
Formal Methods
Module II: Model Checking

Ch. 10: SMT-Based Model Checking

Roberto Sebastiani

DISI, Università di Trento, Italy – roberto.sebastiani@unitn.it
URL: http://disi.unitn.it/rseba/DIDATTICA/fm2021/

Teaching assistant: Giuseppe Spallitta – giuseppe.spallitta@unitn.it

M.S. in Computer Science, Mathematics, & Artificial Intelligence Systems
Academic year 2020-2021

last update: Tuesday 1st June, 2021, 11:34

Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti,
M. Di Natale, P. Pandya, M. Pistore, M. Roveri, C. Tinelli, and S.Tonetta, who detain its copyright. Some exampes

displayed in these slides are taken from [Clarke, Grunberg & Peled, “Model Checking”, MIT Press], and their copyright is
detained by the authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this

material is strictly forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be
displayed in public without containing this copyright notice.

1 / 38

roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/fm2021/
giuseppe.spallitta@unitn.it

Outline

1 Motivations & Context

2 Background

3 SMT-Based Bounded Model Checking of Timed Systems
Basic Ideas
Basic Encoding
Improved & Extended Encoding
A Case-Study

4 Exercises

2 / 38

Outline

1 Motivations & Context

2 Background

3 SMT-Based Bounded Model Checking of Timed Systems
Basic Ideas
Basic Encoding
Improved & Extended Encoding
A Case-Study

4 Exercises

3 / 38

Motivations

Model Checking for Timed Systems:
relevant improvements and results over the last decades
historically, “explicit-state” search style, based on DBMs

notable examples: Kronos, Uppaal
More recently, symbolic verification techniques:

extensions of decision diagrams
CDD, DDD, RED, ...

Key problem: potential blow up in size
A more recent and viable alternative to Binary Decision
Diagrams: SAT-based MC

Bounded Model Checking (BMC), K-induction, IC3/PDR, ...

4 / 38

Motivations

Model Checking for Timed Systems:
relevant improvements and results over the last decades
historically, “explicit-state” search style, based on DBMs

notable examples: Kronos, Uppaal
More recently, symbolic verification techniques:

extensions of decision diagrams
CDD, DDD, RED, ...

Key problem: potential blow up in size
A more recent and viable alternative to Binary Decision
Diagrams: SAT-based MC

Bounded Model Checking (BMC), K-induction, IC3/PDR, ...

4 / 38

Motivations

Model Checking for Timed Systems:
relevant improvements and results over the last decades
historically, “explicit-state” search style, based on DBMs

notable examples: Kronos, Uppaal
More recently, symbolic verification techniques:

extensions of decision diagrams
CDD, DDD, RED, ...

Key problem: potential blow up in size
A more recent and viable alternative to Binary Decision
Diagrams: SAT-based MC

Bounded Model Checking (BMC), K-induction, IC3/PDR, ...

4 / 38

Motivations

Model Checking for Timed Systems:
relevant improvements and results over the last decades
historically, “explicit-state” search style, based on DBMs

notable examples: Kronos, Uppaal
More recently, symbolic verification techniques:

extensions of decision diagrams
CDD, DDD, RED, ...

Key problem: potential blow up in size
A more recent and viable alternative to Binary Decision
Diagrams: SAT-based MC

Bounded Model Checking (BMC), K-induction, IC3/PDR, ...

4 / 38

Context

First Idea: SMT-based BMC of Timed Systems
[Audemard et al. 2002], [Sorea, MTCS’02], [Niebert et al.,FTRTFT’02]

Leverage the SAT-based BMC approach to Timed Systems by means
of SMT Solvers

Extensions
SMT eventually applied to other SAT-based MC techniques

K-Induction
interpolant-based
IC3/PDR

SMT applied to a variety of domains:
hybrid systems
verification of SW (loop invariants/proof obbligations, ...)
hardware verification

Nowadays SMT leading backend technology for FV

We restrict to BMC for Timed Systems only
5 / 38

Context

First Idea: SMT-based BMC of Timed Systems
[Audemard et al. 2002], [Sorea, MTCS’02], [Niebert et al.,FTRTFT’02]

Leverage the SAT-based BMC approach to Timed Systems by means
of SMT Solvers

Extensions
SMT eventually applied to other SAT-based MC techniques

K-Induction
interpolant-based
IC3/PDR

SMT applied to a variety of domains:
hybrid systems
verification of SW (loop invariants/proof obbligations, ...)
hardware verification

Nowadays SMT leading backend technology for FV

We restrict to BMC for Timed Systems only
5 / 38

Context

First Idea: SMT-based BMC of Timed Systems
[Audemard et al. 2002], [Sorea, MTCS’02], [Niebert et al.,FTRTFT’02]

Leverage the SAT-based BMC approach to Timed Systems by means
of SMT Solvers

Extensions
SMT eventually applied to other SAT-based MC techniques

K-Induction
interpolant-based
IC3/PDR

SMT applied to a variety of domains:
hybrid systems
verification of SW (loop invariants/proof obbligations, ...)
hardware verification

Nowadays SMT leading backend technology for FV

We restrict to BMC for Timed Systems only
5 / 38

Context

First Idea: SMT-based BMC of Timed Systems
[Audemard et al. 2002], [Sorea, MTCS’02], [Niebert et al.,FTRTFT’02]

Leverage the SAT-based BMC approach to Timed Systems by means
of SMT Solvers

Extensions
SMT eventually applied to other SAT-based MC techniques

K-Induction
interpolant-based
IC3/PDR

SMT applied to a variety of domains:
hybrid systems
verification of SW (loop invariants/proof obbligations, ...)
hardware verification

Nowadays SMT leading backend technology for FV

We restrict to BMC for Timed Systems only
5 / 38

Context

First Idea: SMT-based BMC of Timed Systems
[Audemard et al. 2002], [Sorea, MTCS’02], [Niebert et al.,FTRTFT’02]

Leverage the SAT-based BMC approach to Timed Systems by means
of SMT Solvers

Extensions
SMT eventually applied to other SAT-based MC techniques

K-Induction
interpolant-based
IC3/PDR

SMT applied to a variety of domains:
hybrid systems
verification of SW (loop invariants/proof obbligations, ...)
hardware verification

Nowadays SMT leading backend technology for FV

We restrict to BMC for Timed Systems only
5 / 38

Outline

1 Motivations & Context

2 Background

3 SMT-Based Bounded Model Checking of Timed Systems
Basic Ideas
Basic Encoding
Improved & Extended Encoding
A Case-Study

4 Exercises

6 / 38

Bounded Model Checking [Biere et al., TACAS’99]

Given a Kripke Structure M, an LTL property f and an integer
bound k , is there an execution path of M of length (up to) k
satisfying f? (M |=k Ef)
Problem converted into the satisfiability of the Boolean formula:

[[M]]fk := I(s(0)) ∧
k−1∧
i=0

R(s(i), s(i+1)) ∧ (¬Lk ∧ [[f]]0k) ∨
k∨

l=0

(lLk ∧ l [[f]]0k)

s.t. lLk
def
= R(s(k), s(l)), Lk

def
=
∨k

l=0 lLk

A satisfying assignment represents a satisfying execution path.
Test repeated for increasing values of k
Incomplete
Very effective for debugging, alternative to OBDDs
Complemented with K-Induction [Sheeran et al. 2000]

Further developments: IC3/PDR [Bradley, VMCAI 2011]

7 / 38

General Encoding for LTL Formulae

f [[f]]ik l [[f]]ik
p p(i) p(i)

¬p ¬p(i) ¬p(i)

h ∧ g [[h]]ik ∧ [[g]]ik l [[h]]ik ∧ l [[g]]ik
h ∨ g [[h]]ik ∨ [[g]]ik l [[h]]ik ∨ l [[g]]ik

Xg [[g]]i+1
k if i < k

⊥ otherwise.
l [[g]]i+1

k if i < k
l [[g]]lk otherwise.

