Formal Methods: Module II: Model Checking Ch. 06: Symbolic LTL Model Checking

Roberto Sebastiani

DISI, Università di Trento, Italy - roberto.sebastiani@unitn.it URL: http://disi.unitn.it/rseba/DIDATTICA/fm2021/ Teaching assistant: Giuseppe Spallitta - giuseppe.spallitta@unitn.it
M.S. in Computer Science, Mathematics, \& Artificial Intelligence Systems Academic year 2020-2021

last update: Tuesday $4^{\text {th }}$ May, 2021, 09:24

[^0]
Outline

(1) Fairness \& Fair Kripke Models
(2) Symbolic Model Checking

- Symbolic Representation of Systems
- A simple example
(3) Language-Emptiness Checking for Fair Kripke Models
- SCC-Based Approach
- Emerson-Lei Algorithm

4 The Symbolic Approach to LTL Model Checking

- General Ideas
- Compute the Tableau T_{ψ}
- Compute the Product $M \times T_{\psi}$
- Check the Emptiness of $\mathcal{L}\left(M \times T_{\psi}\right)$
(5) A Complete Example
(6) Exercises

Outline

(1) Fairness \& Fair Kripke Models
(2) Symbolic Model Checking

- Symbolic Representation of Systems
- A simple example
(3) Language-Emptiness Checking for Fair Kripke Models
- SCC-Based Approach
- Emerson-Lei Algorithm
(4) The Symbolic Approach to LTL Model Checking
- General Ideas
- Compute the Tableau T_{ψ}
- Compute the Product $M \times T_{\psi}$
- Check the Emptiness of $\mathcal{L}\left(M \times T_{\psi}\right)$
(5) A Complete Example
(6) Exercises

The Need for Fairness Conditions: Intuition

Consider a public restroom. A standard access policy is "first come first served" (e.g., a queue-based protocol).

- Does this policy guarantee that everybody entering the queue will eventually access the restroom?
- No: in principle, somebody might remain in the restroom forever, hindering the access to everybody else
- In practice, it is considered reasonable to assume that everybody exits the restroom after a finite amount of time
\Longrightarrow It is reasonable enough to assume the protocol suitable under the condition that each user is infinitely often outside the restroom
- Such a condition is called fairness condition

The Need for Fairness Conditions: An Example

- Consider a variant of the mutual exclusion in which one process can stay permanently in the critical zone
- Do $M \models \mathbf{G}\left(T_{1} \rightarrow \mathbf{F} C_{1}\right), M \models \mathbf{G}\left(T_{2} \rightarrow \mathbf{F} C_{2}\right)$ still hold?

The Need for Fairness Conditions: An Example [cont.]

The need for fairness conditions: an example [cont.]

The need for fairness conditions: an example [cont.]

$$
\mathbf{G}\left(T_{1} \rightarrow \mathbf{F} C_{1}\right) ?
$$

$\mathbf{G}\left(T_{2} \rightarrow \mathbf{F} C_{2}\right)$?
NO: E.g., it can cycle forever in $\left\{C_{1}, T_{2}\right.$, turn $\left.=1\right\}$ \Longrightarrow Unfair protocol: one process might never be served

Fairness Conditions

- It is desirable that certain (typically Boolean) conditions φ 's hold infinitely often: GF φ
- $\operatorname{GF} \varphi$ is called fairness conditions
- Intuitively, fairness conditions are used to eliminate behaviours in which a certain condition φ never holds:
GF φ : "it is never reached a state from which φ is forever false"
- Example: it is not desirable that, once a process is in the critical section, it never exits: $\mathrm{GF} \neg C_{1}$
- A fair condition φ_{i} can be represented also by the set f_{i} of states where φ_{i} holds ($f_{i}:=\left\{s: \pi, s \models \varphi_{i}\right.$, for each $\left.\pi \in M\right\}$)

Fair Kripke models

- A Fair Kripke model $M_{F}:=\langle S, R, I, A P, L, F\rangle$ consists of
- a set of states S;
- a set of initial states $I \subseteq S$;
- a set of transitions $R \subseteq S \times S$;
- a set of atomic propositions AP;
- a labeling function $L: S \longmapsto 2^{A P}$;

- a set of fairness conditions $F=\left\{f_{1}, \ldots, f_{n}\right\}$, with $f_{i} \subseteq S$.
- E.g., $\{\{2\}\}:=\{\{s: L(s)=\{q\}\}\}=\{\mathbf{G F} q\}$ is the set of fairness conditions of the Kripke model above
- Fair path π : at least one state for each f_{i} occurs infinitely often in π (φ_{i} holds infinitely often in $\pi: \pi \models \mathbf{G F} \varphi_{i}$)
- E.g., every path visiting infinitely often state 2 is a fair path.
- Fair state: a state through which at least one fair path passes
- E.g., all states 1,2,3,4 are fair states
- Note: fair state \neq state belonging to a fairness condition

LTL M.C. with Fair Kripke Models

Fair Kripke Models restrict the M.C. process to fair paths:

- $M_{f} \models \varphi$ iff $\pi \models \varphi$ for every fair path π

LTL M.C. with Fair Kripke Models

Fair Kripke Models restrict the M.C. process to fair paths:

- $M_{f} \models \varphi$ iff $\pi \models \varphi$ for every fair path π
- Path quantifiers (from CTL) apply only to fair paths:
- $M_{F}, s \models \mathbf{A} \varphi$ iff $\pi, s \models \varphi$ for every fair path π s.t. $s \in \pi$
- $M_{F}, s \models \mathbf{E} \varphi$ iff $\pi, s \models \varphi$ for some fair path π s.t. $s \in \pi$

LTL M.C. with Fair Kripke Models

Fair Kripke Models restrict the M.C. process to fair paths:

- $M_{f} \models \varphi$ iff $\pi \models \varphi$ for every fair path π
- Path quantifiers (from CTL) apply only to fair paths:
- $M_{F}, s \models \mathbf{A} \varphi$ iff $\pi, s \models \varphi$ for every fair path π s.t. $s \in \pi$
- $M_{F}, s \models \mathbf{E} \varphi$ iff $\pi, s \models \varphi$ for some fair path π s.t. $s \in \pi$
\Longrightarrow a fair state s is a state in M_{F} iff $M_{F}, s \models$ EGtrue.
- We need a procedure to compute the set of fair states:

Check_FairEG(true)

LTL M.C. with Fair Kripke Models

Fair Kripke Models restrict the M.C. process to fair paths:

- $M_{f} \models \varphi$ iff $\pi \models \varphi$ for every fair path π
- Path quantifiers (from CTL) apply only to fair paths:
- $M_{F}, s \models \mathbf{A} \varphi$ iff $\pi, s \models \varphi$ for every fair path π s.t. $s \in \pi$
- $M_{F}, s \models \mathbf{E} \varphi$ iff $\pi, s \models \varphi$ for some fair path π s.t. $s \in \pi$
\Longrightarrow a fair state s is a state in M_{F} iff $M_{F}, s \models$ EGtrue.
- We need a procedure to compute the set of fair states: Check_FairEG(true)

Example

- $M_{f} \models$ EGtrue?

LTL M.C. with Fair Kripke Models

Fair Kripke Models restrict the M.C. process to fair paths:

- $M_{f} \models \varphi$ iff $\pi \models \varphi$ for every fair path π
- Path quantifiers (from CTL) apply only to fair paths:
- $M_{F}, s \models \mathbf{A} \varphi$ iff $\pi, s \models \varphi$ for every fair path π s.t. $s \in \pi$
- $M_{F}, s \models \mathbf{E} \varphi$ iff $\pi, s \models \varphi$ for some fair path π s.t. $s \in \pi$
\Longrightarrow a fair state s is a state in M_{F} iff $M_{F}, s \models$ EGtrue.
- We need a procedure to compute the set of fair states: Check_FairEG(true)

Example

- $M_{f} \models$ EGtrue? yes

LTL M.C. with Fair Kripke Models

Fair Kripke Models restrict the M.C. process to fair paths:

- $M_{f} \models \varphi$ iff $\pi \models \varphi$ for every fair path π
- Path quantifiers (from CTL) apply only to fair paths:
- $M_{F}, s \models \mathbf{A} \varphi$ iff $\pi, s \models \varphi$ for every fair path π s.t. $s \in \pi$
- $M_{F}, s \models \mathbf{E} \varphi$ iff $\pi, s \models \varphi$ for some fair path π s.t. $s \in \pi$
\Longrightarrow a fair state s is a state in M_{F} iff $M_{F}, s \models$ EGtrue.
- We need a procedure to compute the set of fair states: Check_FairEG(true)

Example

- $M_{f} \models$ EGtrue? yes
- $M_{f} \models \mathbf{G}(p \rightarrow \mathbf{F} q)$?

LTL M.C. with Fair Kripke Models

Fair Kripke Models restrict the M.C. process to fair paths:

- $M_{f} \models \varphi$ iff $\pi \models \varphi$ for every fair path π
- Path quantifiers (from CTL) apply only to fair paths:
- $M_{F}, s \models \mathbf{A} \varphi$ iff $\pi, s \models \varphi$ for every fair path π s.t. $s \in \pi$
- $M_{F}, s \models \mathbf{E} \varphi$ iff $\pi, s \models \varphi$ for some fair path π s.t. $s \in \pi$
\Longrightarrow a fair state s is a state in M_{F} iff $M_{F}, s \models$ EGtrue.
- We need a procedure to compute the set of fair states: Check_FairEG(true)

Example

- $M_{f} \models$ EGtrue? yes
- $M_{f} \models \mathbf{G}(p \rightarrow \mathbf{F} q)$? yes

LTL M.C. with Fair Kripke Models

Fair Kripke Models restrict the M.C. process to fair paths:

- $M_{f} \models \varphi$ iff $\pi \models \varphi$ for every fair path π
- Path quantifiers (from CTL) apply only to fair paths:
- $M_{F}, s \models \mathbf{A} \varphi$ iff $\pi, s \models \varphi$ for every fair path π s.t. $s \in \pi$
- $M_{F}, s \models \mathbf{E} \varphi$ iff $\pi, s \models \varphi$ for some fair path π s.t. $s \in \pi$
\Longrightarrow a fair state s is a state in M_{F} iff $M_{F}, s \models$ EGtrue.
- We need a procedure to compute the set of fair states: Check_FairEG(true)

Example

- $M_{f} \models$ EGtrue? yes
- $M_{f} \models \mathbf{G}(p \rightarrow \mathbf{F} q)$? yes
- $M \models \mathbf{G}(p \rightarrow \mathbf{F} q)$?

LTL M.C. with Fair Kripke Models

Fair Kripke Models restrict the M.C. process to fair paths:

- $M_{f} \models \varphi$ iff $\pi \models \varphi$ for every fair path π
- Path quantifiers (from CTL) apply only to fair paths:
- $M_{F}, s \models \mathbf{A} \varphi$ iff $\pi, s \models \varphi$ for every fair path π s.t. $s \in \pi$
- $M_{F}, s \models \mathbf{E} \varphi$ iff $\pi, s \models \varphi$ for some fair path π s.t. $s \in \pi$
\Longrightarrow a fair state s is a state in M_{F} iff $M_{F}, s \models$ EGtrue.
- We need a procedure to compute the set of fair states:

Check_FairEG(true)

Example

- $M_{f} \models$ EGtrue? yes
- $M_{f} \models \mathbf{G}(p \rightarrow \mathbf{F} q)$? yes
- $M \models \mathbf{G}(p \rightarrow \mathbf{F} q)$? no

Fairness: example

$F:=\{\{$ not C1\},\{not C2\}\}

$M_{F} \models \mathbf{G}\left(T_{1} \rightarrow \mathbf{F} C_{1}\right) ? \quad M_{F} \models \mathbf{G}\left(T_{2} \rightarrow \mathbf{F} C_{2}\right)$?
YES: every fair path satisfies the conditions

Computing an NBA A_{M} from a Fair Kripke Model M

- Transforming a fair K.S. $M=\left\langle S, S_{0}, R, L, A P, F T\right\rangle$, $F T=\left\{F_{1}, \ldots, F_{n}\right\}$, into a generalized NBA $A_{M}=\left\langle Q, \Sigma, \delta, I, F T^{\prime}\right\rangle$ s.t.:
- States: $Q:=S \cup\{$ init $\}$, init being a new initial state
- Alphabet: $\Sigma:=2^{A P}$
- Initial State: I:= \{init $\}$
- Accepting States: $F T^{\prime}:=F T$
- Transitions:

$$
\begin{aligned}
& \delta: q \xrightarrow{a} q^{\prime} \text { iff }\left(q, q^{\prime}\right) \in R \text { and } L\left(q^{\prime}\right)=a \\
& \text { init } \xrightarrow{a} q \text { iff } q \in S_{0} \text { and } L(q)=a
\end{aligned}
$$

- $\mathcal{L}\left(A_{M}\right)=\mathcal{L}(M)$
- $\left|A_{M}\right|=|M|+1$

Computing a (Generalized) BA A_{M} from a Fair Kripke Structure M: Example

Fair Kripke Structure

\Longrightarrow Substantially, add one initial state, move labels from states to incoming edges, set fair states as accepting states

LTL M.C. with Fair Kripke Models

Remark: fair LTL M.C.

