
Formal Method Mod. 1 (Automated Reasoning)
Laboratory 4

Giuseppe Spallitta
giuseppe.spallitta@unitn.it

Università degli studi di Trento

March 31, 2021



Outline

1. Satisfiability Modulo Theories
1) Quick overview on MathSAT

2. Getting used with MathSAT

3. Simple real-life applications

4. Homework



MathSAT

I MathSAT 5 is an efficient Satisfiability modulo theories (SMT)
solver jointly developed by FBK and University of Trento.

I MathSAT supports a wide range of theories (including e.g.
equality and uninterpreted functions, linear arithmetic,
bit-vectors, and arrays).

I More information can be found here:
https://mathsat.fbk.eu/

Giuseppe Spallitta 1. Satisfiability Modulo Theories
1/32

https://mathsat.fbk.eu/


MathSAT input format: SMT-LIB

I If we want to use MathSAT, we need to know the input
format and the output provided by the tool.

I The input format accepted by the tool is called SMT-LIB
format.

I SMT-LIB is an international initiative aimed at facilitating
research and development in SMT, the language is only one of
several goal achieved.

Giuseppe Spallitta 1. Satisfiability Modulo Theories
2/32



General structure of a SMT-LIB file

A typical SMT-LIB file is characterized by the following sections:
I The Option section
I The Declaration section
I The Assertion section
I The Action section

Giuseppe Spallitta 1. Satisfiability Modulo Theories
3/32



SMT-LIB file: option

I The header of the file can contain some commands to enable
some additional functionalities, such as:
I Generation of models
I Extraction of UNSAT cores
I Extraction of interpolants
I Set background logic for more efficient computations

I While solving the exercises we will highlight the most popular
options and their effects.

Warning
Each command must be written inside brackets!

Giuseppe Spallitta 1. Satisfiability Modulo Theories
4/32



SMT-LIB file: declaration

I In this section we must declare each variable/function
necessary to describe the problem.

I The declaration of variables can be done in the following way:
(declare-const <name> <type>)

I Types supported by SMT-LIB are:
I Bool
I Int
I Real
I (_ BitVec <size>)
I (Array <type> <type>)

I The declaration of functions can be done in the following way:
(declare-fun <name> ([input types]) <type>)

Giuseppe Spallitta 1. Satisfiability Modulo Theories
5/32

Bool
Int
Real


SMT-LIB file: assertion

I Once defined the variables, it is necessary to determine the
constraints that rules the satisfiability of the problem in the
form of assertions.

I The declaration of assertions can be done in the following way:
(assert <condition>)

I Conditions can be basic (i.e. x = 5) or nested (x=2 or x=5).

Warning
In SMT-LIB operators always use a prefix notation!

Giuseppe Spallitta 1. Satisfiability Modulo Theories
6/32



SMT-LIB assertion: propositional logic

Of course Boolean operators are available to use:
I NEGATION is represented as (not <var>)
I OR is represented as (or <var1> <var2>)
I AND is represented as (and <var1> <var2>)
I IF is represented as (=> <var1> <var2>).
I XOR can be represented as (xor <var1> <var2>)
I EQUALITY is represented as (= <var1> <var2>)

Warning
The and and or operators are not only binary operators and can be
used with multiple arguments.

Giuseppe Spallitta 1. Satisfiability Modulo Theories
7/32

and
or


SMT-LIB assertion: arithmetic

The SMT-LIB format standardizes syntax for arithmetic over
integers and over reals.
I ADDITION is represented as +
I SUBTRACTION is represented as -
I MULTIPLICATION is represented as *
I DIVISION is represented by / (Real) anddiv (Int)
I REMAINDER (only using Int) is represented as mod
I Relations among variables (i.e. greater (or equal) than, lower

(or equal) than) are represented respectively by > (>=) and
< (<=)

Warning
The * and + operators are not only binary operators and can be
used with multiple arguments.

Giuseppe Spallitta 1. Satisfiability Modulo Theories
8/32

div
mod
*
+


SMT-LIB assertion: Bit Vectors

Numbers can be represented using a bit vector representation and
require different operators
I ADDITION is represented as bvadd <var1> <var2>
I SUBTRACTION is represented as bvsub <var1> <var2>
I MULTIPLICATION is represented as bvmul <var1> <var2>
I DIVISION is represented bvudiv <var1> <var2>
I REMAINDER is represented as bvurem <var1> <var2>
I Relations among variables (i.e. greater (or equal) than, lower

(or equal) than) are represented respectively by bvugt (bvuge)
and bvult (bvule)

Warning
If you change the u into a s for the last two sets of operators, you
obtain equivalent operations using signed vectors (thus changing
the range of admitted values).

