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The Need for Fairness Conditions: Intuition

Consider a public restroom. A standard access policy is “first come
first served” (e.g., a queue-based protocol).

Does this policy guarantee that everybody entering the queue
will eventually access the restroom?

No: in principle, somebody might remain in the restroom forever,
hindering the access to everybody else
In practice, it is considered reasonable to assume that everybody
exits the restroom after a finite amount of time

=⇒ It is reasonable enough to assume the protocol suitable under
the condition that each user is infinitely often outside the
restroom
Such a condition is called fairness condition
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The Need for Fairness Conditions: An Example

Consider a variant of the mutual exclusion in which one process
can stay permanently in the critical zone
Do M |= G(T1 → FC1), M |= G(T2 → FC2) still hold?
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The Need for Fairness Conditions: An Example [cont.]

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= G(T1 → FC1) M |= G(T2 → FC2)
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The need for fairness conditions: an example [cont.]
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The need for fairness conditions: an example [cont.]

N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical,  T = trying,  C = critical User 1 User 2

G(T1 → FC1)? G(T2 → FC2)?
NO: E.g., it can cycle forever in {C1,T2, turn = 1}

=⇒ Unfair protocol: one process might never be served
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Fairness Conditions

It is desirable that certain (typically Boolean) conditions ϕ’s hold
infinitely often: GFϕ
GFϕ is called fairness conditions
Intuitively, fairness conditions are used to eliminate behaviours in
which a certain condition ϕ never holds:
GFϕ: “it is never reached a state from which ϕ is forever false”
Example: it is not desirable that, once a process is in the critical
section, it never exits: GF¬C1

A fair condition ϕi can be represented also by the set fi of states
where ϕi holds (fi := {s : π, s |= ϕi , for each π ∈ M})
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Fair Kripke models

A Fair Kripke model MF := 〈S,R, I,AP,L,F 〉
consists of

a set of states S;
a set of initial states I ⊆ S;
a set of transitions R ⊆ S × S;
a set of atomic propositions AP;
a labeling function L : S 7−→ 2AP ;
a set of fairness conditions F = {f1, . . . , fn}, with fi ⊆ S.

E.g., {{2}} := {{s : L(s) = {q}}} = {GFq} is the set of fairness
conditions of the Kripke model above
Fair path π: at least one state for each fi occurs infinitely often in
π (ϕi holds infinitely often in π: π |= GFϕi )

E.g., every path visiting infinitely often state 2 is a fair path.

Fair state: a state through which at least one fair path passes
E.g., all states 1,2,3,4 are fair states

Note: fair state 6= state belonging to a fairness condition

p

q

1

2

3

4

p
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LTL M.C. with Fair Kripke Models

Fair Kripke Models restrict the M.C. process to fair paths:
Mf |= ϕ iff π |= ϕ for every fair path π
Path quantifiers (from CTL) apply only to fair paths:

MF , s |= Aϕ iff π, s |= ϕ for every fair path π s.t. s ∈ π
MF , s |= Eϕ iff π, s |= ϕ for some fair path π s.t. s ∈ π

=⇒ a fair state s is a state in MF iff MF , s |= EGtrue.
We need a procedure to compute the set of fair states:
Check_FairEG(true)

Example

Mf |= EGtrue? yes
Mf |= G(p → Fq)? yes
M |= G(p → Fq)? no

p

q

1

2

3

4

p
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Fairness: example

F := {{ not C1},{not C2}}

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N1, N2

turn=0

not C1
not C2

MF |= G(T1 → FC1)? MF |= G(T2 → FC2)?

YES: every fair path satisfies the conditions
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Computing an NBA AM from a Fair Kripke Model M

Transforming a fair K.S. M = 〈S,S0,R,L,AP,FT 〉,
FT = {F1, ...,Fn}, into a generalized NBA AM = 〈Q,Σ, δ, I,FT ′〉
s.t.:

States: Q := S ∪ {init}, init being a new initial state
Alphabet: Σ := 2AP

Initial State: I := {init}
Accepting States: FT ′ := FT
Transitions:

δ : q a−→ q′ iff (q,q′) ∈ R and L(q′) = a
init a−→ q iff q ∈ S0 and L(q) = a

L(AM) = L(M)

|AM | = |M|+ 1
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Computing a (Generalized) BA AM from a Fair Kripke
Structure M: Example

{p,q}

{p,q}

{p,q}

{p,q} {p}

{q}

{p,−q}

{p,−q}

{−p,q}

Generalized Buechi AutomatonFair Kripke Structure

=⇒ Substantially, add one initial state, move labels from states to
incoming edges, set fair states as accepting states
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LTL M.C. with Fair Kripke Models

Remark: fair LTL M.C.
When model checking an LTL formula ψ, fairness conditions can be
encoded into the formula itself:

M{f1,...,fn} |= ψ ⇐⇒ M |= (
n∧

i=1

GFfi)→ ψ.
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Ex. LTL (1): M{f1,...,fn} |= ψ ⇐⇒ M |= (
∧n

i=1 GFfi)→ ψ.

pq
s2

¬pq
s0

p¬q
s1

pq
s2

¬pq
s0

p¬q
s1

M

Mp

Mp 6|= Gq
M 6|= (GFp)→ Gq
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Ex. LTL (2): M{f1,...,fn} |= ψ ⇐⇒ M |= (
∧n

i=1 GFfi)→ ψ.

¬pq
s2

¬p¬q
s0

pq
s1

¬pq
s2

¬p¬q
s0

pq
s1

M

Mp

Mp |= Gq
M |= (GFp)→ Gq
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The Main Problem of M.C.: State Space Explosion

The bottleneck:
Exhaustive analysis may require to store all the states of the
Kripke structure, and to explore them one-by-one
The state space may be exponential in the number of components
and variables
(E.g., 300 Boolean vars =⇒ up to 2300 ≈ 10100 states!)
State Space Explosion:

too much memory required
too much CPU time required to explore each state

A solution: Symbolic Model Checking
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Symbolic Model Checking

Symbolic representation:
manipulation of sets of states (rather than single states);
sets of states represented by formulae in propositional logic;

set cardinality not directly correlated to size

expansion of sets of transitions (rather than single transitions);
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Symbolic Model Checking [cont.]

Two main symbolic techniques:
Ordered Binary Decision Diagrams (OBDDs)
Propositional Satisfiability Checkers (SAT solvers)

Different model checking algorithms:
Fix-point Model Checking (historically, for CTL)
Fix-point Model Checking for LTL (conversion to fair CTL MC)
Bounded Model Checking (historically, for LTL)
Invariant Checking
...
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Symbolic Representation of Kripke Models

Symbolic representation:
sets of states as their characteristic function (Boolean formula)
provide logical representation and transformations of
characteristic functions

Example:
three state variables x1, x2, x3:
{ 000, 001, 010, 011 } represented as “first bit false”: ¬x1
with five state variables x1, x2, x3, x4, x5:
{ 00000, 00001, 00010, 00011, 00100, 00101, 00110, 00111,. . . ,
01111 } still represented as “first bit false”: ¬x1
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Kripke Models in Propositional Logic

Let M = (S, I,R,L,AF ) be a Kripke model
States s ∈ S are described by means of an array V of Boolean
state variables.
A state is a truth assignment to each atomic proposition in V.

0100 is represented by the formula (¬x1 ∧ x2 ∧ ¬x3 ∧ ¬x4)
we call ξ(s) the formula representing the state s ∈ S
(Intuition: ξ(s) holds iff the system is in the state s)

A set of states Q ⊆ S can be represented by any formula which
is logically equivalent to the formula ξ(Q):∨

s∈Q

ξ(s)

(Intuition: ξ(Q) holds iff the system is in one of the states s ∈ Q)
Bijection between models of ξ(Q) and states in Q
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Remark

Every propositional formula is a (typically very compact)
representation of the set of assignments satisfying it
Any formula equivalent to ξ(Q) is a representation of Q
=⇒ Typically Q can be encoded by much smaller formulas than∨

s∈Q ξ(s)!
Example: Q ={ 00000, 00001, 00010, 00011, 00100, 00101,
00110, 00111,. . . , 01111 } represented as “first bit false”: ¬x1∨

s∈Q ξ(s) = (¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ x5) ∨
(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ x4 ∧ ¬x5) ∨
...
(¬x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5)

24disjuncts
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Symbolic Representation of Set Operators

One-to-one correspondence between sets and Boolean operators
Set of all the states: ξ(S) := >
Empty set : ξ(∅) := ⊥
Union represented by disjunction:
ξ(P ∪Q) := ξ(P) ∨ ξ(Q)

Intersection represented by conjunction:
ξ(P ∩Q) := ξ(P) ∧ ξ(Q)