When model checking an LTL formula ψ, fairness conditions can be encoded into the formula itself:

$$
M_{\left\{f_{1}, \ldots, f_{n}\right\}} \models \psi \Longleftrightarrow M \models\left(\bigwedge_{i=1}^{n} \mathbf{G F} f_{i}\right) \rightarrow \psi .
$$

Ex. $\operatorname{LTL}(1): M_{\left\{f_{1}, \ldots, f_{n}\right\}} \models \psi \Longleftrightarrow M \models\left(\bigwedge_{i=1}^{n} \mathbf{G F} f_{i}\right) \rightarrow \psi$.

Ex. $\operatorname{LTL}(2): M_{\left\{f_{1}, \ldots, f_{n}\right\}} \models \psi \Longleftrightarrow M \models\left(\bigwedge_{i=1}^{n} \mathbf{G F} f_{i}\right) \rightarrow \psi$.

- $M_{p}=\mathbf{G} q$
- $M \models(\mathbf{G F} p) \rightarrow \mathbf{G} q$

Outline

(1) Fairness \& Fair Kripke Models
(2) Symbolic Model Checking

- Symbolic Representation of Systems
- A simple example

B Language-Emptiness Checking for Fair Kripke Models

- SCC-Based Approach
- Emerson-Lei Algorithm

4. The Symbolic Approach to LTL Model Checking

- General Ideas
- Compute the Tableau T_{ψ}
- Compute the Product $M \times T_{\psi}$
- Check the Emptiness of $\mathcal{L}\left(M \times T_{\psi}\right)$
(5) A Complete Example
(6) Exercises

Outline

Fairness \& Fair Kripke Models

(2) Symbolic Model Checking

- Symbolic Representation of Systems
- A simple example
(3) Language-Emptiness Checking for Fair Kripke Models
- SCC-Based Approach
- Emerson-Lei Algorithm
(4) The Symbolic Approach to LTL Model Checking
- General Ideas
- Compute the Tableau T_{ψ}
- Compute the Product $M \times T_{u}$
- Check the Emptiness of $\mathcal{L}\left(M \times T_{\psi}\right)$

5 A Complete Example
6 Exercises

The Main Problem of M.C.: State Space Explosion

- The bottleneck:
- Exhaustive analysis may require to store all the states of the Kripke structure, and to explore them one-by-one
- The state space may be exponential in the number of components and variables
(E.g., 300 Boolean vars \Longrightarrow up to $2^{300} \approx 10^{100}$ states!)
- State Space Explosion:
- too much memory required
- too much CPU time required to explore each state
- A solution: Symbolic Model Checking

Symbolic Model Checking

Symbolic representation:

- manipulation of sets of states (rather than single states);
- sets of states represented by formulae in propositional logic;
- set cardinality not directly correlated to size
- expansion of sets of transitions (rather than single transitions);

Symbolic Model Checking [cont.]

- Two main symbolic techniques:
- Ordered Binary Decision Diagrams (OBDDs)
- Propositional Satisfiability Checkers (SAT solvers)
- Different model checking algorithms:
- Fix-point Model Checking (historically, for CTL)
- Fix-point Model Checking for LTL (conversion to fair CTL MC)
- Bounded Model Checking (historically, for LTL)
- Invariant Checking
- ...

Symbolic Representation of Kripke Models

- Symbolic representation:
- sets of states as their characteristic function (Boolean formula)
- provide logical representation and transformations of characteristic functions
- Example:
- three state variables x_{1}, x_{2}, x_{3} :
$\{000,001,010,011\}$ represented as "first bit false": $\neg x_{1}$
- with five state variables $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$:
$\{00000,00001,00010,00011,00100,00101,00110,00111, \ldots$,
$01111\}$ still represented as "first bit false": $\neg x_{1}$

Kripke Models in Propositional Logic

- Let $M=(S, I, R, L, A F)$ be a Kripke model
- States $s \in S$ are described by means of an array V of Boolean state variables.
- A state is a truth assignment to each atomic proposition in V .
- 0100 is represented by the formula ($\left.\neg x_{1} \wedge x_{2} \wedge \neg x_{3} \wedge \neg x_{4}\right)$
- we call $\xi(s)$ the formula representing the state $s \in S$ (Intuition: $\xi(s)$ holds iff the system is in the state s)
- A set of states $Q \subseteq S$ can be represented by any formula which is logically equivalent to the formula $\xi(Q)$:

$$
\bigvee_{s \in Q} \xi(s)
$$

(Intuition: $\xi(Q)$ holds iff the system is in one of the states $s \in Q$)

- Bijection between models of $\xi(Q)$ and states in \mathbf{Q}

Remark

- Every propositional formula is a (typically very compact) representation of the set of assignments satisfying it
- Any formula equivalent to $\xi(Q)$ is a representation of Q \Longrightarrow Typically Q can be encoded by much smaller formulas than $V_{s \in Q} \xi(s)!$
- Example: $Q=\{00000,00001,00010,00011,00100,00101$, 00110, 00111,..., 01111\} represented as "first bit false": $\neg x_{1}$

$$
\left.\begin{array}{rl}
\vee_{s \in Q} \xi(s)= & \left(\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \wedge \neg x_{4} \wedge \neg x_{5}\right) \vee \\
& \left(\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \wedge \neg x_{4} \wedge x_{5}\right) \vee \\
& \left(\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \wedge x_{4} \wedge \neg x_{5}\right) \vee \\
& \ldots \\
& \left(\neg x_{1} \wedge x_{2} \wedge x_{3} \wedge x_{4} \wedge x_{5}\right)
\end{array}\right\} 2^{4} \text { disjuncts }
$$

Symbolic Representation of Set Operators

One-to-one correspondence between sets and Boolean operators

- Set of all the states: $\xi(S):=\top$
- Empty set : $\xi(\emptyset):=\perp$
- Union represented by disjunction:
$\xi(P \cup Q):=\xi(P) \vee \xi(Q)$
- Intersection represented by conjunction:
$\xi(P \cap Q):=\xi(P) \wedge \xi(Q)$
- Complement represented by negation: $\xi(S / P):=\neg \xi(P)$

Symbolic Representation of Transition Relations

- The transition relation R is a set of pairs of states: $R \subseteq S \times S$
- A transition is a pair of states $\left(s, s^{\prime}\right)$
- A new vector of variables V' (the next state vector) represents the value of variables after the transition has occurred
- $\xi\left(s, s^{\prime}\right)$ defined as $\xi(s) \wedge \xi\left(s^{\prime}\right)$ (Intuition: $\xi\left(s, s^{\prime}\right)$ holds iff the system is in the state s and moves to state s^{\prime} in next step)
- The transition relation R can be represented by any formula equivalent to:

$$
\bigvee_{\left(s, s^{\prime}\right) \in R} \xi\left(s, s^{\prime}\right)=\bigvee_{\left(s, s^{\prime}\right) \in R}\left(\xi(s) \wedge \xi\left(s^{\prime}\right)\right)
$$

Each formula equivalent to $\xi(R)$ is a representation of R \Longrightarrow Typically R can be encoded by a much smaller formula than
$\bigvee_{\left(s, s^{\prime}\right) \in R} \xi(s) \wedge \xi\left(s^{\prime}\right)!$

Example: a simple counter

MODULE main

VAR
v0
: boolean;
v1 : boolean;
out : 0..3;

ASSIGN

$$
\begin{array}{ll}
\text { init }(v 0) & :=0 ; \\
\text { next }(v 0) & :=!v 0 ;
\end{array}
$$

init (v1) := 0;
next(v1) : $=(v 0$ xor v1);
out $:=$ toint (v0) + 2*toint(v1);

Example: a simple counter [cont.]

$$
\begin{aligned}
\xi(R)= & \left(v_{0}^{\prime} \leftrightarrow \neg v_{0}\right) \wedge\left(v_{1}^{\prime} \leftrightarrow v_{0} \bigoplus v_{1}\right) \\
\vee_{\left(s, s^{\prime}\right) \in R} \xi(s) \wedge \xi\left(s^{\prime}\right)= & \left(\neg v_{1} \wedge \neg v_{0} \wedge \neg v_{1}^{\prime} \wedge v_{0}^{\prime}\right) \vee \\
& \left(\neg v_{1} \wedge v_{0} \wedge v_{1}^{\prime} \wedge \neg v_{0}^{\prime}\right) \vee \\
& \left(v_{1} \wedge \neg v_{0} \wedge v_{1}^{\prime} \wedge v_{0}^{\prime}\right) \vee \\
& \left(v_{1} \wedge v_{0} \wedge \neg v_{1}^{\prime} \wedge \neg v_{0}^{\prime}\right)
\end{aligned}
$$

Pre-Image

- (Backward) pre-image of a set of states:

Evaluate one-shot all transitions ending in the states of the set

- Set theoretic view:

Prelmage $(P, R):=\left\{s \mid\right.$ for some $\left.s^{\prime} \in P,\left(s, s^{\prime}\right) \in R\right\}$

- Logical view: $\xi(\operatorname{Prelmage}(P, R)):=\exists V^{\prime} .\left(\xi(P)\left[V^{\prime}\right] \wedge \xi(R)\left[V, V^{\prime}\right]\right)$
- μ over V is s.t $\mu \models \exists V^{\prime} .\left(\xi(P)\left[V^{\prime}\right] \wedge \xi(R)\left[V, V^{\prime}\right]\right)$ iff, for some μ^{\prime} over V^{\prime}, we have: $\mu \cup \mu^{\prime} \models\left(\xi(P)\left[V^{\prime}\right] \wedge \xi(R)\left[V, V^{\prime}\right]\right)$, i.e., $\mu^{\prime} \models \xi(P)\left[V^{\prime}\right]$ and $\left.\mu \cup \mu^{\prime} \models \xi(R)\left[V, V^{\prime}\right]\right)$
- Intuition: $\mu \Longleftrightarrow \boldsymbol{s}, \mu^{\prime} \Longleftrightarrow \boldsymbol{s}^{\prime}, \mu \cup \mu^{\prime} \Longleftrightarrow\left\langle\boldsymbol{s}, \boldsymbol{s}^{\prime}\right\rangle$

Example: simple counter

$$
\begin{aligned}
& \xi(R)=\left(v_{0}^{\prime} \leftrightarrow \neg v_{0}\right) \wedge\left(v_{1}^{\prime} \leftrightarrow v_{0} \bigoplus v_{1}\right) \\
& \xi(P):=\left(v_{0} \leftrightarrow v_{1}\right)(\text { i.e., } P=\{00,11\})
\end{aligned}
$$

$\xi(\operatorname{Prelmage}(P, R))$
$\exists V^{\prime} .\left(\xi(P)\left[V^{\prime}\right] \wedge \xi(R)\left[V, V^{\prime}\right]\right)$
$\exists v_{0}^{\prime} v_{1}^{\prime} \cdot\left(\left(v_{0}^{\prime} \leftrightarrow v_{1}^{\prime}\right) \wedge\left(v_{0}^{\prime} \leftrightarrow \neg v_{0}\right) \wedge\left(v_{1}^{\prime} \leftrightarrow v_{0} \bigoplus v_{1}\right)\right)$
$=$
$\underbrace{\left(\neg v_{0} \wedge v_{0} \bigoplus v_{1}\right)}_{v_{0}^{\prime}=T, v_{1}^{\prime}=\top} \vee \underbrace{\perp}_{v_{0}^{\prime}=T, v_{1}^{\prime}=\perp} \vee \underbrace{\perp}_{v_{0}^{\prime}=\perp, v_{1}^{\prime}=\top} \vee \underbrace{\left(v_{0} \wedge \neg\left(v_{0} \bigoplus v_{1}\right)\right)}_{v_{0}^{\prime}=\perp, v_{1}^{\prime}=\perp}=$
v_{1} (ie., $\{10,11\}$)

Pre-Image [cont.]

