
Formal Methods:
Module II: Model Checking

Ch. 07: SAT-Based Model Checking

Roberto Sebastiani

DISI, Università di Trento, Italy – roberto.sebastiani@unitn.it
URL: http://disi.unitn.it/rseba/DIDATTICA/fm2021/

Teaching assistant: Giuseppe Spallitta – giuseppe.spallitta@unitn.it

M.S. in Computer Science, Mathematics, & Artificial Intelligence Systems
Academic year 2020-2021

last update: Thursday 6th May, 2021, 11:31

Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti,
M. Di Natale, P. Pandya, M. Pistore, M. Roveri, C. Tinelli, and S.Tonetta, who detain its copyright. Some exampes

displayed in these slides are taken from [Clarke, Grunberg & Peled, “Model Checking”, MIT Press], and their copyright is
detained by the authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this

material is strictly forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be
displayed in public without containing this copyright notice.

1 / 54

roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/fm2021/
giuseppe.spallitta@unitn.it

Outline

1 SAT-based Model Checking: Generalities

2 Bounded Model Checking
Intuitions
General Encoding
Relevant Subcases
An Example
Computing Upper Bounds
Discussion

3 Inductive reasoning on invariants (aka “K-Induction”)
K-Induction
An Example

4 Exercises

2 / 54

Outline

1 SAT-based Model Checking: Generalities

2 Bounded Model Checking
Intuitions
General Encoding
Relevant Subcases
An Example
Computing Upper Bounds
Discussion

3 Inductive reasoning on invariants (aka “K-Induction”)
K-Induction
An Example

4 Exercises

3 / 54

SAT-based Model Checking

Key problems with BDD’s:
they can explode in space

A possible alternative:
Propositional Satisfiability Checking (SAT)
SAT technology is very advanced

Advantages:
reduced memory requirements
limited sensitivity: one good setting, does not require expert users
much higher capacity (more variables) than BDD based
techniques

Various techniques: Bounded Model Checking (BMC),
K-induction, Interpolant-based, IC3/PDR,...

4 / 54

SAT-based Model Checking

Key problems with BDD’s:
they can explode in space

A possible alternative:
Propositional Satisfiability Checking (SAT)
SAT technology is very advanced

Advantages:
reduced memory requirements
limited sensitivity: one good setting, does not require expert users
much higher capacity (more variables) than BDD based
techniques

Various techniques: Bounded Model Checking (BMC),
K-induction, Interpolant-based, IC3/PDR,...

4 / 54

SAT-based Model Checking

Key problems with BDD’s:
they can explode in space

A possible alternative:
Propositional Satisfiability Checking (SAT)
SAT technology is very advanced

Advantages:
reduced memory requirements
limited sensitivity: one good setting, does not require expert users
much higher capacity (more variables) than BDD based
techniques

Various techniques: Bounded Model Checking (BMC),
K-induction, Interpolant-based, IC3/PDR,...

4 / 54

SAT-based Model Checking

Key problems with BDD’s:
they can explode in space

A possible alternative:
Propositional Satisfiability Checking (SAT)
SAT technology is very advanced

Advantages:
reduced memory requirements
limited sensitivity: one good setting, does not require expert users
much higher capacity (more variables) than BDD based
techniques

Various techniques: Bounded Model Checking (BMC),
K-induction, Interpolant-based, IC3/PDR,...

4 / 54

SAT-based Bounded Model Checking & K-Induction

Key Ideas:
BMC: look for counter-example paths of increasing length k
=⇒ oriented to finding bugs
K-Induction: look for an induction proofs of increasing length k
=⇒ oriented to prove correctness
BMC [resp. K-induction]: for each k , build a Boolean formula that
is satisfiable [resp. unsatisfiable] iff there is a counter-example
[resp. proof] of length k

can be expressed using k · |s| variables
formula construction is not subject to state explosion

satisfiability of the Boolean formulas is checked by a SAT solver
can manage complex formulae on several 100K variables
returns satisfying assignment (i.e., a counter-example)
exploit incrementality

5 / 54

SAT-based Bounded Model Checking & K-Induction

Key Ideas:
BMC: look for counter-example paths of increasing length k
=⇒ oriented to finding bugs
K-Induction: look for an induction proofs of increasing length k
=⇒ oriented to prove correctness
BMC [resp. K-induction]: for each k , build a Boolean formula that
is satisfiable [resp. unsatisfiable] iff there is a counter-example
[resp. proof] of length k

can be expressed using k · |s| variables
formula construction is not subject to state explosion

satisfiability of the Boolean formulas is checked by a SAT solver
can manage complex formulae on several 100K variables
returns satisfying assignment (i.e., a counter-example)
exploit incrementality

5 / 54

SAT-based Bounded Model Checking & K-Induction

Key Ideas:
BMC: look for counter-example paths of increasing length k
=⇒ oriented to finding bugs
K-Induction: look for an induction proofs of increasing length k
=⇒ oriented to prove correctness
BMC [resp. K-induction]: for each k , build a Boolean formula that
is satisfiable [resp. unsatisfiable] iff there is a counter-example
[resp. proof] of length k

can be expressed using k · |s| variables
formula construction is not subject to state explosion

satisfiability of the Boolean formulas is checked by a SAT solver
can manage complex formulae on several 100K variables
returns satisfying assignment (i.e., a counter-example)
exploit incrementality

5 / 54

SAT-based Bounded Model Checking & K-Induction

Key Ideas:
BMC: look for counter-example paths of increasing length k
=⇒ oriented to finding bugs
K-Induction: look for an induction proofs of increasing length k
=⇒ oriented to prove correctness
BMC [resp. K-induction]: for each k , build a Boolean formula that
is satisfiable [resp. unsatisfiable] iff there is a counter-example
[resp. proof] of length k

can be expressed using k · |s| variables
formula construction is not subject to state explosion

satisfiability of the Boolean formulas is checked by a SAT solver
can manage complex formulae on several 100K variables
returns satisfying assignment (i.e., a counter-example)
exploit incrementality

5 / 54

Outline

1 SAT-based Model Checking: Generalities

2 Bounded Model Checking
Intuitions
General Encoding
Relevant Subcases
An Example
Computing Upper Bounds
Discussion

3 Inductive reasoning on invariants (aka “K-Induction”)
K-Induction
An Example

4 Exercises

6 / 54

Outline

1 SAT-based Model Checking: Generalities

2 Bounded Model Checking
Intuitions
General Encoding
Relevant Subcases
An Example
Computing Upper Bounds
Discussion

3 Inductive reasoning on invariants (aka “K-Induction”)
K-Induction
An Example

4 Exercises

7 / 54

Bounded Model Checking: Example

p

q

1

2

3

4

p

LTL Formula: G(p → Fq)

Negated Formula (violation): F(p ∧G¬q)

k = 0:

1

p

No counter-example found.

8 / 54

Bounded Model Checking: Example

p

q

1

2

3

4

p

LTL Formula: G(p → Fq)

Negated Formula (violation): F(p ∧G¬q)

k = 1:

1 2

p q

No counter-example found.

9 / 54

Bounded Model Checking: Example

p

q

1

2

3

4

p

LTL Formula: G(p → Fq)

Negated Formula (violation): F(p ∧G¬q)

k = 2:

1 2 3

p pq

No counter-example found.

10 / 54

Bounded Model Checking: Example

p

q

1

2

3

4

p

LTL Formula: G(p → Fq)

Negated Formula (violation): F(p ∧G¬q)

k = 3:

1 2 3 4

p pq

1 2 3 4

p pq

The 2nd trace is a counter-example!

11 / 54

Outline

1 SAT-based Model Checking: Generalities

2 Bounded Model Checking
Intuitions
General Encoding
Relevant Subcases
An Example
Computing Upper Bounds
Discussion

3 Inductive reasoning on invariants (aka “K-Induction”)
K-Induction
An Example

4 Exercises

12 / 54

The problem [Biere et al, 1999]

Ingredients:

Assume states represented by an array s of n Boolean variables
a system written as a Kripke structure M := 〈I(s),R(s, s′)〉
a property f written as a LTL formula
an integer k ≥ 0 (bound)

Problem
Is there an execution path π of M of length k satisfying the temporal
property f?

M |=k Ef

Note: f is the negation of the property in the LTL model checking
problem M |= ¬f , and π is a counter-example of length k (bug).

The check is repeated for increasing values of k = 0,1,2,3, ...

13 / 54

The problem [Biere et al, 1999]

Ingredients:

Assume states represented by an array s of n Boolean variables
a system written as a Kripke structure M := 〈I(s),R(s, s′)〉
a property f written as a LTL formula
an integer k ≥ 0 (bound)

Problem
Is there an execution path π of M of length k satisfying the temporal
property f?

M |=k Ef

Note: f is the negation of the property in the LTL model checking
problem M |= ¬f , and π is a counter-example of length k (bug).

The check is repeated for increasing values of k = 0,1,2,3, ...

13 / 54

The problem [Biere et al, 1999]

Ingredients:

Assume states represented by an array s of n Boolean variables
a system written as a Kripke structure M := 〈I(s),R(s, s′)〉
a property f written as a LTL formula
an integer k ≥ 0 (bound)

Problem
Is there an execution path π of M of length k satisfying the temporal
property f?

M |=k Ef

Note: f is the negation of the property in the LTL model checking
problem M |= ¬f , and π is a counter-example of length k (bug).

The check is repeated for increasing values of k = 0,1,2,3, ...

13 / 54

The problem [Biere et al, 1999]

Ingredients:

Assume states represented by an array s of n Boolean variables
a system written as a Kripke structure M := 〈I(s),R(s, s′)〉
a property f written as a LTL formula
an integer k ≥ 0 (bound)

Problem
Is there an execution path π of M of length k satisfying the temporal
property f?

M |=k Ef

Note: f is the negation of the property in the LTL model checking
problem M |= ¬f , and π is a counter-example of length k (bug).

The check is repeated for increasing values of k = 0,1,2,3, ...

