# Formal Methods: Module I: Automated Reasoning Ch. 04: Linear Temporal Logic 

## Roberto Sebastiani

DISI, Università di Trento, Italy - roberto.sebastiani@unitn.it URL: http://disi.unitn.it/rseba/DIDATTICA/fm2021/ Teaching assistant: Giuseppe Spallitta - giuseppe.spallitta@unitn.it

# M.S. in Computer Science, Mathematics, \& Artificial Intelligence Systems Academic year 2020-2021 

last update: Tuesday $13^{\text {th }}$ April, 2021, 13:56
Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti,
M. Di Natale, P. Pandya, M. Pistore, M. Roveri, C. Tinelli, and S. Tonetta, who detain its copyright. Some exampes displayed in these slides are taken from [Clarke, Grunberg \& Peled, "Model Checking", MIT Press], and their copyright is detained by the authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this material is strictly forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be displayed in public without containing this copyright notice.

## Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems
- Properties
(2) Linear Temporal Logic - LTL
- Generalities on Temporal Logics
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples
(3) Exercises


## Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems
- Properties
(3) Exercises


## Outline

(1) Transition Systems as Kripke Models - Kripke Models

- Languages for Transition Systems
- Properties
(3) Exercises


## Kripke Models

- Theoretical role: the semantic framework for a variety of logics
- Modal Logics
- Description Logics
- Temporal Logics
- ...
- Practical role: used to describe reactive systems:
- nonterminating systems with infinite behaviors (e.g. communication protocols, hardware circuits);
- represent the dynamic evolution of modeled systems;
- a state includes values to state variables, program counters, content of communication channels.
- can be animated and validated before their actual implementation


## Kripke Models

- Theoretical role: the semantic framework for a variety of logics
- Modal Logics
- Description Logics
- Temporal Logics
- ...
- Practical role: used to describe reactive systems:
- nonterminating systems with infinite behaviors (e.g. communication protocols, hardware circuits);
- represent the dynamic evolution of modeled systems;
- a state includes values to state variables, program counters, content of communication channels.
- can be animated and validated before their actual implementation


## Kripke Model: Formal Definition

- A Kripke model $\langle S, I, R, A P, L\rangle$ consists of
- a finite set of states $S$;
- a set of initial states $I \subseteq S$;
- a set of transitions $R \subseteq S \times S$
- a set of atomic propositions AP;
- a labeling function $L: S \longmapsto 2^{A P}$
- We assume $R$ total: for every state s, there exists (at least) one state $s^{\prime}$ s.t. $\left(s, s^{\prime}\right) \in R$
- Sometimes we use variables with discrete bounded values $v_{i} \in\left\{d_{1}, \ldots, d_{k}\right\}$ (can be
 encoded with $\lceil\log (k)\rceil$ Boolean variables)

Unlike with other types of Automata (e.g., Buechi), in Kripke models the values of all variables are always assigned in each state.

## Kripke Model: Formal Definition

- A Kripke model $\langle S, I, R, A P, L\rangle$ consists of
- a finite set of states $S$;
- a set of initial states $I \subseteq S$;
- a set of transitions $R \subseteq S \times S$;
- a set of atomic propositions $A P$;
- a labeling function $L: S \longmapsto 2^{A P}$
- We assume $R$ total: for every state $s$, there exists (at least) one state $s^{\prime}$ s.t. $\left(s, s^{\prime}\right) \in R$
- Sometimes we use variables with discrete bounded values $v_{i} \in\left\{d_{1}, \ldots, d_{k}\right\}$ (can be
 encoded with $\lceil\log (k)\rceil$ Boolean variables)

Unlike with other types of Automata (e.g., Buechi), in Kripke models the values of all variables are always assigned in each state.

## Kripke Model: Formal Definition

- A Kripke model $\langle S, I, R, A P, L\rangle$ consists of
- a finite set of states $S$;
- a set of initial states $I \subseteq S$;
- a set of transitions $R \subseteq S \times S$;
- a set of atomic propositions AP;
- a labeling function $L: S \longmapsto 2^{A P}$.
- We assume $R$ total: for every state $s$, there exists (at least) one state $s^{\prime}$ s.t. $\left(s, s^{\prime}\right) \in R$
- Sometimes we use variables with discrete bounded values $v_{i} \in\left\{d_{1}, \ldots, d_{k}\right\}$ (can be
 encoded with $\lceil\log (k)\rceil$ Boolean variables)

Unlike with other types of Automata (e.g., Buechi), in Kripke models the values of all variables are always assigned in each state.

