
Formal Method Mod. 1 (Automated Reasoning)
Laboratory 1

Giuseppe Spallitta
giuseppe.spallitta@unitn.it

Università degli studi di Trento

March 10, 2021



Course overview

I Schedule: Wednesday, 11:30-13:30
I Laboratories will focus on modelling and resolution of SAT

and SMT problems
I Examples in class + homework (solutions will be provided

during the course).
I The exam will contain exercises similar to the ones shown

during lectures



Outline

1. First steps on SAT solving
1) Quick overview of Glucose

2. Getting used with DIMACS format

3. Simple real-life applications



Glucose 4.0

I Given a SAT problem, we want to determine if there is a
satisfiable assignment to each variable s.t. the problem
evaluates to true.

I In these classes we will use Glucose 4.0
(https://www.labri.fr/perso/lsimon/glucose/) to efficiently
obtain the answer.

I Instructions to install the tool have been uploaded to the
Moodle page of the course.

Giuseppe Spallitta 1. First steps on SAT solving
1/46



Glucose 4.0 (cont.d)

I SAT solver developed by Gilles Audemard and Laurent Simon
I Heavily based on Minisat, an older minimal SAT solver
I Easy to setup and to use, it provides a minimal yet efficient

interface to deal with satisfiability problems.
I It relies on the CDCL algorithm.
I It has been chosen as the base solver for the "Hack track sAT

competition", focusing on improving the solver through
minimal modifies:
(https://satcompetition.github.io/2020/track_hack.html)

Giuseppe Spallitta 1. First steps on SAT solving
2/46



Why using SAT solvers?

Let’s try the "SAT game" and we will see the importance of SAT
solving...
http://www.cril.univ-artois.fr/~roussel/satgame/
satgame.php?level=5&lang=eng

Giuseppe Spallitta 1. First steps on SAT solving
3/46

http://www.cril.univ-artois.fr/~roussel/satgame/satgame.php?level=5&lang=eng
http://www.cril.univ-artois.fr/~roussel/satgame/satgame.php?level=5&lang=eng


The DIMACS format

I If we want to use Glucose, we need to know the input format
and the output provided by the tool.

I The input format accepted by the tool is called DIMACS
format
I Widely considered the standard input format for SAT solving
I Benchmarks are created using this standard

Giuseppe Spallitta 1. First steps on SAT solving
4/46



The DIMACS format: an example

It seems difficult to read and
understand, but actually it’s
easier than you thought!

Giuseppe Spallitta 1. First steps on SAT solving
5/46



The DIMACS format: an example (cont.d)

Comments
Each row starting with a lower case c is a
comment
⇒ use it to explain the SAT problem you
encoded and other useful information

Giuseppe Spallitta 1. First steps on SAT solving
6/46



The DIMACS format: an example (cont.d)

Problem line
I The first non-comment line must be the

problem line, starting with a lower case p
I The first word is the problem type (in

our case CNF)
I The first number is the number of

variables
I The second number is the number of

clauses

Giuseppe Spallitta 1. First steps on SAT solving
7/46



The DIMACS format: an example (cont.d)

Clauses
I Each subsequent row contains a single

clause
I A clause is defined by listing the index of

each positive literal, and the negative
index of each negative literal.

I The last number, 0, tells the solver that
the previous clause ended and we are
starting with a new clause.

Giuseppe Spallitta 1. First steps on SAT solving
8/46



The DIMACS format: an example (cont.d)

Clauses: example
If 1 is the identifier of x1, 2 the identifier of x2
and so on, then the first three clauses are:
I x1 ∨ x2

I ¬x2 ∨ ¬x4

I x3 ∨ x4

Giuseppe Spallitta 1. First steps on SAT solving
9/46



Glucose output

Once you create your file using the DIMACS format, you can feed
it to the solver:
I If no solution exists to the problem, the solver returns UNSAT
I If at least one solution exists, the solver returns SAT. If the

path of an output file is provided, a valid assignment satisfying
the problem is printed into it, using the same notation of
DIMACS to indicate positive or negative assignments for each
variable.