13 / 54

The encoding

Equivalent to the satisfiability problem of a Boolean formula [[M, f]]k
defined as follows:

[[M, f]]k := [[M]]k ∧ [[f]]k

[[M]]k := I(s0) ∧
k−1∧
i=0

R(si , si+1),

[[f]]k := (¬
k∨

l=0

R(sk , sl) ∧ [[f]]0k) ∨
k∨

l=0

(R(sk , sl) ∧ l [[f]]0k),

The vector s of propositional variables is replicated k+1 times
s0, s1, ..., sk

[[M]]k encodes the fact that the k -path is an execution of M
[[f]]k encodes the fact that the k -path satisfies f

14 / 54

The encoding

Equivalent to the satisfiability problem of a Boolean formula [[M, f]]k
defined as follows:

[[M, f]]k := [[M]]k ∧ [[f]]k

[[M]]k := I(s0) ∧
k−1∧
i=0

R(si , si+1),

[[f]]k := (¬
k∨

l=0

R(sk , sl) ∧ [[f]]0k) ∨
k∨

l=0

(R(sk , sl) ∧ l [[f]]0k),

The vector s of propositional variables is replicated k+1 times
s0, s1, ..., sk

[[M]]k encodes the fact that the k -path is an execution of M
[[f]]k encodes the fact that the k -path satisfies f

14 / 54

The encoding

Equivalent to the satisfiability problem of a Boolean formula [[M, f]]k
defined as follows:

[[M, f]]k := [[M]]k ∧ [[f]]k

[[M]]k := I(s0) ∧
k−1∧
i=0

R(si , si+1),

[[f]]k := (¬
k∨

l=0

R(sk , sl) ∧ [[f]]0k) ∨
k∨

l=0

(R(sk , sl) ∧ l [[f]]0k),

The vector s of propositional variables is replicated k+1 times
s0, s1, ..., sk

[[M]]k encodes the fact that the k -path is an execution of M
[[f]]k encodes the fact that the k -path satisfies f

14 / 54

The encoding

Equivalent to the satisfiability problem of a Boolean formula [[M, f]]k
defined as follows:

[[M, f]]k := [[M]]k ∧ [[f]]k

[[M]]k := I(s0) ∧
k−1∧
i=0

R(si , si+1),

[[f]]k := (¬
k∨

l=0

R(sk , sl) ∧ [[f]]0k) ∨
k∨

l=0

(R(sk , sl) ∧ l [[f]]0k),

The vector s of propositional variables is replicated k+1 times
s0, s1, ..., sk

[[M]]k encodes the fact that the k -path is an execution of M
[[f]]k encodes the fact that the k -path satisfies f

14 / 54

The Encoding [cont.]

The encoding for a formula f with k steps, [[f]]k is the disjunction of
The constraints needed to express a model without loopback:

(¬(
∨k

l=0 R(sk , sl)) ∧ [[f]]0k)

S SS S S
10 k−1 kl

[[f]]ik , i ∈ [0, k]: encodes the fact that f holds in si under the
assumption that s0, ..., sk is a no-loopback path

The constraints needed to express a given loopback, for all
possible points of loopback:

∨k
l=0(R(sk , sl) ∧ l [[f]]0k)

l [[f]]ik , i ∈ [0, k]: encodes the fact that f holds in si under the
assumption that s0, ..., sk is a path with a loopback from sk to sl

15 / 54

The Encoding [cont.]

The encoding for a formula f with k steps, [[f]]k is the disjunction of
The constraints needed to express a model without loopback:

(¬(
∨k

l=0 R(sk , sl)) ∧ [[f]]0k)
S SS S S

10 k−1 kl

[[f]]ik , i ∈ [0, k]: encodes the fact that f holds in si under the
assumption that s0, ..., sk is a no-loopback path

The constraints needed to express a given loopback, for all
possible points of loopback:

∨k
l=0(R(sk , sl) ∧ l [[f]]0k)

l [[f]]ik , i ∈ [0, k]: encodes the fact that f holds in si under the
assumption that s0, ..., sk is a path with a loopback from sk to sl

15 / 54

The Encoding [cont.]

The encoding for a formula f with k steps, [[f]]k is the disjunction of
The constraints needed to express a model without loopback:

(¬(
∨k

l=0 R(sk , sl)) ∧ [[f]]0k)
S SS S S

10 k−1 kl

[[f]]ik , i ∈ [0, k]: encodes the fact that f holds in si under the
assumption that s0, ..., sk is a no-loopback path

The constraints needed to express a given loopback, for all
possible points of loopback:

∨k
l=0(R(sk , sl) ∧ l [[f]]0k)

S SS S S
10 k−1 kl

l [[f]]ik , i ∈ [0, k]: encodes the fact that f holds in si under the
assumption that s0, ..., sk is a path with a loopback from sk to sl

15 / 54

The Encoding of [[f]]ik and l [[f]]ik

f [[f]]ik l [[f]]ik
p pi pi

¬p ¬pi ¬pi

h ∧ g [[h]]ik ∧ [[g]]ik l [[h]]ik ∧ l [[g]]ik
h ∨ g [[h]]ik ∨ [[g]]ik l [[h]]ik ∨ l [[g]]ik

Xg [[g]]i+1
k if i < k

⊥ otherwise.
l [[g]]i+1

k if i < k
l [[g]]lk otherwise.

Gg ⊥
∧k

j=min(i,l) l [[g]]jk
Fg

∨k
j=i [[g]]jk

∨k
j=min(i,l) l [[g]]jk

hUg
∨k

j=i

(
[[g]]jk ∧

∧j−1
n=i [[h]]nk

) ∨k
j=i

(
l [[g]]jk ∧

∧j−1
n=i l [[h]]nk

)
∨∨i−1

j=l

(
l [[g]]jk ∧

∧k
n=i l [[h]]nk ∧

∧j−1
n=l l [[h]]nk

)
hRg

∨k
j=i

(
[[h]]jk ∧

∧j
n=i [[g]]nk

) ∧k
j=min(i,l) l [[g]]jk ∨∨k
j=i

(
l [[h]]jk ∧

∧j
n=i l [[g]]nk

)
∨∨i−1

j=l

(
l [[h]]jk ∧

∧k
n=i l [[g]]nk ∧

∧j
n=l l [[g]]nk

)

16 / 54

Outline

1 SAT-based Model Checking: Generalities

2 Bounded Model Checking
Intuitions
General Encoding
Relevant Subcases
An Example
Computing Upper Bounds
Discussion

3 Inductive reasoning on invariants (aka “K-Induction”)
K-Induction
An Example

4 Exercises

17 / 54

Relevant Subcase: Fp (reachability)

f := Fp, s.t. p Boolean:
is there a reachable state in which p holds?
a finite path can show that the property holds
[[M, f]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

j=0

pj

s0 s1 sk−1 sk

 −p −p −p p

Important: incremental encoding

if done for increasing value of k , then it suffices that [[M, f]]k is:

I(s0) ∧
∧k−1

i=0
(
R(si , si+1) ∧ ¬pi) ∧ pk

18 / 54

Relevant Subcase: Fp (reachability)

f := Fp, s.t. p Boolean:
is there a reachable state in which p holds?
a finite path can show that the property holds
[[M, f]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

j=0

pj

s0 s1 sk−1 sk

 −p −p −p p

Important: incremental encoding

if done for increasing value of k , then it suffices that [[M, f]]k is:

I(s0) ∧
∧k−1

i=0
(
R(si , si+1) ∧ ¬pi) ∧ pk

18 / 54

Relevant Subcase: Fp (reachability)

f := Fp, s.t. p Boolean:
is there a reachable state in which p holds?
a finite path can show that the property holds
[[M, f]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

j=0

pj

s0 s1 sk−1 sk

 −p −p −p p

Important: incremental encoding

if done for increasing value of k , then it suffices that [[M, f]]k is:

I(s0) ∧
∧k−1

i=0
(
R(si , si+1) ∧ ¬pi) ∧ pk

18 / 54

Relevant Subcase: Fp (reachability)

f := Fp, s.t. p Boolean:
is there a reachable state in which p holds?
a finite path can show that the property holds
[[M, f]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

j=0

pj

s0 s1 sk−1 sk

 −p −p −p p

Important: incremental encoding

if done for increasing value of k , then it suffices that [[M, f]]k is:

I(s0) ∧
∧k−1

i=0
(
R(si , si+1) ∧ ¬pi) ∧ pk

18 / 54

Relevant Subcase: Gp

f := Gp, s.t. p Boolean: is there a path where p holds forever?
We need to produce an infinite behaviour, with a finite number of
transitions
We can do it by imposing that the path loops back

s0 s1 sk−1 sk

p p p p

[[M, f]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

l=0

R(sk , sl) ∧
k∧

j=0

pj

19 / 54

Relevant Subcase: Gp

f := Gp, s.t. p Boolean: is there a path where p holds forever?
We need to produce an infinite behaviour, with a finite number of
transitions
We can do it by imposing that the path loops back

s0 s1 sk−1 sk

p p p p

[[M, f]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

l=0

R(sk , sl) ∧
k∧

j=0

pj

19 / 54

Relevant Subcase: Gp

f := Gp, s.t. p Boolean: is there a path where p holds forever?
We need to produce an infinite behaviour, with a finite number of
transitions
We can do it by imposing that the path loops back

s0 s1 sk−1 sk

p p p p

[[M, f]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

l=0

R(sk , sl) ∧
k∧

j=0

pj

19 / 54

Relevant Subcase: Gp

f := Gp, s.t. p Boolean: is there a path where p holds forever?
We need to produce an infinite behaviour, with a finite number of
transitions
We can do it by imposing that the path loops back

s0 s1 sk−1 sk

p p p p

[[M, f]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

l=0

R(sk , sl) ∧
k∧

j=0

pj

19 / 54

Relevant Subcase: GFq (fair states)

f := GFq, s.t. q Boolean: does q hold infinitely often?
Again, we need to produce an infinite behaviour, with a finite
number of transitions

s0 s1 sk−1 sk

q p

[[M, f]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

l=0

R(sk , sl) ∧
k∨

j=l

qj

20 / 54

Relevant Subcase: GFq (fair states)

f := GFq, s.t. q Boolean: does q hold infinitely often?
Again, we need to produce an infinite behaviour, with a finite
number of transitions

s0 s1 sk−1 sk

q p

[[M, f]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

l=0

R(sk , sl) ∧
k∨

j=l

qj

20 / 54

Relevant Subcase: GFq (fair states)

f := GFq, s.t. q Boolean: does q hold infinitely often?
Again, we need to produce an infinite behaviour, with a finite
number of transitions

s0 s1 sk−1 sk

q p

[[M, f]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

l=0

R(sk , sl) ∧
k∨

j=l

qj

20 / 54

Subcase Combination: GFq ∧ Fp (fair reachability)

f := GFq ∧ Fp, s.t. p,q Boolean: provided that q holds infinitely
often, is there a reachable state in which p holds?
Again, we need to produce an infinite behaviour, with a finite
number of transitions

s0 s1 sk−1 sk

q p

[[M, f]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

j=0

pj ∧
k∨

l=0

R(sk , sl) ∧
k∨

j=l

qj

21 / 54

Subcase Combination: GFq ∧ Fp (fair reachability)

f := GFq ∧ Fp, s.t. p,q Boolean: provided that q holds infinitely
often, is there a reachable state in which p holds?
Again, we need to produce an infinite behaviour, with a finite
number of transitions

s0 s1 sk−1 sk

q p

[[M, f]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

j=0

pj ∧
k∨

l=0

R(sk , sl) ∧
k∨

j=l

qj

21 / 54

Subcase Combination: GFq ∧ Fp (fair reachability)

f := GFq ∧ Fp, s.t. p,q Boolean: provided that q holds infinitely
often, is there a reachable state in which p holds?
Again, we need to produce an infinite behaviour, with a finite
number of transitions

s0 s1 sk−1 sk

q p

[[M, f]]k is:

I(s0) ∧
k−1∧
i=0

R(si , si+1) ∧
k∨

j=0

pj ∧
k∨

l=0

R(sk , sl) ∧
k∨

j=l

qj

21 / 54

Outline

1 SAT-based Model Checking: Generalities

2 Bounded Model Checking
Intuitions
General Encoding
Relevant Subcases
An Example
Computing Upper Bounds
Discussion

3 Inductive reasoning on invariants (aka “K-Induction”)
K-Induction
An Example

4 Exercises

22 / 54

Example: a bugged 3-bit shift register

System M:
I(x) := ¬x [0] ∧ ¬x [1] ∧ x [2]
Correct R: R(x , x ′) := (x ′[0]↔ x [1]) ∧ (x ′[1]↔ x [2]) ∧ (x ′[2]↔ 0)
Bugged R: R(x , x ′) := (x ′[0]↔ x [1])∧ (x ′[1]↔ x [2])∧ (x ′[2]↔ 1)

Property: F(¬x [0] ∧ ¬x [1] ∧ ¬x [2])
BMC Problem: is there an execution π ofM of length k s.t.
π |= G((x [0] ∨ x [1] ∨ x [2]))?