Gg ⊥
∧k

j=min(i,l) l [[g]]jk
Fg

∨k
j=i [[g]]jk

∨k
j=min(i,l) l [[g]]jk

hUg
∨k

j=i

(
[[g]]jk ∧

∧j−1
n=i [[h]]nk

) ∨k
j=i

(
l [[g]]jk ∧

∧j−1
n=i l [[h]]nk

)
∨∨i−1

j=l

(
l [[g]]jk ∧

∧k
n=i l [[h]]nk ∧

∧j−1
n=l l [[h]]nk

)
hRg

∨k
j=i

(
[[h]]jk ∧

∧j
n=i [[g]]nk

) ∧k
j=min(i,l) l [[g]]jk ∨∨k
j=i

(
l [[h]]jk ∧

∧j
n=i l [[g]]nk

)
∨∨i−1

j=l

(
l [[h]]jk ∧

∧k
n=i l [[g]]nk ∧

∧j
n=l l [[g]]nk

)

8 / 38

Timed Automata [Alur and Dill, TCS’94; Alur, CAV’99]

T12

T21

x<=3

x>=1

x:=0

x <= 2

a

b

l1 l2

Clocks: real variables (ex. x)
Locations:

label: (ex. l1),
invariants: (conjunctive) constraints on clocks values (ex. x ≤ 2)

Switches:
event labels (ex. a),
clock constraints (ex. x ≥ 1),
reset statements (ex. x := 0)

Time elapse: all clocks are increased by the same amount
9 / 38

LRA-Formulae
[Audemard et al., CADE’02]; [Sorea, MTCS’02]; [Niebert et al.,FTRTFT’02]

LRA-formulae are Boolean combinations of
Boolean variables and
linear constraints over real variables (equalities and differences)

e.g., (x − 2 · y ≥ 4) ∧ ((x = y) ∨ ¬A)

An interpretation I for a LRA formula assigns
truth values to Boolean variables
real values to numerical variables and constants

e.g., I(x) = 3, I(y) = −1, I(A) = ⊥

I satisfies a LRA-formula φ, written “I |= φ”, iff
I(φ) evaluates to true under the standard semantics of Boolean
and mathematical operators.

E.g., I((x − 2 · y ≥ 4) ∧ ((x = y) ∨ ¬A)) = >

10 / 38

The MATHSAT Solver [Audemard et al., CADE’02]

Bottom level: a T -Solver for sets of LRA constraints
E.g. {..., z1 − x1 ≤ 6, z2 − x2 ≥ 8, x1 = x2, z1 = z2, ...} =⇒ unsat.
Combination of symbolic and numerical algorithms
(equivalence class building, Belman-Ford, Simplex)

Top level: a CDCL procedure for propositional satisfiability
mathematical predicates treated as propositional atoms
invokes T -Solver on every assignment found
used as an enumerator of assignments
lots of enhancements

(see chapter on SMT)

11 / 38

Outline

1 Motivations & Context

2 Background

3 SMT-Based Bounded Model Checking of Timed Systems
Basic Ideas
Basic Encoding
Improved & Extended Encoding
A Case-Study

4 Exercises

12 / 38

Outline

1 Motivations & Context

2 Background

3 SMT-Based Bounded Model Checking of Timed Systems
Basic Ideas
Basic Encoding
Improved & Extended Encoding
A Case-Study

4 Exercises

13 / 38

SMT-Based BMC for Timed Systems

Independently developed approaches (2002):
[Audemard et al. FORTE’02]: encoding into LRA

all LTL properties
[Sorea, MTCS’02]: encoding into LRA

based on automata-theoretic approach for LTL
[Niebert et al.,FTRTFT’02]: encoding into DL

limited to reachability

Disclaimer
These slides are adapted from [Audemard et al. FORTE’02]:

G. Audemard, A. Cimatti, A. Kornilowicz, R. Sebastiani
Bounded Model Checking for Timed Systems,
proc. FORTE 2002, Springer
freely available as http://eprints.biblio.unitn.it/124/

14 / 38

http://eprints.biblio.unitn.it/124/

SMT-Based BMC for Timed Systems

Independently developed approaches (2002):
[Audemard et al. FORTE’02]: encoding into LRA

all LTL properties
[Sorea, MTCS’02]: encoding into LRA

based on automata-theoretic approach for LTL
[Niebert et al.,FTRTFT’02]: encoding into DL

limited to reachability

Disclaimer
These slides are adapted from [Audemard et al. FORTE’02]:

G. Audemard, A. Cimatti, A. Kornilowicz, R. Sebastiani
Bounded Model Checking for Timed Systems,
proc. FORTE 2002, Springer
freely available as http://eprints.biblio.unitn.it/124/

14 / 38

http://eprints.biblio.unitn.it/124/

BMC for Timed Systems

Basic ingredients:

An extension of propositional logic expressive enough to
represent timed information: “LRA-formulae”
A SMT(LRA) solver for deciding LRA-formulae
=⇒ e.g., the MATHSAT solver
An encoding from timed BMC problems into LRA-formulae

LRA-satisfiable iff an execution path within the bound exists

15 / 38

BMC for Timed Systems

Basic ingredients:

An extension of propositional logic expressive enough to
represent timed information: “LRA-formulae”
A SMT(LRA) solver for deciding LRA-formulae
=⇒ e.g., the MATHSAT solver
An encoding from timed BMC problems into LRA-formulae

LRA-satisfiable iff an execution path within the bound exists

15 / 38

BMC for Timed Systems

Basic ingredients:

An extension of propositional logic expressive enough to
represent timed information: “LRA-formulae”
A SMT(LRA) solver for deciding LRA-formulae
=⇒ e.g., the MATHSAT solver
An encoding from timed BMC problems into LRA-formulae

LRA-satisfiable iff an execution path within the bound exists

15 / 38

Outline

1 Motivations & Context

2 Background

3 SMT-Based Bounded Model Checking of Timed Systems
Basic Ideas
Basic Encoding
Improved & Extended Encoding
A Case-Study

4 Exercises

16 / 38

The encoding

Given a timed automaton A and a LTL formula f :
The encoding [[A, f]]k is obtained following the same schema as
in propositional BMC:

[[A, f]]k := I(s(0))∧
k−1∧
i=0

R(s(i), s(i+1))∧ (¬Lk ∧ [[f]]0k)∨
k∨

l=0

(lLk ∧ l [[f]]0k)

[[M, f]]k is a LRA-formula, where
Boolean variables encode the discrete part of the state of the
automaton
constraints on real variables represent the temporal part of the
state

17 / 38

Encoding: Boolean Variables

Locations: an array l of n def
= dlog2(|L|)e Boolean variables

li holds iff the system is in the location li
ex: “¬li [3] ∧ li [2] ∧ ¬li [1] ∧ li [0]” means “the system is in location l3”
“(li = lj)” stands for “

∧
n(li [n]↔ lj [n])”,

“primed” variables li
′ to represent location after transition

Events: for each event a ∈ Σ, a Boolean variable a
a holds iff the system executes a switch with event a.

Switches: for each switch 〈li ,a, ϕ, λ, lj〉 ∈ E , a Boolean
variable T ,

T holds iff the system executes the corresponding switch

Time elapse and null transitions: two variables Tδ and T j
null

Tδ holds iff time elapses by some δ > 0
T j

null holds if and only Aj does nothing (specific for automaton Aj)

Note: also for events, switches&transitions it is possible to use arrays
of Boolean variables of size dlog2(|Σ|)e, dlog2(|E |+ 2)e respectively

18 / 38

Encoding: Boolean Variables

Locations: an array l of n def
= dlog2(|L|)e Boolean variables

li holds iff the system is in the location li
ex: “¬li [3] ∧ li [2] ∧ ¬li [1] ∧ li [0]” means “the system is in location l3”
“(li = lj)” stands for “

∧
n(li [n]↔ lj [n])”,

“primed” variables li
′ to represent location after transition

Events: for each event a ∈ Σ, a Boolean variable a
a holds iff the system executes a switch with event a.

Switches: for each switch 〈li ,a, ϕ, λ, lj〉 ∈ E , a Boolean
variable T ,

T holds iff the system executes the corresponding switch

Time elapse and null transitions: two variables Tδ and T j
null

Tδ holds iff time elapses by some δ > 0
T j

null holds if and only Aj does nothing (specific for automaton Aj)

Note: also for events, switches&transitions it is possible to use arrays
of Boolean variables of size dlog2(|Σ|)e, dlog2(|E |+ 2)e respectively

18 / 38

Encoding: Boolean Variables

Locations: an array l of n def
= dlog2(|L|)e Boolean variables

li holds iff the system is in the location li
ex: “¬li [3] ∧ li [2] ∧ ¬li [1] ∧ li [0]” means “the system is in location l3”
“(li = lj)” stands for “

∧
n(li [n]↔ lj [n])”,

“primed” variables li
′ to represent location after transition

Events: for each event a ∈ Σ, a Boolean variable a
a holds iff the system executes a switch with event a.

Switches: for each switch 〈li ,a, ϕ, λ, lj〉 ∈ E , a Boolean
variable T ,

T holds iff the system executes the corresponding switch

Time elapse and null transitions: two variables Tδ and T j
null

Tδ holds iff time elapses by some δ > 0
T j

null holds if and only Aj does nothing (specific for automaton Aj)

Note: also for events, switches&transitions it is possible to use arrays
of Boolean variables of size dlog2(|Σ|)e, dlog2(|E |+ 2)e respectively

18 / 38

Encoding: Boolean Variables

Locations: an array l of n def
= dlog2(|L|)e Boolean variables

li holds iff the system is in the location li
ex: “¬li [3] ∧ li [2] ∧ ¬li [1] ∧ li [0]” means “the system is in location l3”
“(li = lj)” stands for “

∧
n(li [n]↔ lj [n])”,

“primed” variables li
′ to represent location after transition

Events: for each event a ∈ Σ, a Boolean variable a
a holds iff the system executes a switch with event a.

Switches: for each switch 〈li ,a, ϕ, λ, lj〉 ∈ E , a Boolean
variable T ,

T holds iff the system executes the corresponding switch

Time elapse and null transitions: two variables Tδ and T j
null

Tδ holds iff time elapses by some δ > 0
T j

null holds if and only Aj does nothing (specific for automaton Aj)

Note: also for events, switches&transitions it is possible to use arrays
of Boolean variables of size dlog2(|Σ|)e, dlog2(|E |+ 2)e respectively

18 / 38

Encoding: Boolean Variables

Locations: an array l of n def
= dlog2(|L|)e Boolean variables

li holds iff the system is in the location li
ex: “¬li [3] ∧ li [2] ∧ ¬li [1] ∧ li [0]” means “the system is in location l3”
“(li = lj)” stands for “

∧
n(li [n]↔ lj [n])”,

“primed” variables li
′ to represent location after transition

Events: for each event a ∈ Σ, a Boolean variable a
a holds iff the system executes a switch with event a.

Switches: for each switch 〈li ,a, ϕ, λ, lj〉 ∈ E , a Boolean
variable T ,

T holds iff the system executes the corresponding switch

Time elapse and null transitions: two variables Tδ and T j
null

Tδ holds iff time elapses by some δ > 0
T j

null holds if and only Aj does nothing (specific for automaton Aj)

Note: also for events, switches&transitions it is possible to use arrays
of Boolean variables of size dlog2(|Σ|)e, dlog2(|E |+ 2)e respectively

18 / 38

Encoding: Clock Values and Constraints

Clocks values x are “normalized” wrt absolute time (x − z):
a clock value is written as difference x − z
z represents (the negation of) the absolute time
“offset” variable x represents (the negation of) the absolute time
when the clock was reset

Clock constraints reduce to (x − z ./ c), ./ ∈ {≤,≥, <,>}, c ∈ Z
Clock reset conditions reduce to (x := z)

Clock equalities like (xk = xl) reduce to (xk − zk = xl − zl)

appear only in loops
only place where full LRA is needed (rather than DL)

=⇒ for invariant checking (no loops) DL suffices
Encoding the effect of transitions:

with a time elapse transition
z′ < z, and x ′ = x

otherwise:
z′ = z, absolute time does not elapse
x ′ = z′, if the clock is reset
x ′ = x , if the clock is not reset 19 / 38

Encoding: Clock Values and Constraints

Clocks values x are “normalized” wrt absolute time (x − z):
a clock value is written as difference x − z
z represents (the negation of) the absolute time
“offset” variable x represents (the negation of) the absolute time
when the clock was reset

Clock constraints reduce to (x − z ./ c), ./ ∈ {≤,≥, <,>}, c ∈ Z
Clock reset conditions reduce to (x := z)

Clock equalities like (xk = xl) reduce to (xk − zk = xl − zl)

appear only in loops
only place where full LRA is needed (rather than DL)