Complement represented by negation:
ξ(S/P) := ¬ξ(P)
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Symbolic Representation of Transition Relations

The transition relation R is a set of pairs of states: R ⊆ S × S
A transition is a pair of states (s, s′)

A new vector of variables V’ (the next state vector) represents
the value of variables after the transition has occurred
ξ(s, s′) defined as ξ(s) ∧ ξ(s′) (Intuition: ξ(s, s′) holds iff the
system is in the state s and moves to state s′ in next step)
The transition relation R can be represented by any formula
equivalent to: ∨

(s,s′)∈R

ξ(s, s′) =
∨

(s,s′)∈R

(ξ(s) ∧ ξ(s′))

Each formula equivalent to ξ(R) is a representation of R
=⇒ Typically R can be encoded by a much smaller formula than∨

(s,s′)∈R ξ(s) ∧ ξ(s′)!
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Example: a simple counter

MODULE main
VAR
v0 : boolean;
v1 : boolean;
out : 0..3;

ASSIGN
init(v0) := 0;
next(v0) := !v0;

init(v1) := 0;
next(v1) := (v0 xor v1);

out := toint(v0) + 2*toint(v1);

v
0

v1

v1 v0 v ′
1 v ′

0
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1 1 0 0
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Example: a simple counter [cont.]

v
0

v1

v1 v0 v ′
1 v ′

0

0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

00

11

01

10

ξ(R) = (v ′
0 ↔ ¬v0) ∧ (v ′

1 ↔ v0
⊕

v1)∨
(s,s′)∈R ξ(s) ∧ ξ(s′) = (¬v1 ∧ ¬v0 ∧ ¬v ′

1 ∧ v ′
0) ∨

(¬v1 ∧ v0 ∧ v ′
1 ∧ ¬v ′

0) ∨
(v1 ∧ ¬v0 ∧ v ′

1 ∧ v ′
0) ∨

(v1 ∧ v0 ∧ ¬v ′
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Example: a simple counter [cont.]
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Pre-Image

(Backward) pre-image of a set of states:
PPreImage(P)

Evaluate one-shot all transitions ending in the states of the set
Set theoretic view:
PreImage(P,R) := {s | for some s′ ∈ P, (s, s′) ∈ R}
Logical view: ξ(PreImage(P,R)) := ∃V ′.(ξ(P)[V ′]∧ ξ(R)[V ,V ′])

µ over V is s.t µ |= ∃V ′.(ξ(P)[V ′] ∧ ξ(R)[V ,V ′]) iff,
for some µ′ over V ′, we have: µ ∪ µ′ |= (ξ(P)[V ′] ∧ ξ(R)[V ,V ′]),
i.e., µ′ |= ξ(P)[V ′] and µ ∪ µ′ |= ξ(R)[V ,V ′])

Intuition: µ⇐⇒ s, µ′ ⇐⇒ s′, µ ∪ µ′ ⇐⇒ 〈s, s′〉
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Example: simple counter

v
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v1 v0 v ′
1 v ′
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0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0
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ξ(R) = (v ′
0 ↔ ¬v0) ∧ (v ′

1 ↔ v0
⊕

v1)
ξ(P) := (v0 ↔ v1) (i.e., P = {00,11})

ξ(PreImage(P,R)) =
∃V ′.(ξ(P)[V ′] ∧ ξ(R)[V ,V ′]) =
∃v ′

0v ′
1.((v ′

0 ↔ v ′
1) ∧ (v ′

0 ↔ ¬v0) ∧ (v ′
1 ↔ v0

⊕
v1)) =

(¬v0 ∧ v0
⊕

v1)︸ ︷︷ ︸
v ′

0=>,v ′
1=>

∨ ⊥︸︷︷︸
v ′

0=>,v ′
1=⊥

∨ ⊥︸︷︷︸
v ′

0=⊥,v ′
1=>

∨ (v0 ∧ ¬(v0
⊕

v1))︸ ︷︷ ︸
v ′

0=⊥,v ′
1=⊥

=

v1 (i .e., {10,11})

31 / 119



Example: simple counter

v
0

v1

v1 v0 v ′
1 v ′

0

0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

00

11

01

10

ξ(R) = (v ′
0 ↔ ¬v0) ∧ (v ′

1 ↔ v0
⊕

v1)
ξ(P) := (v0 ↔ v1) (i.e., P = {00,11})

ξ(PreImage(P,R)) =
∃V ′.(ξ(P)[V ′] ∧ ξ(R)[V ,V ′]) =
∃v ′

0v ′
1.((v ′

0 ↔ v ′
1) ∧ (v ′

0 ↔ ¬v0) ∧ (v ′
1 ↔ v0

⊕
v1)) =

(¬v0 ∧ v0
⊕

v1)︸ ︷︷ ︸
v ′

0=>,v ′
1=>

∨ ⊥︸︷︷︸
v ′

0=>,v ′
1=⊥

∨ ⊥︸︷︷︸
v ′

0=⊥,v ′
1=>

∨ (v0 ∧ ¬(v0
⊕

v1))︸ ︷︷ ︸
v ′

0=⊥,v ′
1=⊥

=

v1 (i .e., {10,11})

31 / 119



Example: simple counter

v
0

v1

v1 v0 v ′
1 v ′

0

0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

00

11

01

10

ξ(R) = (v ′
0 ↔ ¬v0) ∧ (v ′

1 ↔ v0
⊕

v1)
ξ(P) := (v0 ↔ v1) (i.e., P = {00,11})

ξ(PreImage(P,R)) =
∃V ′.(ξ(P)[V ′] ∧ ξ(R)[V ,V ′]) =
∃v ′

0v ′
1.((v ′

0 ↔ v ′
1) ∧ (v ′

0 ↔ ¬v0) ∧ (v ′
1 ↔ v0

⊕
v1)) =

(¬v0 ∧ v0
⊕

v1)︸ ︷︷ ︸
v ′

0=>,v ′
1=>

∨ ⊥︸︷︷︸
v ′

0=>,v ′
1=⊥

∨ ⊥︸︷︷︸
v ′

0=⊥,v ′
1=>

∨ (v0 ∧ ¬(v0
⊕

v1))︸ ︷︷ ︸
v ′

0=⊥,v ′
1=⊥

=

v1 (i .e., {10,11})

31 / 119



Example: simple counter

v
0

v1

v1 v0 v ′
1 v ′

0

0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

00

11

01

10

ξ(R) = (v ′
0 ↔ ¬v0) ∧ (v ′

1 ↔ v0
⊕

v1)
ξ(P) := (v0 ↔ v1) (i.e., P = {00,11})

ξ(PreImage(P,R)) =
∃V ′.(ξ(P)[V ′] ∧ ξ(R)[V ,V ′]) =
∃v ′

0v ′
1.((v ′

0 ↔ v ′
1) ∧ (v ′

0 ↔ ¬v0) ∧ (v ′
1 ↔ v0

⊕
v1)) =

(¬v0 ∧ v0
⊕

v1)︸ ︷︷ ︸
v ′

0=>,v ′
1=>

∨ ⊥︸︷︷︸
v ′

0=>,v ′
1=⊥

∨ ⊥︸︷︷︸
v ′

0=⊥,v ′
1=>

∨ (v0 ∧ ¬(v0
⊕

v1))︸ ︷︷ ︸
v ′

0=⊥,v ′
1=⊥

=

v1 (i .e., {10,11})

31 / 119



Example: simple counter

v
0

v1

v1 v0 v ′
1 v ′

0

0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

00

11

01

10

ξ(R) = (v ′
0 ↔ ¬v0) ∧ (v ′

1 ↔ v0
⊕

v1)
ξ(P) := (v0 ↔ v1) (i.e., P = {00,11})

ξ(PreImage(P,R)) =
∃V ′.(ξ(P)[V ′] ∧ ξ(R)[V ,V ′]) =
∃v ′

0v ′
1.((v ′

0 ↔ v ′
1) ∧ (v ′

0 ↔ ¬v0) ∧ (v ′
1 ↔ v0

⊕
v1)) =

(¬v0 ∧ v0
⊕

v1)︸ ︷︷ ︸
v ′

0=>,v ′
1=>

∨ ⊥︸︷︷︸
v ′

0=>,v ′
1=⊥

∨ ⊥︸︷︷︸
v ′

0=⊥,v ′
1=>

∨ (v0 ∧ ¬(v0
⊕

v1))︸ ︷︷ ︸
v ′

0=⊥,v ′
1=⊥

=

v1 (i .e., {10,11})