Giuseppe Spallitta 1. Satisfiability Modulo Theories
9/32

bvugt
bvuge
bvult
bvule


SMT-LIB assertion: Arrays

I Arrays map an index type to an element type (similarly to
Python dict type).

I To select the element associated to index i in array a the
command to use is the following:

(select a i)

I To update the element associated to index i in array a with
value e the command is the following:

(store a i em)

Giuseppe Spallitta 1. Satisfiability Modulo Theories
10/32

dict


SMT-LIB file: action

I The bottom part of the file should describe the task the solver
has to manage.

I First you should check satisfiability of the actual problem:
(check-sat)

I We can then ask for the model value of some of the constants
(in this case x and z):

(get-value (x z))

I Lastly we end the file using:
(exit)

Giuseppe Spallitta 1. Satisfiability Modulo Theories
11/32



Outline

1. Satisfiability Modulo Theories

2. Getting used with MathSAT

3. Simple real-life applications

4. Homework



First encodings

Exercise 4.1: guess the code
A, B, C and D are single-digit numbers. The following equations

can all be made with these numbers:

Giuseppe Spallitta 2. Getting used with MathSAT
12/32



Encoding step-by-step

The procedure to feed a problem into a SMT solver is identical to
the one we adopted for SAT problems:
I Identify the variables that can describe the problem.
I Define the assertions to constraints the domains of each

variables and check its satisfiability.
The only relevant difference is the expressive power of SMT-LIB
with respect to DIMACS.

Giuseppe Spallitta 2. Getting used with MathSAT
13/32



First encodings: variables

I Reading exercise 4.1, we requires 4 constants: A, B, C and D
I Since they are single digit numbers, we set them as Int.
I No additional functions are required for this exercise.

Giuseppe Spallitta 2. Getting used with MathSAT
14/32



First encodings: assertions

I We must encode the 4 equations that are written on the
blackboard, using the basic arithmetical operators.

I Moreover we must ensure that all the digits are different: we
can use the command distinct to easily encode it. If you
don’t remember it during the exam don’t worry, you can
encode it by hand...

Giuseppe Spallitta 2. Getting used with MathSAT
15/32

distinct


First encodings: output

I Once we add the final action, we can feed it to the SMT solver
⇒ The solver returns SAT

I If we want to know the values of the variables, we have to add
some options and some additional actions.

Giuseppe Spallitta 2. Getting used with MathSAT
16/32



Outline

1. Satisfiability Modulo Theories

2. Getting used with MathSAT

3. Simple real-life applications
1) Geometric exercises
2) Checking ALLSAT
3) Using UNSAT cores

4. Homework



Solving geometric problems

Exercise 3.2: intersecting lines
Given two points in the Euclidean space (i.e. A(1,3) and B(2,7)),
let’s define an encoding to determine the lines passing from both
points and the value x where the line intersect the x-axis.

Giuseppe Spallitta 3. Simple real-life applications
17/32



Solving geometric problems: variables

I We can set 4 variables to store the coordinates of each point
(xa, ya, xb, yb).

I We need also to define a function variable (we will call it f )
with arity 1, so that we can have an analytical representation
of the line.

I A line is represented by the formula:

f (x) = mx + q

Thus we need other two variables.

Giuseppe Spallitta 3. Simple real-life applications
18/32



Solving geometric problems: assertions (1)

I We start defining 4 assertions to set the value of the
coordinates and one assertion to define the line equation.

I Then we can encode two assertions to calculate the values of
m and q using the analytic formulae:

m =
yb − ya

xb − xa

q = ya−m ∗ xa

Giuseppe Spallitta 3. Simple real-life applications
19/32



Solving geometric problems: assertions (2)

I Now an assertion to update the analytic function f using the
calculated parameters is necessary.

I Lastly we intersect the generic line with the equation of the
x-axis, which is:

y(x) = 0

We need to store the value of the horizontal intersection, so
we can add a novel variable that will store the solution of this
last assertion.

Giuseppe Spallitta 3. Simple real-life applications
20/32



Solving geometric problems: results

I Now we can feed the encoding into MathSAT, obtaining a
valid solution.