Giuseppe Spallitta 1. First steps on SAT solving
10/46



Outline

1. First steps on SAT solving

2. Getting used with DIMACS format

3. Simple real-life applications



First encodings

Exercise 1.1
Encode the following Boolean formulas and check their
(un)satisfiability:
I ϕ1 := (x1 ∨ ¬x5 ∨ x4) ∧ (¬x3 ∨ x4) ∧ (¬x1 ∨ x5 ∨ x2)

I ϕ2 := (x1 → x2) ∨ x3

Giuseppe Spallitta 2. Getting used with DIMACS format
11/46



First encodings

Exercise 1.1
Encode the following Boolean formulas and check their
(un)satisfiability:
I ϕ1 := (x1 ∨ ¬x5 ∨ x4) ∧ (¬x3 ∨ x4) ∧ (¬x1 ∨ x5 ∨ x2)

I ϕ2 := (x1 → x2) ∨ x3

I The first formula can be easily encoded using the DIMACS
format!

Giuseppe Spallitta 2. Getting used with DIMACS format
12/46



First encodings

Exercise 1.1
Encode the following Boolean formulas and check their
(un)satisfiability:
I ϕ1 := (x1 ∨ ¬x5 ∨ x4) ∧ (¬x3 ∨ x4) ∧ (¬x1 ∨ x5 ∨ x2)

I ϕ2 := (x1 → x2) ∨ x3

I The first formula can be easily encoded using the DIMACS
format!

I The second formula should be written into CNF format before
feeding it to the solver!

ϕ2 = (¬x1 ∨ x2) ∨ x3

Giuseppe Spallitta 2. Getting used with DIMACS format
13/46



First encodings (cont.d)

Homework 1.1
Encode the following Boolean formulas and check their
(un)satisfiability:
I ϕ3 := ¬x1 → (x1 → x2)

I ϕ4 := (x1 ↔ x2)

Giuseppe Spallitta 2. Getting used with DIMACS format
14/46



Outline

1. First steps on SAT solving

2. Getting used with DIMACS format

3. Simple real-life applications
1) Testing Boolean circuits
2) Solving simple logic puzzles



Testing Boolean circuits

Exercise 1.2
You are asked to build a circuit for a top-secret project. Each gate
costs a lot of money, so you suggest an alternative and cheaper
circuit. Are the two circuits are equivalent?

Giuseppe Spallitta 3. Simple real-life applications
15/46



Testing Boolean circuits (cont.d)

The first step is encoding the two Boolean circuit. Starting with
the first one, let’s define intermediate variables to store the result
of each inner gate and the final output:

Giuseppe Spallitta 3. Simple real-life applications
16/46



Testing Boolean circuits (cont.d)

Each gate represents a clause of the final encoding. The upper left
AND gate can be represented as:

X1↔ A ∧ B

This formula must be converted into its equivalent CNF form. In
this case:

(X1→ (A ∧ B)) ∧ (X1← (A ∧ B))

(¬X1 ∨ (A ∧ B)) ∧ (¬(A ∧ B) ∨ X1)

(¬X1 ∨ A) ∧ (¬X1 ∨ B) ∧ (¬A ∨ ¬B ∨ X1)

The same pattern can be applied for each AND gate!

Giuseppe Spallitta 3. Simple real-life applications
17/46



Testing Boolean circuits (cont.d)

The leftmost OR gate can be represented as:

X2↔ B ∨ C

This formula must be converted into its equivalent CNF form:

(X2→ (B ∨ C )) ∧ (X2← (B ∨ C ))

(¬X2 ∨ (B ∨ C )) ∧ (¬(B ∨ C ) ∨ X2)

(¬X2 ∨ B ∨ C ) ∧ ((¬B ∧ ¬C ) ∨ X2)

(¬X2 ∨ B ∨ C ) ∧ (¬B ∨ X2) ∧ (¬C ∨ X2)

The same pattern can be applied for each OR gate!