31 / 119



Example: simple counter

v
0

v1

v1 v0 v ′
1 v ′

0

0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

00

11

01

10

ξ(R) = (v ′
0 ↔ ¬v0) ∧ (v ′

1 ↔ v0
⊕

v1)
ξ(P) := (v0 ↔ v1) (i.e., P = {00,11})

ξ(PreImage(P,R)) =
∃V ′.(ξ(P)[V ′] ∧ ξ(R)[V ,V ′]) =
∃v ′

0v ′
1.((v ′

0 ↔ v ′
1) ∧ (v ′

0 ↔ ¬v0) ∧ (v ′
1 ↔ v0

⊕
v1)) =

(¬v0 ∧ v0
⊕

v1)︸ ︷︷ ︸
v ′

0=>,v ′
1=>

∨ ⊥︸︷︷︸
v ′

0=>,v ′
1=⊥

∨ ⊥︸︷︷︸
v ′

0=⊥,v ′
1=>

∨ (v0 ∧ ¬(v0
⊕

v1))︸ ︷︷ ︸
v ′

0=⊥,v ′
1=⊥

=

v1 (i .e., {10,11})

31 / 119



Example: simple counter

v
0

v1

v1 v0 v ′
1 v ′

0

0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

00

11

01

10

ξ(R) = (v ′
0 ↔ ¬v0) ∧ (v ′

1 ↔ v0
⊕

v1)
ξ(P) := (v0 ↔ v1) (i.e., P = {00,11})

ξ(PreImage(P,R)) =
∃V ′.(ξ(P)[V ′] ∧ ξ(R)[V ,V ′]) =
∃v ′

0v ′
1.((v ′

0 ↔ v ′
1) ∧ (v ′

0 ↔ ¬v0) ∧ (v ′
1 ↔ v0

⊕
v1)) =

(¬v0 ∧ v0
⊕

v1)︸ ︷︷ ︸
v ′

0=>,v ′
1=>

∨ ⊥︸︷︷︸
v ′

0=>,v ′
1=⊥

∨ ⊥︸︷︷︸
v ′

0=⊥,v ′
1=>

∨ (v0 ∧ ¬(v0
⊕

v1))︸ ︷︷ ︸
v ′

0=⊥,v ′
1=⊥

=

v1 (i .e., {10,11})

31 / 119



Pre-Image [cont.]

v1

⊥ >

v0

v1v1

⊥ >

v0

v ′
0 v ′

0

⊥ >

v1 v1

v ′
1 v ′

1

ξ(P) = v0 ↔ v1

ξ(R) = (v ′
0 ↔ ¬v0) ∧ (v ′

1 ↔ v0
⊕

v1)

ξ(PreImage(P,R)) =
∃V ′.((v ′

0 ↔ v ′
1) ∧ (v ′

0 ↔ ¬v0) ∧ (v ′
1 ↔ v0

⊕
v1)) =

v1

32 / 119



Forward Image

Forward image of a set:
P

Image(P)

Evaluate one-shot all transitions from the states of the set
Set theoretic view:

Image(P,R) := {s′| for some s ∈ P, (s, s′) ∈ R}

Logical Characterization:

ξ(Image(P,R)) := ∃V .(ξ(P)[V ] ∧ ξ(R)[V ,V ′])
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Forward Image [cont.]

⊥ >

v0

v1v1

⊥ >

v0

v ′
0 v ′

0

⊥ >

v1 v1

v ′
1 v ′

1

ξ(P) = v0 ↔ v1

ξ(R) = (v ′
0 ↔ ¬v0) ∧ (v ′

1 ↔ v0
⊕

v1)

v ′
1

∃V .((v0 ↔ v1) ∧ (v ′
0 ↔ ¬v0) ∧ (v ′

1 ↔ v0
⊕

v1)) =
ξ(Image(P,R)) =

¬v ′
1
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Application of the Transition Relation

Image and PreImage of a set of states S computed by means of
quantified Boolean formulae
The whole set of transitions can be fired (either forward or
backward) in one logical operation
The symbolic computation of PreImage and Image provide the
primitives for symbolic search of the state space of FSM’s

Notation Remark
Henceforth, for readability sake, we omit the “ξ()” notation in symbolic
representations of systems.

Kripke models represented as 〈I(V ),R(V ,V ′)〉
Fair Kripke models represented as 〈I(V ),R(V ,V ′),F (V )〉 s.t.
F (V )

def
= {F1(V ), ..,Fk (V )}
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A simple example
MODULE main
VAR
b0 : boolean;
b1 : boolean;
...

ASSIGN
init(b0) := 0;
next(b0) := case
b0 : 1;
!b0 : {0,1};

esac;
init(b1) := 0;
next(b1) := case
b1 : 1;
!b1 : {0,1};

esac;
...
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A simple example [cont.]

N Boolean variables b0,b1, ...
Initially, all variables set to 0
Each variable can pass from 0 to 1, but not vice-versa
2N states, all reachable
(Simplified) model of a student career behaviour.
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A simple example: FSM

(transitive trans. omitted)
2N STATES
O(2N) TRANSITIONS

. . . .

. . . .

. . . .

. . . .

. . . .
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A simple example: OBDD(ξ(R))

2N + 2 NODES

. . . .

True False

b0

b0’
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b1’

b2
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A simple example: states vs. OBDD nodes [NuSMV.2]
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A simple example: reaching K bits true

Property EF(b0 + b1 + ...+ b(N − 1) ≥ K ) (K ≤ N)
(it may be reached a state in which K bits are true)
E.g.: “it is reachable a state where K exams are passed”
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A simple example: OBDD(ξ(ϕ))

(N − K + 1) · K + 2 NODES

true

false

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

b1

b2

b0

True False

b1b1

b(K−1)

b(K)

b(K+1)

b(N−K)

b(N−K+1)

b(N−1)

45 / 119



A simple example: OBDD(ξ(ϕ))

(N − K + 1) · K + 2 NODES

true

false

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

b1

b2

b0

True False

b1b1

b(K−1)

b(K)

b(K+1)

b(N−K)

b(N−K+1)

b(N−1)

45 / 119



A simple example: states vs. OBDD nodes [NuSMV.2]
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Language-Emptiness Checking for Fair Kripke Models

Fair_CheckEG

Given: a fair Kripke model MF := 〈S,R, I,AP,L,F 〉 and a set of
states T s.t. T ⊆ S,
Fair_CheckEG(T ) returns the subset of the states s in T from which
at least one fair path π entirely included in T passes through

Symbolic Fair_CheckEG
Given: the symbolic representation of a fair Kripke model
MF := 〈I,R,F 〉 a Boolean formula (OBDD) Ψ,
Fair_CheckEG(Ψ) returns a Boolean formula (OBDD) representing
the subset of the states s in Ψ from which at least one fair path π
entirely included in Ψ passes through

Fair_CheckEG(true) computes (the symbolic representation of) the
set of fair states of Mf

=⇒ I ⊆ Fair_CheckEG(true) iff L(Mf ) 6= ∅
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Ingredients (from CTL Model Checking)

Some primitive functions from CLT Model Checking:
Symbolic Check_EX(φ): returns an OBDD representing the set
of states from which a path verifying Xφ holds
(i.e., the symbolic preimage of the set of states where φ holds)
Symbolic Check_EG(φ): returns an OBDD representing the set
of states from which a path verifying Gφ holds
Symbolic Check_EU(φ1, φ2): returns an OBDD representing the
set of states from which a path verifying φ1Uφ2 holds
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Check_EX

Explicit-state
State Set Check_EX(State Set X )

return {s | for some s′ ∈ X , (s, s′) ∈ R};

Symbolic
OBDD Check_EX(OBDD X )

return ∃V ′.( X [V ′] ∧ R[V ,V ′]);

Same as Pre-Image computation.
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Check_EG
Explicit-State
State Set Check_EG(State Set X )

Y ′ := X ;
repeat

Y := Y ′;
Y ′ := Y ∩ Check_EX (Y ); //⇐⇒ Y ′ := X ∧ Check_EX (Y );

until (Y ′ = Y );
return Y ;

Symbolic
OBDD Check_EG(OBDD X )

Y ′ := X ;
repeat

Y := Y ′;
Y ′ := Y ∧ Check_EX (Y );

until (Y ′ ↔ Y );
return Y ;

Hint (tableaux rule): s |= EGφ only if s |= φ ∧ EXEGφ
51 / 119



Check_EG
Explicit-State
State Set Check_EG(State Set X )

Y ′ := X ;
repeat

Y := Y ′;
Y ′ := Y ∩ Check_EX (Y ); //⇐⇒ Y ′ := X ∧ Check_EX (Y );

until (Y ′ = Y );
return Y ;

Symbolic
OBDD Check_EG(OBDD X )