Forward Image

- Forward image of a set:

Evaluate one-shot all transitions from the states of the set

- Set theoretic view:

$$
\operatorname{Image}(P, R):=\left\{s^{\prime} \mid \text { for some } s \in P,\left(s, s^{\prime}\right) \in R\right\}
$$

- Logical Characterization:

$$
\xi(\operatorname{Image}(P, R)):=\exists V \cdot\left(\xi(P)[V] \wedge \xi(R)\left[V, V^{\prime}\right]\right)
$$

Example: simple counter

$$
\begin{aligned}
& \xi(R)=\left(v_{0}^{\prime} \leftrightarrow \neg v_{0}\right) \wedge\left(v_{1}^{\prime} \leftrightarrow v_{0} \bigoplus v_{1}\right) \\
& \xi(P):=\left(v_{0} \leftrightarrow v_{1}\right)(\text { i.e., } P=\{00,11\})
\end{aligned}
$$

$$
\xi(\operatorname{Image}(P, R))=\exists V \cdot\left(\xi(P)[V] \wedge \xi(R)\left[V, V^{\prime}\right]\right)
$$

$$
=\exists V \cdot\left(\left(v_{0} \leftrightarrow v_{1}\right) \wedge\left(v_{0}^{\prime} \leftrightarrow \neg v_{0}\right) \wedge\left(v_{1}^{\prime} \leftrightarrow v_{0} \bigoplus v_{1}\right)\right)
$$

$$
=\ldots
$$

$$
=\neg v_{1}^{\prime} \quad(\text { i.e. },\{00,01\})
$$

Forward Image [cont.]

Application of the Transition Relation

- Image and Prelmage of a set of states S computed by means of quantified Boolean formulae
- The whole set of transitions can be fired (either forward or backward) in one logical operation
- The symbolic computation of Prelmage and Image provide the primitives for symbolic search of the state space of FSM's

Notation Remark

Henceforth, for readability sake, we omit the " $\xi()$ " notation in symbolic representations of systems.

- Kripke models represented as $\left\langle I(V), R\left(V, V^{\prime}\right)\right\rangle$
- Fair Kripke models represented as $\left\langle I(V), R\left(V, V^{\prime}\right), F(V)\right\rangle$ s.t.

$$
F(V) \stackrel{\text { def }}{=}\left\{F_{1}(V), . ., F_{k}(V)\right\}
$$

Outline

Fairness \& Fair Kripke Models

(2) Symbolic Model Checking

- Symbolic Representation of Systems
- A simple example
(3) Language-Emptiness Checking for Fair Kripke Models
- SCC-Based Approach
- Emerson-Lei Algorithm
(4) The Symbolic Approach to LTL Model Checking
- General Ideas
- Compute the Tableau T_{ψ}
- Compute the Product $M \times T_{\psi}$
- Check the Emptiness of $\mathcal{L}\left(M \times T_{\psi}\right)$
(D) A Complete Example
(6) Exercises

A simple example

MODULE main
VAR

```
b0 : boolean;
b1 : boolean;
```

ASSIGN
init (b0) := 0;
next (b0) := case

$$
\begin{aligned}
& \text { b0 }: 1 ; \\
& \text { !b0 }:\{0,1\} ;
\end{aligned}
$$

esac;
init(b1) := 0;
next (b1) := case
b1 : 1;
!b1 : \{0,1\};
esac;

A simple example [cont.]

- N Boolean variables $b 0, b 1, \ldots$
- Initially, all variables set to 0
- Each variable can pass from 0 to 1, but not vice-versa
- 2^{N} states, all reachable
- (Simplified) model of a student career behaviour.

A simple example: FSM

A simple example: $O B D D(\xi(R))$

A simple example: states vs. OBDD nodes [NuSMV.2]

A simple example: reaching K bits true

- Property $\mathrm{EF}(b 0+b 1+\ldots+b(N-1) \geq K)(K \leq N)$
(it may be reached a state in which K bits are true)
- E.g.: "it is reachable a state where K exams are passed"

A simple example: FSM

A simple example: $O B D D(\xi(\varphi))$

A simple example: states vs. OBDD nodes [NuSMV.2]

Outline

(1) Fairness \& Fair Kripke Models
(2) Symbolic Model Checking

- Symbolic Representation of Systems
- A simple example
(3) Language-Emptiness Checking for Fair Kripke Models
- SCC-Based Approach
- Emerson-Lei Algorithm

4 The Symbolic Approach to LTL Model Checking

- General Ideas
- Compute the Tableau T_{ψ}
- Compute the Product $M \times T_{\psi}$
- Check the Emptiness of $\mathcal{L}\left(M \times T_{\psi}\right)$
(5) A Complete Example
(6) Exercises

Language-Emptiness Checking for Fair Kripke Models

Fair_CheckEG

Given: a fair Kripke model $M_{F}:=\langle S, R, I, A P, L, F\rangle$ and a set of states T s.t. $T \subseteq S$,
Fair_CheckEG(T) returns the subset of the states s in T from which at least one fair path π entirely included in T passes through

Symbolic Fair_CheckEG

Given: the symbolic representation of a fair Kripke model $M_{F}:=\langle I, R, F\rangle$ a Boolean formula (OBDD) Ψ,
Fair_CheckEG(Ψ) returns a Boolean formula (OBDD) representing the subset of the states s in ψ from which at least one fair path π entirely included in ψ passes through

Fair_CheckEG(true) computes (the symbolic representation of) the set of fair states of M_{f}
$\Longrightarrow I \subseteq$ Fair_CheckEG $($ true $)$ iff $\mathcal{L}\left(M_{f}\right) \neq \emptyset$

Ingredients (from CTL Model Checking)

Some primitive functions from CLT Model Checking:

- Symbolic Check_EX (ϕ) : returns an OBDD representing the set of states from which a path verifying $\mathbf{X} \phi$ holds
(i.e., the symbolic preimage of the set of states where ϕ holds)
- Symbolic Check_EG(ϕ): returns an OBDD representing the set of states from which a path verifying $\mathbf{G} \phi$ holds
- Symbolic Check_EU(ϕ_{1}, ϕ_{2}): returns an OBDD representing the set of states from which a path verifying $\phi_{1} \mathbf{U} \phi_{2}$ holds

Check_EX

Explicit-state

State Set Check_EX(State Set X) return $\left\{s \mid\right.$ for some $\left.s^{\prime} \in X,\left(s, s^{\prime}\right) \in R\right\} ;$

Symbolic

OBDD Check_EX(OBDD X) return $\exists V^{\prime} .\left(X\left[V^{\prime}\right] \wedge R\left[V, V^{\prime}\right]\right)$;

Same as Pre-Image computation.

Check_EG

Explicit-State

State Set Check_EG(State Set X)

$$
Y^{\prime}:=X ;
$$

repeat
$Y:=Y^{\prime} ;$
$Y^{\prime}:=Y \cap$ Check_EX(Y); // $\Longleftrightarrow Y^{\prime}:=X \wedge$ Check_EX(Y);
until $\left(Y^{\prime}=Y\right)$;
return Y;

Symbolic

OBDD Check_EG(OBDD X) $Y^{\prime}:=X$; repeat $Y:=Y^{\prime}$; $Y^{\prime}:=Y \wedge$ Check_EX(Y); until $\left(Y^{\prime} \leftrightarrow Y\right)$;
return Y;

Hint (tableaux rule): $s \models$ EG ϕ only if $s \models \phi \wedge$ EXEG ϕ

Check_EU

Explicit-State

State Set Check_EU(State Set $\left.X_{1}, X_{2}\right)$
$Y^{\prime}:=X_{2}$;
repeat
$Y:=Y^{\prime}$;
$Y^{\prime}:=Y \cup\left(X_{1} \cap\right.$ Check_EX(Y)); // $\Longleftrightarrow Y^{\prime}:=X_{2} \cup\left(X_{1} \cap\right.$ Check_EX $\left.(Y)\right)$;
until $\left(Y^{\prime}=Y\right)$;
return Y;
Symbolic
OBDD Check_EU(OBDD $\left.X_{1}, X_{2}\right)$
$Y^{\prime}:=X_{2} ;$
repeat
$Y:=Y^{\prime}$;
$Y^{\prime}:=Y \vee\left(X_{1} \wedge\right.$ Check_EX(Y));
until ($Y^{\prime} \leftrightarrow Y$);
return Y;

Hint (tableaux rule): $\boldsymbol{s} \models \mathbf{E}\left(\phi_{1} \mathbf{U} \phi_{2}\right)$ if $s \models \phi_{2} \vee\left(\phi_{1} \wedge \mathbf{E X E}\left(\phi_{1} \mathbf{U} \phi_{2}\right)\right)$

Outline

(1) Fairness \& Fair Kripke Models
(2) Symbolic Model Checking

- Symbolic Representation of Systems
- A simple example
(3) Language-Emptiness Checking for Fair Kripke Models
- SCC-Based Approach
- Emerson-Lei Algorithm

4 The Symbolic Approach to LTL Model Checking

- General Ideas
- Compute the Tableau T_{ψ}
- Compute the Product $M \times T_{\psi}$
- Check the Emptiness of $\mathcal{L}\left(M \times T_{\psi}\right)$
(5) A Complete Example
(6) Exercises

SCC-based Check_FairEG

A Strongly Connected Component (SCC) of a directed graph is a maximal subgraph s.t. all its nodes are reachable from each other.

Given a fair Kripke model M, a fair non-trivial SCC is an SCC with at least one edge that contains at least one state for every fair condition \Longrightarrow all states in a fair (non-trivial) SCC are fair states

SCC-based Check_FairEG (cont.)

Check_FairEG ([ф]):

(i) restrict the graph of M to $[\phi]$;
(ii) find all fair non-trivial SCCs C_{i}
(iii) build $C:=\cup_{i} C_{i}$;
(iv) compute the states that can reach C (Check_EU $([\phi], C)$).
[ϕ]: set of states where ϕ holds (aks denotation of ϕ)

Example: Check_FairEG

$E G \neg C_{1}$

Example: Check_FairEG

$E G-C_{1}$
Check_FairEG $\left(\neg C_{1}\right)$: 1. compute $\left[\neg C_{1}\right]$

Example: Check_FairEG

$E G-C_{1}$
Check_FairEG $\left(\neg C_{1}\right)$: 2. restrict the graph to $\left[\neg C_{1}\right]$

Example: Check_FairEG

F:= \{\{ not C1\},\{not C2\}\}

$E G-C_{1}$
Check_FairEG $\left(\neg C_{1}\right)$: 3 . find all fair non-trivial SCC’s

Example: Check_FairEG

F:= \{\{ not C1\},\{not C2\}\}

$E G-C_{1}$
Check_FairEG $\left(\neg C_{1}\right)$: 4. build the union C of all SCC's

Example: Check_FairEG

F:= \{\{ not C1\},\{not C2\}\}

$E G-C_{1}$
Check_FairEG $\left(\neg C_{1}\right)$: 5 . compute the states which can reach it

SCC-based Check_FairEG - Drawbacks

- SCCs computation requires a linear ($O(\#$ nodes $+\#$ edges $)$) DFS (Tarjan).
- The DFS manipulates the states explicitly, storing information for every state.
- A DFS is not suitable for symbolic model checking where we manipulate sets of states.
\Longrightarrow We want an algorithm based on (symbolic) preimage computation.

