
Formal Method Mod. 2 (Model Checking)
Laboratory 8

Giuseppe Spallitta
giuseppe.spallitta@unitn.it

Università degli studi di Trento

May 5, 2021

Outline

1. Model Properties
1) Invariants
2) LTL

2. Fairness Constraints

3. Modelling a Program in nuXmv

4. Examples

5. Exercises

Model Properties [1/2]

A property:
I can be added to any module within a program

LTLSPEC G (req -> F sum = op1 + op2);

I can be specified through nuXmv interactive shell
nuXmv > check_ltlspec -p "G (req -> F sum = op1 + op2)"

Notes:
I show_property lists all properties collected in an internal

database:
nuXmv > show_property
**** PROPERTY LIST [Type, Status, Counter-example Number, Name] ****
-------------------------- PROPERTY LIST -------------------------
000 : G !(proc1.state = critical & proc2.state = critical)

[LTL True N/A N/A]
001 : G (proc1.state = entering -> F proc1.state = critical)

[LTL True N/A N/A]

I each property can be verified one at a time using its database
index:
nuXmv > check_ltlspec -n 0

Giuseppe Spallitta 1.Model Properties
1/31

Model Properties [2/2]

Property verification:
I each property is separately verified
I the result is either “TRUE” or “FALSE + counterexample”

Different kinds of properties are supported:
I Invariants: properties on every reachable state
I LTL: properties on the computation paths
I CTL: properties on the computation tree (we won’t see them

in the laboratories).

Giuseppe Spallitta 1.Model Properties
2/31

Invariants

I Invariant properties are specified via the keyword INVARSPEC:
INVARSPEC <simple_expression>

I Invariants are checked via the check_invar command

Remark:
during the checking of invariants, all the fairness conditions
associated with the model are ignored

Giuseppe Spallitta 1.Model Properties
3/31

Example: modulo 4 counter with reset
[1/2]

MODULE main
VAR b0 : boolean;

b1 : boolean;
reset : boolean;

ASSIGN
init(b0) := FALSE;
next(b0) := case

reset : FALSE;
!reset : !b0;

esac;
init(b1) := FALSE;
next(b1) := case

reset : FALSE;
TRUE : ((!b0 & b1) |

(b0 & !b1));
esac;

DEFINE out := toint(b0) + 2*toint(b1);

INVARSPEC out < 2

I recall:

2

0 1

3

Giuseppe Spallitta 1.Model Properties
4/31

Example: modulo 4 counter with reset
[2/2]

I The invariant is false

nuXmv > read_model -i counter4reset.smv;
nuXmv > go; check_invar
-- invariant out < 2 is false
...

-> State: 1.1 <-
b0 = FALSE
b1 = FALSE
reset = FALSE
out = 0

-> State: 1.2 <-
b0 = TRUE
out = 1

-> State: 1.3 <-
b0 = FALSE
b1 = TRUE
out = 2

Giuseppe Spallitta 1.Model Properties
5/31

LTL specifications

I LTL properties are specified via the keyword LTLSPEC:
LTLSPEC <ltl_expression>

Pfinally

F P

Pglobally

PG

PX

Pnext P until q

P U q

I LTL properties are checked via the check_ltlspec command

Giuseppe Spallitta 1.Model Properties
6/31

LTL specifications

Specifications Examples:
I A state in which out = 3 is eventually reached

LTLSPEC F out = 3
I Condition out = 0 holds until reset becomes false

LTLSPEC (out = 0) U (!reset)
I Every time a state with out = 2 is reached, a state with

out = 3 is reached afterward
LTLSPEC G (out = 2 -> F out = 3)

Giuseppe Spallitta 1.Model Properties
7/31

LTL specifications

Specifications Examples:
I A state in which out = 3 is eventually reached

LTLSPEC F out = 3
I Condition out = 0 holds until reset becomes false

LTLSPEC (out = 0) U (!reset)
I Every time a state with out = 2 is reached, a state with

out = 3 is reached afterward
LTLSPEC G (out = 2 -> F out = 3)

Giuseppe Spallitta 1.Model Properties
7/31

LTL specifications

Specifications Examples:
I A state in which out = 3 is eventually reached

LTLSPEC F out = 3
I Condition out = 0 holds until reset becomes false

LTLSPEC (out = 0) U (!reset)
I Every time a state with out = 2 is reached, a state with

out = 3 is reached afterward

LTLSPEC G (out = 2 -> F out = 3)