Y ′ := X ;
repeat

Y := Y ′;
Y ′ := Y ∧ Check_EX (Y );

until (Y ′ ↔ Y );
return Y ;

Hint (tableaux rule): s |= EGφ only if s |= φ ∧ EXEGφ
51 / 119



Check_EG
Explicit-State
State Set Check_EG(State Set X )

Y ′ := X ;
repeat

Y := Y ′;
Y ′ := Y ∩ Check_EX (Y ); //⇐⇒ Y ′ := X ∧ Check_EX (Y );

until (Y ′ = Y );
return Y ;

Symbolic
OBDD Check_EG(OBDD X )

Y ′ := X ;
repeat

Y := Y ′;
Y ′ := Y ∧ Check_EX (Y );

until (Y ′ ↔ Y );
return Y ;

Hint (tableaux rule): s |= EGφ only if s |= φ ∧ EXEGφ
51 / 119



Check_EU
Explicit-State
State Set Check_EU(State Set X1,X2)

Y ′ := X2;
repeat

Y := Y ′;
Y ′ := Y ∪ (X1 ∩ Check_EX (Y )); //⇐⇒ Y ′ := X2 ∪ (X1 ∩ Check_EX (Y ));

until (Y ′ = Y );
return Y ;

Symbolic
OBDD Check_EU(OBDD X1,X2)

Y ′ := X2;
repeat

Y := Y ′;
Y ′ := Y ∨ (X1 ∧ Check_EX (Y ));

until (Y ′ ↔ Y );
return Y ;

Hint (tableaux rule): s |= E(φ1Uφ2) if s |= φ2 ∨ (φ1 ∧ EXE(φ1Uφ2))
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SCC-based Check_FairEG

A Strongly Connected Component (SCC) of a directed graph is a
maximal subgraph s.t. all its nodes are reachable from each other.

Given a fair Kripke model M, a fair non-trivial SCC is an SCC with at
least one edge that contains at least one state for every fair condition
=⇒ all states in a fair (non-trivial) SCC are fair states
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SCC-based Check_FairEG (cont.)

Check_FairEG([φ]):

(i) restrict the graph of M to [φ];
(ii) find all fair non-trivial SCCs Ci

(iii) build C := ∪iCi ;
(iv) compute the states that can reach C (Check_EU([φ],C)).

[φ]: set of states where φ holds (aks denotation of φ)
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Example: Check_FairEG

F := {{ not C1},{not C2}}

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N1, N2

turn=0

not C1
not C2

EG¬C1

56 / 119



Example: Check_FairEG

F := {{ not C1},{not C2}}

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N1, N2

turn=0

not C1
not C2

EG¬C1
Check_FairEG(¬C1): 1. compute [¬C1]

56 / 119



Example: Check_FairEG

F := {{ not C1},{not C2}}

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N1, N2

turn=0

not C1
not C2

EG¬C1
Check_FairEG(¬C1): 2. restrict the graph to [¬C1]

56 / 119



Example: Check_FairEG

F := {{ not C1},{not C2}}

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N1, N2

turn=0

not C1
not C2

EG¬C1
Check_FairEG(¬C1): 3. find all fair non-trivial SCC’s

56 / 119



Example: Check_FairEG

F := {{ not C1},{not C2}}

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N1, N2

turn=0

not C1
not C2

EG¬C1
Check_FairEG(¬C1): 4. build the union C of all SCC’s

56 / 119



Example: Check_FairEG

F := {{ not C1},{not C2}}

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N1, N2

turn=0

not C1
not C2

EG¬C1
Check_FairEG(¬C1): 5. compute the states which can reach it

56 / 119



SCC-based Check_FairEG - Drawbacks

SCCs computation requires a linear (O(#nodes + #edges) )
DFS (Tarjan).
The DFS manipulates the states explicitly, storing information for
every state.
A DFS is not suitable for symbolic model checking where we
manipulate sets of states.

=⇒ We want an algorithm based on (symbolic) preimage
computation.
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Emerson-Lei Algorithm

Fixpoint characterization of EG and fair EG
“[φ]” denotes the set of states where φ holds

Theorem (Emerson & Clarke): [EGφ] = νZ .([φ] ∩ [EXZ ])
The greatest set Z s.t. every state z in Z satisfies φ and reaches
another state in Z in one step.

We can characterize fair EG (aka “Ef G") similarly:
Theorem (Emerson & Lei):
[Ef Gφ] = νZ .([φ] ∩

⋂
Fi∈FT [EX E(ZU(Z ∩ Fi))])

The greatest set Z s.t. every state z in Z satisfies φ and, for every
set Fi ∈ FT, z reaches a state in Fi ∩ Z by means of a non-trivial
path that lies in Z.

[EG ]φ

Z [φ]
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Emerson-Lei Algorithm

Recall: [Ef Gφ] = νZ .([φ] ∩
⋂

Fi∈FT [EX E(ZU(Z ∩ Fi))])

state_set Check_FairEG( state_set [φ]) {
Z’:= [φ];

repeat
Z:= Z’;

for each Fi in FT
Y:= Check_EU(Z,Fi∩Z);
Z’:= Z’ ∩ PreImage(Y));

end for;
until (Z’ = Z);
return Z;

}

Implementation of the above formula
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Recall: [Ef Gφ] = νZ .([φ] ∩
⋂

Fi∈FT [EX E(ZU(Z ∩ Fi))])

state_set Check_FairEG( state_set [φ]) {
Z’:= [φ];

repeat
Z:= Z’;

for each Fi in FT
Y:= Check_EU(Z’,Fi∩Z’);
Z’:= Z’ ∩ PreImage(Y));

end for;
until (Z’ = Z);
return Z;

}

Slight improvement: do not consider states in Z \ Z ′
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Emerson-Lei Algorithm (symbolic version)

Recall: [Ef Gφ] = νZ .([φ] ∩
⋂

Fi∈FT [EX E(ZU(Z ∧ Fi))])

Obdd Check_FairEG( Obdd φ) {
Z’:= φ;

repeat
Z:= Z’;

for each Fi in FT
Y:= Check_EU(Z’,Fi∧Z’);
Z’:= Z’ ∧ PreImage(Y));

end for;
until (Z’ ↔ Z);
return Z;

}

Symbolic version.
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Example: Check_FairEG

F := { { not C1},{not C2}}
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Symbolic LTL Satisfiability and Entailment

LTL Validity/Satisfiability
Let ψ be an LTL formula

|= ψ (LTL)
⇐⇒ ¬ψ unsat
⇐⇒ L(T¬ψ) = ∅
T¬ψ is a fair Kripke model (aka tableaux) which represents all
and only the paths that satisfy ¬ψ (do not satisfy ψ)

LTL Entailment
Let ϕ,ψ be an LTL formula

ϕ |= ψ (LTL)
|= ϕ→ ψ (LTL)

⇐⇒ ϕ ∧ ¬ψ unsat
⇐⇒ L(Tϕ∧¬ψ) = ∅
Tϕ∧¬ψ is a fair Kripke model (aka tableaux) which represents all
and only the paths that satisfy ϕ ∧ ¬ψ (satisfy ϕ and do not
satisfy ψ)
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Symbolic LTL Model Checking

LTL Model Checking

Let M be a Kripke model and ψ be an LTL formula
M |= ψ (LTL)

⇐⇒ L(M) ⊆ L(ψ)
⇐⇒ L(M) ∩ L(ψ) = ∅
⇐⇒ L(M) ∩ L(¬ψ) = ∅
⇐⇒ L(M) ∩ L(T¬ψ) = ∅
⇐⇒ L(M × T¬ψ) = ∅
T¬ψ is a fair Kripke model (aka tableaux) which represents all
and only the paths that satisfy ¬ψ (do not satisfy ψ)

=⇒ M × T¬ψ represents all and only the paths appearing in M and
not in ψ.
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Symbolic LTL Model Checking

Three steps

Let ϕ def
= ¬ψ:

(i) Compute Tϕ
(ii) Compute the product M × Tϕ

(iii) Check the emptiness of L(M × Tϕ)
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The Set of States

Elementary subformulas of ψ: el(ψ)

el(p) := {p}
el(¬ϕ1) := el(ϕ1)
el(ϕ1 ∧ ϕ2) := el(ϕ1) ∪ el(ϕ2)
el(Xϕ1) = {Xϕ1} ∪ el(ϕ1)
el(ϕ1Uϕ2) := {X(ϕ1Uϕ2)} ∪ el(ϕ1) ∪ el(ϕ2)

Intuition: el(ψ) is the set of propositions and X-formulas
occurring ψ′, ψ′ being the result of applying recursively the
tableau expansion rules to ψ
The set of states STψ of Tψ is given by 2el(ψ)