I The problem can be easily adapted to different sets of points:
if we change the coordinates, we will obtain a different line.

I You can also extend this code to generalize this exercises in
the case you want to determine the intersection of two lines.

Giuseppe Spallitta 3. Simple real-life applications
21/32



Unlocking phones

Exercise 4.3: unlocking phones
You wants to unlock the mobile phone of your friend to see if they
are dating someone. Sadly, there is a 2*2 grid pattern lock that
stops you. You remember that the password requires all 4 pins to
be connected; moreover there are no diagonal lines in the pattern.
How many combinations you have to try in the worst case to
unlock the phone?

Giuseppe Spallitta 3. Simple real-life applications
22/32



Unlocking phones: variables

I This exercise can be modeled as a SAT problem, so we can
reason in the same way as the first laboratories.

I In particular we need 16 variables, labeled xij , where i is the
cell in the grid and j is the order in the sequence.

Giuseppe Spallitta 3. Simple real-life applications
23/32



Unlocking phones: assertions

I For each cell in the grid, exactly one temporal position in the
sequence is correct.

I For each temporal position in the sequence, exactly one cell in
grid must be chosen.

I If a cell in the grid is chosen, we must ensure that the next
one is not the diagonal one.

Giuseppe Spallitta 3. Simple real-life applications
24/32



Unlocking phones: results

I If we simply run the (check-sat) command we will see that the
problem is SAT (thus at least one password exists), but we are
interested in knowing the total number of solutions admitted...

I The (check-allsat) command returns all possible solution given
a set of Boolean variables (if no set is passed as arguments, all
te defined Boolean variables are considered). Thanks to it, we
can see how many solutions can be generated.

Giuseppe Spallitta 3. Simple real-life applications
25/32



Proof of theories

Exercise 4.4: checking formulae
Prove that the following combination of Linear Arithmetic over
Integers and Uninterpreted Function is unsatisfiable:

Once we prove it, can we find a minimal set of conditions that
makes it unsatisfiable?

Giuseppe Spallitta 3. Simple real-life applications
26/32



Proof of theories: variables

First we must define the variables and the functions:
I Variables: x1, x2, x3
I Functions: f and g , with integers as input and Bool as

output.

Giuseppe Spallitta 3. Simple real-life applications
27/32



Proof of theories: assertions

I The conversion into the SMT-LIB format is trivial: each clause
of the formula can be independently written using basic
operators.

I We can quickly check the unsatisfiability of the formula, but
now we must discover the UNSAT core to answer the main
question.

Giuseppe Spallitta 3. Simple real-life applications
28/32



Proof of theories: extracting cores

I To extract the core we need to add a label for each assertions
using a specific sintax, the command (! <formula> :named
<label>).

I Now we can use the (get-unsat-core) to obtain the
information, assuming the input returns UNSAT.

I What happens if we add the constraint x1 >= x2?

Giuseppe Spallitta 3. Simple real-life applications
29/32



Outline

1. Satisfiability Modulo Theories

2. Getting used with MathSAT

3. Simple real-life applications

4. Homework



Homework

Homework 4.1: math olympics
Find the number of positive integers with three not necessarily
distinct digits, abc, with a 6= 0 and c 6= 0 such that both abc and
cba are multiples of 4.

Giuseppe Spallitta 4. Homework
30/32



Homework

Homework 4.2: balance puzzle
Solve it using an SMT solver (use some temporary variables to
store the possible solutions...)

Giuseppe Spallitta 4. Homework
31/32



Homework

Homework 4.3: checking the correctness of the slides
Apply the extraction of UNSAT cores using MathSAT to see if we
can obtain the same answer of the example shown in slide 95
(handouts) of this presentation: http://disi.unitn.it/~rseba/
DIDATTICA/fm2021/SLIDES/03-smt_handouts.pdf

Giuseppe Spallitta 4. Homework
32/32

http://disi.unitn.it/~rseba/DIDATTICA/fm2021/SLIDES/03-smt_handouts.pdf
http://disi.unitn.it/~rseba/DIDATTICA/fm2021/SLIDES/03-smt_handouts.pdf

	Satisfiability Modulo Theories
	Quick overview on MathSAT

	Getting used with MathSAT
	Simple real-life applications
	Geometric exercises
	Checking ALLSAT
	Using UNSAT cores

	Homework