Giuseppe Spallitta 1.Model Properties
7/31

LTL specifications

Specifications Examples:
I A state in which out = 3 is eventually reached

LTLSPEC F out = 3
I Condition out = 0 holds until reset becomes false

LTLSPEC (out = 0) U (!reset)
I Every time a state with out = 2 is reached, a state with

out = 3 is reached afterward
LTLSPEC G (out = 2 -> F out = 3)

Giuseppe Spallitta 1.Model Properties
7/31

LTL specifications

All the previous specifications are false:

NuSMV > check_ltlspec
-- specification F out = 3 is false ...
-- loop starts here --
-> State 1.1 <-

b0 = FALSE
b1 = FALSE
reset = TRUE
out = 0

-> State 1.2 <-
-- specification (out = 0 U (!reset)) is false ...
-- loop starts here --
-> State 2.1 <-

b0 = FALSE
b1 = FALSE
reset = TRUE
out = 0

-> State 2.2 <-
-- specification G (out = 2 -> F out = 3) is false ...

Q: why?

Giuseppe Spallitta 1.Model Properties
8/31

Outline

1. Model Properties

2. Fairness Constraints

3. Modelling a Program in nuXmv

4. Examples

5. Exercises

The need for Fairness Constraints

The specification F out = 3 is not verified
I On the path where reset is always 1, the system loops on a

state where out = 0:
reset = TRUE,TRUE,TRUE,TRUE,TRUE,...

out = 0,0,0,0,0,0...

Similar considerations for other properties:
I F out = 1
I F out = 2
I G (out = 2 -> F out = 3)
I ...

=⇒ it would be fair to consider only paths in which the counter is
not reset with such a high frequency so as to hinder its desired
functionality

Giuseppe Spallitta 2. Fairness Constraints
9/31

Fairness Constraints

nuXmv supports both justice and compassion fairness constraints
I Fairness/Justice p: consider only the executions that satisfy

infinitely often the condition p
I Strong Fairness/Compassion (p, q): consider only those

executions that either satisfy p finitely often or satisfy q
infinitely often
(i.e. p true infinitely often ⇒ q true infinitely often)

Remarks:
I verification: properties must hold only on fair paths
I Currently, compassion constraints have some limitations

(are supported only for BDD-based LTL model checking)

Giuseppe Spallitta 2. Fairness Constraints
10/31

Example: modulo 4 counter with reset

Add the following fairness constraint to the model:

JUSTICE out = 3

(we consider only paths in which the counter reaches value 3 infinitely often)

All the properties are now verified:

nuXmv > reset
nuXmv > read_model -i counter4reset.smv
nuXmv > go
nuXmv > check_ltlspec
-- specification F out = 1 is true
-- specification G (out = 2 -> F out = 3) is true
-- specification G (reset -> F out = 0) is true

Giuseppe Spallitta 2. Fairness Constraints
11/31

Outline

1. Model Properties

2. Fairness Constraints

3. Modelling a Program in nuXmv

4. Examples

5. Exercises

Example: model programs in nuXmv [1/4]

Q: given the following piece of code, computing the GCD, how do
we model and verify it with nuXmv?

void main() {
... // initialization of a and b
while (a!=b) {

if (a>b)
a=a-b;

else
b=b-a;

}
... // GCD=a=b

}

Giuseppe Spallitta 3.Modelling a Program in nuXmv
12/31

Main idea

I We will define a program counter pc that stores the current
status of the execution (i.e. the line we reached).

I According to the iterative and conditional cycle, the program
counter and the variables (when required) will change.

Giuseppe Spallitta 3.Modelling a Program in nuXmv
13/31

pc

Example: model programs in nuXmv [2/4]

Step 1: label the entry point and the exit point of every block

void main() {
... // initialization of a and b

l1: while (a!=b) {
l2: if (a>b)
l3: a=a-b;

else
l4: b=b-a;

}
l5: ... // GCD=a=b

}

Giuseppe Spallitta 3.Modelling a Program in nuXmv
14/31

Example: model programs in nuXmv [3/4]

Step 2: encode the transition system with the assign style

MODULE main()
VAR a: 0..100; b: 0..100;

pc: {l1,l2,l3,l4,l5};
ASSIGN

init(pc):=l1;
next(pc):=

case
pc=l1 & a!=b : l2;
pc=l1 & a=b : l5;
pc=l2 & a>b : l3;
pc=l2 & a<=b : l4;
pc=l3 | pc=l4 : l1;
pc=l5 : l5;

esac;

next(a):=
case

pc=l3 & a > b: a - b;
TRUE: a;

esac;

next(b):=
case

pc=l4 & b >= a: b-a;
TRUE: b;

esac;

Giuseppe Spallitta 3.Modelling a Program in nuXmv
15/31

Model programs in nuXmv: properties

I Let’s check if, given a = 16 and b = 12, then we will
eventually get as a result 4.