The labeling function LTψ of Tψ comes straightforwardly
(the label is the Boolean component of each state)

70 / 119



The Set of States

Elementary subformulas of ψ: el(ψ)

el(p) := {p}
el(¬ϕ1) := el(ϕ1)
el(ϕ1 ∧ ϕ2) := el(ϕ1) ∪ el(ϕ2)
el(Xϕ1) = {Xϕ1} ∪ el(ϕ1)
el(ϕ1Uϕ2) := {X(ϕ1Uϕ2)} ∪ el(ϕ1) ∪ el(ϕ2)

Intuition: el(ψ) is the set of propositions and X-formulas
occurring ψ′, ψ′ being the result of applying recursively the
tableau expansion rules to ψ
The set of states STψ of Tψ is given by 2el(ψ)

The labeling function LTψ of Tψ comes straightforwardly
(the label is the Boolean component of each state)

70 / 119



The Set of States

Elementary subformulas of ψ: el(ψ)

el(p) := {p}
el(¬ϕ1) := el(ϕ1)
el(ϕ1 ∧ ϕ2) := el(ϕ1) ∪ el(ϕ2)
el(Xϕ1) = {Xϕ1} ∪ el(ϕ1)
el(ϕ1Uϕ2) := {X(ϕ1Uϕ2)} ∪ el(ϕ1) ∪ el(ϕ2)

Intuition: el(ψ) is the set of propositions and X-formulas
occurring ψ′, ψ′ being the result of applying recursively the
tableau expansion rules to ψ
The set of states STψ of Tψ is given by 2el(ψ)

The labeling function LTψ of Tψ comes straightforwardly
(the label is the Boolean component of each state)

70 / 119



The Set of States

Elementary subformulas of ψ: el(ψ)

el(p) := {p}
el(¬ϕ1) := el(ϕ1)
el(ϕ1 ∧ ϕ2) := el(ϕ1) ∪ el(ϕ2)
el(Xϕ1) = {Xϕ1} ∪ el(ϕ1)
el(ϕ1Uϕ2) := {X(ϕ1Uϕ2)} ∪ el(ϕ1) ∪ el(ϕ2)

Intuition: el(ψ) is the set of propositions and X-formulas
occurring ψ′, ψ′ being the result of applying recursively the
tableau expansion rules to ψ
The set of states STψ of Tψ is given by 2el(ψ)

The labeling function LTψ of Tψ comes straightforwardly
(the label is the Boolean component of each state)

70 / 119



Example: ψ := pUq

el(pUq) = el((q ∨ (p ∧ X(pUq))) = {p,q,X(pUq)}
=⇒ STψ = {

1 : {p,q,X(pUq)}, [pUq]
2 : {¬p,q,X(pUq)}, [pUq]
3 : {p,¬q,X(pUq)}, [pUq]
4 : {¬p,q,¬X(pUq)}, [pUq]
5 : {¬p,¬q,X(pUq)}, [¬pUq]
6 : {p,q,¬X(pUq)}, [pUq]
7 : {p,¬q,¬X(pUq)}, [¬pUq]
8 : {¬p,¬q,¬X(pUq)} [¬pUq]

}
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Example: ψ := pUq [cont.]

Xψ Xψ Xψ

−Xψ Xψ −Xψ

−Xψ −Xψ

3

4
5 6

7 8

21
qp −p −qp

−p q −q−p qp

p −q −p −q

q
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sat()

Set of states in STψ satisfying ϕi : sat(ϕi)

sat(ϕ1) := {s | ϕ1 ∈ s}, ϕ1 ∈ el(ψ)
sat(¬ϕ1) := STψ/sat(ϕ1)
sat(ϕ1 ∧ ϕ2) := sat(ϕ1) ∩ sat(ϕ2)
sat(ϕ1Uϕ2) := sat(ϕ2) ∪ (sat(ϕ1) ∩ sat(X(ϕ1Uϕ2)))

intuition: sat() establishes in which states subformulas are true

Remark
Semantics of “ϕ1Uϕ2” here induced by tableaux rule:
ϕ1Uϕ2

def
= ϕ2 ∨ (ϕ1 ∧ X(ϕ1Uϕ2))

=⇒ weaker than standard semantics (aka “weak until”, “ϕ1Wϕ2”):
a path where ϕ1 is always true and ϕ2 is always false satisfies it
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Example: ψ := pUq [cont.]
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ψ −ψ ψ
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Initial States and Transition Relation

Set of states in STψ satisfying ϕi : sat(ϕi)

sat(ϕ1) := {s | ϕ1 ∈ s}, ϕ1 ∈ el(ψ)
sat(¬ϕ1) := STψ/sat(ϕ1)
sat(ϕ1 ∧ ϕ2) := sat(ϕ1) ∩ sat(ϕ2)
sat(ϕ1Uϕ2) := sat(ϕ2) ∪ (sat(ϕ1) ∩ sat(X(ϕ1Uϕ2)))

Intuition: sat() establishes in which states subformulas are true
The set of initial states ITψ is defined as

ITψ = sat(ψ)

The transition relation RTψ is defined as

RTψ(s, s′) =
⋂

Xϕi∈el(ψ)

{
(s, s′) | s ∈ sat(Xϕi)⇔ s′ ∈ sat(ϕi)

}
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Example: ψ := pUq [cont.]

Xψ Xψ Xψ

−Xψ Xψ −Xψ

−Xψ −Xψ

3

4
5 6

7 8

21
qp

ψ

−p −qp

−p q −q−p qp

p −q −p −q

ψ

ψ ψ−ψ

−ψ−ψ

q

ψ
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Problems with U-subformulas

RTψ does not guarantee that the U-subformulas are fulfilled
Example: state 3 {p,¬q,X(pUq)}:
although state 3 belongs to

sat(pUq) := sat(q) ∪ (sat(p) ∩ sat(X(pUq))),

the path which loops forever in state 3 does not satisfy pUq, as
q never holds in that path.
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Tableaux Rules: a Quote

“After all... tomorrow is another day."
[Scarlett O’Hara, “Gone with the Wind”]
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Fairness conditions for every U-subformula

It must never happen that we get into a state s′ from which we
can enter a path π′ in which ϕ1Uϕ2 holds forever and ϕ2 never
holds.

Uϕ1 ϕ2Uϕ1 ϕ2

−ϕ2

Uϕ1 ϕ2 Uϕ1 ϕ2

−ϕ2

.  .  .  .

−ϕ2 −ϕ2

=⇒ For every [positive] U-subformula ϕ1Uϕ2 of ψ, we must add a
fairness LTL condition GF(¬(ϕ1Uϕ2) ∨ ϕ2)
If no [positive] U-subformulas, then add one fairness condition
GF>.

=⇒ We restrict the admissible paths of Tψ to those which verify the
fairness condition: Tψ := 〈STψ , ITψ ,RTψ ,LTψ ,FTψ〉

FTψ := {sat(¬(ϕ1Uϕ2)∨ϕ2)) s.t . (ϕ1Uϕ2) occurs [positively ]in ψ}
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Example: ψ := pUq [cont.]

Xψ Xψ Xψ

−Xψ Xψ −Xψ

−Xψ −Xψ

3

4
5 6

7 8

21
qp

ψ

−p −qp

−p q −q−p qp

p −q −p −q

ψ

ψ ψ−ψ

−ψ−ψ

q

ψ

Note: easily transformed into a generalized Büchi automaton
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Example: ψ := pUq [cont.]

Xϕ Xϕ Xϕ

−Xϕ Xϕ −Xϕ

−Xϕ −Xϕ

p q

p q

p q

p q

−pq −pq

−pq
−pq

−pq

−pq

−pq

−pq

−p−q

−p−q
−p−q

−p−q

p qp q

p q

p q

p −q

p −q

p −q

p −q

p −q

p −q

p −q −p−q

−p−q

−p−q

−p−q

p q

−pq

−pq
p −q

p q

3

4
5 6

7 8

21

ϕ

−qp

q

−p −q

ϕ

ϕ ϕ−ϕ

−ϕ−ϕ

ϕ

Note: easily transformed into a generalized Büchi automaton
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Symbolic Representation of Tψ

State variables: one Boolean variable for each formula in el(ψ)

EX: p, q and x and primed versions p′, q′ and x ′

[ x is a Boolean label for X(pUq) ]
sat(ϕi):

sat(p) := p, s.t. p Boolean state variable
sat(¬ϕ1) := ¬sat(ϕ1)
sat(ϕ1 ∧ ϕ2) := sat(ϕ1) ∧ sat(ϕ2)
sat(Xϕi ) := x[Xϕi ], s.t. x[Xϕi ] Boolean state variable
sat(ϕ1Uϕ2) := sat(ϕ2) ∨ (sat(ϕ1) ∧ sat(X(ϕ1Uϕ2)))

=⇒ sat(ϕ1Uϕ2) := sat(ϕ2) ∨ (sat(ϕ1) ∧ x[Xϕ1Uϕ2])

...
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Symbolic Representation of Tψ [cont.]