23 / 54

Example: a bugged 3-bit shift register

System M:
I(x) := ¬x [0] ∧ ¬x [1] ∧ x [2]
Correct R: R(x , x ′) := (x ′[0]↔ x [1]) ∧ (x ′[1]↔ x [2]) ∧ (x ′[2]↔ 0)
Bugged R: R(x , x ′) := (x ′[0]↔ x [1])∧ (x ′[1]↔ x [2])∧ (x ′[2]↔ 1)

Property: F(¬x [0] ∧ ¬x [1] ∧ ¬x [2])
BMC Problem: is there an execution π ofM of length k s.t.
π |= G((x [0] ∨ x [1] ∨ x [2]))?

23 / 54

Example: a bugged 3-bit shift register

System M:
I(x) := ¬x [0] ∧ ¬x [1] ∧ x [2]
Correct R: R(x , x ′) := (x ′[0]↔ x [1]) ∧ (x ′[1]↔ x [2]) ∧ (x ′[2]↔ 0)
Bugged R: R(x , x ′) := (x ′[0]↔ x [1])∧ (x ′[1]↔ x [2])∧ (x ′[2]↔ 1)

Property: F(¬x [0] ∧ ¬x [1] ∧ ¬x [2])
BMC Problem: is there an execution π ofM of length k s.t.
π |= G((x [0] ∨ x [1] ∨ x [2]))?

23 / 54

Example: a bugged 3-bit shift register

System M:
I(x) := ¬x [0] ∧ ¬x [1] ∧ x [2]
Correct R: R(x , x ′) := (x ′[0]↔ x [1]) ∧ (x ′[1]↔ x [2]) ∧ (x ′[2]↔ 0)
Bugged R: R(x , x ′) := (x ′[0]↔ x [1])∧ (x ′[1]↔ x [2])∧ (x ′[2]↔ 1)

Property: F(¬x [0] ∧ ¬x [1] ∧ ¬x [2])
BMC Problem: is there an execution π ofM of length k s.t.
π |= G((x [0] ∨ x [1] ∨ x [2]))?

23 / 54

Example: a bugged 3-bit shift register

System M:
I(x) := ¬x [0] ∧ ¬x [1] ∧ x [2]
Correct R: R(x , x ′) := (x ′[0]↔ x [1]) ∧ (x ′[1]↔ x [2]) ∧ (x ′[2]↔ 0)
Bugged R: R(x , x ′) := (x ′[0]↔ x [1])∧ (x ′[1]↔ x [2])∧ (x ′[2]↔ 1)

Property: F(¬x [0] ∧ ¬x [1] ∧ ¬x [2])
BMC Problem: is there an execution π ofM of length k s.t.
π |= G((x [0] ∨ x [1] ∨ x [2]))?

23 / 54

Example: a bugged 3-bit shift register

System M:
I(x) := ¬x [0] ∧ ¬x [1] ∧ x [2]
Correct R: R(x , x ′) := (x ′[0]↔ x [1]) ∧ (x ′[1]↔ x [2]) ∧ (x ′[2]↔ 0)
Bugged R: R(x , x ′) := (x ′[0]↔ x [1])∧ (x ′[1]↔ x [2])∧ (x ′[2]↔ 1)

Property: F(¬x [0] ∧ ¬x [1] ∧ ¬x [2])
BMC Problem: is there an execution π ofM of length k s.t.
π |= G((x [0] ∨ x [1] ∨ x [2]))?

23 / 54

Example: a bugged 3-bit shift register [cont.]

k = 0:

x

0

x

x

x

0

0

0

[0]

[1]

[2]

x

x

x

x [0]

[1]

[2]

1

1

1

1
x

x

x

x [0]

[1]

[2]

2

2

2

2

L0

L1
L2

I : (¬x0[0] ∧ ¬x0[1] ∧ x0[2]) ∧∨0
l=0 Ll :

(
((x0[0] ↔ x0[1]) ∧ (x0[1] ↔ x0[2]) ∧ (x0[2] ↔ 1))

)
∧∧0

i=0(x 6= 0) :
(

(x0[0] ∨ x0[1] ∨ x0[2])
)

=⇒ UNSAT: unit propagation:
¬x0[0],¬x0[1], x0[2]
=⇒ loop violated

24 / 54

Example: a bugged 3-bit shift register [cont.]

k = 0:

x

0

x

x

x

0

0

0

[0]

[1]

[2]

x

x

x

x [0]

[1]

[2]

1

1

1

1
x

x

x

x [0]

[1]

[2]

2

2

2

2

L0

L1
L2

I : (¬x0[0] ∧ ¬x0[1] ∧ x0[2]) ∧∨0
l=0 Ll :

(
((x0[0] ↔ x0[1]) ∧ (x0[1] ↔ x0[2]) ∧ (x0[2] ↔ 1))

)
∧∧0

i=0(x 6= 0) :
(

(x0[0] ∨ x0[1] ∨ x0[2])
)

=⇒ UNSAT: unit propagation:
¬x0[0],¬x0[1], x0[2]
=⇒ loop violated

24 / 54

Example: a bugged 3-bit shift register [cont.]

k = 0:

x

0

x

x

x

0

0

0

[0]

[1]

[2]

x

x

x

x [0]

[1]

[2]

1

1

1

1
x

x

x

x [0]

[1]

[2]

2

2

2

2

L0

L1
L2

I : (¬x0[0] ∧ ¬x0[1] ∧ x0[2]) ∧∨0
l=0 Ll :

(
((x0[0] ↔ x0[1]) ∧ (x0[1] ↔ x0[2]) ∧ (x0[2] ↔ 1))

)
∧∧0

i=0(x 6= 0) :
(

(x0[0] ∨ x0[1] ∨ x0[2])
)

=⇒ UNSAT: unit propagation:
¬x0[0],¬x0[1], x0[2]
=⇒ loop violated

24 / 54

Example: a bugged 3-bit shift register [cont.]

k = 1:

x

0

x

x

x

0

0

0

[0]

[1]

[2]

x

x

x

x [0]

[1]

[2]

1

1

1

1
x

x

x

x [0]

[1]

[2]

2

2

2

2

L0

L1
L2

I : (¬x0[0] ∧ ¬x0[1] ∧ x0[2])∧
[[M]]1 :

(
(x1[0] ↔ x0[1]) ∧ (x1[1] ↔ x0[2]) ∧ (x1[2] ↔ 1)

)
∧∨1

l=0 Ll :

(
((x0[0] ↔ x1[1]) ∧ (x0[1] ↔ x1[2]) ∧ (x0[2] ↔ 1))∨
((x1[0] ↔ x1[1]) ∧ (x1[1] ↔ x1[2]) ∧ (x1[2] ↔ 1))

)
∧∧1

i=0(x 6= 0) :
(

(x0[0] ∨ x0[1] ∨ x0[2]) ∧
(x1[0] ∨ x1[1] ∨ x1[2])

)
=⇒ UNSAT: unit propagation:
¬x0[0],¬x0[1], x0[2]
¬x1[0], x1[1], x1[2]
=⇒ both loop disjuncts violated

25 / 54

Example: a bugged 3-bit shift register [cont.]

k = 1:

x

0

x

x

x

0

0

0

[0]

[1]

[2]

x

x

x

x [0]

[1]

[2]

1

1

1

1
x

x

x

x [0]

[1]

[2]

2

2

2

2

L0

L1
L2

I : (¬x0[0] ∧ ¬x0[1] ∧ x0[2])∧
[[M]]1 :

(
(x1[0] ↔ x0[1]) ∧ (x1[1] ↔ x0[2]) ∧ (x1[2] ↔ 1)

)
∧∨1

l=0 Ll :

(
((x0[0] ↔ x1[1]) ∧ (x0[1] ↔ x1[2]) ∧ (x0[2] ↔ 1))∨
((x1[0] ↔ x1[1]) ∧ (x1[1] ↔ x1[2]) ∧ (x1[2] ↔ 1))

)
∧∧1

i=0(x 6= 0) :
(

(x0[0] ∨ x0[1] ∨ x0[2]) ∧
(x1[0] ∨ x1[1] ∨ x1[2])

)
=⇒ UNSAT: unit propagation:
¬x0[0],¬x0[1], x0[2]
¬x1[0], x1[1], x1[2]
=⇒ both loop disjuncts violated

25 / 54

Example: a bugged 3-bit shift register [cont.]

k = 1:

x

0

x

x

x

0

0

0

[0]

[1]

[2]

x

x

x

x [0]

[1]

[2]

1

1

1

1
x

x

x

x [0]

[1]

[2]

2

2

2

2

L0

L1
L2

I : (¬x0[0] ∧ ¬x0[1] ∧ x0[2])∧
[[M]]1 :

(
(x1[0] ↔ x0[1]) ∧ (x1[1] ↔ x0[2]) ∧ (x1[2] ↔ 1)

)
∧∨1

l=0 Ll :

(
((x0[0] ↔ x1[1]) ∧ (x0[1] ↔ x1[2]) ∧ (x0[2] ↔ 1))∨
((x1[0] ↔ x1[1]) ∧ (x1[1] ↔ x1[2]) ∧ (x1[2] ↔ 1))

)
∧∧1

i=0(x 6= 0) :
(

(x0[0] ∨ x0[1] ∨ x0[2]) ∧
(x1[0] ∨ x1[1] ∨ x1[2])

)
=⇒ UNSAT: unit propagation:
¬x0[0],¬x0[1], x0[2]
¬x1[0], x1[1], x1[2]
=⇒ both loop disjuncts violated

25 / 54

Example: a bugged 3-bit shift register [cont.]

k = 2:

x

0

x

x

x

0

0

0

[0]

[1]

[2]

x

x

x

x [0]

[1]

[2]

1

1

1

1
x

x

x

x [0]

[1]

[2]

2

2

2

2

L0

L1
L2

I : (¬x0[0] ∧ ¬x0[1] ∧ x0[2])∧

[[M]]2 :