Giuseppe Spallitta 3. Simple real-life applications
18/46



Testing Boolean circuits (cont.d)

I Using the two retrieved formulas, we can encode both circuits
into a CNF equivalent formula.

I We are missing the last step: checking the equivalence of the
two systems!
I If at least one counter-example is found (the two output are

not identical for the same input), then the two circuits are not
equivalent.

I As a consequence, we can encode this condition into the
sub-formula:

¬(O1↔ O2)

Satisfiability corresponds to the desired counter-example, thus
the non-equivalence.

Giuseppe Spallitta 3. Simple real-life applications
19/46



Testing Boolean circuits (cont.d)

As always we must convert into into CNF form:

¬((O1→ O2) ∧ (O2→ O1))

¬((¬O1 ∨ O2) ∧ (¬O2 ∨ O1))

((O1 ∧ ¬O2) ∨ (O2 ∧ ¬O1))

(O1 ∨ O2) ∧ (O1 ∨ ¬O1) ∧ (¬O2 ∨ O2) ∧ (¬O2 ∨ ¬O1)

Each clause in the form A ∨ ¬A is always true, so they are useless
and can be removed, leaving:

(O1 ∨ O2) ∧ (¬O2 ∨ ¬O1)

Giuseppe Spallitta 3. Simple real-life applications
20/46



Testing Boolean circuits (cont.d)

I We can now pass the encoding to the solver... after we map
each variable into indexed integers!

Giuseppe Spallitta 3. Simple real-life applications
21/46



Testing Boolean circuits (cont.d)

I We can now pass the encoding to the solver... after we map
each variable into indexed integers!

I The solver returns UNSAT
⇒ no counter-example has been found
⇒ the two circuits are equivalent

Giuseppe Spallitta 3. Simple real-life applications
22/46



The importance of modeling

I At the moment we simply converted Boolean formulas into an
equivalent DIMACS format
⇒ Real life is not so easy :)

I Determining the variables to describe the problem and correctly
write all the necessary conditions will be the hardest task.

Giuseppe Spallitta 3. Simple real-life applications
23/46



Sorting people

Exercise 1.3
Consider three chairs in a row and three guests: A, B e C. We
know that:
I A does not want to sit next to C.
I A does not want to sit on the leftmost chair.
I B does not want to sit at the right of C

Is it possible to satisfy the following constraints and find a valid
placement?

Giuseppe Spallitta 3. Simple real-life applications
24/46



Sorting people: variables

First let’s define the Boolean variables necessary to model the
problem:
I xij states if user i (i ∈{A,B,C}) is sat in chair j (j ∈1,2,3)
I In this case 3*3 = 9 variables are needed
I Remember to map each variable into an indexed variable to

satisfy the DIMACS format!
I x11 → 1, x12 → 2, x13 → 3, x21 → 4 and so on...

Giuseppe Spallitta 3. Simple real-life applications
25/46



Sorting people:properties (1)

Now let’s encode the conditions stated in the text of the problem:
I A does not want to sit next to C

¬(x11 ∧ x32) ∧ ¬(x31 ∧ x12) ∧ ¬(x12 ∧ x33) ∧ ¬(x32 ∧ x13)

After CNF-ization, we obtain:

(¬x11 ∨¬x32)∧ (¬x31 ∨¬x12)∧ (¬x12 ∨¬x33)∧ (¬x32 ∨¬x13)

Giuseppe Spallitta 3. Simple real-life applications
26/46



Sorting people: properties (2)

I A does not want to sit on the leftmost chair.

¬x11

I B does not want to sit at the right of C

¬(x22 ∧ x31) ∧ ¬(x23 ∧ x32)

After CNF-ization, we obtain:

(¬x22 ∨ ¬x31) ∧ (¬x23 ∨ ¬x32)

Giuseppe Spallitta 3. Simple real-life applications
27/46



Sorting people: properties (3)

I Is this enough to model the problem?
I There are some "not obvious" conditions that must be

provided!