=⇒ for invariant checking (no loops) DL suffices
Encoding the effect of transitions:

with a time elapse transition
z′ < z, and x ′ = x

otherwise:
z′ = z, absolute time does not elapse
x ′ = z′, if the clock is reset
x ′ = x , if the clock is not reset 19 / 38

Encoding: Clock Values and Constraints

Clocks values x are “normalized” wrt absolute time (x − z):
a clock value is written as difference x − z
z represents (the negation of) the absolute time
“offset” variable x represents (the negation of) the absolute time
when the clock was reset

Clock constraints reduce to (x − z ./ c), ./ ∈ {≤,≥, <,>}, c ∈ Z
Clock reset conditions reduce to (x := z)

Clock equalities like (xk = xl) reduce to (xk − zk = xl − zl)

appear only in loops
only place where full LRA is needed (rather than DL)

=⇒ for invariant checking (no loops) DL suffices
Encoding the effect of transitions:

with a time elapse transition
z′ < z, and x ′ = x

otherwise:
z′ = z, absolute time does not elapse
x ′ = z′, if the clock is reset
x ′ = x , if the clock is not reset 19 / 38

Encoding: Clock Values and Constraints

Clocks values x are “normalized” wrt absolute time (x − z):
a clock value is written as difference x − z
z represents (the negation of) the absolute time
“offset” variable x represents (the negation of) the absolute time
when the clock was reset

Clock constraints reduce to (x − z ./ c), ./ ∈ {≤,≥, <,>}, c ∈ Z
Clock reset conditions reduce to (x := z)

Clock equalities like (xk = xl) reduce to (xk − zk = xl − zl)

appear only in loops
only place where full LRA is needed (rather than DL)

=⇒ for invariant checking (no loops) DL suffices
Encoding the effect of transitions:

with a time elapse transition
z′ < z, and x ′ = x

otherwise:
z′ = z, absolute time does not elapse
x ′ = z′, if the clock is reset
x ′ = x , if the clock is not reset 19 / 38

Encoding: Clock Values and Constraints

Clocks values x are “normalized” wrt absolute time (x − z):
a clock value is written as difference x − z
z represents (the negation of) the absolute time
“offset” variable x represents (the negation of) the absolute time
when the clock was reset

Clock constraints reduce to (x − z ./ c), ./ ∈ {≤,≥, <,>}, c ∈ Z
Clock reset conditions reduce to (x := z)

Clock equalities like (xk = xl) reduce to (xk − zk = xl − zl)

appear only in loops
only place where full LRA is needed (rather than DL)

=⇒ for invariant checking (no loops) DL suffices
Encoding the effect of transitions:

with a time elapse transition
z′ < z, and x ′ = x

otherwise:
z′ = z, absolute time does not elapse
x ′ = z′, if the clock is reset
x ′ = x , if the clock is not reset 19 / 38

Encoding: Clock Values and Constraints

Clocks values x are “normalized” wrt absolute time (x − z):
a clock value is written as difference x − z
z represents (the negation of) the absolute time
“offset” variable x represents (the negation of) the absolute time
when the clock was reset

Clock constraints reduce to (x − z ./ c), ./ ∈ {≤,≥, <,>}, c ∈ Z
Clock reset conditions reduce to (x := z)

Clock equalities like (xk = xl) reduce to (xk − zk = xl − zl)

appear only in loops
only place where full LRA is needed (rather than DL)

=⇒ for invariant checking (no loops) DL suffices
Encoding the effect of transitions:

with a time elapse transition
z′ < z, and x ′ = x

otherwise:
z′ = z, absolute time does not elapse
x ′ = z′, if the clock is reset
x ′ = x , if the clock is not reset 19 / 38

Encoding: Clock Values and Constraints

Clocks values x are “normalized” wrt absolute time (x − z):
a clock value is written as difference x − z
z represents (the negation of) the absolute time
“offset” variable x represents (the negation of) the absolute time
when the clock was reset

Clock constraints reduce to (x − z ./ c), ./ ∈ {≤,≥, <,>}, c ∈ Z
Clock reset conditions reduce to (x := z)

Clock equalities like (xk = xl) reduce to (xk − zk = xl − zl)

appear only in loops
only place where full LRA is needed (rather than DL)

=⇒ for invariant checking (no loops) DL suffices
Encoding the effect of transitions:

with a time elapse transition
z′ < z, and x ′ = x

otherwise:
z′ = z, absolute time does not elapse
x ′ = z′, if the clock is reset
x ′ = x , if the clock is not reset 19 / 38

Encoding: Clock Values and Constraints

Clocks values x are “normalized” wrt absolute time (x − z):
a clock value is written as difference x − z
z represents (the negation of) the absolute time
“offset” variable x represents (the negation of) the absolute time
when the clock was reset

Clock constraints reduce to (x − z ./ c), ./ ∈ {≤,≥, <,>}, c ∈ Z
Clock reset conditions reduce to (x := z)

Clock equalities like (xk = xl) reduce to (xk − zk = xl − zl)

appear only in loops
only place where full LRA is needed (rather than DL)

=⇒ for invariant checking (no loops) DL suffices
Encoding the effect of transitions:

with a time elapse transition
z′ < z, and x ′ = x

otherwise:
z′ = z, absolute time does not elapse
x ′ = z′, if the clock is reset
x ′ = x , if the clock is not reset 19 / 38

Encoding: Clock Values and Constraints

Clocks values x are “normalized” wrt absolute time (x − z):
a clock value is written as difference x − z
z represents (the negation of) the absolute time
“offset” variable x represents (the negation of) the absolute time
when the clock was reset

Clock constraints reduce to (x − z ./ c), ./ ∈ {≤,≥, <,>}, c ∈ Z
Clock reset conditions reduce to (x := z)

Clock equalities like (xk = xl) reduce to (xk − zk = xl − zl)

appear only in loops
only place where full LRA is needed (rather than DL)

=⇒ for invariant checking (no loops) DL suffices
Encoding the effect of transitions:

with a time elapse transition
z′ < z, and x ′ = x

otherwise:
z′ = z, absolute time does not elapse
x ′ = z′, if the clock is reset
x ′ = x , if the clock is not reset 19 / 38

Encoding: Initial Conditions

Initial condition I(s):

Initially, the automaton is in an initial location:∨
li∈L0

li

Initially, clocks have a null value:∧
x∈X

(x = z)

20 / 38

Encoding: Initial Conditions

Initial condition I(s):

Initially, the automaton is in an initial location:∨
li∈L0

li

Initially, clocks have a null value:∧
x∈X

(x = z)

20 / 38

Encoding: Initial Conditions

Initial condition I(s):

Initially, the automaton is in an initial location:∨
li∈L0

li

Initially, clocks have a null value:∧
x∈X

(x = z)

20 / 38

Encoding: Invariants

Transition relation R(s, s′): Invariants

Always, being in a location implies the corresponding
constraints: ∧

li∈L

(li →
∧

ψ∈I(li)