(
(x1[0] ↔ x0[1]) ∧ (x1[1] ↔ x0[2]) ∧ (x1[2] ↔ 1) ∧
(x2[0] ↔ x1[1]) ∧ (x2[1] ↔ x1[2]) ∧ (x2[2] ↔ 1)

)
∧

∨2
l=0 Ll :

 ((x0[0] ↔ x2[1]) ∧ (x0[1] ↔ x2[2]) ∧ (x0[2] ↔ 1))∨
((x1[0] ↔ x2[1]) ∧ (x1[1] ↔ x2[2]) ∧ (x1[2] ↔ 1))∨
((x2[0] ↔ x2[1]) ∧ (x2[1] ↔ x2[2]) ∧ (x2[2] ↔ 1))

 ∧

∧2
i=0(x 6= 0) :

 (x0[0] ∨ x0[1] ∨ x0[2]) ∧
(x1[0] ∨ x1[1] ∨ x1[2]) ∧
(x2[0] ∨ x2[1] ∨ x2[2])

=⇒ SAT: x0[0] = x0[1] = x1[0] = 0; xi [j] := 1 ∀i , j

26 / 54

Example: a bugged 3-bit shift register [cont.]

k = 2:

x

0

x

x

x

0

0

0

[0]

[1]

[2]

x

x

x

x [0]

[1]

[2]

1

1

1

1
x

x

x

x [0]

[1]

[2]

2

2

2

2

L0

L1
L2

I : (¬x0[0] ∧ ¬x0[1] ∧ x0[2])∧

[[M]]2 :

(
(x1[0] ↔ x0[1]) ∧ (x1[1] ↔ x0[2]) ∧ (x1[2] ↔ 1) ∧
(x2[0] ↔ x1[1]) ∧ (x2[1] ↔ x1[2]) ∧ (x2[2] ↔ 1)

)
∧

∨2
l=0 Ll :

 ((x0[0] ↔ x2[1]) ∧ (x0[1] ↔ x2[2]) ∧ (x0[2] ↔ 1))∨
((x1[0] ↔ x2[1]) ∧ (x1[1] ↔ x2[2]) ∧ (x1[2] ↔ 1))∨
((x2[0] ↔ x2[1]) ∧ (x2[1] ↔ x2[2]) ∧ (x2[2] ↔ 1))

 ∧

∧2
i=0(x 6= 0) :

 (x0[0] ∨ x0[1] ∨ x0[2]) ∧
(x1[0] ∨ x1[1] ∨ x1[2]) ∧
(x2[0] ∨ x2[1] ∨ x2[2])

=⇒ SAT: x0[0] = x0[1] = x1[0] = 0; xi [j] := 1 ∀i , j

26 / 54

Example: a bugged 3-bit shift register [cont.]

k = 2:

x

0

x

x

x

0

0

0

[0]

[1]

[2]

x

x

x

x [0]

[1]

[2]

1

1

1

1
x

x

x

x [0]

[1]

[2]

2

2

2

2

L0

L1
L2

I : (¬x0[0] ∧ ¬x0[1] ∧ x0[2])∧

[[M]]2 :

(
(x1[0] ↔ x0[1]) ∧ (x1[1] ↔ x0[2]) ∧ (x1[2] ↔ 1) ∧
(x2[0] ↔ x1[1]) ∧ (x2[1] ↔ x1[2]) ∧ (x2[2] ↔ 1)

)
∧

∨2
l=0 Ll :

 ((x0[0] ↔ x2[1]) ∧ (x0[1] ↔ x2[2]) ∧ (x0[2] ↔ 1))∨
((x1[0] ↔ x2[1]) ∧ (x1[1] ↔ x2[2]) ∧ (x1[2] ↔ 1))∨
((x2[0] ↔ x2[1]) ∧ (x2[1] ↔ x2[2]) ∧ (x2[2] ↔ 1))

 ∧

∧2
i=0(x 6= 0) :

 (x0[0] ∨ x0[1] ∨ x0[2]) ∧
(x1[0] ∨ x1[1] ∨ x1[2]) ∧
(x2[0] ∨ x2[1] ∨ x2[2])

=⇒ SAT: x0[0] = x0[1] = x1[0] = 0; xi [j] := 1 ∀i , j

26 / 54

Outline

1 SAT-based Model Checking: Generalities

2 Bounded Model Checking
Intuitions
General Encoding
Relevant Subcases
An Example
Computing Upper Bounds
Discussion

3 Inductive reasoning on invariants (aka “K-Induction”)
K-Induction
An Example

4 Exercises

27 / 54

Basic bounds for k

Theorem [Biere et al. TACAS 1999]

Let f be a LTL formula. M |= Ef ⇐⇒ M |=k Ef for some k ≤ |M| · 2|f |.

|M| · 2|f | is always a bound of k .
|M| huge!

=⇒ not so easy to compute in a symbolic setting.

=⇒ need to find better bounds!

Note: [Biere et al. TACAS 1999] use “M |= Ef ” as “there exists a path of M verifying
f”, so that M 6|= ¬f ⇐⇒ M |= Ef

28 / 54

Basic bounds for k

Theorem [Biere et al. TACAS 1999]

Let f be a LTL formula. M |= Ef ⇐⇒ M |=k Ef for some k ≤ |M| · 2|f |.

|M| · 2|f | is always a bound of k .
|M| huge!

=⇒ not so easy to compute in a symbolic setting.

=⇒ need to find better bounds!

Note: [Biere et al. TACAS 1999] use “M |= Ef ” as “there exists a path of M verifying
f”, so that M 6|= ¬f ⇐⇒ M |= Ef

28 / 54

Other bounds for k

ACTL & ECTL
ACTL is a subset of CTL in which “A...” (resp. “E...”)
sub-formulas occur only positively (resp. negatively) in each
formula. (e.g. AG(p → AGAFq))
Many frequently-used LTL properties ¬f have equivalent ACTL
representations A¬f ′

e.g. Xq ⇐⇒ AXq, Gq ⇐⇒ AGq, Fq ⇐⇒ AFq, pUq ⇐⇒ A(pUq),
GFq ⇐⇒ AGAFq, G(p → GFq)⇐⇒ AG(p → AGAFq)

ECTL is a subset of CTL in which “E...” (resp. “A...”)
sub-formulas occur only positively (resp. negatively) in each
formula. (e.g. EF(p ∧ EFEG¬q))
ECTL is the dual subset of ACTL: φ ∈ ECTL⇐⇒ ¬φ ∈ ACTL.

Theorem [Biere et al. TACAS 1999]
Let f be an ECTL formula. M |= Ef ⇐⇒ M |=k Ef for some k ≤ |M|.

29 / 54

Other bounds for k

ACTL & ECTL
ACTL is a subset of CTL in which “A...” (resp. “E...”)
sub-formulas occur only positively (resp. negatively) in each
formula. (e.g. AG(p → AGAFq))
Many frequently-used LTL properties ¬f have equivalent ACTL
representations A¬f ′

e.g. Xq ⇐⇒ AXq, Gq ⇐⇒ AGq, Fq ⇐⇒ AFq, pUq ⇐⇒ A(pUq),
GFq ⇐⇒ AGAFq, G(p → GFq)⇐⇒ AG(p → AGAFq)

ECTL is a subset of CTL in which “E...” (resp. “A...”)
sub-formulas occur only positively (resp. negatively) in each
formula. (e.g. EF(p ∧ EFEG¬q))
ECTL is the dual subset of ACTL: φ ∈ ECTL⇐⇒ ¬φ ∈ ACTL.

Theorem [Biere et al. TACAS 1999]
Let f be an ECTL formula. M |= Ef ⇐⇒ M |=k Ef for some k ≤ |M|.

29 / 54

Other bounds for k (cont)

Theorem [Biere et al. TACAS 1999]
Let p be a Boolean formula and d be the diameter of M. Then
M |= EFp ⇐⇒ M |=k EFp for some k ≤ d .

Theorem [Biere et al. TACAS 1999]
Let f be an ECTL formula and d be the recurrence diameter of M.
Then M |= Ef ⇐⇒ M |=k Ef for some k ≤ d .

30 / 54

The diameter

Definition: Diameter
Given M, the diameter of M is the smallest integer d s.t. for every
path s0, ..., sd+1 there exist a path t0, ..., tl s.t. l ≤ d , t0 = s0 and
tl = sd+1.

Intuition: if u is reachable from v , then there is a path from v to u
of length d or less.

=⇒ it is the maximum distance between two states in M.

uv
d=4

31 / 54

The diameter

Definition: Diameter
Given M, the diameter of M is the smallest integer d s.t. for every
path s0, ..., sd+1 there exist a path t0, ..., tl s.t. l ≤ d , t0 = s0 and
tl = sd+1.

Intuition: if u is reachable from v , then there is a path from v to u
of length d or less.

=⇒ it is the maximum distance between two states in M.

uv
d=4

31 / 54

The diameter

Definition: Diameter
Given M, the diameter of M is the smallest integer d s.t. for every
path s0, ..., sd+1 there exist a path t0, ..., tl s.t. l ≤ d , t0 = s0 and
tl = sd+1.

Intuition: if u is reachable from v , then there is a path from v to u
of length d or less.

=⇒ it is the maximum distance between two states in M.

uv
d=4

31 / 54

The Diameter: Computation

Definition: diameter
d is the smallest integer d which makes the following formula
true:

∀s0, ..., sd+1.∃t0, ..., td .
d∧

i=0

T (si , si+1)︸ ︷︷ ︸
s0,...,sd+1 is a path

→

(
t0 = s0 ∧

d−1∧
i=0

T (ti , ti+1) ∧
d∨

i=0

ti = sd+1

)
︸ ︷︷ ︸

t0,...,ti is another path from s0 to sd+1 for some i

Quantified Boolean formula (QBF): much harder than
NP-complete!

32 / 54

The Diameter: Computation

Definition: diameter
d is the smallest integer d which makes the following formula
true:

∀s0, ..., sd+1.∃t0, ..., td .
d∧

i=0

T (si , si+1)︸ ︷︷ ︸
s0,...,sd+1 is a path

→

(
t0 = s0 ∧

d−1∧
i=0

T (ti , ti+1) ∧
d∨

i=0

ti = sd+1

)
︸ ︷︷ ︸

t0,...,ti is another path from s0 to sd+1 for some i

Quantified Boolean formula (QBF): much harder than
NP-complete!

32 / 54

The recurrence diameter

Definition: recurrence diameter
Given M, the recurrence diameter of M is the smallest integer d s.t.
for every path s0, ..., sd+1 there exist j ≤ d s.t. sd+1 = sj .

.

s0 si = sd+1 sd

Intuition: the maximum length of a non-loop path

33 / 54

The recurrence diameter

Definition: recurrence diameter
Given M, the recurrence diameter of M is the smallest integer d s.t.
for every path s0, ..., sd+1 there exist j ≤ d s.t. sd+1 = sj .

.

s0 si = sd+1 sd

Intuition: the maximum length of a non-loop path

33 / 54

The recurrence diameter: computation

d is the smallest integer d which makes the following formula
true:

∀s0, ..., sd+1.

d∧
i=0

T (si , si+1)︸ ︷︷ ︸
s0,...,sd+1 is a path

→
d∨

i=0

si = sd+1︸ ︷︷ ︸
s0,...,sd+1 contains a cicle

Validity problem: coNP-complete (solvable by SAT).
Possibly much longer than the diameter!