Outline

(1) Fairness \& Fair Kripke Models
(2) Symbolic Model Checking

- Symbolic Representation of Systems
- A simple example
(3) Language-Emptiness Checking for Fair Kripke Models
- SCC-Based Approach
- Emerson-Lei Algorithm
(4) The Symbolic Approach to LTL Model Checking
- General Ideas
- Compute the Tableau T_{ψ}
- Compute the Product $M \times T_{\psi}$
- Check the Emptiness of $\mathcal{L}\left(M \times T_{\psi}\right)$
(5) A Complete Example
(6) Exercises

Emerson-Lei Algorithm

Fixpoint characterization of EG and fair EG

" $[\phi]$ " denotes the set of states where ϕ holds

- Theorem (Emerson \& Clarke): $[E G \phi]=\nu Z .([\phi] \cap[E X Z])$

The greatest set Z s.t. every state z in Z satisfies ϕ and reaches another state in Z in one step.
We can characterize fair $\mathbf{E G}$ (aka " $\mathbf{E}_{f} \mathbf{G}$ ") similarly:

- Theorem (Emerson \& Lei):
$\left[\mathbf{E}_{f} \mathbf{G} \phi\right]=\nu Z .\left([\phi] \cap \bigcap_{F_{i} \in F T}\left[\mathbf{E X ~ E}\left(Z \mathbf{U}\left(Z \cap F_{i}\right)\right)\right]\right)$
The greatest set Z s.t. every state z in Z satisfies ϕ and, for every set $F_{i} \in F T, z$ reaches a state in $F_{i} \cap Z$ by means of a non-trivial path that lies in Z.
[EG ϕ]

Z
[ϕ]
[$\mathbf{E}_{\mathrm{f}} \mathbf{G} \phi$]

Emerson-Lei Algorithm

Recall: $\left[\mathbf{E}_{f} \mathbf{G} \phi\right]=\nu Z .\left([\phi] \cap \bigcap_{F_{i} \in F T}\left[\mathbf{E X} \mathbf{E}\left(Z \mathbf{U}\left(Z \cap F_{i}\right)\right)\right]\right)$
state_set Check_Faireg (state_set [ϕ]) \{

$$
\begin{aligned}
& Z^{\prime}:=[\phi] ; \\
& \text { repeat } \\
& \quad Z:=Z^{\prime} ;
\end{aligned}
$$

for each Fi in FT

$$
\begin{aligned}
& Y:=\text { Check_EU(Z,FinZ); } \\
& Z^{\prime}:=Z^{\prime} \cap \text { PreImage(Y)); }
\end{aligned}
$$

end for;
until ($Z^{\prime}=Z$);
return Z ;
\}
Implementation of the above formula

Emerson-Lei Algorithm

Recall: $\left[\mathbf{E}_{f} \mathbf{G} \phi\right]=\nu Z .\left([\phi] \cap \bigcap_{F_{i} \in F T}\left[\mathbf{E X} \mathbf{E}\left(Z \mathbf{U}\left(Z \cap F_{i}\right)\right)\right]\right)$
state_set Check_FairEG(state_set [ϕ]) \{

$$
\begin{aligned}
& Z^{\prime}:=[\phi] ; \\
& \text { repeat } \\
& \quad Z:=Z^{\prime} ;
\end{aligned}
$$

for each Fi in FT

$$
\begin{aligned}
& Y:=\text { Check_EU(Z',FinZ'); } \\
& Z^{\prime}:=Z^{\prime} \cap \text { PreImage(Y)); }
\end{aligned}
$$

end for;
until ($Z^{\prime}=Z$);
return Z ;
\}
Slight improvement: do not consider states in $Z \backslash Z^{\prime}$

Emerson-Lei Algorithm (symbolic version)

Recall: $\left[\mathbf{E}_{f} \mathbf{G} \phi\right]=\nu Z .\left([\phi] \cap \bigcap_{F_{i} \in F T}\left[\mathbf{E X} \mathbf{E}\left(Z \mathbf{U}\left(Z \wedge F_{i}\right)\right)\right]\right)$
Obdd Check_FairEG(Obdd ϕ) \{

$$
\begin{aligned}
& Z^{\prime}:=\phi ; \\
& \text { repeat } \\
& \quad Z:=Z^{\prime} ;
\end{aligned}
$$

for each Fi in FT

$$
\begin{aligned}
& Y:=\text { Check_EU(Z',Fi^Z'); } \\
& Z^{\prime}:=Z^{\prime} \wedge \text { PreImage(Y))); }
\end{aligned}
$$

end for;
until ($Z^{\prime} \leftrightarrow Z$);
return Z ;
\}
Symbolic version.

Example: Check_FairEG

F:=\{ \{ not C1\},\{not C2\}\}

$\mathbf{E}_{f} \mathbf{G} \neg \mathcal{C}_{1}$

Example: Check_FairEG

F:=\{ \{ not C1\},\{not C2\}\}

$\mathbf{E}_{f} \mathbf{G} C_{1}$

Example: Check_FairEG

F:= \{ \{ not C1\},\{not C2\}\}

$\mathrm{E}_{f} \mathrm{G} \neg \mathrm{C}_{1}$
$\mathbf{E}_{f} \mathbf{G} g=\nu Z . g \wedge \operatorname{EXE}\left(Z \mathbf{U}\left(Z \wedge F_{1}\right)\right) \wedge \mathbf{E X E}\left(Z \mathbf{U}\left(Z \wedge F_{2}\right)\right)$

Example: Check_FairEG

F:= \{ \{ not C1\},\{not C2\}\}

$\mathrm{E}_{f} \mathrm{G} \neg \mathrm{C}_{1}$
$\mathbf{E}_{f} \mathbf{G} g=\nu Z . g \wedge \operatorname{EXE}\left(Z \mathrm{U}\left(Z \wedge F_{1}\right)\right) \wedge \operatorname{EXE}\left(Z \mathbf{U}\left(Z \wedge F_{2}\right)\right)$

Example: Check_FairEG

F:= \{ \{ not C1\},\{not C2\}\}

$\mathrm{E}_{f} \mathrm{G} \neg \mathrm{C}_{1}$
$\mathbf{E}_{f} \mathbf{G} g=\nu Z . g \wedge \operatorname{EXE}\left(Z \mathrm{U}\left(Z \wedge F_{1}\right)\right) \wedge \operatorname{EXE}\left(Z \mathbf{U}\left(Z \wedge F_{2}\right)\right)$

Example: Check_FairEG

F:= \{ \{ not C1\},\{not C2\}\}

$\mathrm{E}_{f} \mathrm{G} \neg \mathrm{C}_{1}$
$\mathbf{E}_{f} \mathbf{G} g=\nu Z . g \wedge \operatorname{EXE}\left(Z \mathbf{U}\left(Z \wedge F_{1}\right)\right) \wedge \mathbf{E X E}\left(Z \mathbf{U}\left(Z \wedge F_{2}\right)\right)$

Example: Check_FairEG

F:= \{ \{ not C1\},\{not C2\}\}

$\mathrm{E}_{f} \mathrm{G} \neg \mathrm{C}_{1}$
$\mathbf{E}_{f} \mathbf{G} g=\nu Z . g \wedge \operatorname{EXE}\left(Z \mathbf{U}\left(Z \wedge F_{1}\right)\right) \wedge \operatorname{EXE}\left(Z \mathrm{U}\left(Z \wedge F_{2}\right)\right)$

Example: Check_FairEG

F:= \{ \{ not C1\},\{not C2\}\}

$\mathrm{E}_{f} \mathrm{G} \neg \mathrm{C}_{1}$
$\mathbf{E}_{f} \mathbf{G} g=\nu Z . g \wedge \operatorname{EXE}\left(Z \mathrm{U}\left(Z \wedge F_{1}\right)\right) \wedge \operatorname{EXE}\left(Z \mathbf{U}\left(Z \wedge F_{2}\right)\right)$

Example: Check_FairEG

F:= \{ \{ not C1\},\{not C2\}\}

$\mathrm{E}_{f} \mathrm{G} \neg \mathrm{C}_{1}$
$\mathbf{E}_{f} \mathbf{G} g=\nu Z . g \wedge \operatorname{EXE}\left(Z \mathrm{U}\left(Z \wedge F_{1}\right)\right) \wedge \operatorname{EXE}\left(Z \mathbf{U}\left(Z \wedge F_{2}\right)\right)$

Example: Check_FairEG

F:= \{ \{ not C1\},\{not C2\}\}

$\mathrm{E}_{f} \mathrm{G} \neg \mathrm{C}_{1}$
$\mathbf{E}_{f} \mathbf{G} g=\nu Z . g \wedge \operatorname{EXE}\left(Z \mathbf{U}\left(Z \wedge F_{1}\right)\right) \wedge \operatorname{EXE}\left(Z \mathrm{U}\left(Z \wedge F_{2}\right)\right)$

Example: Check_FairEG

F:= \{ \{ not C1\},\{not C2\}\}

$\mathrm{E}_{f} \mathrm{G} \neg \mathrm{C}_{1}$
$\mathbf{E}_{f} \mathbf{G} g=\nu Z . g \wedge \operatorname{EXE}\left(Z \mathbf{U}\left(Z \wedge F_{1}\right)\right) \wedge \operatorname{EXE}\left(Z \mathrm{U}\left(Z \wedge F_{2}\right)\right)$

Example: Check_FairEG

F:= \{ \{ not C1\},\{not C2\}\}

$\mathrm{E}_{f} \mathrm{G} \neg \mathrm{C}_{1}$
$\mathbf{E}_{f} \mathbf{G} g=\nu Z . g \wedge \operatorname{EXE}\left(Z \mathbf{U}\left(Z \wedge F_{1}\right)\right) \wedge \operatorname{EXE}\left(Z \mathbf{U}\left(Z \wedge F_{2}\right)\right)$
Fixpoint reached

Outline

(1) Fairness \& Fair Kripke Models
(2) Symbolic Model Checking

- Symbolic Representation of Systems
- A simple example
(3) Language-Emptiness Checking for Fair Kripke Models
- SCC-Based Approach
- Emerson-Lei Algorithm

4 The Symbolic Approach to LTL Model Checking

- General Ideas
- Compute the Tableau T_{ψ}
- Compute the Product $M \times T_{\psi}$
- Check the Emptiness of $\mathcal{L}\left(M \times T_{\psi}\right)$
(5) A Complete Example
(6) Exercises

Outline

(1) Fairness \& Fair Kripke Models
(2) Symbolic Model Checking

- Symbolic Representation of Systems
- A simple example
B. Language-Emptiness Checking for Fair Kripke Models
- SCC-Based Approach
- Emerson-Lei Algorithm

4 The Symbolic Approach to LTL Model Checking

- General Ideas
- Compute the Tableau T_{ψ}
- Compute the Product $M \times T_{\psi}$
- Check the Emptiness of $\mathcal{L}\left(M \times T_{\psi}\right)$
(5) A Complete Example
(6) Exercises

Symbolic LTL Satisfiability and Entailment

LTL Validity/Satisfiability

- Let ψ be an LTL formula

$$
\begin{aligned}
& \models \psi \quad \text { (LTL) } \\
\Longleftrightarrow & \neg \psi \text { unsat } \\
\Longleftrightarrow & \mathcal{L}\left(T_{\neg \psi}\right)=\emptyset
\end{aligned}
$$

- $T_{\neg \psi}$ is a fair Kripke model (aka tableaux) which represents all and only the paths that satisfy $\neg \psi$ (do not satisfy ψ)

LTL Entailment

- Let φ, ψ be an LTL formula
$\varphi \models \psi \quad$ (LTL)
$\models \varphi \rightarrow \psi \quad$ (LTL)
$\Longleftrightarrow \varphi \wedge \neg \psi$ unsat
$\Longleftrightarrow \mathcal{L}\left(T_{\varphi \wedge \neg \psi}\right)=\emptyset$
- $T_{\varphi \wedge \neg \psi}$ is a fair Kripke model (aka tableaux) which represents all and only the paths that satisfy $\varphi \wedge \neg \psi$ (satisfy φ and do not satisfy ψ)

Symbolic LTL Model Checking

LTL Model Checking

- Let M be a Kripke model and ψ be an LTL formula

$$
\begin{aligned}
& M \equiv \psi \quad(\text { LTL }) \\
\Longleftrightarrow & \mathcal{L}(M) \subseteq \mathcal{L}(\psi) \\
\Longleftrightarrow & \mathcal{L}(M) \cap \overline{\mathcal{L}(\psi)}=\emptyset \\
\Longleftrightarrow & \mathcal{L}(M) \cap \mathcal{L}(\neg \psi)=\emptyset \\
\Longleftrightarrow & \mathcal{L}(M) \cap \mathcal{L}\left(T_{\neg \psi}\right)=\emptyset \\
\Longleftrightarrow & \mathcal{L}\left(M \times T_{\neg \psi}\right)=\emptyset
\end{aligned}
$$

- $T_{\neg \psi}$ is a fair Kripke model (aka tableaux) which represents all and only the paths that satisfy $\neg \psi$ (do not satisfy ψ)
$\Longrightarrow M \times T_{\neg \psi}$ represents all and only the paths appearing in M and not in ψ.