LTLSPEC (a = 16 & b = 12) -> F (a = 4 & b = 4)

I Let’s check if both number will never reach negative values:
INVARIANT a > 0 & b > 0

Giuseppe Spallitta 3.Modelling a Program in nuXmv
16/31

Example: model programs in nuXmv [4/4]

Step 2: (alternative): use the constraint style
MODULE main
VAR

a : 0..100; b : 0..100; pc : {l1, l2, l3, l4, l5};
INIT pc = l1
TRANS

pc = l1 -> (((a != b & next(pc) = l2) |
(a = b & next(pc) = l5)) &

next(a) = a & next(b) = b)
TRANS

pc = l2 -> (((a > b & next(pc) = l3) |
(a < b & next(pc) = l4)) &

next(a) = a & next(b) = b)
TRANS

pc = l3 -> (next(pc) = l1 & next(a) = (a - b) & next(b) = b)
TRANS

pc = l4 -> (next(pc) = l1 & next(b) = (b - a) & next(a) = a)
TRANS

pc = l5 -> (next(pc) = l5 & next(a) = a & next(b) = b)

Giuseppe Spallitta 3.Modelling a Program in nuXmv
17/31

Outline

1. Model Properties

2. Fairness Constraints

3. Modelling a Program in nuXmv

4. Examples
1) Mutual Exclusion
2) Chimical reactions

5. Exercises

Mutual Exclusion

Two users U0 and U1, and an Arbiter Ar are part of a competition.
Each user can be either NonCritical, Trying or Critical. To
access the critical section, they notify their wish to the arbiter using
2 req variables, one per user. The arbiter notifies the possibility to
access the resource using 2 auth variables. Moreover:
I From NonCritical, they can nondeterministically go to

Trying;
I From Trying, they can go to Critical when authorized by

the arbiter;
I From Critical, they can nondeterministically go back to

NonCritical.
Model the problem on nuXvm and use LTL to encode the property
"The aim of the arbiter is guaranteeing that the two users are not
in status Critical at the same time"

Giuseppe Spallitta 4. Examples
18/31

NonCritical
Trying
Critical
req
auth
NonCritical
Trying
Trying
Critical
Critical
NonCritical
Critical

A first attempt (cont.d)

MODULE User(auth)
VAR

status: { NonCritical, Trying, Critical };
req: boolean;

ASSIGN
init(status) := NonCritical;
next(status) :=

case
status = NonCritical : { NonCritical, Trying };

status = Trying :
case

next(auth) = FALSE : Trying;
next(auth) = TRUE : Critical;

esac;
status = Critical : { Critical, NonCritical};

esac;

req := status in { Trying, Critical };

Giuseppe Spallitta 4. Examples
19/31

A first attempt

MODULE Arbiter(req0, req1)
VAR

auth0: boolean;
auth1: boolean;

ASSIGN
init(auth0) := FALSE;
next(auth0) := req0 & !auth1;
init(auth1) := FALSE;
next(auth1) := req1 & !auth0;

MODULE main
VAR

U0: User(Ar.auth0); --- User 0
U1: User(Ar.auth1); --- User 1

Ar: Arbiter(U0.req, U1.req);

LTLSPEC G (!(U0.status = Critical & U0.status = Critical))

Giuseppe Spallitta 4. Examples
20/31

Fixing the issue

I You can see that the properties does not hold, and a
counterproof is shown by the tool...

I We can define a variable turn defining the user that has the
right to enter.
I If user 0 is authorized to access the critical section, turn will be

equal to 0.
I If user 1 is authorized to access the critical section, turn will be

equal to 1.
I Otherwise, turn ranges cyclically on all the users to ensure

fairness.

Giuseppe Spallitta 4. Examples
21/31

turn

Fixing the issue (cont.d)

MODULE Arbiter(req0, req1)
VAR

auth0: boolean;
auth1: boolean;
turn: {0,1};

ASSIGN
init(auth0) := FALSE;
next(auth0) := req0 & turn = 0;
init(auth1) := FALSE;
next(auth1) := req1 & turn = 1;
next(turn) := case

next(auth0) : 0;
next(auth1) : 1;
TRUE : (turn+1) mod 2;

esac;

Giuseppe Spallitta 4. Examples
22/31

Is fairness ensured?