ψ),

21 / 38

Encoding: Transitions

Transition relation T (s, s′):

Switches:∧
T def

=〈li ,a,ϕ,λ,lj 〉∈E

T →

li ∧ a ∧ ϕ ∧ lj ′ ∧
∧
x∈λ

(x ′ = z ′) ∧
∧
x 6∈λ

(x ′ = x) ∧ (z ′ = z)

Time elapse:

Tδ →

(
(z ′ − z < 0) ∧ (l ′ = l) ∧

∧
x∈X

(x ′ = x) ∧
∧
a∈Σ

¬a

)

Null transition:

T j
null →

(
(z ′ = z) ∧ (l ′ = l) ∧

∧
x∈X

(x ′ = x) ∧
∧
a∈Σ

¬a

)

22 / 38

Encoding: Transitions

Transition relation T (s, s′):

Switches:∧
T def

=〈li ,a,ϕ,λ,lj 〉∈E

T →

li ∧ a ∧ ϕ ∧ lj ′ ∧
∧
x∈λ

(x ′ = z ′) ∧
∧
x 6∈λ

(x ′ = x) ∧ (z ′ = z)

Time elapse:

Tδ →

(
(z ′ − z < 0) ∧ (l ′ = l) ∧

∧
x∈X

(x ′ = x) ∧
∧
a∈Σ

¬a

)

Null transition:

T j
null →

(
(z ′ = z) ∧ (l ′ = l) ∧

∧
x∈X

(x ′ = x) ∧
∧
a∈Σ

¬a

)

22 / 38

Encoding: Transitions

Transition relation T (s, s′):

Switches:∧
T def

=〈li ,a,ϕ,λ,lj 〉∈E

T →

li ∧ a ∧ ϕ ∧ lj ′ ∧
∧
x∈λ

(x ′ = z ′) ∧
∧
x 6∈λ

(x ′ = x) ∧ (z ′ = z)

Time elapse:

Tδ →

(
(z ′ − z < 0) ∧ (l ′ = l) ∧

∧
x∈X

(x ′ = x) ∧
∧
a∈Σ

¬a

)

Null transition:

T j
null →

(
(z ′ = z) ∧ (l ′ = l) ∧

∧
x∈X

(x ′ = x) ∧
∧
a∈Σ

¬a

)

22 / 38

Encoding: Transitions

Transition relation T (s, s′):

Switches:∧
T def

=〈li ,a,ϕ,λ,lj 〉∈E

T →

li ∧ a ∧ ϕ ∧ lj ′ ∧
∧
x∈λ

(x ′ = z ′) ∧
∧
x 6∈λ

(x ′ = x) ∧ (z ′ = z)

Time elapse:

Tδ →

(
(z ′ − z < 0) ∧ (l ′ = l) ∧

∧
x∈X

(x ′ = x) ∧
∧
a∈Σ

¬a

)

Null transition:

T j
null →

(
(z ′ = z) ∧ (l ′ = l) ∧

∧
x∈X

(x ′ = x) ∧
∧
a∈Σ

¬a

)

22 / 38

Encoding: Relations between Transitions

Mutual exclusion between events:∧
ak ,ar∈Σ,ak 6=ar

(¬ak ∨ ¬ar)

At least one transition takes place:

T j
null ∨ Tδ ∨

∨
T∈E

T

Mutual exclusion between transitions:∧
Tk ,Tr ∈ E∪{T j

null}∪{Tδ},Tk 6=Tr

(¬Tk ∨ ¬Tr)

If events and transitions are encoded via arrays of Booleans, mutual
exclusion constraints are not needed

23 / 38

Encoding: Relations between Transitions

Mutual exclusion between events:∧
ak ,ar∈Σ,ak 6=ar

(¬ak ∨ ¬ar)

At least one transition takes place:

T j
null ∨ Tδ ∨

∨
T∈E

T

Mutual exclusion between transitions:∧
Tk ,Tr ∈ E∪{T j

null}∪{Tδ},Tk 6=Tr

(¬Tk ∨ ¬Tr)

If events and transitions are encoded via arrays of Booleans, mutual
exclusion constraints are not needed

23 / 38

Encoding: Relations between Transitions

Mutual exclusion between events:∧
ak ,ar∈Σ,ak 6=ar

(¬ak ∨ ¬ar)

At least one transition takes place:

T j
null ∨ Tδ ∨

∨
T∈E

T

Mutual exclusion between transitions:∧
Tk ,Tr ∈ E∪{T j

null}∪{Tδ},Tk 6=Tr

(¬Tk ∨ ¬Tr)

If events and transitions are encoded via arrays of Booleans, mutual
exclusion constraints are not needed

23 / 38

Encoding: Relations between Transitions

Mutual exclusion between events:∧
ak ,ar∈Σ,ak 6=ar

(¬ak ∨ ¬ar)

At least one transition takes place:

T j
null ∨ Tδ ∨

∨
T∈E

T

Mutual exclusion between transitions:∧
Tk ,Tr ∈ E∪{T j

null}∪{Tδ},Tk 6=Tr

(¬Tk ∨ ¬Tr)

If events and transitions are encoded via arrays of Booleans, mutual
exclusion constraints are not needed

23 / 38

Encoding: Relations between Transitions

Mutual exclusion between events:∧
ak ,ar∈Σ,ak 6=ar

(¬ak ∨ ¬ar)

At least one transition takes place:

T j
null ∨ Tδ ∨

∨
T∈E

T

Mutual exclusion between transitions:∧
Tk ,Tr ∈ E∪{T j

null}∪{Tδ},Tk 6=Tr

(¬Tk ∨ ¬Tr)

If events and transitions are encoded via arrays of Booleans, mutual
exclusion constraints are not needed

23 / 38

Automata Product Construction

The encoding is compositional wrt. product of automata
The encoding of A = A1||A2 is given by the conjunction of the
encodings of A1 and A2, plus a few extra axioms
Mutual exclusion between events that are local∧

a1 ∈ Σ1\Σ2
a2 ∈ Σ2\Σ1

(¬a1 ∨ ¬a2)

Forcing system activity:
N−1∨
j=0

¬T j
null

one distinct T j
null for each automaton Aj

Tδ is common to all automata Aj

24 / 38

Automata Product Construction

The encoding is compositional wrt. product of automata
The encoding of A = A1||A2 is given by the conjunction of the
encodings of A1 and A2, plus a few extra axioms
Mutual exclusion between events that are local∧

a1 ∈ Σ1\Σ2
a2 ∈ Σ2\Σ1

(¬a1 ∨ ¬a2)

Forcing system activity:
N−1∨
j=0

¬T j
null

one distinct T j
null for each automaton Aj

Tδ is common to all automata Aj

24 / 38

Automata Product Construction

The encoding is compositional wrt. product of automata
The encoding of A = A1||A2 is given by the conjunction of the
encodings of A1 and A2, plus a few extra axioms
Mutual exclusion between events that are local∧

a1 ∈ Σ1\Σ2
a2 ∈ Σ2\Σ1

(¬a1 ∨ ¬a2)