...
Initial states: ITψ = sat(ψ)

EX: I(p,q, x) = q ∨ (p ∧ x)

Transition Relation:
RTψ(s, s′) =

⋂
Xϕi∈el(ψ) {(s, s′) | s ∈ sat(Xϕi)⇔ s′ ∈ sat(ϕi)}

RTψ =
∧

Xϕi∈el(ψ) (sat(Xϕi )↔ sat ′(ϕi ))

where sat ′(ϕi ) is sat(ϕi ) on primed variables
EX: RTψ (p,q, x ,p′,q′, x ′) = x ↔ (q′ ∨ (p′ ∧ x ′))

Fairness Conditions:
FTψ := {sat(¬(ϕ1Uϕ2) ∨ ϕ2)) s.t . (ϕ1Uϕ2) occurs [positively ]in ψ}

EX: FTψ (p,q, x) = ¬(q ∨ (p ∧ x)) ∨ q = ... = ¬p ∨ ¬x ∨ q
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Symbolic Representation of Tψ: Examples

ITψ(p,q, x) = q ∨ (p ∧ x)

1 : {p,q, x} |= ITψ
3 : {p,¬q, x} |= ITψ
6 5 : {¬p,¬q, x} 6|= ITψ

RTψ(p,q, x ,p′,q′, x ′) =
x ↔ (q′ ∨ (p′ ∧ x ′))
1⇒ 1 : {p,q, x ,p′,q′, x ′} |= RTψ
6⇒ 7 : {p,q,¬x ,p′,¬q′,¬x ′} |= RTψ
6 6⇒ 1 : {p,q,¬x ,p′,q′, x ′} 6|= RTψ

FTψ(p,q, x) = ¬p ∨ ¬x ∨ q
1 : {p,q, x} |= FTψ
5 : {¬p,¬q, x} |= FTψ
6 3 : {p,¬q, x} 6|= FTψ

Xψ Xψ Xψ

−Xψ Xψ −Xψ

−Xψ −Xψ

3

4
5 6

7 8

21
qp

ψ

−p −qp

−p q −q−p qp

p −q −p −q

ψ

ψ ψ−ψ

−ψ−ψ

q

ψ
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Computing the product P := Tψ ×M

Given M := 〈SM , IM ,RM ,LM〉 and Tψ := 〈STψ , ITψ ,RTψ ,LTψ ,FTψ〉,
we compute the product P := Tψ ×M = 〈S, I,R,L,F 〉 as follows:

S := {(s, s′) | s ∈ STψ , s′ ∈ SM and LM(s′)|ψ = LTψ (s)}
I := {(s, s′) | s ∈ ITψ , s′ ∈ IM and LM(s′)|ψ = LTψ (s)}
Given (s, s′), (t , t ′) ∈ S, ((s, s′), (t , t ′)) ∈ R iff (s, t) ∈ RTψ and
(s′, t ′) ∈ RM
L((s, s′)) = LTψ (s) ∪ LM(s′)

Extension of sat() and FTψ to P:
(s, s′) ∈ sat(ψ)⇐⇒ s ∈ sat(ψ)
F := {sat(¬(ϕ1Uϕ2) ∨ ϕ2) s.t . (ϕ1Uϕ2) occurs [positively ]in ψ}
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Computing the product P := Tψ ×M symbolically

Let V ,W be the array of Boolean state variables of Tψ and M
respectively:

Initial states: I(V ∪W ) = ITψ(V ) ∧ IM(W )

Transition Relation:
R(V ∪W ,V ′ ∪W ′) = RTψ(V ,V ′) ∧ RM(W ,W ′)

Fairness conditions:
{F1(V ∪W ), ...,Fk (V ∪W )} = {FTψ1(V ), ...,FTψk (V )}
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Main theorem [Clarke, Grumberg & Hamaguchi; 94]

Theorem
THEOREM: M.s′ |= Eψ iff there is a state s in Tψ s.t. (s, s′) ∈ sat(ψ)
and Tψ ×M, (s, s′) |= EGtrue under the fairness conditions:

{sat(¬(ϕ1Uϕ2) ∨ ϕ2)) s.t . (ϕ1Uϕ2) occurs in ψ}.

=⇒ M |= Eψ iff Tψ ×M |= Ef Gtrue
=⇒ M |= ¬ψ iff Tψ ×M 6|= Ef Gtrue

LTL M.C. reduced to Fair CTL M.C.!!!
Symbolic OBDD-based techniques apply.

Note
The transition relation R of Tψ ×M may not be total.
=⇒ Check_FairEG does not need to consider states without
successors, restricting R to the remaining states.
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A microwave oven

4 state variables: start, close, heat, error
Actions (implicit): start_oven,open_door, close_door, reset,
warmup, start_cooking, cook, done
Error situation: if oven is started while the door is open
Represented as a Kripke structure (and hence as a OBDD’s)

90 / 119



A microwave oven [cont.]
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A microwave oven: symbolic representation

Initial states: IM(s, c,h,e) = ¬s ∧ ¬h ∧ ¬e
Transition relation:
RM(s, c,h,e, s′, c′,h′,e′) = [a simplification of]

( ¬s∧¬c∧¬h∧¬e∧¬s′∧ c′∧¬h′∧¬e′) ∨ (close_door , no error)
( s∧¬c∧¬h∧ e∧ s′∧ c′∧¬h′∧ e′) ∨ (close_door , error)
( ¬s∧ c ∧¬e∧¬s′∧¬c′∧¬h′∧¬e′) ∨ (open_door , no error)
( s∧ c∧¬h∧ e∧ s′∧¬c′∧¬h′∧ e′) ∨ (open_door , error)
( ¬s∧ c∧¬h∧¬e∧ s′∧ c′∧¬h′∧¬e′) ∨ (start_oven, no error)
( ¬s∧¬c∧¬h∧¬e∧ s′∧¬c′∧¬h′∧ e′) ∨ (start_oven, error)
( s∧ c∧¬h∧ e∧¬s′∧ c′∧¬h′∧¬e′) ∨ (reset)
( s∧ c∧¬h∧¬e∧ s′∧ c′∧ h′∧¬e′) ∨ (warmup)
( s∧ c∧ h∧¬e∧¬s′∧ c′∧ h′∧¬e′) ∨ (start_cooking)
( ¬s∧ c∧ h∧¬e∧¬s′∧ c′∧ h′∧¬e′) ∨ (cook)
( ¬s∧ c∧ h∧¬e∧¬s′∧ c′∧¬h′∧¬e′) (done)

Note: the third row represents two transitions: 3→ 1 and 4→ 1.
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LTL Specification

“necessarily, the oven’s door eventually closes and, till there, the
oven does not heat”:

M |= ¬heat U close,

i.e.,
M |= ¬E¬(¬heat U close)
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Tableau construction for ψ = ¬(¬heat U close)

ϕ := ¬ψ = (¬heat U close)

Tableaux expansion:
ψ = ¬(¬heat U close) = ¬(close ∨ (¬heat ∧ X(¬heat U close)))

el(ψ) = el(ϕ) = {heat , close,Xϕ} ({h, c,Xϕ})
States:

1 := {¬h, c,Xϕ}, 2 := {h, c,Xϕ}, 3 := {¬h,¬c,Xϕ},
4 := {h, c,¬Xϕ}, 5 := {h,¬c,Xϕ}, 6 := {¬h, c,¬Xϕ},
7 := {¬h,¬c,¬Xϕ}, 8 := {h,¬c,¬Xϕ}
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Tableau construction for ψ = ¬(¬heat U close) [cont.]

Xϕ Xϕ Xϕ

−Xϕ −Xϕ

−Xϕ −Xϕ

Xϕ

−h

−h

−h

−h

h

h h

h

c −cc

−cc c

−c −c

321

4
5 6

7 8

. .

