
Formal Method Mod. 1 (Automated Reasoning)
Laboratory 5

Giuseppe Spallitta
giuseppe.spallitta@unitn.it

Università degli studi di Trento

April 14, 2021

Outline

1. Advanced SMT solving
1) Cybersecurity applications
2) Computing interpolants
3) Formal verification of algorithms

2. Homeworks

Black hat hacker

Exercise 5.1: hacking key
You want to access the UniTN database. Sadly the server is
protected by a key. From reverse engineering you obtain the
following part of code executed by the machine:

% Key is the concat of 3 32-bit numbers a,b and c
assert(isMultiple(a,5))
assert(or(a,b) == 2021))
assert(a - b > 1000)
assert(isAverage(c, [a,b]))
assert(c<0x76543210)
login()

Given you have one opportunity to log in and that if you fail you
will be expelled, can you guess the key?

Giuseppe Spallitta 1. Advanced SMT solving
1/20

Black hat hacker: variables

As always, we first define the variables that efficiently describe the
problem:
I 3 variables are necessary to store the three sub-parts of the

entire key.
I The comment highlights that they are Bit vectors, so the type

is also clearly defined.

Giuseppe Spallitta 1. Advanced SMT solving
2/20

Black hat hacker: functions

I No function is mandatory for this problem; the two high-level
operations can be encoded as functions if desired.

I isMultiple can be defined as a 2-arity function
(BitVector, Int) ⇒ Bool.

I isAverage can be defined as a 3-arity function
(BitVector, BitVector, BitVector) ⇒ Bool.

Giuseppe Spallitta 1. Advanced SMT solving
3/20

Black hat hacker: properties

I Properties are trivial for most of the part, since they simply
require to encode the content of the Python instructions
assert.

I Be careful: we work with bit vectors, so do not forget to use
the correct operators.

I Moreover, be sure that integers used as constants are also
treated as bit vector (MathSAT does not provide implicit type
conversion :()

Giuseppe Spallitta 1. Advanced SMT solving
4/20

Black hat hacker: constant conversion

I The simplest alternative is directly setting the number using
the instruction:
(_ bv<number> <size>)

I But when we manage negative numbers, bv-1 does not work,
so we require a different instruction, which maps integers to
their equivalent BV representation assuming the size chosen is
high enough:
(_ to_bv 3) (- 2)

I You can also write numbers using the hexadecimal or binary
representation (convenient when dealing with low numbers of
bits) using prefixing respectively #x or #b.

Giuseppe Spallitta 1. Advanced SMT solving
5/20

bv-1

Interpolants of areas

Exercise 5.2: geometric interpolants

Compute, if existing, the
interpolant between the
ordered pair (A,B), where
the upper case character
represent the set of all
indexed sub-areas?

Giuseppe Spallitta 1. Advanced SMT solving
6/20

Interpolants of areas: variables

As always, we first define the variables that efficiently describe the
problem:
I First we must define two Real variables to represent the

coordinates of the Euclidean system, x and y .
I We must also create several variables to store the area covered

by each section shown in the figure (A1,A2,A3,B1,B2). Each
variable will be of type Bool.

I Lastly, we define the two generic variables A and B , both
Bool, to considering the union of their respective sub-areas.

Giuseppe Spallitta 1. Advanced SMT solving
7/20

Real
Bool
Bool

Interpolants of areas: properties

I Each smaller area can be described using simple constraints in
the form var < α and var > α.

I The entire area defined by a single character can be considered
as the disjunction of all its smaller areas.

I A quick way to declare a variable and set its value equal to
something is the sugar sintax (define-fun <name> () <type>
<condition>)

Giuseppe Spallitta 1. Advanced SMT solving
8/20

Interpolants of areas: is it UNSAT?

I To test the actual satisfiability of the problem, we must
activate some of the variables using assertions (in our case A
and B , but you can also consider single small areas).

I Running (chech-sat), the problem is UNSAT
⇒ we can find an interpolant to this problem!

Giuseppe Spallitta 1. Advanced SMT solving
9/20

Interpolants of areas: interpolants using
MathSAT

I Similarly to UNSAT core, an additional option is required to
activate this functionality: (set-option :produce-interpolants
true)

I Each variable and/or condition that belongs to the first
element of the ordered pair should be added to an interpolant
group, using the corresponding assertion (assert (! <name>
:interpolation-group <group-name>)).

I These groups must be called as argument of the
(get-interpolant (<group-name>)) action.