Symbolic LTL Model Checking

Three steps
Let $\varphi \stackrel{\text { def }}{=} \neg \psi$:
(i) Compute T_{φ}
(ii) Compute the product $M \times T_{\varphi}$
(iii) Check the emptiness of $\mathcal{L}\left(M \times T_{\varphi}\right)$

Outline

(1) Fairness \& Fair Kripke Models
(2) Symbolic Model Checking

- Symbolic Representation of Systems
- A simple example
B. Language-Emptiness Checking for Fair Kripke Models
- SCC-Based Approach
- Emerson-Lei Algorithm

4 The Symbolic Approach to LTL Model Checking

- General Ideas
- Compute the Tableau T_{ψ}
- Compute the Product $M \times T_{\psi}$
- Check the Emptiness of $\mathcal{L}\left(M \times T_{\psi}\right)$
(5) A Complete Example

6 Exercises

The Set of States

- Elementary subformulas of ψ : el (ψ)
- $e l(p):=\{p\}$
- $e l\left(\neg \varphi_{1}\right):=e l\left(\varphi_{1}\right)$
- el $\left(\varphi_{1} \wedge \varphi_{2}\right):=e l\left(\varphi_{1}\right) \cup e l\left(\varphi_{2}\right)$
- el $\left(\mathbf{X} \varphi_{1}\right)=\left\{\mathbf{X} \varphi_{1}\right\} \cup e l\left(\varphi_{1}\right)$
- $e^{l}\left(\varphi_{1} \mathbf{U} \varphi_{2}\right):=\left\{\mathbf{X}\left(\varphi_{1} \mathbf{U}_{\varphi_{2}}\right)\right\} \cup e l\left(\varphi_{1}\right) \cup e l\left(\varphi_{2}\right)$
- Intuition: $\boldsymbol{e l}(\psi)$ is the set of propositions and X-formulas occurring $\psi^{\prime}, \psi^{\prime}$ being the result of applying recursively the tableau expansion rules to ψ
- The set of states $S_{T_{\psi}}$ of T_{ψ} is given by $2^{e l(\psi)}$
- The labeling function $L_{T_{\psi}}$ of T_{ψ} comes straightforwardly (the label is the Boolean component of each state)

Example: $\psi:=p \mathbf{U} q$

- $e l(p \mathbf{q})=e l((q \vee(p \wedge \mathbf{X}(p \mathbf{q})))=\{p, q, \mathbf{X}(p \mathbf{q})\}$ $\Longrightarrow S_{T_{\psi}}=\{$

1: $\{p, q, \mathbf{X}(p \mathbf{q})\}, \quad[p \mathbf{q}]$
2: $\{\neg p, q, \mathbf{X}(p \mathbf{u})\}, \quad[p \mathbf{q} q]$
$3:\{p, \neg q, \mathbf{X}(p \mathbf{q})\}, \quad[p \mathbf{q}]$
4: $\{\neg p, q, \neg \mathbf{X}(p \mathbf{q})\}, \quad[p \mathbf{q}]$
$5:\{\neg p, \neg q, \mathbf{X}(p \mathbf{q})\}, \quad[\neg p \mathbf{q} q]$
$6:\{p, q, \neg \mathbf{X}(p \mathbf{U} q)\}, \quad[p \mathbf{U}]$
$7: \quad\{p, \neg q, \neg \mathbf{X}(p \mathbf{U})\}, \quad[\neg p \mathbf{q} q]$
$8:\{\neg p, \neg q, \neg \mathbf{X}(p \mathbf{U} q)\} \quad[\neg p \mathbf{U} q]$

Example: $\psi:=p \mathbf{U} q$ [cont.]

sat()

- Set of states in $S_{T_{\psi}}$ satisfying φ_{i} : $\operatorname{sat}\left(\varphi_{i}\right)$

```
- sat( (\varphi, ):= {s| , \varphi }\ins},\mp@subsup{\varphi}{1}{}\in\operatorname{el}(\psi
- sat(\neg\mp@subsup{\varphi}{1}{}):= S S (t\psi /sat(\mp@subsup{\varphi}{1}{})
- sat ( }\mp@subsup{\varphi}{1}{}\wedge\mp@subsup{\varphi}{2}{}):=\operatorname{sat}(\mp@subsup{\varphi}{1}{})\cap\operatorname{sat}(\mp@subsup{\varphi}{2}{}
- sat (}\mp@subsup{\varphi}{1}{}\mathbf{U}\mp@subsup{\varphi}{2}{2}):=\operatorname{sat}(\mp@subsup{\varphi}{2}{})\cup(\operatorname{sat}(\mp@subsup{\varphi}{1}{})\cap\operatorname{sat}(\mathbf{X}(\mp@subsup{\varphi}{1}{}\mathbf{U}\mp@subsup{\varphi}{2}{2}))
```

- intuition: sat() establishes in which states subformulas are true

Remark

- Semantics of " $\varphi_{1} \mathbf{U} \varphi_{2}$ " here induced by tableaux rule:
$\varphi_{1} \mathbf{U} \varphi_{2} \stackrel{\text { def }}{=} \varphi_{2} \vee\left(\varphi_{1} \wedge \mathbf{X}\left(\varphi_{1} \mathbf{U} \varphi_{2}\right)\right)$
\Longrightarrow weaker than standard semantics (aka "weak until", " $\varphi_{1} \mathbf{W} \varphi_{2}$ "): a path where φ_{1} is always true and φ_{2} is always false satisfies it

Example: $\psi:=p \mathbf{U} q$ [cont.]

Initial States and Transition Relation

- Set of states in $S_{T_{\psi}}$ satisfying $\varphi_{i}: \operatorname{sat}\left(\varphi_{i}\right)$
- $\operatorname{sat}\left(\varphi_{1}\right):=\left\{s \mid \varphi_{1} \in s\right\}, \varphi_{1} \in \operatorname{el}(\psi)$
- $\operatorname{sat}\left(\neg \varphi_{1}\right):=S_{T_{\psi}} / \operatorname{sat}\left(\varphi_{1}\right)$
- $\operatorname{sat}\left(\varphi_{1} \wedge \varphi_{2}\right):=\operatorname{sat}\left(\varphi_{1}\right) \cap \operatorname{sat}\left(\varphi_{2}\right)$
- $\operatorname{sat}\left(\varphi_{1} \mathbf{U} \varphi_{2}\right):=\operatorname{sat}\left(\varphi_{2}\right) \cup\left(\operatorname{sat}\left(\varphi_{1}\right) \cap \operatorname{sat}\left(\mathbf{X}\left(\varphi_{1} \mathbf{U} \varphi_{2}\right)\right)\right)$
- Intuition: sat() establishes in which states subformulas are true
- The set of initial states $I_{T_{\psi}}$ is defined as

$$
I_{T_{\psi}}=\operatorname{sat}(\psi)
$$

- The transition relation $R_{T_{\psi}}$ is defined as

$$
R_{T_{\psi}}\left(s, s^{\prime}\right)=\bigcap_{\mathbf{X}_{\varphi_{i} \in e l}(\psi)}\left\{\left(s, s^{\prime}\right) \mid s \in \operatorname{sat}\left(\mathbf{X} \varphi_{i}\right) \Leftrightarrow s^{\prime} \in \operatorname{sat}\left(\varphi_{i}\right)\right\}
$$

Example: $\psi:=p \mathbf{U} q$ [cont.]

Problems with U-subformulas

- $R_{T_{\psi}}$ does not guarantee that the U-subformulas are fulfilled
- Example: state $3\{p, \neg q, \mathbf{X}(p \mathbf{U})\}$: although state 3 belongs to

$$
\operatorname{sat}(p \cup q):=\operatorname{sat}(q) \cup(\operatorname{sat}(p) \cap \operatorname{sat}(\mathbf{X}(p \cup q)))
$$

the path which loops forever in state 3 does not satisfy pUq, as q never holds in that path.

Tableaux Rules: a Quote

"After all... tomorrow is another day." [Scarlett O'Hara, "Gone with the Wind"]

Fairness conditions for every U-subformula

- It must never happen that we get into a state s^{\prime} from which we can enter a path π^{\prime} in which $\varphi_{1} \mathbf{U} \varphi_{2}$ holds forever and φ_{2} never holds.

\Longrightarrow For every [positive] U-subformula $\varphi_{1} \mathbf{U} \varphi_{2}$ of ψ, we must add a fairness LTL condition $\operatorname{GF}\left(\neg\left(\varphi_{1} \mathbf{U} \varphi_{2}\right) \vee \varphi_{2}\right)$ If no [positive] U-subformulas, then add one fairness condition GF ${ }^{\text {T. }}$
\Longrightarrow We restrict the admissible paths of T_{ψ} to those which verify the fairness condition: $T_{\psi}:=\left\langle S_{T_{\psi}}, I_{T_{\psi}}, R_{T_{\psi}}, L_{T_{\psi}}, F_{T_{\psi}}\right\rangle$
$F_{T_{\psi}}:=\left\{\operatorname{sat}\left(\neg\left(\varphi_{1} \mathbf{U} \varphi_{2}\right) \vee \varphi_{2}\right)\right)$ s.t. $\left(\varphi_{1} \mathbf{U} \varphi_{2}\right)$ occurs [positively]in $\left.\psi\right\}$

Example: $\psi:=p \mathbf{U} q$ [cont.]

Example: $\psi:=p \mathbf{U} q$ [cont.]

Note: easily transformed into a generalized Büchi automaton

Symbolic Representation of T_{ψ}

- State variables: one Boolean variable for each formula in el (ψ)
- EX: p, q and x and primed versions p^{\prime}, q^{\prime} and x^{\prime}
[x is a Boolean label for $\mathbf{X}(p \mathbf{U} q)$]
- $\operatorname{sat}\left(\varphi_{i}\right)$:
- $\operatorname{sat}(p):=p$, s.t. p Boolean state variable
- $\operatorname{sat}\left(\neg \varphi_{1}\right):=\neg \operatorname{sat}\left(\varphi_{1}\right)$
- $\operatorname{sat}\left(\varphi_{1} \wedge \varphi_{2}\right):=\operatorname{sat}\left(\varphi_{1}\right) \wedge \operatorname{sat}\left(\varphi_{2}\right)$
- $\operatorname{sat}\left(\mathbf{X}_{\varphi_{i}}\right):=x_{\left[\mathbf{X} \varphi_{i}\right]}$, s.t. $x_{\left[\mathbf{X}_{\left.\varphi_{i}\right]}\right.}$ Boolean state variable
- $\operatorname{sat}\left(\varphi_{1} \mathbf{U} \varphi_{2}\right):=\operatorname{sat}\left(\varphi_{2}\right) \vee\left(\operatorname{sat}\left(\varphi_{1}\right) \wedge \operatorname{sat}\left(\mathbf{X}\left(\varphi_{1} \mathbf{U} \varphi_{2}\right)\right)\right)$
$\Longrightarrow \operatorname{sat}\left(\varphi_{1} \mathbf{U} \varphi_{2}\right):=\operatorname{sat}\left(\varphi_{2}\right) \vee\left(\operatorname{sat}\left(\varphi_{1}\right) \wedge x_{\left[\mathrm{X} \varphi_{1}\right.} \mathrm{U}_{\left.\varphi_{2}\right]}\right)$

Symbolic Representation of T_{ψ} [cont.]