34 / 54

The recurrence diameter: computation

d is the smallest integer d which makes the following formula
true:

∀s0, ..., sd+1.

d∧
i=0

T (si , si+1)︸ ︷︷ ︸
s0,...,sd+1 is a path

→
d∨

i=0

si = sd+1︸ ︷︷ ︸
s0,...,sd+1 contains a cicle

Validity problem: coNP-complete (solvable by SAT).
Possibly much longer than the diameter!

34 / 54

The recurrence diameter: computation

d is the smallest integer d which makes the following formula
true:

∀s0, ..., sd+1.

d∧
i=0

T (si , si+1)︸ ︷︷ ︸
s0,...,sd+1 is a path

→
d∨

i=0

si = sd+1︸ ︷︷ ︸
s0,...,sd+1 contains a cicle

Validity problem: coNP-complete (solvable by SAT).
Possibly much longer than the diameter!

Diameter = 1 Recurrence Diameter = 3

34 / 54

Outline

1 SAT-based Model Checking: Generalities

2 Bounded Model Checking
Intuitions
General Encoding
Relevant Subcases
An Example
Computing Upper Bounds
Discussion

3 Inductive reasoning on invariants (aka “K-Induction”)
K-Induction
An Example

4 Exercises

35 / 54

Bounded Model Checking: summary

Incomplete technique:
if you find all formulas unsatisfiable, it tells you nothing
computing the maximum k (diameter) possible but extremely hard

Very efficient for some problems (typically debugging)
Lots of enhancements
Current symbolic model checkers embed a SAT based BMC tool

36 / 54

Bounded Model Checking: summary

Incomplete technique:
if you find all formulas unsatisfiable, it tells you nothing
computing the maximum k (diameter) possible but extremely hard

Very efficient for some problems (typically debugging)
Lots of enhancements
Current symbolic model checkers embed a SAT based BMC tool

36 / 54

Bounded Model Checking: summary

Incomplete technique:
if you find all formulas unsatisfiable, it tells you nothing
computing the maximum k (diameter) possible but extremely hard

Very efficient for some problems (typically debugging)
Lots of enhancements
Current symbolic model checkers embed a SAT based BMC tool

36 / 54

Bounded Model Checking: summary

Incomplete technique:
if you find all formulas unsatisfiable, it tells you nothing
computing the maximum k (diameter) possible but extremely hard

Very efficient for some problems (typically debugging)
Lots of enhancements
Current symbolic model checkers embed a SAT based BMC tool

36 / 54

Efficiency Issues in Bounded Model Checking

Incrementality:
exploit the similarities between problems at k and k + 1

Simplification of encodings
Reduced Boolean Circuits (RBC)
Boolean Expression Diagrams (BED)
And-Inverter Graphs (AIG)
Simplification based on Binary-Clauses Reasoning

Computing bounds not very effective
=⇒ feasible only on very particular subcases

37 / 54

Efficiency Issues in Bounded Model Checking

Incrementality:
exploit the similarities between problems at k and k + 1

Simplification of encodings
Reduced Boolean Circuits (RBC)
Boolean Expression Diagrams (BED)
And-Inverter Graphs (AIG)
Simplification based on Binary-Clauses Reasoning

Computing bounds not very effective
=⇒ feasible only on very particular subcases

37 / 54

Efficiency Issues in Bounded Model Checking

Incrementality:
exploit the similarities between problems at k and k + 1

Simplification of encodings
Reduced Boolean Circuits (RBC)
Boolean Expression Diagrams (BED)
And-Inverter Graphs (AIG)
Simplification based on Binary-Clauses Reasoning

Computing bounds not very effective
=⇒ feasible only on very particular subcases

37 / 54

Other Successful SAT-based MC Techniques

Inductive reasoning on invariants (aka “K-Induction”)
Counter-example guided abstraction refinement (CEGAR)
[Clarke et al. CAV 2002]

Interpolant-based MC
[Mc Millan, TACAS 2005]

IC3/PDR
[Bradley, VMCAI 2011]

...
For a survey see e.g.
[Amla et al., CHARME 2005, Prasad et al. STTT 2005].

38 / 54

Outline

1 SAT-based Model Checking: Generalities

2 Bounded Model Checking
Intuitions
General Encoding
Relevant Subcases
An Example
Computing Upper Bounds
Discussion

3 Inductive reasoning on invariants (aka “K-Induction”)
K-Induction
An Example

4 Exercises

39 / 54

Outline

1 SAT-based Model Checking: Generalities

2 Bounded Model Checking
Intuitions
General Encoding
Relevant Subcases
An Example
Computing Upper Bounds
Discussion

3 Inductive reasoning on invariants (aka “K-Induction”)
K-Induction
An Example

4 Exercises

40 / 54

Inductive Reasoning on Invariants

Invariant: “GGood”, Good being a Boolean formula
(i) If all the initial states are good,

(ii) and if from good states we only go to good states
then the system is correct for all reachable states

41 / 54

Inductive Reasoning on Invariants

Invariant: “GGood”, Good being a Boolean formula
(i) If all the initial states are good,

(ii) and if from good states we only go to good states
then the system is correct for all reachable states

41 / 54

Inductive Reasoning on Invariants

Invariant: “GGood”, Good being a Boolean formula
(i) If all the initial states are good,

(ii) and if from good states we only go to good states
then the system is correct for all reachable states

41 / 54

Inductive Reasoning on Invariants

Invariant: “GGood”, Good being a Boolean formula
(i) If all the initial states are good,

(ii) and if from good states we only go to good states
then the system is correct for all reachable states

41 / 54

SAT-based Inductive Reasoning on Invariants

(i) If all the initial states are good

I(s0)→ Good(s0) is valid (i.e. its negation is unsatisfiable)

(ii) if from good states we only go to good states

(Good(sk−1) ∧ R(sk−1, sk))→ Good(sk) is valid
(i.e. its negation is unsatisfiable)

then the system is correct for all reachable states
⇒ Check for the (un)satisfiability of the Boolean formulas:

(I(s0) ∧ ¬Good(s0));
(Good(sk−1) ∧ R(sk−1, sk)) ∧ ¬Good(sk))

Note

“(I(s0) ∧ ¬Good(s0))” is step-0 incremental BMC encoding for
F¬Good .

42 / 54

SAT-based Inductive Reasoning on Invariants

(i) If all the initial states are good

I(s0)→ Good(s0) is valid (i.e. its negation is unsatisfiable)

(ii) if from good states we only go to good states

(Good(sk−1) ∧ R(sk−1, sk))→ Good(sk) is valid
(i.e. its negation is unsatisfiable)

then the system is correct for all reachable states
⇒ Check for the (un)satisfiability of the Boolean formulas:

(I(s0) ∧ ¬Good(s0));
(Good(sk−1) ∧ R(sk−1, sk)) ∧ ¬Good(sk))

Note

“(I(s0) ∧ ¬Good(s0))” is step-0 incremental BMC encoding for
F¬Good .

42 / 54

SAT-based Inductive Reasoning on Invariants

(i) If all the initial states are good

I(s0)→ Good(s0) is valid (i.e. its negation is unsatisfiable)

(ii) if from good states we only go to good states

(Good(sk−1) ∧ R(sk−1, sk))→ Good(sk) is valid
(i.e. its negation is unsatisfiable)

then the system is correct for all reachable states
⇒ Check for the (un)satisfiability of the Boolean formulas:

(I(s0) ∧ ¬Good(s0));
(Good(sk−1) ∧ R(sk−1, sk)) ∧ ¬Good(sk))

Note

“(I(s0) ∧ ¬Good(s0))” is step-0 incremental BMC encoding for
F¬Good .

42 / 54

SAT-based Inductive Reasoning on Invariants

(i) If all the initial states are good

I(s0)→ Good(s0) is valid (i.e. its negation is unsatisfiable)

(ii) if from good states we only go to good states

(Good(sk−1) ∧ R(sk−1, sk))→ Good(sk) is valid
(i.e. its negation is unsatisfiable)

then the system is correct for all reachable states
⇒ Check for the (un)satisfiability of the Boolean formulas:

(I(s0) ∧ ¬Good(s0));
(Good(sk−1) ∧ R(sk−1, sk)) ∧ ¬Good(sk))

Note

“(I(s0) ∧ ¬Good(s0))” is step-0 incremental BMC encoding for
F¬Good .

42 / 54

SAT-based Inductive Reasoning on Invariants

(i) If all the initial states are good

I(s0)→ Good(s0) is valid (i.e. its negation is unsatisfiable)

(ii) if from good states we only go to good states

(Good(sk−1) ∧ R(sk−1, sk))→ Good(sk) is valid
(i.e. its negation is unsatisfiable)

then the system is correct for all reachable states
⇒ Check for the (un)satisfiability of the Boolean formulas:

(I(s0) ∧ ¬Good(s0));
(Good(sk−1) ∧ R(sk−1, sk)) ∧ ¬Good(sk))

Note

“(I(s0) ∧ ¬Good(s0))” is step-0 incremental BMC encoding for
F¬Good .

42 / 54

Strengthening of Invariants

Problem: Induction may fail because of unreachable states:
if (Good(sk−1) ∧ R(sk−1, sk))→ Good(sk) is not valid, this does
not mean that the property does not hold
both sk−1 and sk might be unreachable

43 / 54

Strengthening of Invariants

Problem: Induction may fail because of unreachable states:
if (Good(sk−1) ∧ R(sk−1, sk))→ Good(sk) is not valid, this does
not mean that the property does not hold
both sk−1 and sk might be unreachable

43 / 54

Strengthening of Invariants

Problem: Induction may fail because of unreachable states:
if (Good(sk−1) ∧ R(sk−1, sk))→ Good(sk) is not valid, this does
not mean that the property does not hold
both sk−1 and sk might be unreachable

43 / 54

Strengthening of Invariants [cont.]

Solution (once you know you cannot reach ¬Good in up to 1 step):
increase the depth of induction
(Good(sk−2) ∧ R(sk−2, sk−1) ∧Good(sk−1) ∧
R(sk−1, sk)∧¬(sk−2 = sk−1))→ Good(sk)

...

force loop freedom with ¬(si = sj) for every i 6= j s.t. i , j ≤ k
performed after step-1 BMC step returns “unsat”:
I(s0) ∧ (R(s0, s1) ∧Good(s0)) ∧ ¬Good(s1)

44 / 54

Strengthening of Invariants [cont.]

Solution (once you know you cannot reach ¬Good in up to 1 step):
increase the depth of induction
(Good(sk−2) ∧ R(sk−2, sk−1) ∧Good(sk−1) ∧
R(sk−1, sk)∧¬(sk−2 = sk−1))→ Good(sk)

...

force loop freedom with ¬(si = sj) for every i 6= j s.t. i , j ≤ k
performed after step-1 BMC step returns “unsat”:
I(s0) ∧ (R(s0, s1) ∧Good(s0)) ∧ ¬Good(s1)

44 / 54

Strengthening of Invariants [cont.]