Giuseppe Spallitta 1. Advanced SMT solving
10/20

Checking algorithms

Exercise 5.3: pair programming
Given the following function to compute the greatest common
divisor can you formally check if, given two random numbers, a
solution is obtained under 5 iterations?

int GCD(int x, int y){
while(true) {

int m = x % y;
if (m == 0) return y;
x = y ;
y = m;

}
}

Giuseppe Spallitta 1. Advanced SMT solving
11/20

Checking algorithms: variables

As always, we first define the variables that efficiently describe the
problem:
I We need to store the value of the three variables m, x and y

and their evolution during several iterations.
I Using simple Int variables does NOT work, because in the end

we would ask the same variable to assume multiple values at
the same time.

I We can instead use Array mapping the index of iteration to
its value at that moment: Array Int Int

Giuseppe Spallitta 1. Advanced SMT solving
12/20

Int
Array

Checking algorithms: properties (1)

I We first must initialize the first elements of each array, setting
the input values and the first value of m as the remainder.

I The If line requires to define two assertions, depending of the
value of m. They will simulate the behaviour of the
conditional instruction.

Giuseppe Spallitta 1. Advanced SMT solving
13/20

Checking algorithms: properties (2)

I If m = 0, then we already found a solution and we can stop.
I Otherwise, we must compute the new values for the second

iteration and update the array.
I We must iterate this process until the arrays are used for five

times. If at that moment m is still not 0, we can return false
so that we prove its unsatisfiability.

I To easily retrieve the solution when the solver returns SAT, we
can create an additional variable to store the value of y once
we reached the end of the loop.

Giuseppe Spallitta 1. Advanced SMT solving
14/20

Checking algorithms: properties (3)

I The current idea does not work as expected: some values of
the arrays seem to be randomly computed, so I may wonder
about correctness.

I Remember that the assertion are NOT executed sequentially,
but they must. Working with Int variables, there could be
cases where no constraints are actually active on them and so
the solver can freely choose a value to assign.

I Can we check step by step
I To easily retrieve the solution when the solver returns SAT, we

can create an additional variable to store the value of y once
we reached the end of the loop.

Giuseppe Spallitta 1. Advanced SMT solving
15/20

SMT Model Checking?

I Thanks to this encoding we were able to prove if a solution is
found in n steps: this is known as Bounded Model Checking.

I A BMC problem usually requires:
I An initial state I.
I A transition relation T to move among different steps,

considering n transitions.
I A final state to reach F.

I In our case the initialization of the arrays x and y is part of I,
while T is defined as the various branches depending on the
conditional statement.

Giuseppe Spallitta 1. Advanced SMT solving
16/20

SMT Model Checking?

I The case we considered is not exactly a BMC problem (there
is no clear final state, it depends on the number of assertions
computed by the solver), but it can be seen as a generalization
of it.
⇒ Encoding BMC problems is easier, since the final state is
usually trivial and the main issue is formally encoding the
transition among states.

I If you want to know the general correctness of the algorithm,
without upper boundaries, SMT is not your ideal tool...
⇒ If you are interested, the second part of the Formal Method
laboratories will cover it ;)

Giuseppe Spallitta 1. Advanced SMT solving
17/20

Outline

1. Advanced SMT solving

2. Homeworks

Solving Kakuro

Homework 5.1: kakuro

Kakuro is a puzzle in which one
must put the numbers 1 to 9 in
the different cells such that they
satisfy certain constraints. If a
clue is present in a row or
column, the sum of the cell for
that row should be equal to the
value. Within each sum all the
numbers have to be different, so
to add up to 4 we can have 1+3
or 3+1. Can we find a solution
using SMT solvers?

Giuseppe Spallitta 2. Homeworks
18/20

Homeworks

Homework 5.2: checking professor’s interpolants
Apply the extraction of interpolants using MathSAT to see if we
can obtain the solution of the exercise shown in slide 111
(handouts) of this presentation: http://disi.unitn.it/~rseba/
DIDATTICA/fm2021/SLIDES/03-smt_handouts.pdf

Giuseppe Spallitta 2. Homeworks
19/20

http://disi.unitn.it/~rseba/DIDATTICA/fm2021/SLIDES/03-smt_handouts.pdf
http://disi.unitn.it/~rseba/DIDATTICA/fm2021/SLIDES/03-smt_handouts.pdf

Homeworks

Homework 5.3: Collatz conjecture
Given a number x , check if the following algorithm that describe
the Collatz conjecture ends in 5 turns (including the first one where
it checks the current number):

def conjecture(x)
while(true):

if x == 1:
break

if isOdd(x):
x = x * 3 + 1

elif isEven(x):
x = x / 2

return SAT

Giuseppe Spallitta 2. Homeworks
20/20

	Advanced SMT solving
	Cybersecurity applications
	Computing interpolants
	Formal verification of algorithms

	Homeworks