..
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Tableau construction for ψ = ¬(¬heat U close)

...
States:

1 := {¬h, c,Xϕ}, 2 := {h, c,Xϕ}, 3 := {¬h,¬c,Xϕ},
4 := {h, c,¬Xϕ}, 5 := {h,¬c,Xϕ}, 6 := {¬h, c,¬Xϕ},
7 := {¬h,¬c,¬Xϕ}, 8 := {h,¬c,¬Xϕ}

sat():

sat(h) = {2,4,5,8} =⇒ sat(¬h) = {1,3,6,7},
sat(c) = {1,2,4,6} =⇒ sat(¬c) = {3,5,7,8},
sat(Xϕ) = {1,2,3,5} =⇒ sat(¬Xϕ) = {4,6,7,8},
sat(ϕ) = sat(c) ∪ (sat(¬h) ∩ sat(X(¬h U c))) = {1,2,3,4,6}
=⇒ sat(ψ) = sat(¬ϕ) = {5,7,8}
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Tableau construction for ψ = ¬(¬heat U close) [cont.]

Xϕ Xϕ Xϕ

−Xϕ −Xϕ

−Xϕ −Xϕ

Xϕ

−h

−h

−h

−h

h

h h

h

c −cc

−cc c

−c −c

321

4
5 6

7 8

. .

..

sat(−h)

sat(−h)

sat(−h)

sat(h)

97 / 119



Tableau construction for ψ = ¬(¬heat U close) [cont.]
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Tableau construction for ψ = ¬(¬heat U close) [cont.]
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Tableau construction for ψ = ¬(¬heat U close) [cont.]

Xϕ Xϕ Xϕ
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Tableau construction for ψ = ¬(¬heat U close) [cont.]

...
sat():

sat(h) = {2,4,5,8} =⇒ sat(¬h) = {1,3,6,7},
sat(c) = {1,2,4,6} =⇒ sat(¬c) = {3,5,7,8},
sat(Xϕ) = {1,2,3,5} =⇒ sat(¬Xϕ) = {4,6,7,8},
sat(ϕ) = sat(c) ∪ (sat(¬h) ∩ sat(X(¬h U c))) = {1,2,3,4,6}

Initial states I: sat(ψ) = sat(¬ϕ) = {5,7,8}
Transition Relation R:

add an edge from every state in sat(Xϕ) to every state in sat(ϕ)
add an edge from every state in sat(¬Xϕ) to every state in
sat(¬ϕ)
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Tableau construction for ψ = ¬(¬heat U close) [cont.]
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Tableau construction for ψ = ¬(¬heat U close) [cont.]
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Symbolic representation of Tψ, s.t. ψ := ¬(¬hUc)

State variables: h, c and x and primed versions h′, c′ and x ′

[ x is a Boolean label for X(¬hUc) ]
Initial states: ITψ = sat(ψ)
=⇒ I(h, c, x) = ¬(c ∨ (¬h ∧ x))

Transition Relation: RTψ =
∧

Xϕi∈el(ψ) (sat(Xϕi)↔ sat ′(ϕi))

=⇒ RTψ(h, c, x ,h′, c′, x ′) = x ↔ (c′ ∨ (¬h′ ∧ x ′))

Fairness Property: (due to negative polarity of (¬h Uc) in ψ):
FTψ(h, c, x) = >
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Product P = Tψ ×M
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Product P = Tψ ×M [cont.]

(6,5)

(6,6)

(6,3)

(4,4)

(4,7)

(7,1) (7,2)(3,1)

(3,2) (1,3) (2,4)

(1,5)
(1,6) (2,7)

P = Tψ ×M (reachable states only)
compute [EGtrue] (e.g. by Emerson-Lei):
=⇒ states (4,4), (4,7), (6,3), (6,5), (6,6), (7,1), (7,2) are not part

of a (fair) infinite path
=⇒ no initial states in [EGtrue] ( (7.1) has been removed).
=⇒ Tψ ×M 6|= EGtrue
=⇒ Property verified!

N.B.: fairness condition > irrelevent here
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Product P = Tψ ×M [cont.]
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Product P = Tψ ×M [cont.]
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Product P = Tψ ×M [cont.]
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(3,1)

(3,2) (1,3) (2,4)

(1,5)
(1,6) (2,7)

P = Tψ ×M (reachable states only)
compute [EGtrue] (e.g. by Emerson-Lei):
=⇒ states (4,4), (4,7), (6,3), (6,5), (6,6), (7,1), (7,2) are not part

of a (fair) infinite path
=⇒ no initial states in [EGtrue] ( (7.1) has been removed).
=⇒ Tψ ×M 6|= EGtrue
=⇒ Property verified!

N.B.: fairness condition > irrelevent here

106 / 119



Product P = Tψ ×M [cont.]
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Product P = Tψ ×M: symbolic representation

Initial states: I(s, c,h,e, x) = (¬s ∧ ¬h ∧ ¬e) ∧ ¬(c ∨ (¬h ∧ x)) =
¬s ∧ ¬h ∧ ¬e ∧ ¬c ∧ ¬x
Transition relation: R(s, c,h,e, x , s′, c′,h′,e′, x ′) = (an OBDD for)

(x ↔ (c′ ∨ (¬h′ ∧ x ′))) ∧ (
( ¬s∧¬c∧¬h∧¬e∧¬s′∧ c′∧¬h′∧¬e′) ∨ (close_door , no error)
( s∧¬c∧¬h∧ e∧ s′∧ c′∧¬h′∧ e′) ∨ (close_door , error)
( ¬s∧ c ∧¬e∧¬s′∧¬c′∧¬h′∧¬e′) ∨ (open_door , no error)
( s∧ c∧¬h∧ e∧ s′∧¬c′∧¬h′∧ e′) ∨ (open_door , error)
( ¬s∧ c∧¬h∧¬e∧ s′∧ c′∧¬h′∧¬e′) ∨ (start_oven, no error)
( ¬s∧¬c∧¬h∧¬e∧ s′∧¬c′∧¬h′∧ e′) ∨ (start_oven, error)
( s∧ c∧¬h∧ e∧¬s′∧ c′∧¬h′∧¬e′) ∨ (reset)
( s∧ c∧¬h∧¬e∧ s′∧ c′∧ h′∧¬e′) ∨ (warmup)
( s∧ c∧ h∧¬e∧¬s′∧ c′∧ h′∧¬e′) ∨ (start_cooking)
( ¬s∧ c∧ h∧¬e∧¬s′∧ c′∧ h′∧¬e′) ∨ (cook)
( ¬s∧ c∧ h∧¬e∧¬s′∧ c′∧¬h′∧¬e′) (done)
)
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[EGtrue]: symbolic representation

Emerson-Lei returns (an OBDD equivalent to):

EGtrue =
( ¬s∧¬c∧¬h∧¬e∧ x) ∨ (3,1)
( s∧¬c∧¬h∧ e∧ x) ∨ (3,2)
( ¬s∧ c∧¬h∧¬e∧ x) ∨ (1,3)
( ¬s∧ c∧ h∧¬e∧ x) ∨ (2,4)
( s∧ c∧¬h∧ e∧ x) ∨ (1,5)
( s∧ c∧¬h∧¬e∧ x) ∨ (1,5)
( s∧ c∧ h∧¬e∧ x) ∨ (2,7)

... (other unreachables states)

Initial states: I(s, c,h,e, x) = ¬s ∧ ¬h ∧ ¬e ∧ ¬c ∧ ¬x
=⇒ I(s, c,h,e, x) 6|= EGtrue
=⇒ I 6⊆ [EGtrue]

=⇒ Tψ ×M 6|= EGtrue
=⇒ Property verified! 108 / 119
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The property verified is...
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Ex: Symbolic Model Checking

Given the following finite state machine expressed in NuSMV input language:

MODULE main
VAR v1 : boolean; v2 : boolean;
INIT (!v1 & !v2)
TRANS (next(v1) <-> !v1) & (next(v2) <-> (v1<->v2))

and consider the property P def
= (v1 ∧ v2). Write:

the Boolean formulas I(v1, v2) and T (v1, v2, v ′
1, v

′
2) representing respectively

the initial states and the transition relation of M.

[ Solution: I(v1, v2) is (¬v1 ∧ ¬v2), T (v1, v2, v ′
1, v

′
2) is

(v ′
1 ↔ ¬v1) ∧ (v ′

2 ↔ (v1 ↔ v2)) ]

the graph representing the FSM. (Assume the notation “v1v2” for labeling the
states: e.g. “10” means “v1 = 1, v2 = 0”.)

[ Solution:

00 11 01 10

]
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Ex: Symbolic Model Checking (cont.)

the Boolean formula representing symbolically EXP. [The formula must be
computed symbolically, not simply inferred from the graph of the previous
question!]