Solution (once you know you cannot reach ¬Good in up to 1 step):
increase the depth of induction
(Good(sk−2) ∧ R(sk−2, sk−1) ∧Good(sk−1) ∧
R(sk−1, sk)∧¬(sk−2 = sk−1))→ Good(sk)

...

force loop freedom with ¬(si = sj) for every i 6= j s.t. i , j ≤ k
performed after step-1 BMC step returns “unsat”:
I(s0) ∧ (R(s0, s1) ∧Good(s0)) ∧ ¬Good(s1)

44 / 54

Strengthening of Invariants [cont.]

=⇒ Check for the [un]satisfiability of the Boolean formulas:
I(s0) ∧ ¬Good(s0); [BMC0]
(Good(sk−1) ∧ R(sk−1, sk)) ∧ ¬Good(sk); [Kind0]
I(s0) ∧ (R(s0, s1) ∧Good(s0)) ∧ ¬Good(s1); [BMC1]
(Good(sk−2) ∧ R(sk−2, sk−1) ∧Good(sk−1) ∧ R(sk−1, sk)) ∧ ¬Good(sk)
∧¬(sk−2 = sk−1); [Kind1]
I(s0) ∧ (R(s0, s1) ∧Good(s0) ∧ (R(s1, s2) ∧Good(s1)) ∧ ¬Good(s2); [BMC2]
...

repeat for increasing values of the gap 1,2,3,4,
intuition: increasingly tighten the constraint for “spurious”
counterexamples: a spurious counterexample must be a chain
sk−n, ..., sk of unreachable and different states s.t. ¬Good(sk)
and R(si , si+1), ∀i .
dual to –and interleaved with– bounded model checking steps

K-Induction steps can be shifted (k def
= 0) to share the

subformulas:
∧k−1

i=0 (R(si , si+1) ∧Good(si)) ∧ ¬Good(sk−2)

45 / 54

Strengthening of Invariants [cont.]

=⇒ Check for the [un]satisfiability of the Boolean formulas:
I(s0) ∧ ¬Good(s0); [BMC0]
(Good(sk−1) ∧ R(sk−1, sk)) ∧ ¬Good(sk); [Kind0]
I(s0) ∧ (R(s0, s1) ∧Good(s0)) ∧ ¬Good(s1); [BMC1]
(Good(sk−2) ∧ R(sk−2, sk−1) ∧Good(sk−1) ∧ R(sk−1, sk)) ∧ ¬Good(sk)
∧¬(sk−2 = sk−1); [Kind1]
I(s0) ∧ (R(s0, s1) ∧Good(s0) ∧ (R(s1, s2) ∧Good(s1)) ∧ ¬Good(s2); [BMC2]
...

repeat for increasing values of the gap 1,2,3,4,
intuition: increasingly tighten the constraint for “spurious”
counterexamples: a spurious counterexample must be a chain
sk−n, ..., sk of unreachable and different states s.t. ¬Good(sk)
and R(si , si+1), ∀i .
dual to –and interleaved with– bounded model checking steps

K-Induction steps can be shifted (k def
= 0) to share the

subformulas:
∧k−1

i=0 (R(si , si+1) ∧Good(si)) ∧ ¬Good(sk−2)

45 / 54

Strengthening of Invariants [cont.]

=⇒ Check for the [un]satisfiability of the Boolean formulas:
I(s0) ∧ ¬Good(s0); [BMC0]
(Good(sk−1) ∧ R(sk−1, sk)) ∧ ¬Good(sk); [Kind0]
I(s0) ∧ (R(s0, s1) ∧Good(s0)) ∧ ¬Good(s1); [BMC1]
(Good(sk−2) ∧ R(sk−2, sk−1) ∧Good(sk−1) ∧ R(sk−1, sk)) ∧ ¬Good(sk)
∧¬(sk−2 = sk−1); [Kind1]
I(s0) ∧ (R(s0, s1) ∧Good(s0) ∧ (R(s1, s2) ∧Good(s1)) ∧ ¬Good(s2); [BMC2]
...

repeat for increasing values of the gap 1,2,3,4,
intuition: increasingly tighten the constraint for “spurious”
counterexamples: a spurious counterexample must be a chain
sk−n, ..., sk of unreachable and different states s.t. ¬Good(sk)
and R(si , si+1), ∀i .
dual to –and interleaved with– bounded model checking steps

K-Induction steps can be shifted (k def
= 0) to share the

subformulas:
∧k−1

i=0 (R(si , si+1) ∧Good(si)) ∧ ¬Good(sk−2)

45 / 54

Strengthening of Invariants [cont.]

=⇒ Check for the [un]satisfiability of the Boolean formulas:
I(s0) ∧ ¬Good(s0); [BMC0]
(Good(sk−1) ∧ R(sk−1, sk)) ∧ ¬Good(sk); [Kind0]
I(s0) ∧ (R(s0, s1) ∧Good(s0)) ∧ ¬Good(s1); [BMC1]
(Good(sk−2) ∧ R(sk−2, sk−1) ∧Good(sk−1) ∧ R(sk−1, sk)) ∧ ¬Good(sk)
∧¬(sk−2 = sk−1); [Kind1]
I(s0) ∧ (R(s0, s1) ∧Good(s0) ∧ (R(s1, s2) ∧Good(s1)) ∧ ¬Good(s2); [BMC2]
...

repeat for increasing values of the gap 1,2,3,4,
intuition: increasingly tighten the constraint for “spurious”
counterexamples: a spurious counterexample must be a chain
sk−n, ..., sk of unreachable and different states s.t. ¬Good(sk)
and R(si , si+1), ∀i .
dual to –and interleaved with– bounded model checking steps

K-Induction steps can be shifted (k def
= 0) to share the

subformulas:
∧k−1

i=0 (R(si , si+1) ∧Good(si)) ∧ ¬Good(sk−2)

45 / 54

Strengthening of Invariants [cont.]

=⇒ Check for the [un]satisfiability of the Boolean formulas:
I(s0) ∧ ¬Good(s0); [BMC0]
(Good(s0) ∧ R(s0, s1)) ∧ ¬Good(s1); [Kind0]
I(s0) ∧ (R(s0, s1) ∧Good(s0)) ∧ ¬Good(s1); [BMC1]
(Good(s0) ∧ R(s0, s1) ∧Good(s1) ∧ R(s1, s2)) ∧ ¬Good(s2)
∧¬(s0 = s1); [Kind1]
I(s0) ∧ (R(s0, s1) ∧Good(s0) ∧ (R(s1, s2) ∧Good(s1)) ∧ ¬Good(s2); [BMC2]
...

repeat for increasing values of the gap 1,2,3,4,
intuition: increasingly tighten the constraint for “spurious”
counterexamples: a spurious counterexample must be a chain
sk−n, ..., sk of unreachable and different states s.t. ¬Good(sk)
and R(si , si+1), ∀i .
dual to –and interleaved with– bounded model checking steps

K-Induction steps can be shifted (k def
= 0) to share the

subformulas:
∧k−1

i=0 (R(si , si+1) ∧Good(si)) ∧ ¬Good(sk−2)

45 / 54

K-Induction Algorithm [Sheeran et al. 2000]
Algorithm

Given:
Basen := I(s0) ∧

∧n−1
i=0 (R(si ,si+1) ∧ ϕ(si)) ∧ ¬ϕ(sn)

Stepn :=
∧n

i=0 (R(si ,si+1) ∧ ϕ(si)) ∧ ¬ϕ(sn+1)
Uniquen :=

∧
0≤i≤j≤n ¬(si = sj+1)

1. function CHECK_PROPERTY (I,R, ϕ)
2. for n := 0,1,2,3, do
3. if (DPLL(Basen) == SAT)
4. then return PROPERTY_VIOLATED;
5. else if (DPLL(Stepn ∧ Uniquen) == UNSAT)
6. then return PROPERTY_VERIFIED;
7. end for;

=⇒ reuses previous search if DPLL is incremental!!

46 / 54

K-Induction Algorithm [Sheeran et al. 2000]
Algorithm

Given:
Basen := I(s0) ∧

∧n−1
i=0 (R(si ,si+1) ∧ ϕ(si)) ∧ ¬ϕ(sn)

Stepn :=
∧n

i=0 (R(si ,si+1) ∧ ϕ(si)) ∧ ¬ϕ(sn+1)
Uniquen :=

∧
0≤i≤j≤n ¬(si = sj+1)

1. function CHECK_PROPERTY (I,R, ϕ)
2. for n := 0,1,2,3, do
3. if (DPLL(Basen) == SAT)
4. then return PROPERTY_VIOLATED;
5. else if (DPLL(Stepn ∧ Uniquen) == UNSAT)
6. then return PROPERTY_VERIFIED;
7. end for;

=⇒ reuses previous search if DPLL is incremental!!

46 / 54

K-Induction Algorithm [Sheeran et al. 2000]
Algorithm

Given:
Basen := I(s0) ∧

∧n−1
i=0 (R(si ,si+1) ∧ ϕ(si)) ∧ ¬ϕ(sn)

Stepn :=
∧n

i=0 (R(si ,si+1) ∧ ϕ(si)) ∧ ¬ϕ(sn+1)
Uniquen :=

∧
0≤i≤j≤n ¬(si = sj+1)

1. function CHECK_PROPERTY (I,R, ϕ)
2. for n := 0,1,2,3, do
3. if (DPLL(Basen) == SAT)
4. then return PROPERTY_VIOLATED;
5. else if (DPLL(Stepn ∧ Uniquen) == UNSAT)
6. then return PROPERTY_VERIFIED;
7. end for;

=⇒ reuses previous search if DPLL is incremental!!

46 / 54

Outline

1 SAT-based Model Checking: Generalities

2 Bounded Model Checking
Intuitions
General Encoding
Relevant Subcases
An Example
Computing Upper Bounds
Discussion

3 Inductive reasoning on invariants (aka “K-Induction”)
K-Induction
An Example

4 Exercises

47 / 54

Example: a correct 3-bit shift register

System M:
I(x) := (¬x [0] ∧ ¬x [1] ∧ ¬x [2])
R(x , x ′) := ((x ′[0]↔ x [1]) ∧ (x ′[1]↔ x [2]) ∧ (x ′[2]↔ 0))

Property: G¬x [0]

48 / 54

Example: a correct 3-bit shift register

System M:
I(x) := (¬x [0] ∧ ¬x [1] ∧ ¬x [2])
R(x , x ′) := ((x ′[0]↔ x [1]) ∧ (x ′[1]↔ x [2]) ∧ (x ′[2]↔ 0))

Property: G¬x [0]

48 / 54

Example: a correct 3-bit shift register

System M:
I(x) := (¬x [0] ∧ ¬x [1] ∧ ¬x [2])
R(x , x ′) := ((x ′[0]↔ x [1]) ∧ (x ′[1]↔ x [2]) ∧ (x ′[2]↔ 0))

Property: G¬x [0]

48 / 54

Example: a correct 3-bit shift register

System M:
I(x) := (¬x [0] ∧ ¬x [1] ∧ ¬x [2])
R(x , x ′) := ((x ′[0]↔ x [1]) ∧ (x ′[1]↔ x [2]) ∧ (x ′[2]↔ 0))

Property: G¬x [0]

48 / 54

Example: a correct 3-bit shift register [cont.]