Forcing system activity:
N−1∨
j=0

¬T j
null

one distinct T j
null for each automaton Aj

Tδ is common to all automata Aj

24 / 38

Automata Product Construction

The encoding is compositional wrt. product of automata
The encoding of A = A1||A2 is given by the conjunction of the
encodings of A1 and A2, plus a few extra axioms
Mutual exclusion between events that are local∧

a1 ∈ Σ1\Σ2
a2 ∈ Σ2\Σ1

(¬a1 ∨ ¬a2)

Forcing system activity:
N−1∨
j=0

¬T j
null

one distinct T j
null for each automaton Aj

Tδ is common to all automata Aj

24 / 38

A Simple Example

T12

T21

a

b

l1 l2

x:=z

x−z <= 2 x−z<=3

x−z>=1

T

T

z

T

0

T

F

F

F 0.0

−1.0

T

1

F

F

F 0.0

−1.0

F

2

F

F

F

T

F

−1.0

0.0

3

F

F

T

F −1.0

−1.0

4

0.0

0.0

Delta T12 Null T21TRANS:

STEP:

l1

x

T

T

T

T

12

21

null

δ

25 / 38

Outline

1 Motivations & Context

2 Background

3 SMT-Based Bounded Model Checking of Timed Systems
Basic Ideas
Basic Encoding
Improved & Extended Encoding
A Case-Study

4 Exercises

26 / 38

Encoding: Extension

Adding Global Variables
Dealing with some global variable v on discrete domain:

A switch T def
= 〈li ,a, ϕ, λ, lj〉 can

be subject to a condition ψ(v)
=⇒ add T → ψ(v)

assign v to some value n or keep its value
=⇒ add T → (v ′ = n) or add T → (v ′ = v)

Tδ mantains the value of v :
=⇒ add Tδ → (v ′ = v)

T j
null imposes no constraint on v :

=⇒ add nothing (for Aj)

27 / 38

Encoding: Extension

Adding Global Variables
Dealing with some global variable v on discrete domain:

A switch T def
= 〈li ,a, ϕ, λ, lj〉 can

be subject to a condition ψ(v)
=⇒ add T → ψ(v)

assign v to some value n or keep its value
=⇒ add T → (v ′ = n) or add T → (v ′ = v)

Tδ mantains the value of v :
=⇒ add Tδ → (v ′ = v)

T j
null imposes no constraint on v :

=⇒ add nothing (for Aj)

27 / 38

Encoding: Extension

Adding Global Variables
Dealing with some global variable v on discrete domain:

A switch T def
= 〈li ,a, ϕ, λ, lj〉 can

be subject to a condition ψ(v)
=⇒ add T → ψ(v)

assign v to some value n or keep its value
=⇒ add T → (v ′ = n) or add T → (v ′ = v)

Tδ mantains the value of v :
=⇒ add Tδ → (v ′ = v)

T j
null imposes no constraint on v :

=⇒ add nothing (for Aj)

27 / 38

Encoding: Extension

Adding Global Variables
Dealing with some global variable v on discrete domain:

A switch T def
= 〈li ,a, ϕ, λ, lj〉 can

be subject to a condition ψ(v)
=⇒ add T → ψ(v)

assign v to some value n or keep its value
=⇒ add T → (v ′ = n) or add T → (v ′ = v)

Tδ mantains the value of v :
=⇒ add Tδ → (v ′ = v)

T j
null imposes no constraint on v :

=⇒ add nothing (for Aj)

27 / 38

Encoding: Extension

Adding Global Variables
Dealing with some global variable v on discrete domain:

A switch T def
= 〈li ,a, ϕ, λ, lj〉 can

be subject to a condition ψ(v)
=⇒ add T → ψ(v)

assign v to some value n or keep its value
=⇒ add T → (v ′ = n) or add T → (v ′ = v)

Tδ mantains the value of v :
=⇒ add Tδ → (v ′ = v)

T j
null imposes no constraint on v :

=⇒ add nothing (for Aj)

27 / 38

Encoding: Extension

Adding Global Variables
Dealing with some global variable v on discrete domain:

A switch T def
= 〈li ,a, ϕ, λ, lj〉 can

be subject to a condition ψ(v)
=⇒ add T → ψ(v)

assign v to some value n or keep its value
=⇒ add T → (v ′ = n) or add T → (v ′ = v)

Tδ mantains the value of v :
=⇒ add Tδ → (v ′ = v)

T j
null imposes no constraint on v :

=⇒ add nothing (for Aj)

27 / 38

Encoding: Extension

Adding Global Variables
Dealing with some global variable v on discrete domain:

A switch T def
= 〈li ,a, ϕ, λ, lj〉 can

be subject to a condition ψ(v)
=⇒ add T → ψ(v)

assign v to some value n or keep its value
=⇒ add T → (v ′ = n) or add T → (v ′ = v)

Tδ mantains the value of v :
=⇒ add Tδ → (v ′ = v)

T j
null imposes no constraint on v :

=⇒ add nothing (for Aj)

27 / 38

Encoding: Extension

Adding Global Variables
Dealing with some global variable v on discrete domain:

A switch T def
= 〈li ,a, ϕ, λ, lj〉 can

be subject to a condition ψ(v)
=⇒ add T → ψ(v)

assign v to some value n or keep its value
=⇒ add T → (v ′ = n) or add T → (v ′ = v)

Tδ mantains the value of v :
=⇒ add Tδ → (v ′ = v)

T j
null imposes no constraint on v :

=⇒ add nothing (for Aj)

27 / 38

Encoding: Extension

Adding Global Variables
Dealing with some global variable v on discrete domain:

A switch T def
= 〈li ,a, ϕ, λ, lj〉 can

be subject to a condition ψ(v)
=⇒ add T → ψ(v)

assign v to some value n or keep its value
=⇒ add T → (v ′ = n) or add T → (v ′ = v)

Tδ mantains the value of v :
=⇒ add Tδ → (v ′ = v)

T j
null imposes no constraint on v :

=⇒ add nothing (for Aj)

27 / 38

MATHSAT: Optimizations

Customization of MATHSAT
Limit Boolean variable-selection heuristic to pick transition
variables, in forward order

28 / 38

Encoding: Optimizations

Boolean Propagation of Math Constraints:
Idea: add small and mathematically-obvious lemmas