- Initial states: $I_{T_{\psi}}=\operatorname{sat}(\psi)$
- EX: $I(p, q, x)=q \vee(p \wedge x)$
- Transition Relation:
$R_{T_{\psi}}\left(s, s^{\prime}\right)=\bigcap_{\mathbf{X}_{\varphi_{i} \in e l}(\psi)}\left\{\left(s, s^{\prime}\right) \mid s \in \operatorname{sat}\left(\mathbf{X} \varphi_{i}\right) \Leftrightarrow s^{\prime} \in \operatorname{sat}\left(\varphi_{i}\right)\right\}$
- $R_{T_{\psi}}=\bigwedge_{\mathbf{x}_{\varphi_{i} \in e l(\psi)}}\left(\operatorname{sat}\left(\mathbf{X} \varphi_{i}\right) \leftrightarrow \operatorname{sat}^{\prime}\left(\varphi_{i}\right)\right)$ where $\operatorname{sat}^{\prime}\left(\varphi_{i}\right)$ is $\operatorname{sat}\left(\varphi_{i}\right)$ on primed variables
- EX: $R_{T_{\psi}}\left(p, q, x, p^{\prime}, q^{\prime}, x^{\prime}\right)=x \leftrightarrow\left(q^{\prime} \vee\left(p^{\prime} \wedge x^{\prime}\right)\right)$
- Fairness Conditions:
$F_{T_{\psi}}:=\left\{\operatorname{sat}\left(\neg\left(\varphi_{1} \mathbf{U} \varphi_{2}\right) \vee \varphi_{2}\right)\right)$ s.t. $\left(\varphi_{1} \mathbf{U} \varphi_{2}\right)$ occurs [positively]in $\left.\psi\right\}$
- EX: $F_{T_{\psi}}(p, q, x)=\neg(q \vee(p \wedge x)) \vee q=\ldots=\neg p \vee \neg x \vee q$

Symbolic Representation of T_{ψ} : Examples

Symbolic Representation of T_{ψ} : Examples

Symbolic Representation of T_{ψ} : Examples

Symbolic Representation of T_{ψ} : Examples

$$
\begin{aligned}
& \text { - } I_{T_{\psi}}(p, q, x)=q \vee(p \wedge x) \\
& \text { 1: }\{p, q, x\} \vDash I_{T_{\psi}} \\
& \text { 3: }\{p, \neg q, x\} \vDash I_{T_{\psi}} \\
& \text { 万: } \quad\{\neg p, \neg q, x\} \not \vDash I_{T_{\psi}} \\
& \text { - } R_{T_{\psi}}\left(p, q, x, p^{\prime}, q^{\prime}, x^{\prime}\right)= \\
& x \leftrightarrow\left(q^{\prime} \vee\left(p^{\prime} \wedge x^{\prime}\right)\right) \\
& 1 \Rightarrow 1: \quad\left\{p, q, x, p^{\prime}, q^{\prime}, x^{\prime}\right\} \models R_{T_{\psi}} \\
& 6 \Rightarrow 7: \quad\left\{p, q, \neg x, p^{\prime}, \neg q^{\prime}, \neg x^{\prime}\right\} \models R_{T_{\psi}} \\
& 6 \nRightarrow 1: \quad\left\{p, q, \neg x, p^{\prime}, q^{\prime}, x^{\prime}\right\} \not \vDash R_{T_{\psi}} \\
& \text { - } F_{T_{\psi}}(p, q, x)=\neg p \vee \neg x \vee q \\
& \text { 1: }\{p, q, x\} \models F_{T_{\psi}} \\
& \text { 5: }\{\neg p, \neg q, x\} \vDash F_{T_{\psi}} \\
& \beta: \quad\{p, \neg q, x\} \not \vDash F_{T_{\psi}}
\end{aligned}
$$

Outline

(1) Fairness \& Fair Kripke Models
(2) Symbolic Model Checking

- Symbolic Representation of Systems
- A simple example
B. Language-Emptiness Checking for Fair Kripke Models
- SCC-Based Approach
- Emerson-Lei Algorithm

4 The Symbolic Approach to LTL Model Checking

- General Ideas
- Compute the Tableau T_{ψ}
- Compute the Product $M \times T_{\psi}$
- Check the Emptiness of $\mathcal{L}\left(M \times T_{\psi}\right)$
(5) A Complete Example
(6) Exercises

Computing the product $P:=T_{\psi} \times M$

- Given $M:=\left\langle S_{M}, I_{M}, R_{M}, L_{M}\right\rangle$ and $T_{\psi}:=\left\langle S_{T_{\psi}}, I_{T_{\psi}}, R_{T_{\psi}}, L_{T_{\psi}}, F_{T_{\psi}}\right\rangle$, we compute the product $P:=T_{\psi} \times M=\langle S, I, R, L, F\rangle$ as follows:
- $S:=\left\{\left(s, s^{\prime}\right) \mid s \in S_{T_{\psi}}, s^{\prime} \in S_{M}\right.$ and $\left.\left.L_{M}\left(s^{\prime}\right)\right|_{\psi}=L_{T_{\psi}}(s)\right\}$
- $I:=\left\{\left(s, s^{\prime}\right) \mid s \in I_{T_{\psi}}, s^{\prime} \in I_{M}\right.$ and $\left.\left.L_{M}\left(s^{\prime}\right)\right|_{\psi}=L_{T_{\psi}}(s)\right\}$
- Given $\left(s, s^{\prime}\right),\left(t, t^{\prime}\right) \in S,\left(\left(s, s^{\prime}\right),\left(t, t^{\prime}\right)\right) \in R$ iff $(s, t) \in R_{T_{\psi}}$ and $\left(s^{\prime}, t^{\prime}\right) \in R_{M}$
- $L\left(\left(s, s^{\prime}\right)\right)=L_{T_{\psi}}(s) \cup L_{M}\left(s^{\prime}\right)$
- Extension of $\operatorname{sat}()$ and $F_{T_{\psi}}$ to P :
$\left(s, s^{\prime}\right) \in \operatorname{sat}(\psi) \Longleftrightarrow s \in \operatorname{sat}(\psi)$
$F:=\left\{\operatorname{sat}\left(\neg\left(\varphi_{1} \mathbf{U} \varphi_{2}\right) \vee \varphi_{2}\right)\right.$ s.t. $\left(\varphi_{1} \mathbf{U} \varphi_{2}\right)$ occurs [positively]in $\left.\psi\right\}$

Computing the product $P:=T_{\psi} \times M$ symbolically

Let V, W be the array of Boolean state variables of T_{ψ} and M respectively:

- Initial states: $I(V \cup W)=I_{T_{\psi}}(V) \wedge I_{M}(W)$
- Transition Relation:
$R\left(V \cup W, V^{\prime} \cup W^{\prime}\right)=R_{T_{\psi}}\left(V, V^{\prime}\right) \wedge R_{M}\left(W, W^{\prime}\right)$
- Fairness conditions:
$\left\{F_{1}(V \cup W), \ldots, F_{k}(V \cup W)\right\}=\left\{F_{T_{\psi} 1}(V), \ldots, F_{T_{\psi} k}(V)\right\}$

Outline

(1) Fairness \& Fair Kripke Models
(2) Symbolic Model Checking

- Symbolic Representation of Systems
- A simple example
B. Language-Emptiness Checking for Fair Kripke Models
- SCC-Based Approach
- Emerson-Lei Algorithm

4 The Symbolic Approach to LTL Model Checking

- General Ideas
- Compute the Tableau T_{ψ}
- Compute the Product $M \times T_{\psi}$
- Check the Emptiness of $\mathcal{L}\left(M \times T_{\psi}\right)$
(5) A Complete Example
(6) Exercises

Main theorem [Clarke, Grumberg \& Hamaguchi; 94]

Theorem

THEOREM: $M . s^{\prime} \models \mathbf{E} \psi$ iff there is a state s in T_{ψ} s.t. $\left(s, s^{\prime}\right) \in \operatorname{sat}(\psi)$ and $T_{\psi} \times M,\left(s, s^{\prime}\right) \models E G t r u e ~ u n d e r ~ t h e ~ f a i r n e s s ~ c o n d i t i o n s: ~$

$$
\left.\left\{\operatorname{sat}\left(\neg\left(\varphi_{1} \mathbf{U}_{\varphi_{2}}\right) \vee \varphi_{2}\right)\right) \text { s.t. }\left(\varphi_{1} \mathbf{U}_{\varphi_{2}}\right) \text { occurs in } \psi\right\} .
$$

$\Longrightarrow M \models \mathbf{E} \psi$ iff $T_{\psi} \times M \models \mathbf{E}_{f} \mathbf{G}$ true
$\Longrightarrow M \models \neg \psi$ iff $T_{\psi} \times M \not \models \mathbf{E}_{f} \mathbf{G}$ true

- LTL M.C. reduced to Fair CTL M.C.!!!
- Symbolic OBDD-based techniques apply.

Note

The transition relation R of $T_{\psi} \times M$ may not be total.
\Longrightarrow Check_FairEG does not need to consider states without successors, restricting R to the remaining states.

Outline

(1) Fairness \& Fair Kripke Models
(2) Symbolic Model Checking

- Symbolic Representation of Systems
- A simple example

3. Language-Emptiness Checking for Fair Kripke Models

- SCC-Based Approach
- Emerson-Lei Algorithm

4. The Symbolic Approach to LTL Model Checking

- General Ideas
- Compute the Tableau T_{ψ}
- Compute the Product $M \times T_{\psi}$
- Check the Emptiness of $\mathcal{L}\left(M \times T_{\psi}\right)$

(5) A Complete Example

(6) Exercises

A microwave oven

- 4 state variables: start, close, heat, error
- Actions (implicit): start_oven,open_door, close_door, reset, warmup, start_cooking, cook, done
- Error situation: if oven is started while the door is open
- Represented as a Kripke structure (and hence as a OBDD's)

A microwave oven [cont.]

A microwave oven: symbolic representation

- Initial states: $I_{M}(s, c, h, e)=\neg s \wedge \neg h \wedge \neg e$
- Transition relation:

$$
\begin{aligned}
& R_{M}\left(s, c, h, e, s^{\prime}, c^{\prime}, h^{\prime}, e^{\prime}\right)=[\text { a simplification of] } \\
& \left.\neg S \wedge \neg C \wedge \neg h \wedge \neg e \wedge \neg s^{\prime} \wedge c^{\prime} \wedge \neg h^{\prime} \wedge \neg e^{\prime}\right) \vee \text { (close_door, no error) } \\
& \left.s \wedge \neg c \wedge \neg h \wedge e \wedge s^{\prime} \wedge c^{\prime} \wedge \neg h^{\prime} \wedge e^{\prime}\right) \vee \text { (close_door, error) } \\
& \left.\neg S \wedge c \quad \wedge \neg e \wedge \neg s^{\prime} \wedge \neg C^{\prime} \wedge \neg h^{\prime} \wedge \neg e^{\prime}\right) \vee \text { (open_door, no error) } \\
& \left.s \wedge c \wedge \neg h \wedge e \wedge s^{\prime} \wedge \neg c^{\prime} \wedge \neg h^{\prime} \wedge e^{\prime}\right) \vee \text { (open_door, error) } \\
& \left.\neg S \wedge c \wedge \neg h \wedge \neg e \wedge s^{\prime} \wedge c^{\prime} \wedge \neg h^{\prime} \wedge \neg e^{\prime}\right) \vee \quad \text { (start_oven, no error) } \\
& \left.\neg S \wedge \neg c \wedge \neg h \wedge \neg e \wedge s^{\prime} \wedge \neg c^{\prime} \wedge \neg h^{\prime} \wedge e^{\prime}\right) \vee \text { (start_oven, error) } \\
& \left.s \wedge c \wedge \neg h \wedge e \wedge \neg s^{\prime} \wedge c^{\prime} \wedge \neg h^{\prime} \wedge \neg e^{\prime}\right) \vee(\text { reset }) \\
& \left.s \wedge c \wedge \neg h \wedge \neg e \wedge s^{\prime} \wedge c^{\prime} \wedge h^{\prime} \wedge \neg e^{\prime}\right) \vee \quad \text { (warmup) } \\
& \left.s \wedge c \wedge h \wedge \neg e \wedge \neg s^{\prime} \wedge c^{\prime} \wedge h^{\prime} \wedge \neg e^{\prime}\right) \vee \text { (start_cooking) } \\
& \left(\neg S \wedge c \wedge h \wedge \neg e \wedge \neg s^{\prime} \wedge c^{\prime} \wedge h^{\prime} \wedge \neg e^{\prime}\right) \vee(\text { cook }) \\
& \left(\neg S \wedge c \wedge h \wedge \neg e \wedge \neg s^{\prime} \wedge c^{\prime} \wedge \neg h^{\prime} \wedge \neg e^{\prime}\right) \quad \text { (done) }
\end{aligned}
$$

Note: the third row represents two transitions: $3 \rightarrow 1$ and $4 \rightarrow 1$.