Init (BMC Step 0):
(
(¬x0[0] ∧ ¬x0[1] ∧ ¬x0[2]) ∧ x0[0]

)
=⇒ unsat

K-Induction Step 1:(
(¬x0[0] ∧ ((x1[0]↔ x0[1]) ∧ (x1[1]↔ x0[2]) ∧ (x1[2]↔ 0)))
∧ x1[0]

)

=⇒ (partly by unit-propagation)

sat:
{
¬x0[0], x0[1], x0[2],

x1[0], x1[1], ¬x1[2]

}
=⇒ not proved

Remark

Both {¬x0[0], x0[1], x0[2])} and { x1[0], x1[1],¬x1[2]} are
non-reachable.

49 / 54

Example: a correct 3-bit shift register [cont.]

Init (BMC Step 0):
(
(¬x0[0] ∧ ¬x0[1] ∧ ¬x0[2]) ∧ x0[0]

)
=⇒ unsat

K-Induction Step 1:(
(¬x0[0] ∧ ((x1[0]↔ x0[1]) ∧ (x1[1]↔ x0[2]) ∧ (x1[2]↔ 0)))
∧ x1[0]

)

=⇒ (partly by unit-propagation)

sat:
{
¬x0[0], x0[1], x0[2],

x1[0], x1[1], ¬x1[2]

}
=⇒ not proved

Remark

Both {¬x0[0], x0[1], x0[2])} and { x1[0], x1[1],¬x1[2]} are
non-reachable.

49 / 54

Example: a correct 3-bit shift register [cont.]

Init (BMC Step 0):
(
(¬x0[0] ∧ ¬x0[1] ∧ ¬x0[2]) ∧ x0[0]

)
=⇒ unsat

K-Induction Step 1:(
(¬x0[0] ∧ ((x1[0]↔ x0[1]) ∧ (x1[1]↔ x0[2]) ∧ (x1[2]↔ 0)))
∧ x1[0]

)

=⇒ (partly by unit-propagation)

sat:
{
¬x0[0], x0[1], x0[2],

x1[0], x1[1], ¬x1[2]

}
=⇒ not proved

Remark

Both {¬x0[0], x0[1], x0[2])} and { x1[0], x1[1],¬x1[2]} are
non-reachable.

49 / 54

Example: a correct 3-bit shift register [cont.]

Init (BMC Step 0):
(
(¬x0[0] ∧ ¬x0[1] ∧ ¬x0[2]) ∧ x0[0]

)
=⇒ unsat

K-Induction Step 1:(
(¬x0[0] ∧ ((x1[0]↔ x0[1]) ∧ (x1[1]↔ x0[2]) ∧ (x1[2]↔ 0)))
∧ x1[0]

)

=⇒ (partly by unit-propagation)

sat:
{
¬x0[0], x0[1], x0[2],

x1[0], x1[1], ¬x1[2]

}
=⇒ not proved

Remark

Both {¬x0[0], x0[1], x0[2])} and { x1[0], x1[1],¬x1[2]} are
non-reachable.

49 / 54

Example: a correct 3-bit shift register [cont.]

Init (BMC Step 0):
(
(¬x0[0] ∧ ¬x0[1] ∧ ¬x0[2]) ∧ x0[0]

)
=⇒ unsat

K-Induction Step 1:(
(¬x0[0] ∧ ((x1[0]↔ x0[1]) ∧ (x1[1]↔ x0[2]) ∧ (x1[2]↔ 0)))
∧ x1[0]

)

=⇒ (partly by unit-propagation)

sat:
{
¬x0[0], x0[1], x0[2],

x1[0], x1[1], ¬x1[2]

}
=⇒ not proved

Remark

Both {¬x0[0], x0[1], x0[2])} and { x1[0], x1[1],¬x1[2]} are
non-reachable.

49 / 54

Example: a correct 3-bit shift register [cont.]

BMC Step 1: (...)=⇒ unsat
K-Induction Step 2: (¬x0[0] ∧ ((x1[0]↔ x0[1]) ∧ (x1[1]↔ x0[2]) ∧ (x1[2]↔ 0))∧
¬x1[0] ∧ ((x2[0]↔ x1[1]) ∧ (x2[1]↔ x1[2]) ∧ (x2[2]↔ 0))
) ∧ x2[0]

∧¬((x1[0]↔ x0[0]) ∧ (x1[1]↔ x0[1]) ∧ (x1[2]↔ x0[2]))

=⇒ sat:

¬x0[0], ¬x0[1], x0[2]
¬x1[0], x1[1], ¬x1[2]

x2[0], ¬x2[1], ¬x2[2]

 =⇒ not proved

Remark

{¬x0[0],¬x0[1], x0[2]}, {¬x1[0], x1[1],¬x1[2]}, and
{ x2[0],¬x2[1],¬x2[2]} are non-reachable.

50 / 54

Example: a correct 3-bit shift register [cont.]

BMC Step 1: (...)=⇒ unsat
K-Induction Step 2: (¬x0[0] ∧ ((x1[0]↔ x0[1]) ∧ (x1[1]↔ x0[2]) ∧ (x1[2]↔ 0))∧
¬x1[0] ∧ ((x2[0]↔ x1[1]) ∧ (x2[1]↔ x1[2]) ∧ (x2[2]↔ 0))
) ∧ x2[0]

∧¬((x1[0]↔ x0[0]) ∧ (x1[1]↔ x0[1]) ∧ (x1[2]↔ x0[2]))

=⇒ sat:

¬x0[0], ¬x0[1], x0[2]
¬x1[0], x1[1], ¬x1[2]

x2[0], ¬x2[1], ¬x2[2]

 =⇒ not proved

Remark

{¬x0[0],¬x0[1], x0[2]}, {¬x1[0], x1[1],¬x1[2]}, and
{ x2[0],¬x2[1],¬x2[2]} are non-reachable.

50 / 54

Example: a correct 3-bit shift register [cont.]

BMC Step 1: (...)=⇒ unsat
K-Induction Step 2: (¬x0[0] ∧ ((x1[0]↔ x0[1]) ∧ (x1[1]↔ x0[2]) ∧ (x1[2]↔ 0))∧
¬x1[0] ∧ ((x2[0]↔ x1[1]) ∧ (x2[1]↔ x1[2]) ∧ (x2[2]↔ 0))
) ∧ x2[0]

∧¬((x1[0]↔ x0[0]) ∧ (x1[1]↔ x0[1]) ∧ (x1[2]↔ x0[2]))

=⇒ sat:

¬x0[0], ¬x0[1], x0[2]
¬x1[0], x1[1], ¬x1[2]

x2[0], ¬x2[1], ¬x2[2]

 =⇒ not proved

Remark

{¬x0[0],¬x0[1], x0[2]}, {¬x1[0], x1[1],¬x1[2]}, and
{ x2[0],¬x2[1],¬x2[2]} are non-reachable.

50 / 54

Example: a correct 3-bit shift register [cont.]

BMC Step 2: (...) =⇒ unsat
K-Induction Step 3:
(¬x0[0] ∧ ((x1[0]↔ x0[1]) ∧ (x1[1]↔ x0[2]) ∧ (x1[2]↔ 0))∧
¬x1[0] ∧ ((x2[0]↔ x1[1]) ∧ (x2[1]↔ x1[2]) ∧ (x2[2]↔ 0))∧
¬x2[0] ∧ ((x3[0]↔ x2[1]) ∧ (x3[1]↔ x2[2]) ∧ (x3[2]↔ 0))
) ∧ x3[0]

∧¬((x1[0]↔ x0[0]) ∧ (x1[1]↔ x0[1]) ∧ (x1[2]↔ x0[2]))
∧¬((x2[0]↔ x0[0]) ∧ (x2[1]↔ x0[1]) ∧ (x2[2]↔ x0[2]))
∧¬((x2[0]↔ x1[0]) ∧ (x2[1]↔ x1[1]) ∧ (x2[2]↔ x1[2]))

=⇒ (unit-propagation) {x3[0], x2[1], x1[2]}
=⇒ unsat
=⇒ proved!

51 / 54

Example: a correct 3-bit shift register [cont.]

BMC Step 2: (...) =⇒ unsat
K-Induction Step 3:
(¬x0[0] ∧ ((x1[0]↔ x0[1]) ∧ (x1[1]↔ x0[2]) ∧ (x1[2]↔ 0))∧
¬x1[0] ∧ ((x2[0]↔ x1[1]) ∧ (x2[1]↔ x1[2]) ∧ (x2[2]↔ 0))∧
¬x2[0] ∧ ((x3[0]↔ x2[1]) ∧ (x3[1]↔ x2[2]) ∧ (x3[2]↔ 0))
) ∧ x3[0]

∧¬((x1[0]↔ x0[0]) ∧ (x1[1]↔ x0[1]) ∧ (x1[2]↔ x0[2]))
∧¬((x2[0]↔ x0[0]) ∧ (x2[1]↔ x0[1]) ∧ (x2[2]↔ x0[2]))
∧¬((x2[0]↔ x1[0]) ∧ (x2[1]↔ x1[1]) ∧ (x2[2]↔ x1[2]))

=⇒ (unit-propagation) {x3[0], x2[1], x1[2]}
=⇒ unsat
=⇒ proved!

51 / 54

Example: a correct 3-bit shift register [cont.]

BMC Step 2: (...) =⇒ unsat
K-Induction Step 3:
(¬x0[0] ∧ ((x1[0]↔ x0[1]) ∧ (x1[1]↔ x0[2]) ∧ (x1[2]↔ 0))∧
¬x1[0] ∧ ((x2[0]↔ x1[1]) ∧ (x2[1]↔ x1[2]) ∧ (x2[2]↔ 0))∧
¬x2[0] ∧ ((x3[0]↔ x2[1]) ∧ (x3[1]↔ x2[2]) ∧ (x3[2]↔ 0))
) ∧ x3[0]

∧¬((x1[0]↔ x0[0]) ∧ (x1[1]↔ x0[1]) ∧ (x1[2]↔ x0[2]))
∧¬((x2[0]↔ x0[0]) ∧ (x2[1]↔ x0[1]) ∧ (x2[2]↔ x0[2]))
∧¬((x2[0]↔ x1[0]) ∧ (x2[1]↔ x1[1]) ∧ (x2[2]↔ x1[2]))

=⇒ (unit-propagation) {x3[0], x2[1], x1[2]}
=⇒ unsat
=⇒ proved!

51 / 54

Example: a correct 3-bit shift register [cont.]