Giuseppe Spallitta 3. Simple real-life applications
28/46



Sorting people: properties (4)

I Guest A must sit in at least one chair:

x11 ∨ x12 ∨ x13

The same applies for guests B and C, so we must add two
additional conditions using the same pattern:

x21 ∨ x22 ∨ x23

x31 ∨ x32 ∨ x33

Giuseppe Spallitta 3. Simple real-life applications
29/46



Sorting people: properties (5)

I Guest A must sit in at most one chair:

x11 → (¬x12 ∧ ¬x13)

x12 → (¬x11 ∧ ¬x13)

x13 → (¬x11 ∧ ¬x12)

Each condition must be converted into an equivalent CNF
formula. The first one will become:

¬x11 ∨ (¬x12 ∧ ¬x13)

(¬x11 ∨ ¬x12) ∧ (¬x11 ∨ ¬x13)

The other two follows the same pattern.

Giuseppe Spallitta 3. Simple real-life applications
30/46



Sorting people: properties (6)

I Guest B must sit in at most one chair
I Guest C must sit in at most one chair

Both conditions can be encoded similarly to the previous condition
and thus we encode them again simply changing the involved
variables.

Giuseppe Spallitta 3. Simple real-life applications
31/46



Sorting people: properties (7)

I Only one person can sit on the first position:

x11 → (¬x21 ∧ ¬x31)

x21 → (¬x11 ∧ ¬x31)

x31 → (¬x11 ∧ ¬x21)

The structure is identical to the previous formulas, thus we can
repeat the same pattern changing the variables!
We need also to encode the same typology of clauses for the
second and the third position.

Giuseppe Spallitta 3. Simple real-life applications
32/46



Sorting people: results

Now we can fed the encoding into Glucose
⇒ The solver returns UNSAT

Giuseppe Spallitta 3. Simple real-life applications
33/46



Cracking codes

Exercise 1.4

Assuming we can use only digits from 1 to 4, does a solution
exists? Is it unique?

Giuseppe Spallitta 3. Simple real-life applications
34/46



Cracking codes: variables

First let’s define the Boolean variables necessary to model the
problem:
I xij states if number i (i ∈{1,2,3,4}) is placed in position

j (j ∈1,2)
I In this case 4*2 = 8 variables are needed

Giuseppe Spallitta 3. Simple real-life applications
35/46



Cracking codes: properties (1)

Let’s encode the first condition: "In 12, one number is correct and
well placed".
I This means that either the digit 1 is correct and 2 is not part

of the code or viceversa.

(x11 ∧ ¬x21 ∧ ¬x22) ∨ (x22 ∧ ¬x11 ∧ ¬x12)

Its equivalent CNF representation is:

(x11∨x22)∧(x11∨¬x12)∧(¬x21∨x22)∧(¬x21∨¬x11)∧(¬x21∨¬x12)

∧(¬x22 ∨ ¬x11) ∧ (¬x22 ∨ ¬x12)

Giuseppe Spallitta 3. Simple real-life applications
36/46



Cracking codes: properties (2)

The second condition, "In 14, nothing is correct", is easier to
encode:
I 1 and 4 must be excluded from the possible valid values in

each position
¬x11 ∧ ¬x12 ∧ ¬x41 ∧ ¬x41

Giuseppe Spallitta 3. Simple real-life applications
37/46



Cracking codes: properties (3)

Now we can deal with the third condition, "In 43, one number is
correct but wrongly placed".
I Either the digit 3 should be put in position 1 and 4 is not part

of the code or the digit 4 should be put in position 2 and 3 is
not part of the code.

(x31 ∧ ¬x41 ∧ ¬x42) ∨ (x42 ∧ ¬x31 ∧ ¬x32)

This pattern is identical to the one used to encode the first
condition, so we can recycle its CNF structure!