¬(z′ = z) ↔ (z′ − z < 0)∧
x∈X (¬(x = z) ↔ (x − z > 0))∧
x∈X ¬(x

′ = x) ↔ (x ′ − x < 0)∧
x∈X ((x = z) ∧ (x ′ = x) ∧ (z′ = z)) → (x ′ = z′)∧
x∈X (¬(x = z) ∧ (x ′ = x) ∧ (z′ = z)) → ¬(x ′ = z′)∧
x∈X ((x = z) ∧ ¬(x ′ = x) ∧ (z′ = z)) → ¬(x ′ = z′)∧
x∈X ((x = z) ∧ (x ′ = x) ∧ ¬(z′ = z)) → ¬(x ′ = z′)∧
x∈X ((x ′ = x) ∧ (z′ − z < 0) ∧ (x − z > 0)) → (x ′ − z′ > 0)∧
x∈X ((z′ = z) ∧ ¬(x − z > 0) ∧ (x ′ − x < 0)) → ¬(x ′ − z′ > 0)∧
x∈X ((x − z ./ c) ∧ (x ′ = x) ∧ (z′ = z)) → (x ′ − z′ ./ c)∧
x∈X (¬(x − z ./ c) ∧ (x ′ = x) ∧ (z′ = z)) → ¬(x ′ − z′ ./ c)

=⇒ force assignments by unit-propagation,
=⇒ saves calls to the T -Solvers

29 / 38

Encoding Variants

Shortening counter-examples:

Collapsing consequent time elapsing transitions:

s δ7−→ s, s δ′7−→ s reduced to s δ+δ′7−→ s
add ¬Tδ ∨ ¬T ′

δ to transition relation R(s, s′)
=⇒ implements the notion of “non-Zeno-ness” (see previous chapter)
Allow multiple parallel transitions

remove mutex between labels local to processes
=⇒ allows a form of parallel progression

Remark: may change the notion of “next step”

30 / 38

Encoding Variants

Shortening counter-examples:

Collapsing consequent time elapsing transitions:

s δ7−→ s, s δ′7−→ s reduced to s δ+δ′7−→ s
add ¬Tδ ∨ ¬T ′

δ to transition relation R(s, s′)
=⇒ implements the notion of “non-Zeno-ness” (see previous chapter)
Allow multiple parallel transitions

remove mutex between labels local to processes
=⇒ allows a form of parallel progression

Remark: may change the notion of “next step”

30 / 38

Encoding Variants

Shortening counter-examples:

Collapsing consequent time elapsing transitions:

s δ7−→ s, s δ′7−→ s reduced to s δ+δ′7−→ s
add ¬Tδ ∨ ¬T ′

δ to transition relation R(s, s′)
=⇒ implements the notion of “non-Zeno-ness” (see previous chapter)
Allow multiple parallel transitions

remove mutex between labels local to processes
=⇒ allows a form of parallel progression

Remark: may change the notion of “next step”

30 / 38

Encoding Variants (cont.)

A limited form of symmetry reduction
If N automata are symmetric (frequent with protocol verification):

Intuition: restrict executions s.t.
At step 0 only A0 can move
At step 1 only A0,A1 can move
At step 2 only A0,A1,A2 can move
...

for step i < N − 1,
we drop the disjunct ¬T i+1 (i)

null ∨ . . . ∨ ¬T N−1 (i)
null :

set
min(i,N−1)∨

j=0

¬T j (i)
null rather than

N−1∨
j=0

¬T j (i)
null

=⇒ drops “symmetric” executions
=⇒ reduces the search space of a up to 2N(N−1)/2 factor!

31 / 38

Encoding Variants (cont.)

A limited form of symmetry reduction
If N automata are symmetric (frequent with protocol verification):

Intuition: restrict executions s.t.
At step 0 only A0 can move
At step 1 only A0,A1 can move
At step 2 only A0,A1,A2 can move
...

for step i < N − 1,
we drop the disjunct ¬T i+1 (i)

null ∨ . . . ∨ ¬T N−1 (i)
null :

set
min(i,N−1)∨

j=0

¬T j (i)
null rather than

N−1∨
j=0

¬T j (i)
null

=⇒ drops “symmetric” executions
=⇒ reduces the search space of a up to 2N(N−1)/2 factor!

31 / 38

Encoding Variants (cont.)

A limited form of symmetry reduction
If N automata are symmetric (frequent with protocol verification):

Intuition: restrict executions s.t.
At step 0 only A0 can move
At step 1 only A0,A1 can move
At step 2 only A0,A1,A2 can move
...

for step i < N − 1,
we drop the disjunct ¬T i+1 (i)

null ∨ . . . ∨ ¬T N−1 (i)
null :

set
min(i,N−1)∨

j=0

¬T j (i)
null rather than

N−1∨
j=0

¬T j (i)
null

=⇒ drops “symmetric” executions
=⇒ reduces the search space of a up to 2N(N−1)/2 factor!

31 / 38

Outline

1 Motivations & Context

2 Background

3 SMT-Based Bounded Model Checking of Timed Systems
Basic Ideas
Basic Encoding
Improved & Extended Encoding
A Case-Study

4 Exercises

32 / 38

A Case-study: Fischer’s Protocol

A Mutual-Exclusion Real-Time Protocol
N identical processes accessing one critical section
shared variable id ∈ {0,1,2, ...,N}: process identifier (0: none)

when entering wait state Cj , agent Aj writes its code on id
if id = j after δ, then Aj can enter the critical session

Two properties under test
Reachability: EF

∧
i Pi .C (reached in N+1 steps)

Fairness: E¬(GFPi .B → GFPi .CS) (reached in N+5 steps)

x > δ

x <= δ

x <= δ

1
x :=0

1
x :=0

A B

CCS

id==0

id==0 x :=0

x > δ

x <= δ

x :=0

x :=0

x <= δ

2 2

22

2
2

2

2

2

2

id:=2

id==2

id:=0

A B

C
id==1

1 1

1
CS1

id:=1

id==0

1
id==0 x :=0 1

1

1

id:=0

PROCESS 1 PROCESS 2

. . . .

33 / 38

A Case-study: Fischer’s Protocol

A Mutual-Exclusion Real-Time Protocol
N identical processes accessing one critical section
shared variable id ∈ {0,1,2, ...,N}: process identifier (0: none)

when entering wait state Cj , agent Aj writes its code on id
if id = j after δ, then Aj can enter the critical session

Two properties under test
Reachability: EF

∧
i Pi .C (reached in N+1 steps)

Fairness: E¬(GFPi .B → GFPi .CS) (reached in N+5 steps)

x > δ

x <= δ

x <= δ

1
x :=0

1
x :=0

A B

CCS

id==0

id==0 x :=0

x > δ

x <= δ

x :=0

x :=0

x <= δ

2 2

22

2
2

2

2

2

2

id:=2

id==2

id:=0

A B

C
id==1

1 1

1
CS1

id:=1

id==0

1
id==0 x :=0 1

1

1

id:=0

PROCESS 1 PROCESS 2

. . . .