LTL Specification

- "necessarily, the oven's door eventually closes and, till there, the oven does not heat":

$$
M \models \neg \text { heat U close, }
$$

i.e.,

$$
M \models \neg \mathbf{E} \neg(\neg \text { heat } \mathbf{U} \text { close })
$$

Tableau construction for $\psi=\neg(\neg$ heat \mathbf{U} close $)$

- $\varphi:=\neg \psi=(\neg$ heat U close $)$
- Tableaux expansion:
$\psi=\neg(\neg$ heat \mathbf{U} close $)=\neg($ close $\vee(\neg$ heat $\wedge \mathbf{X}(\neg$ heat \mathbf{U} close $)))$
- el $(\psi)=e l(\varphi)=\{$ heat, close, $\mathbf{X} \varphi\}(\{h, c, \mathbf{X} \varphi\})$
- States:

$$
\begin{aligned}
& 1:=\{\neg h, c, \mathbf{X} \varphi\}, 2:=\{h, c, \mathbf{X} \varphi\}, 3:=\{\neg h, \neg c, \mathbf{X} \varphi\}, \\
& 4:=\{h, c, \neg \mathbf{X} \varphi\}, 5:=\{h, \neg c, \mathbf{X} \varphi\}, 6:=\{\neg h, c, \neg \mathbf{X} \varphi\}, \\
& 7:=\{\neg h, \neg c, \neg \mathbf{X} \varphi\}, 8:=\{h, \neg c, \neg \mathbf{X} \varphi\}
\end{aligned}
$$

Tableau construction for $\psi=\neg(\neg$ heat \mathbf{U} close $)$ [cont.]

Tableau construction for $\psi=\neg(\neg$ heat \mathbf{U} close $)$

- States:

$$
\begin{aligned}
& 1:=\{\neg h, c, \mathbf{X} \varphi\}, 2:=\{h, c, \mathbf{X} \varphi\}, 3:=\{\neg h, \neg c, \mathbf{X} \varphi\}, \\
& 4:=\{h, c, \neg \mathbf{X} \varphi\}, 5:=\{h, \neg c, \mathbf{X} \varphi\}, 6:=\{\neg h, c, \neg \mathbf{X} \varphi\}, \\
& 7:=\{\neg h, \neg c, \neg \mathbf{X} \varphi\}, 8:=\{h, \neg c, \neg \mathbf{X} \varphi\}
\end{aligned}
$$

- sat():

$$
\begin{aligned}
& \operatorname{sat}(h)=\{2,4,5,8\} \Longrightarrow \operatorname{sat}(\neg h)=\{1,3,6,7\}, \\
& \operatorname{sat}(c)=\{1,2,4,6\} \Longrightarrow \operatorname{sat}(\neg c)=\{3,5,7,8\}, \\
& \operatorname{sat}(\mathbf{X} \varphi)=\{1,2,3,5\} \Longrightarrow \operatorname{sat}(\neg \mathbf{X} \varphi)=\{4,6,7,8\}, \\
& \operatorname{sat}(\varphi)=\operatorname{sat}(c) \cup(\operatorname{sat}(\neg h) \cap \operatorname{sat}(\mathbf{X}(\neg h \mathbf{U} c)))=\{1,2,3,4,6\} \\
& \Longrightarrow \operatorname{sat}(\psi)=\operatorname{sat}(\neg \varphi)=\{5,7,8\}
\end{aligned}
$$

Tableau construction for $\psi=\neg(\neg$ heat \mathbf{U} close $)$ [cont.]

Tableau construction for $\psi=\neg(\neg$ heat \mathbf{U} close $)$ [cont.]

Tableau construction for $\psi=\neg(\neg$ heat \mathbf{U} close $)$ [cont.]

Tableau construction for $\psi=\neg(\neg$ heat \mathbf{U} close $)$ [cont.]

Tableau construction for $\psi=\neg(\neg$ heat U close) [cont.]

- ...
- sat():

$$
\begin{aligned}
& \operatorname{sat}(h)=\{2,4,5,8\} \Longrightarrow \operatorname{sat}(\neg h)=\{1,3,6,7\}, \\
& \operatorname{sat}(c)=\{1,2,4,6\} \Longrightarrow \operatorname{sat}(\neg c)=\{3,5,7,8\}, \\
& \operatorname{sat}(\mathbf{X} \varphi)=\{1,2,3,5\} \Longrightarrow \operatorname{sat}(\neg \mathbf{X} \varphi)=\{4,6,7,8\}, \\
& \operatorname{sat}(\varphi)=\operatorname{sat}(c) \cup(\operatorname{sat}(\neg h) \cap \operatorname{sat}(\mathbf{X}(\neg h \mathbf{U} c)))=\{1,2,3,4,6\}
\end{aligned}
$$

- Initial states $I: \operatorname{sat}(\psi)=\operatorname{sat}(\neg \varphi)=\{5,7,8\}$
- Transition Relation R:
- add an edge from every state in $\operatorname{sat}(\mathrm{X} \varphi)$ to every state in $\operatorname{sat}(\varphi)$
- add an edge from every state in $\operatorname{sat}(\neg \mathbf{X} \varphi)$ to every state in $\operatorname{sat}(\neg \varphi)$

Tableau construction for $\psi=\neg(\neg$ heat \mathbf{U} close $)$ [cont.]

Tableau construction for $\psi=\neg(\neg$ heat \mathbf{U} close $)$ [cont.]

Symbolic representation of T_{ψ}, s.t. $\psi:=\neg(\neg h \mathbf{U} c)$

- State variables: h, c and x and primed versions h^{\prime}, c^{\prime} and x^{\prime} [x is a Boolean label for $\mathbf{X}(\neg h \mathbf{U} c)$]
- Initial states: $I_{T_{\psi}}=\operatorname{sat}(\psi)$ $\Longrightarrow I(h, c, x)=\neg(c \vee(\neg h \wedge x))$
- Transition Relation: $R_{T_{\psi}}=\bigwedge_{\mathbf{x}_{\varphi_{i} \in e l(\psi)}}\left(\operatorname{sat}\left(\mathbf{X} \varphi_{i}\right) \leftrightarrow \operatorname{sat}^{\prime}\left(\varphi_{i}\right)\right)$ $\Longrightarrow R_{T_{\psi}}\left(h, c, x, h^{\prime}, c^{\prime}, x^{\prime}\right)=x \leftrightarrow\left(c^{\prime} \vee\left(\neg h^{\prime} \wedge x^{\prime}\right)\right)$
- Fairness Property: (due to negative polarity of $(\neg h \mathbf{U} c)$ in ψ): $F_{T_{\psi}}(h, c, x)=\mathrm{T}$

Product $P=T_{\psi} \times M$

Product $P=T_{\psi} \times M$ [cont.]

- $P=T_{\psi} \times M$ (reachable states only)
- comnute [FGtruel (e a hv Fmerson-I ei).

Product $P=T_{\psi} \times M$: symbolic representation

- Initial states: $I(s, c, h, e, x)=(\neg s \wedge \neg h \wedge \neg e) \wedge \neg(c \vee(\neg h \wedge x))=$ $\neg s \wedge \neg h \wedge \neg e \wedge \neg c \wedge \neg x$
- Transition relation: $R\left(s, c, h, e, x, s^{\prime}, c^{\prime}, h^{\prime}, e^{\prime}, x^{\prime}\right)=$ (an OBDD for) $\left(x \leftrightarrow\left(c^{\prime} \vee\left(\neg h^{\prime} \wedge x^{\prime}\right)\right)\right) \wedge($
$\left(\neg S \wedge \neg C \wedge \neg h \wedge \neg e \wedge \neg S^{\prime} \wedge c^{\prime} \wedge \neg h^{\prime} \wedge \neg e^{\prime}\right) \vee \quad$ (close_door, no error) $\left.s \wedge \neg c \wedge \neg h \wedge e \wedge s^{\prime} \wedge c^{\prime} \wedge \neg h^{\prime} \wedge e^{\prime}\right) \vee$ (close_door, error)
$\left.\neg S \wedge c \quad \wedge \neg e \wedge \neg s^{\prime} \wedge \neg c^{\prime} \wedge \neg h^{\prime} \wedge \neg e^{\prime}\right) \vee \quad$ (open_door, no error)
$\left.s \wedge c \wedge \neg h \wedge e \wedge s^{\prime} \wedge \neg c^{\prime} \wedge \neg h^{\prime} \wedge e^{\prime}\right) \vee$ (open_door, error)
$\left.\neg s \wedge c \wedge \neg h \wedge \neg e \wedge s^{\prime} \wedge c^{\prime} \wedge \neg h^{\prime} \wedge \neg e^{\prime}\right) \vee \quad$ (start_oven, no error)
$\left.\neg s \wedge \neg c \wedge \neg h \wedge \neg e \wedge s^{\prime} \wedge \neg c^{\prime} \wedge \neg h^{\prime} \wedge e^{\prime}\right) \vee \quad$ (start_oven, error)
$\left.s \wedge c \wedge \neg h \wedge e \wedge \neg s^{\prime} \wedge c^{\prime} \wedge \neg h^{\prime} \wedge \neg e^{\prime}\right) \vee \quad(r e s e t)$
$\left.s \wedge c \wedge \neg h \wedge \neg e \wedge s^{\prime} \wedge c^{\prime} \wedge h^{\prime} \wedge \neg e^{\prime}\right) \vee \quad$ (warmup)
$\left.s \wedge c \wedge h \wedge \neg e \wedge \neg s^{\prime} \wedge c^{\prime} \wedge h^{\prime} \wedge \neg e^{\prime}\right) \vee$ (start_cooking)
$\left(\neg s \wedge c \wedge h \wedge \neg e \wedge \neg s^{\prime} \wedge c^{\prime} \wedge h^{\prime} \wedge \neg e^{\prime}\right) \vee($ cook $)$
$\left(\neg s \wedge c \wedge h \wedge \neg e \wedge \neg s^{\prime} \wedge c^{\prime} \wedge \neg h^{\prime} \wedge \neg e^{\prime}\right) \quad$ (done)

[EGtrue]: symbolic representation

- Emerson-Lei returns (an OBDD equivalent to):

EG true $=$

$$
\begin{align*}
& (\neg S \wedge \neg C \wedge \neg h \wedge \neg e \wedge x) \vee \tag{3,1}\\
& (\quad s \wedge \neg c \wedge \neg h \wedge e \wedge x) \vee \tag{3,2}\\
& (\neg S \wedge c \wedge \neg h \wedge \neg e \wedge x) \vee \\
& (\neg s \wedge c \wedge h \wedge \neg e \wedge x) \vee \\
& s \wedge c \wedge \neg h \wedge e \wedge x) \vee \\
& s \wedge c \wedge \neg h \wedge \neg e \wedge x) \vee \\
& c \wedge h \wedge \neg e \wedge x) \vee
\end{align*}
$$

(other unreachables states)

- Initial states: $I(s, c, h, e, x)=\neg s \wedge \neg h \wedge \neg e \wedge \neg c \wedge \neg x$
$\Longrightarrow I(s, c, h, e, x) \neq E$ Etrue
$\Longrightarrow I \nsubseteq$ [EGtrue]
$\Longrightarrow T_{\psi} \times M \not \vDash$ EGtrue
\Longrightarrow Property verified!

The property verified is...

Outline

(1) Fairness \& Fair Kripke Models
(2) Symbolic Model Checking

- Symbolic Representation of Systems
- A simple example
B. Language-Emptiness Checking for Fair Kripke Models
- SCC-Based Approach
- Emerson-Lei Algorithm

4. The Symbolic Approach to LTL Model Checking

- General Ideas
- Compute the Tableau T_{ψ}
- Compute the Product $M \times T_{\psi}$
- Check the Emptiness of $\mathcal{L}\left(M \times T_{\psi}\right)$
(5) A Complete Example
(6) Exercises

Ex: Symbolic Model Checking

Given the following finite state machine expressed in NuSMV input language:

```
MODULE main
VAR v1 : boolean; v2 : boolean;
INIT (!v1 & !v2)
TRANS (next(v1) <-> !v1) & (next(v2) <-> (v1<->v2))
```

and consider the property $P \stackrel{\text { def }}{=}\left(v_{1} \wedge v_{2}\right)$. Write:

- the Boolean formulas $I\left(v_{1}, v_{2}\right)$ and $T\left(v_{1}, v_{2}, v_{1}^{\prime}, v_{2}^{\prime}\right)$ representing respectively the initial states and the transition relation of M.
[Solution: $I\left(v_{1}, v_{2}\right)$ is $\left(\neg v_{1} \wedge \neg v_{2}\right), T\left(v_{1}, v_{2}, v_{1}^{\prime}, v_{2}^{\prime}\right)$ is
$\left.\left(v_{1}^{\prime} \leftrightarrow \neg v_{1}\right) \wedge\left(v_{2}^{\prime} \leftrightarrow\left(v_{1} \leftrightarrow v_{2}\right)\right)\right]$
- the graph representing the FSM. (Assume the notation " $v_{1} v_{2}$ " for labeling the states: e.g. " 10 " means " $v_{1}=1, v_{2}=0$ ".)
[Solution:

Ex: Symbolic Model Checking (cont.)

