;
move : 0..9;
```

initial state
INIT

$$
\begin{array}{llll}
\mathrm{B}[1] & = & 0 & \& \\
\mathrm{~B}[2]= & 0 & \& \\
\mathrm{~B}[3]= & 0 & \& \\
\mathrm{~B}[4]= & 0 & \& \\
\mathrm{~B}[5]= & 0 & \& \\
\mathrm{~B}[6]= & 0 & \& \\
\mathrm{~B}[7]= & 0 & \& \\
\mathrm{~B}[8]= & 0 & \& \\
\mathrm{~B}[9]= & 0 ;
\end{array}
$$

INIT

$$
\text { move }=0 \text {; }
$$

Example: tic-tac-toe $[3 / 5]$

```
\overline{L}
ASSIGN
    init(player) := 1;
    next(player) :=
        case
        player = 1 : 2;
        player = 2 : 1;
        esac;
```


Example: tic-tac-toe $[3 / 5]$

- turns modeling

```
ASSIGN
    init(player) := 1;
    next(player) :=
        case
            player = 1 : 2;
            player = 2 : 1;
            esac;
```

move modeling
TRANS

```
B[1] != 0 -> next(move) != 1
```

TRANS

```
next(move) = 1 ->
    next(B[1]) = player &
    next(B[2])=B[2] &
    next(B[3])=B[3] &
    next(B[4])=B[4] &
    next(B[5])=B[5] &
    next (B[6])=B[6] &
    next(B[7])=B[7] &
    next(B[8])=B[8] &
    next(B [9])=B [9]
```


Example: tic-tac-toe $[4 / 5]$

"end" state

DEFINE

$$
\begin{aligned}
& \text { win1 := (} \mathrm{B}[1]=1 \& B[2]=1 \& B[3]=1) \text { | }(B[4]=1 \& B[5]=1 \& B[6]=1) \text { | } \\
& \text { (} B[7]=1 \& B[8]=1 \& B[9]=1) \mid(B[1]=1 \& B[4]=1 \& B[7]=1) \text { | } \\
& (B[2]=1 \& B[5]=1 \& B[8]=1) \mid(B[3]=1 \& B[6]=1 \& B[9]=1) \text { | } \\
& (B[1]=1 \& B[5]=1 \& B[9]=1) \mid(B[3]=1 \& B[5]=1 \& B[7]=1) \text {; } \\
& \text { win2 }:=(\mathrm{B}[1]=2 \& B[2]=2 \& B[3]=2)|(\mathrm{B}[4]=2 \& \mathrm{~B}[5]=2 \& \mathrm{~B}[6]=2)| \\
& \text { (} \mathrm{B}[7]=2 \& B[8]=2 \& B[9]=2) \quad \mid(B[1]=2 \& B[4]=2 \& B[7]=2) \text { | } \\
& \text { (} B[2]=2 \& B[5]=2 \& B[8]=2) \mid(B[3]=2 \& B[6]=2 \& B[9]=2) \text { | } \\
& (B[1]=2 \& B[5]=2 \& B[9]=2) \mid(B[3]=2 \& B[5]=2 \& B[7]=2) ; \\
& \text { draw := !win1 \& !win2 \& } \\
& B[1]!=0 \text { \& } B[2]!=0 \text { \& } B[3]!=0 \text { \& } B[4]!=0 \text { \& } \\
& B[5]!=0 \text { \& } B[6]!=0 \text { \& } B[7]!=0 \text { \& } B[8]!=0 \text { \& } B[9]!=0 ;
\end{aligned}
$$

TRANS
(win1 | win2 | draw) <-> next(move)=0

Example: tic-tac-toe $[5 / 5]$

- We can easily check if there is a way to reach every end state using the typical formulation:

LTLSPEC
! (F draw)
LTLSPEC
! (F win1)
LTLSPEC
! (F win2)
For each property, an execution satisfying the property is returned as counterexample.

1. Planning problem
2. Examples
3. Exercises

1

Tower of Hanoi
Extend the tower of hanoi to handle five disks, and check that the goal state is reachable.

Exercises [2/3]

Ferryman

Another ferryman has to bring a fox, a chicken, a caterpillar and a crop of lettuce safely across a river.

- initial state: all goods are on the right side
- goal state: all goods are on the left side
- rules:
- the ferryman can cross the river with at most two passengers on his boat
- the fox eats the chicken if left unattended on the same side of the river
- the chicken eats the caterpillar if left unattended on the same side of the river
- the caterpillar eats the lettuce if left unattended on the same side of the river
Can the ferryman bring every item safely on the other side?

Exercises [3/3]

Encode in an SMV model the game of Sudoku, write a property so that nuXmv finds the solution.
You can find the rules on Wikipedia.

Tip
Use a MODULE to avoid repetitions of the same constraints. 220 lines are enough.