33 / 38

A Case-study: Fischer’s Protocol

A Mutual-Exclusion Real-Time Protocol
N identical processes accessing one critical section
shared variable id ∈ {0,1,2, ...,N}: process identifier (0: none)

when entering wait state Cj , agent Aj writes its code on id
if id = j after δ, then Aj can enter the critical session

Two properties under test
Reachability: EF

∧
i Pi .C (reached in N+1 steps)

Fairness: E¬(GFPi .B → GFPi .CS) (reached in N+5 steps)

x > δ

x <= δ

x <= δ

1
x :=0

1
x :=0

A B

CCS

id==0

id==0 x :=0

x > δ

x <= δ

x :=0

x :=0

x <= δ

2 2

22

2
2

2

2

2

2

id:=2

id==2

id:=0

A B

C
id==1

1 1

1
CS1

id:=1

id==0

1
id==0 x :=0 1

1

1

id:=0

PROCESS 1 PROCESS 2

. . . .

33 / 38

A Case-study: Fischer’s Protocol

A Mutual-Exclusion Real-Time Protocol
N identical processes accessing one critical section
shared variable id ∈ {0,1,2, ...,N}: process identifier (0: none)

when entering wait state Cj , agent Aj writes its code on id
if id = j after δ, then Aj can enter the critical session

Two properties under test
Reachability: EF

∧
i Pi .C (reached in N+1 steps)

Fairness: E¬(GFPi .B → GFPi .CS) (reached in N+5 steps)

x > δ

x <= δ

x <= δ

1
x :=0

1
x :=0

A B

CCS

id==0

id==0 x :=0

x > δ

x <= δ

x :=0

x :=0

x <= δ

2 2

22

2
2

2

2

2

2

id:=2

id==2

id:=0

A B

C
id==1

1 1

1
CS1

id:=1

id==0

1
id==0 x :=0 1

1

1

id:=0

PROCESS 1 PROCESS 2

. . . .

33 / 38

A Case-study: Fischer’s Protocol

A Mutual-Exclusion Real-Time Protocol
N identical processes accessing one critical section
shared variable id ∈ {0,1,2, ...,N}: process identifier (0: none)

when entering wait state Cj , agent Aj writes its code on id
if id = j after δ, then Aj can enter the critical session

Two properties under test
Reachability: EF

∧
i Pi .C (reached in N+1 steps)

Fairness: E¬(GFPi .B → GFPi .CS) (reached in N+5 steps)

x > δ

x <= δ

x <= δ

1
x :=0

1
x :=0

A B

CCS

id==0

id==0 x :=0

x > δ

x <= δ

x :=0

x :=0

x <= δ

2 2

22

2
2

2

2

2

2

id:=2

id==2

id:=0

A B

C
id==1

1 1

1
CS1

id:=1

id==0

1
id==0 x :=0 1

1

1

id:=0

PROCESS 1 PROCESS 2

. . . .

33 / 38

Fischer’s protocol: (cont.)

Exercise:
Why is EF

∧
i Pi .C reached in N+1 steps?

Why is E¬(GFPi .B → GFPi .CS) reached in N+5 steps?
(See [Audemard et al, FORTE’02] for the solution.)

34 / 38

Fischer’s protocol: (reachability)

M |=k EF
∧

i Pi .C

MATHSAT MATHSAT,Sym DDD UPPAL KRONOS RED RED,Sym
N Time Size Time SizeTime Size Time Size Time Size Time Size Time Size
3 0.05 2.9 0.04 2.9 0.11 106 0.01 1.7 0.01 0.8 0.23 2.0 0.19 2.0
4 0.09 3.0 0.08 3.0 0.14 106 0.02 1.9 0.02 2.2 1.00 2.1 0.70 2.1
5 0.20 3.2 0.16 3.2 0.24 106 0.21 1.9 0.09 19 3.70 2.2 2.00 2.4
6 0.60 3.7 0.23 3.7 0.47 106 3.44 6.7 0.39 23612.00 2.7 5.20 3.1
7 3.20 4.2 0.36 4.2 1.30 106 153 54 MEM 38 4.0 12 4.7
8 29 4.9 0.52 4.9 3.96 106 TIME 121 7.6 26 7.8
9 343 5.9 0.75 5.9 14 106 416 16.6 49 13.3
10 3331 6.5 1.01 6.5 62 106 1382 39 90 23
11 TIME 1.39 7.0 691 106 TIME 157 38
12 1.89 7.5 MEM 266 63
13 2.44 8.2 439 100
14 3.24 8.9 709 155
15 4.11 9.7 1118 225
16 5.10 10.7 1717 342
17 6.30 11.7 2582 492
18 8.00 12.9 TIME
19 9.50 14.2

(MATHSAT times are sum of all instances up to k)
35 / 38

Fischer’s protocol (liveness violation)

M |=k E¬(GFPi .B → GFPi .CS)

MATHSAT MATHSAT with Boehm heuristic
k\N 2 3 4 5 6 2 3 4 5 6

2 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02
3 0.01 0.02 0.01 0.01 0.03 0.01 0.01 0.02 0.03 0.04
4 0.01 0.02 0.02 0.02 0.04 0.01 0.02 0.04 0.07 0.17
5 0.02 0.03 0.05 0.09 0.18 0.01 0.03 0.09 0.30 1.16
6 0.03 0.10 0.21 0.54 1.35 0.02 0.07 0.31 1.52 7.74
7 0.04 0.26 0.97 3.20 9.83 0.02 0.18 1.19 7.14 45.00
8 0.65 4.80 19.72 70.70 0.06 4.70 33.50 242.00
9 5.55 112.17 478.00 0.61 165.90 1348.00

10 303.17 3086.00 9.92 7824.00
11 5002.00 252.00
Σ 0.12 1.08 11.62 438.93 8648.15 0.07 0.37 6.98 218.40 9720.13

36 / 38

Outline

1 Motivations & Context

2 Background

3 SMT-Based Bounded Model Checking of Timed Systems
Basic Ideas
Basic Encoding
Improved & Extended Encoding
A Case-Study

4 Exercises

37 / 38

Proposed Exercise

Proposed Exercise
Consider the Train-gate-controller example from [Alur CAV’99]
(see previous chapter)

Encode the Initial state formula
Encode the transition relation
Encode the BMC problem for the formula G(s2 → t2)

As above, reducing the delay time for the controller from 1 to 0.5
what happens?
in how many steps?

Encode the above into MathSAT

38 / 38

Proposed Exercise

Proposed Exercise
Consider the Train-gate-controller example from [Alur CAV’99]
(see previous chapter)

Encode the Initial state formula
Encode the transition relation
Encode the BMC problem for the formula G(s2 → t2)

As above, reducing the delay time for the controller from 1 to 0.5
what happens?
in how many steps?

Encode the above into MathSAT

38 / 38

Proposed Exercise

Proposed Exercise
Consider the Train-gate-controller example from [Alur CAV’99]
(see previous chapter)

Encode the Initial state formula
Encode the transition relation
Encode the BMC problem for the formula G(s2 → t2)

As above, reducing the delay time for the controller from 1 to 0.5
what happens?
in how many steps?

Encode the above into MathSAT

38 / 38

	Motivations & Context
	Background
	SMT-Based Bounded Model Checking of Timed Systems
	Basic Ideas
	Basic Encoding
	Improved & Extended Encoding
	A Case-Study

	Exercises