I If we try to write a property to verify the two users have a fair
access to the resource, you’ll see it is not satisfied...
LTLSPEC G (U0.status = Trying ->

F (U0.status = Critical))

I ... but we can easily solve the issue adding a FAIRNESS
constraint to the model.

Giuseppe Spallitta 4. Examples
23/31

FAIRNESS

Science modeling

Assume the following chemical reactions hold:

2O → O2

C + O → CO

2C + O2 → 2CO

C + O2 → CO2

Given a certain number of input carbon and oxygen atoms, is there
any way for the contents of his reaction vessel to progress to a
state where it contains three molecules of CO2? Model the
contents of the reaction vessel in NuSMV.

Giuseppe Spallitta 4. Examples
24/31

Science modeling (cont.d)

I We can store the number of current atoms/molecules for each
iteration using bounded integers.

I An enumerate variable can be used to define what reaction
should be considered in the next step, ensuring
non-determinism when necessary.

Giuseppe Spallitta 4. Examples
25/31

Science modeling (cont.d)

MODULE main
VAR

o : 0..32;
o2: 0..32;
c : 0..32;
co : 0..32;
co2 : 0..32;
reaction : {r1, r2, r3, r4, none};

ASSIGN
init(o) := 6;
init(c) := 6;
init(co) := 0;
init(co2) := 0;
init(o2) := 0;
init(reaction) := none;

Giuseppe Spallitta 4. Examples
26/31

Science modeling (cont.d)

Transitions to define the next reaction that will take place on the
next step.

TRANS
(next(o) < 2) -> (next(reaction) != r1)

TRANS
(next(o) < 1 | next(c) < 1) -> (next(reaction) != r2)

TRANS
(next(o2) < 1 | next(c) < 2) -> (next(reaction) != r3)

TRANS
(next(o2) < 1 | next(c) < 1) -> (next(reaction) != r4)

Giuseppe Spallitta 4. Examples
27/31

Science modeling (cont.d)

Transitions to define the new values for each molecule after a
reaction took place.
TRANS

(reaction = none) -> (o = next(o) & o2 = next(o2) &
c = next(c) & co = next(co) & co2 = next(co2))

TRANS
(reaction = r1) -> (next(o) = o - 2 & next(o2) = o2 + 1 &

next(c) = c & next(co) = co & next(co2) = co2)

TRANS
(reaction = r2) -> (next(o) = o - 1 & next(o2) = o2 &

next(c) = c - 1 & next(co) = co + 1 & next(co2) = co2)

TRANS
(reaction = r3) -> (next(o) = o & next(o2) = o2 - 1 &

next(c) = c - 1 & next(co) = co + 2 & next(co2) = co2)

TRANS
(reaction = r4) -> (next(o) = o & next(o2) = o2 - 1 &

next(c) = c - 1 & next(co) = co & next(co2) = co2 + 1)

Giuseppe Spallitta 4. Examples
28/31

Science modeling: property

I If we are interested in knowing if there is a path that generates
3 CO2 molecules, LTL apparently seems ineffective...

I ... but we can use it to search a valid counterproof that
returns the desired execution.

I In this case we try to verify the number of CO2 molecules
does not reach 3 in any path. If the property is not satisfied,
the counterproof will returns a series of event reaching the
condition.

Giuseppe Spallitta 4. Examples
29/31

Outline

1. Model Properties

2. Fairness Constraints

3. Modelling a Program in nuXmv

4. Examples

5. Exercises

Exercises [2/2]

Bubblesort

implement a transition system which sorts the following input array
{4, 1, 3, 2, 5} with increasing order. Verify the following properties:
I there exists no path in which the algorithm ends
I there exists no path in which the algorithm ends with a sorted

array

Giuseppe Spallitta 5. Exercises
30/31

Bubblesort pseudocode

Bubblesort pseudocode

you might use the following bubblesort pseudocode as reference:

procedure bubbleSort(A : list of sortable items)
n = length(A)
repeat

swapped = false
for i = 1 to n-1 inclusive do

/* if this pair is out of order */
if A[i-1] > A[i] then

/* swap them and remember something changed */
swap(A[i-1], A[i])
swapped = true

end if
end for

until not swapped
end procedure

Giuseppe Spallitta 5. Exercises
31/31

	Model Properties
	Invariants
	LTL

	Fairness Constraints
	Modelling a Program in nuXmv
	Examples
	Mutual Exclusion
	Chimical reactions

	Exercises