[ Solution:

EX(P) = ∃v ′
1, v

′
2.(T (v1, v2, v ′

1, v
′
2) ∧ P(v ′

1, v
′
2))

= ∃v ′
1, v

′
2.((v

′
1 ↔ ¬v1) ∧ (v ′

2 ↔ (v1 ↔ v2)) ∧ (v ′
1 ∧ v ′

2)︸ ︷︷ ︸
=⇒v′

1=>,v′
2=>

)

=

v′
1=>,v′

2=>︷ ︸︸ ︷
(¬v1 ∧ ¬v2)∨⊥ ∨ ⊥ ∨⊥

= (¬v1 ∧ ¬v2)

. ]
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Ex: Symbolic CTL Model Checking

Given the following finite state machine expressed in NuSMV input language:

VAR v1 : boolean; v2 : boolean;
INIT init(v1) <-> init(v2)
TRANS (v1 <-> next(v2)) & (v2 <-> next(v1));

write:

the Boolean formulas I(v1, v2) and T (v1, v2, v ′
1, v

′
2) representing the initial

states and the transition relation of M respectively.

[ Solution: I(v1, v2) is (v1 ↔ v2), T (v1, v2, v ′
1, v

′
2) is (v1 ↔ v ′

2) ∧ (v2 ↔ v ′
1) ]

the graph representing the FSM. (Assume the notation “v1v2” for labeling the
states. E.g., “10” means “v1 = 1, v2 = 0”.)

[ Solution:

1100

]
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Ex: Symbolic CTL Model Checking (cont.)

the Boolean formula R1(v ′
1, v

′
2) representing the set of states which can be

reached after exactly 1 step.
NOTE: this must be computed symbolically, not simply deduced from the graph
of question b).

[ Solution:

R1(v ′
1, v

′
2) = ∃v1, v2.(I(v1, v2) ∧ T (v1, v2, v ′

1, v
′
2))

= ∃v1, v2.((v1 ↔ v2) ∧ (v1 ↔ v ′
2) ∧ (v2 ↔ v ′

1))
= ((v1 ↔ v2) ∧ (v1 ↔ v ′

2) ∧ (v2 ↔ v ′
1))[v1 = ⊥, v2 = ⊥] ∨

((v1 ↔ v2) ∧ (v1 ↔ v ′
2) ∧ (v2 ↔ v ′

1))[v1 = ⊥, v2 = >] ∨
((v1 ↔ v2) ∧ (v1 ↔ v ′

2) ∧ (v2 ↔ v ′
1))[v1 = >, v2 = ⊥] ∨

((v1 ↔ v2) ∧ (v1 ↔ v ′
2) ∧ (v2 ↔ v ′

1))[v1 = >, v2 = >]
= (¬v ′

1 ∧ ¬v ′
2) ∨ ⊥ ∨ ⊥ ∨ (v ′

1 ∧ v ′
2)

= (¬v ′
1 ∧ ¬v ′

2) ∨ (v ′
1 ∧ v ′

2)
= (v ′

1 ↔ v ′
2)

. ]
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Ex: Symbolic CTL Model Checking (cont.)

the Boolean formula R1(v ′
1, v

′
2) representing the set of states which can be

reached after exactly 1 step.
NOTE: this must be computed symbolically, not simply deduced from the graph
of question b).
[ Solution:

R1(v ′
1, v

′
2) = ∃v1, v2.(I(v1, v2) ∧ T (v1, v2, v ′

1, v
′
2))

= ∃v1, v2.((v1 ↔ v2) ∧ (v1 ↔ v ′
2) ∧ (v2 ↔ v ′

1))
= ((v1 ↔ v2) ∧ (v1 ↔ v ′

2) ∧ (v2 ↔ v ′
1))[v1 = ⊥, v2 = ⊥] ∨

((v1 ↔ v2) ∧ (v1 ↔ v ′
2) ∧ (v2 ↔ v ′

1))[v1 = ⊥, v2 = >] ∨
((v1 ↔ v2) ∧ (v1 ↔ v ′

2) ∧ (v2 ↔ v ′
1))[v1 = >, v2 = ⊥] ∨

((v1 ↔ v2) ∧ (v1 ↔ v ′
2) ∧ (v2 ↔ v ′

1))[v1 = >, v2 = >]
= (¬v ′

1 ∧ ¬v ′
2) ∨ ⊥ ∨ ⊥ ∨ (v ′

1 ∧ v ′
2)

= (¬v ′
1 ∧ ¬v ′

2) ∨ (v ′
1 ∧ v ′

2)
= (v ′

1 ↔ v ′
2)

. ]
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Ex: Symbolic LTL Model Checking

Given the following LTL formula: ϕ def
= ¬((GFp ∧ GFq) → GFr)

(a) Compute the Negative Normal Form of ϕ (NNF (ϕ)).

[ Solution:

ϕ ⇐⇒ ¬((GFp ∧ GFq) → GFr)
⇐⇒ ¬(¬(GFp ∧ GFq) ∨ GFr)
⇐⇒ (GFp ∧ GFq ∧ ¬GFr)
⇐⇒ (GFp ∧ GFq ∧ FG¬r) ⇐⇒ NNF (ϕ)

]

(b) Compute the set of elementary subformulas of ϕ.

[ Solution: First write the formula in terms of X and U’s (write “Fψ" for “>Uψ”):

ϕ ⇐⇒ ¬((GFp ∧ GFq) → GFr)
⇐⇒ ¬((¬F¬Fp ∧ ¬F¬Fq) → ¬F¬Fr)

el(F¬Fp) = {XF¬Fp}∪el(¬Fp) = {XF¬Fp}∪{XFp}∪el(p) = {XF¬Fp,XFp, p}.
Hence: el(ϕ) = el(¬((¬F¬Fp ∧ ¬F¬Fq) → ¬F¬Fr))

= el(F¬Fp) ∪ el(F¬Fq) ∪ el(F¬Fr)
= {XF¬Fp,XFp, p,XF¬Fq,XFq, q,XF¬Fr ,XFr , r}

]

(c) What is the (maximum) number of states of a fair Kripke Model representing ϕ?

[ Solution: By definition it is 2|el(ϕ)| = 29 = 512. ]
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Ex: Symbolic LTL Model Checking

Given the following LTL formula ψ def
= ¬F¬p, compute and draw the tableau Tψ of ψ.

[ Solution:

(i) The set of elementary subformulas of ψ is el(ψ) def
= {p,XF¬p}. Hence, the set of

states is

{s1 : (p,¬XF¬p), s2 : (p,XF¬p), s3 : (¬p,¬XF¬p), s4 : (¬p,XF¬p)}

(ii) The set of initial states of Tψ is sat(ψ) def
= S \ (sat(¬p) ∪ sat(XF¬p)) = {s1}.

(iii) Since s1 is the only state in sat(¬F¬p), then s1 is the only successor of itself, so
that the only relevant transition is a self-loop over s1.
(One can also —un-necessarily— draw all transitions from states where ¬XF¬p
holds into {s1} and from from states where XF¬p holds into {s2, s3, s4}.)

(iv) There is one U-subformula, F¬p, so that there is one fairness condition defined
as sat(¬F¬p ∨ ¬p) . Since F¬p is false in s1, then s1 is part of the fairness
condition. [Alternatively: there is no positive U-subformula, so that we must add a
AGAF> fairness condition, which is equivalent to say that all states belong to the
fairness condition. ]

]
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Ex: Symbolic LTL Model Checking (cont.)

[ Solution:

ps1 [¬XF¬p]
or, alternatively without simplifications:

non-reachable states

[¬XF¬p]
ps1

¬p
[¬XF¬p]

p
[¬¬XF¬p]

¬p
[¬¬XF¬p]s2

s3

s4

]
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Ex: Symbolic LTL Model Checking

Given the following LTL formula ψ def
= Gp, compute and draw the tableau Tψ of ψ.

[Without converting anything into X,U].

[ Solution:

(i) The set of elementary subformulas of ψ is el(ψ) def
= {p,XGp}. Hence, the set of

states is

{s1 : (p,XGp), s2 : (p,¬XGp), s3 : (¬p,XGp), s4 : (¬p,¬XGp)}

(ii) The set of initial states of Tψ is sat(ψ) def
= sat(p) ∩ sat(XGp) = {s1}.

(iii) Since s1 is the only state in sat(Gp), then s1 is the only successor of itself, so
that the only relevant transition is a self-loop over s1.
(One can also —un-necessarily— draw all transitions from states where XGp
holds into {s1} and from from states where ¬XGp holds into {s2, s3, s4}.)

(iv) Since there is no “U” subformula, we must add a AGAF> fairness condition,
which is equivalent to say that all states belong to the fairness condition.

]
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Ex: Symbolic LTL Model Checking (cont.)

[ Solution:

[XGp]
ps1

or, alternatively without simplifications:

non-reachable states

[XGp]
ps1

¬p
[XGp]

p
[¬XGp]

¬p
[¬XGp]s2

s3

s4

]
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