## Kripke Model: Formal Definition

- A Kripke model $\langle S, I, R, A P, L\rangle$ consists of
- a finite set of states $S$;
- a set of initial states $I \subseteq S$;
- a set of transitions $R \subseteq S \times S$;
- a set of atomic propositions AP;
- a labeling function $L: S \longmapsto 2^{A P}$
- We assume $n$ total: for every state $s$, there exists (at least) one state $s^{\prime}$ s.t. $\left(s, s^{\prime}\right) \in R$
- Sometimes we use variables with discrete bounded values $v_{i} \in\left\{d_{1}, \ldots, d_{k}\right\}$ (can be
 encoded with $\lceil\log (k)\rceil$ Boolean variables)

Unlike with other types of Automata (e.g., Buechi), in Kripke models the values of all variables are always assigned in each state.

## Kripke Model: Formal Definition

- A Kripke model $\langle S, I, R, A P, L\rangle$ consists of
- a finite set of states $S$;
- a set of initial states $I \subseteq S$;
- a set of transitions $R \subseteq S \times S$;
- a set of atomic propositions AP;
- We assume $R$ total: for every state $s$, there exists (at least) one state $s^{\prime}$ s.t. $\left(s, s^{\prime}\right) \in R$
- Sometimes we use variables with discrete bounded values $v_{i} \in\left\{d_{1}, \ldots, d_{k}\right\}$ (can be
 encoded with $\lceil\log (k)\rceil$ Boolean variables)

Unlike with other types of Automata (e.g., Buechi), in Kripke models the values of all variables are always assigned in each state.

## Kripke Model: Formal Definition

- A Kripke model $\langle S, I, R, A P, L\rangle$ consists of
- a finite set of states $S$;
- a set of initial states $I \subseteq S$;
- a set of transitions $R \subseteq S \times S$;
- a set of atomic propositions $A P$;
- a labeling function $L: S \longmapsto 2^{A P}$.
- We assume $R$ total: for every state $s$, there exists (at least) one state $s^{\prime}$ s.t. $\left(s, s^{\prime}\right) \in R$
- Sometimes we use variables with discrete bounded values $v_{i} \in\left\{d_{1}, \ldots, d_{k}\right\}$ (can be
 encoded with $\lceil\log (k)\rceil$ Boolean variables)


## Kripke Model: Formal Definition

- A Kripke model $\langle S, I, R, A P, L\rangle$ consists of
- a finite set of states $S$;
- a set of initial states $I \subseteq S$;
- a set of transitions $R \subseteq S \times S$;
- a set of atomic propositions $A P$;
- a labeling function $L: S \longmapsto 2^{A P}$.
- We assume $R$ total: for every state $s$, there exists (at least) one state $s^{\prime}$ s.t. $\left(s, s^{\prime}\right) \in R$
- Sometimes we use variables with discrete bounded values $v_{i} \in\left\{d_{1}, \ldots, d_{k}\right\}$ (can be
 encoded with $\lceil\log (k)\rceil$ Boolean variables)


## Kripke Model: Formal Definition

- A Kripke model $\langle S, I, R, A P, L\rangle$ consists of
- a finite set of states $S$;
- a set of initial states $I \subseteq S$;
- a set of transitions $R \subseteq S \times S$;
- a set of atomic propositions $A P$;
- a labeling function $L: S \longmapsto 2^{A P}$.
- We assume $R$ total: for every state $s$, there exists (at least) one state $s^{\prime}$ s.t. ( $\left.s, s^{\prime}\right) \in R$
- Sometimes we use variables with discrete bounded values $v_{i} \in\left\{d_{1}, \ldots, d_{k}\right\}$ (can be
 encoded with $\lceil\log (k)\rceil$ Boolean variables)

Unlike with other types of Automata (e.g., Buechi), in Kripke models

## Kripke Model: Formal Definition

- A Kripke model $\langle S, I, R, A P, L\rangle$ consists of
- a finite set of states $S$;
- a set of initial states $I \subseteq S$;
- a set of transitions $R \subseteq S \times S$;
- a set of atomic propositions $A P$;
- a labeling function $L: S \longmapsto 2^{A P}$.
- We assume $R$ total: for every state $s$, there exists (at least) one state $s^{\prime}$ s.t. ( $\left.s, s^{\prime}\right) \in R$
- Sometimes we use variables with discrete bounded values $v_{i} \in\left\{d_{1}, \ldots, d_{k}\right\}$ (can be
 encoded with $\lceil\log (k)\rceil$ Boolean variables)


## Remark

Unlike with other types of Automata (e.g., Buechi), in Kripke models the values of all variables are always assigned in each state.