BMC Step 2: (...) =⇒ unsat
K-Induction Step 3:
(¬x0[0] ∧ ((x1[0]↔ x0[1]) ∧ (x1[1]↔ x0[2]) ∧ (x1[2]↔ 0))∧
¬x1[0] ∧ ((x2[0]↔ x1[1]) ∧ (x2[1]↔ x1[2]) ∧ (x2[2]↔ 0))∧
¬x2[0] ∧ ((x3[0]↔ x2[1]) ∧ (x3[1]↔ x2[2]) ∧ (x3[2]↔ 0))
) ∧ x3[0]

∧¬((x1[0]↔ x0[0]) ∧ (x1[1]↔ x0[1]) ∧ (x1[2]↔ x0[2]))
∧¬((x2[0]↔ x0[0]) ∧ (x2[1]↔ x0[1]) ∧ (x2[2]↔ x0[2]))
∧¬((x2[0]↔ x1[0]) ∧ (x2[1]↔ x1[1]) ∧ (x2[2]↔ x1[2]))

=⇒ (unit-propagation) {x3[0], x2[1], x1[2]}
=⇒ unsat
=⇒ proved!

51 / 54

Outline

1 SAT-based Model Checking: Generalities

2 Bounded Model Checking
Intuitions
General Encoding
Relevant Subcases
An Example
Computing Upper Bounds
Discussion

3 Inductive reasoning on invariants (aka “K-Induction”)
K-Induction
An Example

4 Exercises

52 / 54

Ex: Bounded Model Checking
Given the symbolic representation of a FSM M, expressed in terms of the two
Boolean formulas: I(x , y) def

= ¬x ∧ y ,
T (x , y , x ′, y ′) def

= (x ′ ↔ (x ↔ ¬y)) ∧ (y ′ ↔ ¬y), and the LTL property:
ϕ

def
= ¬F(x ∧ y),

1. Write a Boolean formula whose solutions (if any) represent executions of M of
length 2 which violate ϕ.

[Solution: The question corresponds to the Bounded Model Checking problem
M |=2 E Ff , s.t. f (x , y) def

= (x ∧ y). Thus we have:

¬x0 ∧ y0 ∧ // I(x0, y0) ∧
(x1 ↔ (x0 ↔ ¬y0)) ∧ (y1 ↔ ¬y0) ∧ // T (x0, y0, x1, y1) ∧
(x2 ↔ (x1 ↔ ¬y1)) ∧ (y2 ↔ ¬y1) ∧ // T (x1, y1, x2, y2) ∧
((x0 ∧ y0) ∨ // (f (x0, y0)∨
(x1 ∧ y1) ∨ // f (x1, y1)∨
(x2 ∧ y2)) // f (x2, y2))

]

2. Is there a solution? If yes, find the corresponding execution; if no, show why.

[Solution: Yes: {¬x0, y0, x1,¬y1, x2, y2}, corresponding to the execution:
(0, 1) → (1, 0) → (1, 1)]

53 / 54

Ex: Bounded Model Checking
Given the symbolic representation of a FSM M, expressed in terms of the two
Boolean formulas: I(x , y) def

= ¬x ∧ y ,
T (x , y , x ′, y ′) def

= (x ′ ↔ (x ↔ ¬y)) ∧ (y ′ ↔ ¬y), and the LTL property:
ϕ

def
= ¬F(x ∧ y),

1. Write a Boolean formula whose solutions (if any) represent executions of M of
length 2 which violate ϕ.

[Solution: The question corresponds to the Bounded Model Checking problem
M |=2 E Ff , s.t. f (x , y) def

= (x ∧ y). Thus we have:

¬x0 ∧ y0 ∧ // I(x0, y0) ∧
(x1 ↔ (x0 ↔ ¬y0)) ∧ (y1 ↔ ¬y0) ∧ // T (x0, y0, x1, y1) ∧
(x2 ↔ (x1 ↔ ¬y1)) ∧ (y2 ↔ ¬y1) ∧ // T (x1, y1, x2, y2) ∧
((x0 ∧ y0) ∨ // (f (x0, y0)∨
(x1 ∧ y1) ∨ // f (x1, y1)∨
(x2 ∧ y2)) // f (x2, y2))

]
2. Is there a solution? If yes, find the corresponding execution; if no, show why.

[Solution: Yes: {¬x0, y0, x1,¬y1, x2, y2}, corresponding to the execution:
(0, 1) → (1, 0) → (1, 1)]

53 / 54

Ex: Bounded Model Checking
Given the symbolic representation of a FSM M, expressed in terms of the two
Boolean formulas: I(x , y) def

= ¬x ∧ y ,
T (x , y , x ′, y ′) def

= (x ′ ↔ (x ↔ ¬y)) ∧ (y ′ ↔ ¬y), and the LTL property:
ϕ

def
= ¬F(x ∧ y),

1. Write a Boolean formula whose solutions (if any) represent executions of M of
length 2 which violate ϕ.
[Solution: The question corresponds to the Bounded Model Checking problem
M |=2 E Ff , s.t. f (x , y) def

= (x ∧ y). Thus we have:

¬x0 ∧ y0 ∧ // I(x0, y0) ∧
(x1 ↔ (x0 ↔ ¬y0)) ∧ (y1 ↔ ¬y0) ∧ // T (x0, y0, x1, y1) ∧
(x2 ↔ (x1 ↔ ¬y1)) ∧ (y2 ↔ ¬y1) ∧ // T (x1, y1, x2, y2) ∧
((x0 ∧ y0) ∨ // (f (x0, y0)∨
(x1 ∧ y1) ∨ // f (x1, y1)∨
(x2 ∧ y2)) // f (x2, y2))

]

2. Is there a solution? If yes, find the corresponding execution; if no, show why.

[Solution: Yes: {¬x0, y0, x1,¬y1, x2, y2}, corresponding to the execution:
(0, 1) → (1, 0) → (1, 1)]

53 / 54

Ex: Bounded Model Checking
Given the symbolic representation of a FSM M, expressed in terms of the two
Boolean formulas: I(x , y) def

= ¬x ∧ y ,
T (x , y , x ′, y ′) def

= (x ′ ↔ (x ↔ ¬y)) ∧ (y ′ ↔ ¬y), and the LTL property:
ϕ

def
= ¬F(x ∧ y),

1. Write a Boolean formula whose solutions (if any) represent executions of M of
length 2 which violate ϕ.
[Solution: The question corresponds to the Bounded Model Checking problem
M |=2 E Ff , s.t. f (x , y) def

= (x ∧ y). Thus we have:

¬x0 ∧ y0 ∧ // I(x0, y0) ∧
(x1 ↔ (x0 ↔ ¬y0)) ∧ (y1 ↔ ¬y0) ∧ // T (x0, y0, x1, y1) ∧
(x2 ↔ (x1 ↔ ¬y1)) ∧ (y2 ↔ ¬y1) ∧ // T (x1, y1, x2, y2) ∧
((x0 ∧ y0) ∨ // (f (x0, y0)∨
(x1 ∧ y1) ∨ // f (x1, y1)∨
(x2 ∧ y2)) // f (x2, y2))

]
2. Is there a solution? If yes, find the corresponding execution; if no, show why.

[Solution: Yes: {¬x0, y0, x1,¬y1, x2, y2}, corresponding to the execution:
(0, 1) → (1, 0) → (1, 1)]

53 / 54

Ex: Bounded Model Checking
Given the symbolic representation of a FSM M, expressed in terms of the two
Boolean formulas: I(x , y) def

= ¬x ∧ y ,
T (x , y , x ′, y ′) def

= (x ′ ↔ (x ↔ ¬y)) ∧ (y ′ ↔ ¬y), and the LTL property:
ϕ

def
= ¬F(x ∧ y),

1. Write a Boolean formula whose solutions (if any) represent executions of M of
length 2 which violate ϕ.
[Solution: The question corresponds to the Bounded Model Checking problem
M |=2 E Ff , s.t. f (x , y) def

= (x ∧ y). Thus we have:

¬x0 ∧ y0 ∧ // I(x0, y0) ∧
(x1 ↔ (x0 ↔ ¬y0)) ∧ (y1 ↔ ¬y0) ∧ // T (x0, y0, x1, y1) ∧
(x2 ↔ (x1 ↔ ¬y1)) ∧ (y2 ↔ ¬y1) ∧ // T (x1, y1, x2, y2) ∧
((x0 ∧ y0) ∨ // (f (x0, y0)∨
(x1 ∧ y1) ∨ // f (x1, y1)∨
(x2 ∧ y2)) // f (x2, y2))

]
2. Is there a solution? If yes, find the corresponding execution; if no, show why.

[Solution: Yes: {¬x0, y0, x1,¬y1, x2, y2}, corresponding to the execution:
(0, 1) → (1, 0) → (1, 1)]

53 / 54

Ex: Bounded Model Checking

3. From the solutions to question #1 and #2 we can conclude that:

(a) M |= ϕ

(b) M 6|= ϕ

(c) we can conclude nothing.

[Solution: b)]

4. What are the diameter and the recurrence diameter of this system?

[Solution:

00

11 10

01

diameter = recurrence diameter = 3

]

54 / 54

Ex: Bounded Model Checking

3. From the solutions to question #1 and #2 we can conclude that:

(a) M |= ϕ

(b) M 6|= ϕ

(c) we can conclude nothing.

[Solution: b)]
4. What are the diameter and the recurrence diameter of this system?

[Solution:

00

11 10

01

diameter = recurrence diameter = 3

]

54 / 54

Ex: Bounded Model Checking

3. From the solutions to question #1 and #2 we can conclude that:

(a) M |= ϕ

(b) M 6|= ϕ

(c) we can conclude nothing.

[Solution: b)]

4. What are the diameter and the recurrence diameter of this system?

[Solution:

00

11 10

01

diameter = recurrence diameter = 3

]

54 / 54

Ex: Bounded Model Checking

3. From the solutions to question #1 and #2 we can conclude that:

(a) M |= ϕ

(b) M 6|= ϕ

(c) we can conclude nothing.

[Solution: b)]
4. What are the diameter and the recurrence diameter of this system?

[Solution:

00

11 10

01

diameter = recurrence diameter = 3

]

54 / 54

Ex: Bounded Model Checking

3. From the solutions to question #1 and #2 we can conclude that:

(a) M |= ϕ

(b) M 6|= ϕ

(c) we can conclude nothing.

[Solution: b)]
4. What are the diameter and the recurrence diameter of this system?

[Solution:

00

11 10

01

diameter = recurrence diameter = 3

]

54 / 54

Ex: Bounded Model Checking

3. From the solutions to question #1 and #2 we can conclude that:

(a) M |= ϕ

(b) M 6|= ϕ

(c) we can conclude nothing.

[Solution: b)]
4. What are the diameter and the recurrence diameter of this system?

[Solution:

00

11 10

01

diameter = recurrence diameter = 3

]

54 / 54

	SAT-based Model Checking: Generalities
	Bounded Model Checking
	Intuitions
	General Encoding
	Relevant Subcases
	An Example
	Computing Upper Bounds
	Discussion

	Inductive reasoning on invariants (aka ``K-Induction'')
	K-Induction
	An Example

	Exercises