- the Boolean formula representing symbolically EXP. [The formula must be computed symbolically, not simply inferred from the graph of the previous question!]
[Solution:

$$
\begin{aligned}
\mathbf{E X}(P) & =\exists v_{1}^{\prime}, v_{2}^{\prime} \cdot\left(T\left(v_{1}, v_{2}, v_{1}^{\prime}, v_{2}^{\prime}\right) \wedge P\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right) \\
& =\exists v_{1}^{\prime}, v_{2}^{\prime} \cdot(\left(v_{1}^{\prime} \leftrightarrow \neg v_{1}\right) \wedge\left(v_{2}^{\prime} \leftrightarrow\left(v_{1} \leftrightarrow v_{2}\right)\right) \wedge \underbrace{\left(v_{1}^{\prime} \wedge v_{2}^{\prime}\right)}_{\Longrightarrow v_{1}^{\prime}=T, v_{2}^{\prime}=T}) \\
& =\overbrace{\left(\neg v_{1} \wedge \neg v_{2}\right)}^{v_{1}^{\prime}=\top, v_{2}^{\prime}=\top} \vee \perp \vee \perp \vee \perp \\
& =\left(\neg v_{1} \wedge \neg v_{2}\right)
\end{aligned}
$$

Ex: Symbolic CTL Model Checking

Given the following finite state machine expressed in NuSMV input language:

```
VAR v1 : boolean; v2 : boolean;
INIT init(v1) <-> init(v2)
TRANS (v1 <-> next(v2)) & (v2 <-> next(v1));
```

write:

- the Boolean formulas $I\left(v_{1}, v_{2}\right)$ and $T\left(v_{1}, v_{2}, v_{1}^{\prime}, v_{2}^{\prime}\right)$ representing the initial states and the transition relation of M respectively.
[Solution: $I\left(v_{1}, v_{2}\right)$ is $\left(v_{1} \leftrightarrow v_{2}\right), T\left(v_{1}, v_{2}, v_{1}^{\prime}, v_{2}^{\prime}\right)$ is $\left(v_{1} \leftrightarrow v_{2}^{\prime}\right) \wedge\left(v_{2} \leftrightarrow v_{1}^{\prime}\right)$]
- the graph representing the FSM. (Assume the notation " $v_{1} v_{2}$ " for labeling the states. E.g., " 10 " means " $v_{1}=1, v_{2}=0$ ".)

Ex: Symbolic CTL Model Checking (cont.)

- the Boolean formula $R^{1}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)$ representing the set of states which can be reached after exactly 1 step.
NOTE: this must be computed symbolically, not simply deduced from the graph of question b).
[Solution:

$$
\begin{aligned}
R^{1}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)= & \exists v_{1}, v_{2} \cdot\left(I\left(v_{1}, v_{2}\right) \wedge T\left(v_{1}, v_{2}, v_{1}^{\prime}, v_{2}^{\prime}\right)\right) \\
= & \exists v_{1}, v_{2} \cdot\left(\left(v_{1} \leftrightarrow v_{2}\right) \wedge\left(v_{1} \leftrightarrow v_{2}^{\prime}\right) \wedge\left(v_{2} \leftrightarrow v_{1}^{\prime}\right)\right) \\
= & \left(\left(v_{1} \leftrightarrow v_{2}\right) \wedge\left(v_{1} \leftrightarrow v_{2}^{\prime}\right) \wedge\left(v_{2} \leftrightarrow v_{1}^{\prime}\right)\right)\left[v_{1}=\perp, v_{2}=\perp\right] \vee \\
& \left(\left(v_{1} \leftrightarrow v_{2}\right) \wedge\left(v_{1} \leftrightarrow v_{2}^{\prime}\right) \wedge\left(v_{2} \leftrightarrow v_{1}^{\prime}\right)\right)\left[v_{1}=\perp, v_{2}=\top\right] \vee \\
& \left(\left(v_{1} \leftrightarrow v_{2}\right) \wedge\left(v_{1} \leftrightarrow v_{2}^{\prime}\right) \wedge\left(v_{2} \leftrightarrow v_{1}^{\prime}\right)\right)\left[v_{1}=T, v_{2}=\perp\right] \vee \\
& \left(\left(v_{1} \leftrightarrow v_{2}\right) \wedge\left(v_{1} \leftrightarrow v_{2}^{\prime}\right) \wedge\left(v_{2} \leftrightarrow v_{1}^{\prime}\right)\right)\left[v_{1}=\top, v_{2}=\top\right] \\
= & \left(\neg v_{1}^{\prime} \wedge \neg v_{2}^{\prime}\right) \vee \perp \vee \perp \vee\left(v_{1}^{\prime} \wedge v_{2}^{\prime}\right) \\
= & \left(\neg v_{1}^{\prime} \wedge \neg v_{2}^{\prime}\right) \vee\left(v_{1}^{\prime} \wedge v_{2}^{\prime}\right) \\
= & \left(v_{1}^{\prime} \leftrightarrow v_{2}^{\prime}\right)
\end{aligned}
$$

Ex: Symbolic LTL Model Checking

Given the following LTL formula: $\varphi \stackrel{\text { def }}{=} \neg((\mathbf{G F} p \wedge \mathbf{G F} q) \rightarrow \mathbf{G F r})$
(a) Compute the Negative Normal Form of $\varphi(\operatorname{NNF}(\varphi))$.

(b) Compute the set of elementary subformulas of φ.
[Solution: First write the formula in terms of \mathbf{X} and \mathbf{U} 's (write " $\mathbf{F} \psi$ " for " $T \mathbf{U} \psi$ "):

$$
\begin{aligned}
& \varphi \Longleftrightarrow \neg((\mathbf{G F} p \wedge \mathbf{G F} q) \rightarrow \mathbf{G F r}) \\
& \Longleftrightarrow \neg((\neg \mathbf{F} \neg \mathbf{F} p \wedge \neg \mathbf{F} \neg \mathbf{F} q) \rightarrow \neg \mathbf{F} \neg \mathbf{F r}) \\
& e l(\mathbf{F} \neg \mathbf{F} p)=\{\mathbf{X F} \neg \mathbf{F} p\} \cup e l(\neg \mathbf{F} p)=\{\mathbf{X F} \neg \mathbf{F} p\} \cup\{\mathbf{X F p}\} \cup e l(p)=\{\mathbf{X F} \neg \mathbf{F} p, \mathbf{X F} p, p\} . \\
& \text { Hence: } e l(\varphi)=e l(\neg((\neg \mathbf{F} \neg \mathbf{F} p \wedge \neg \mathbf{F} \neg \mathbf{F} q) \rightarrow \neg \mathbf{F} \neg \mathbf{F} r)) \\
& =e l(\mathbf{F} \neg \mathbf{F} p) \cup e l(\mathbf{F} \neg \mathbf{F} q) \cup e l(\mathbf{F} \neg \mathbf{F} r) \\
& =\{\mathbf{X F} \neg \mathbf{F} p, \mathbf{X F} p, p, \mathbf{X F} \neg \mathbf{F} q, \mathbf{X F} q, q, \mathbf{X F} \neg \mathbf{F} r, \mathbf{X F} r, r\} \\
& \text { (c) What is the (maximum) number of states of a fair Kripke Model representing } \varphi \text { ? } \\
& \text { [Solution: By definition it is } 2^{|e|(\varphi) \mid}=2^{9}=512 \text {.] }
\end{aligned}
$$

Ex: Symbolic LTL Model Checking

Given the following LTL formula $\psi \stackrel{\text { def }}{=} \neg \mathbf{F} \neg p$, compute and draw the tableau \mathcal{T}_{ψ} of ψ. [Solution:
(i) The set of elementary subformulas of ψ is $e l(\psi) \stackrel{\text { def }}{=}\{p, \mathbf{X F} \neg p\}$. Hence, the set of states is

$$
\left\{s_{1}:(p, \neg \mathbf{X F} \neg p), s_{2}:(p, \mathbf{X F} \neg p), s_{3}:(\neg p, \neg \mathbf{X F} \neg p), s_{4}:(\neg p, \mathbf{X F} \neg p)\right\}
$$

(ii) The set of initial states of \mathcal{T}_{ψ} is $\operatorname{sat}(\psi) \stackrel{\text { def }}{=} \backslash(\operatorname{sat}(\neg p) \cup \operatorname{sat}(\mathbf{X F} \neg p))=\left\{s_{1}\right\}$.
(iii) Since s_{1} is the only state in $\operatorname{sat}(\neg \mathrm{F} \neg p)$, then s_{1} is the only successor of itself, so that the only relevant transition is a self-loop over s_{1}.
(One can also -un-necessarily-draw all transitions from states where $\neg \mathbf{X F} \neg p$ holds into $\left\{s_{1}\right\}$ and from from states where $\mathbf{X F} \neg p$ holds into $\left\{s_{2}, s_{3}, s_{4}\right\}$.)
(iv) There is one \mathbf{U}-subformula, $\mathbf{F} \neg p$, so that there is one fairness condition defined as sat $(\neg \mathbf{F} \neg p \vee \neg p)$. Since $\mathbf{F} \neg p$ is false in s_{1}, then s_{1} is part of the fairness condition. [Alternatively: there is no positive U-subformula, so that we must add a AGAFT fairness condition, which is equivalent to say that all states belong to the fairness condition.]

Ex: Symbolic LTL Model Checking (cont.)

[Solution:

or, alternatively without simplifications:

Ex: Symbolic LTL Model Checking

Given the following LTL formula $\psi \stackrel{\text { def }}{=} \mathbf{G} p$, compute and draw the tableau \mathcal{T}_{ψ} of ψ. [Without converting anything into \mathbf{X}, \mathbf{U}].
[Solution:
(i) The set of elementary subformulas of ψ is $e l(\psi) \stackrel{\text { def }}{=}\{\boldsymbol{p}, \mathbf{X G} p\}$. Hence, the set of states is

$$
\left\{s_{1}:(p, \mathbf{X G} p), s_{2}:(p, \neg \mathbf{X G} p), s_{3}:(\neg p, \mathbf{X G} p), s_{4}:(\neg p, \neg \mathbf{X G} p)\right\}
$$

(ii) The set of initial states of \mathcal{T}_{ψ} is $\operatorname{sat}(\psi) \stackrel{\text { def }}{=} \operatorname{sat}(p) \cap \operatorname{sat}(\mathbf{X G} p)=\left\{s_{1}\right\}$.
(iii) Since s_{1} is the only state in $\operatorname{sat}(\mathbf{G p})$, then s_{1} is the only successor of itself, so that the only relevant transition is a self-loop over s_{1}. (One can also -un-necessarily- draw all transitions from states where XGp holds into $\left\{s_{1}\right\}$ and from from states where $\neg \mathbf{X G} p$ holds into $\left\{s_{2}, s_{3}, s_{4}\right\}$.)
(iv) Since there is no "U" subformula, we must add a AGAFT fairness condition, which is equivalent to say that all states belong to the fairness condition.

Ex: Symbolic LTL Model Checking (cont.)

[Solution:

or, alternatively without simplifications:

[^0]: Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti,
 M. Di Natale, P. Pandya, M. Pistore, M. Roveri, C. Tinelli, and S. Tonetta, who detain its copyright. Some exampes displayed in these slides are taken from [Clarke, Grunberg \& Peled, "Model Checking", MIT Press], and their copyright is detained by the authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this material is strictly forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be displayed in public without containing this copyright notice.