Giuseppe Spallitta 3. Simple real-life applications
38/46



Cracking codes: properties (3)

Similarly to the previous exercise, we must add some "hidden"
conditions:
I Each position must contain at least a digit

(x11 ∨ x21 ∨ x31 ∨ x41) ∧ (x12 ∨ x22 ∨ x32 ∨ x42)

I Each position must contain at most a digit.

x11 → (¬x21 ∧ ¬x31 ∧ ¬x41)

Whose CNF equivalent representation is:

(¬x11 ∨ ¬x21) ∧ (¬x11 ∨ ¬x31) ∧ (¬x11 ∨ ¬x41)

This formula must be replicated for each digit, for both
position 1 and 2. A total of 8 different formulas must be
encoded!

Giuseppe Spallitta 3. Simple real-life applications
39/46



Cracking codes: results

Once we map the variables into the usual indexed integers we can
feed it to Glucose and see if there is a valid solution.

Giuseppe Spallitta 3. Simple real-life applications
40/46



Cracking codes: results

Once we map the variables into the usual indexed integers we can
feed it to Glucose and see if there is a valid solution.
⇒ The solver returns SAT and, checking the output, the two true
variables generate 32 as solution.

Giuseppe Spallitta 3. Simple real-life applications
41/46



Cracking codes: results

Once we map the variables into the usual indexed integers we can
feed it to Glucose and see if there is a valid solution.
⇒ The solver returns SAT and, checking the output, the two true
variables generate 32 as solution.

To check the uniqueness of this solution, we must ensure the two
digits cannot be respectively 3 and 2. This can be easily encoded
using the following clauses:

¬x31 ∨ ¬x22

Giuseppe Spallitta 3. Simple real-life applications
42/46



Cracking codes: results

Once we map the variables into the usual indexed integers we can
feed it to Glucose and see if there is a valid solution.
⇒ The solver returns SAT and, checking the output, the two true
variables generate 32 as solution.

To check the uniqueness of this solution, we must ensure the two
digits cannot be respectively 3 and 2. This can be easily encoded
using the following clauses:

¬x31 ∨ ¬x22

⇒ Now the solver returns UNSAT, proving the uniqueness of the
solution

Giuseppe Spallitta 3. Simple real-life applications
43/46



Homeworks

Homework 1.3: cheaters
Three students A, B and C are accused of having illegally obtained
the questions for the Automated Reasoning exam. During the
investigation process the students made the following statements:
I A said: "B is guilty and C is innocent"
I B said: "If A is guilty, then C is also guilty"
I C said: "I’m innocent and one of the others, perhaps even the

two, are guilty"
Considering that all the students spoke the truth, which of the
students are guilty and which are innocent? Solve it using Glucose.

Giuseppe Spallitta 3. Simple real-life applications
44/46



Homeworks

Homework 1.4: password
Using the digits 1,2,3 and 4 you need to create a 3-length
password. There are some rules that must be fulfilled:
I The password should be even
I We cannon use the same digit three times, otherwise it would

be easy to guess it.
I It is possible to repeat the same digit twice, just make sure the

two digits are not adjacent.
Solve it using a SAT solver and report the solution. Is this unique?

Giuseppe Spallitta 3. Simple real-life applications
45/46



Homeworks

Homework 1.5: coloring graph
You are given the graph shown in the
figure on the right. Suppose you want
to color the nodes of this graph so that
nodes connected by an edge cannot
have the same color. Given these
assumptions:
I Is it possible to color the graph

using only 2 colors?
I Is it possible to color the graph

using only 3 colors?
Solve it using a SAT solver.

Giuseppe Spallitta 3. Simple real-life applications
46/46


	First steps on SAT solving
	Quick overview of Glucose

	Getting used with DIMACS format
	Simple real-life applications
	Testing Boolean circuits
	Solving simple logic puzzles