## Kripke Structures: Two Alternative Representations:

- each state identifies univocally the values of the atomic propositions which hold there


## - each state is labeled by a bit vector



## Kripke Structures: Two Alternative Representations:

- each state identifies univocally the values of the atomic propositions which hold there
- each state is labeled by a bit vector



## Example: a Kripke model for mutual exclusion


$\mathrm{N}=$ noncritical, $\mathrm{T}=$ trying, $\mathrm{C}=$ critical
User 1 User 2

## Path in a Kripke Model

A path in a Kripke model $M$ is an infinite sequence of states

$$
\pi=s_{0}, s_{1}, s_{2}, \ldots \in S^{\omega}
$$

such that $s_{0} \in I$ and $\left(s_{i}, s_{i+1}\right) \in R$.


A state $s$ is reachable in $M$ if there is a path from the initial states to $s$.

## Composing Kripke Models

- Complex Kripke Models are tipically obtained by composition of smaller ones
- Components can be combined via
- asynchronous composition.
- synchronous composition,


## Asynchronous Composition

- Interleaving of evolution of components.
- At each time instant, one component is selected to perform a transition.

- Typical example: communication protocols.


## Asynchronous Composition/Product: formal definition

Asynchronous product of Kripke models
Let $M_{1} \stackrel{\text { def }}{=}\left\langle S_{1}, I_{1}, R_{1}, A P_{1}, L_{1}\right\rangle, M_{2} \stackrel{\text { def }}{=}\left\langle S_{2}, I_{2}, R_{2}, A P_{2}, L_{2}\right\rangle$. Then the asynchronous product $M \stackrel{\text { def }}{=} M_{1} \| M_{2}$ is $M \stackrel{\text { def }}{=}\langle S, I, R, A P, L\rangle$, where

- $S \subseteq S_{1} \times S_{2}$ s.t.,
$\forall\left\langle s_{1}, s_{2}\right\rangle \in S, \forall I \in A P_{1} \cap A P_{2}, I \in L_{1}\left(s_{1}\right)$ iff $I \in L_{2}\left(s_{2}\right)$
- $I \subseteq I_{1} \times I_{2}$ s.t. $I \subseteq S$
- $R\left(\left\langle s_{1}, s_{2}\right\rangle,\left\langle t_{1}, t_{2}\right\rangle\right)$ iff
( $R_{1}\left(s_{1}, t_{1}\right)$ and $s_{2}=t_{2}$ ) or
( $s_{1}=t_{1}$ and $R_{2}\left(s_{2}, t_{2}\right)$ )
- $A P=A P_{1} \cup A P_{2}$
- $L: S \longmapsto 2^{A P}$ s.t. $L\left(\left\langle s_{1}, s_{2}\right\rangle\right) \stackrel{\text { def }}{=} L_{1}\left(s_{1}\right) \cup L_{2}\left(s_{2}\right)$.

Note: combined states must agree on the values of Boolean variables.

Asynchronous composition is associative

## Asynchronous Composition/Product: formal definition

## Asynchronous product of Kripke models

Let $M_{1} \stackrel{\text { def }}{=}\left\langle S_{1}, I_{1}, R_{1}, A P_{1}, L_{1}\right\rangle, M_{2} \stackrel{\text { def }}{=}\left\langle S_{2}, I_{2}, R_{2}, A P_{2}, L_{2}\right\rangle$. Then the asynchronous product $M \stackrel{\text { def }}{=} M_{1} \| M_{2}$ is $M \stackrel{\text { def }}{=}\langle S, I, R, A P, L\rangle$, where

- $S \subseteq S_{1} \times S_{2}$ s.t.,
$\forall\left\langle s_{1}, s_{2}\right\rangle \in S, \forall I \in A P_{1} \cap A P_{2}, I \in L_{1}\left(s_{1}\right)$ iff $I \in L_{2}\left(s_{2}\right)$
- $I \subseteq I_{1} \times I_{2}$ s.t. $I \subseteq S$
- $R\left(\left\langle s_{1}, s_{2}\right\rangle,\left\langle t_{1}, t_{2}\right\rangle\right)$ iff
( $R_{1}\left(s_{1}, t_{1}\right)$ and $s_{2}=t_{2}$ ) or
$\left(s_{1}=t_{1}\right.$ and $\left.R_{2}\left(s_{2}, t_{2}\right)\right)$
- $A P=A P_{1} \cup A P_{2}$
- $L: S \longmapsto 2^{A P}$ s.t. $L\left(\left\langle s_{1}, s_{2}\right\rangle\right) \stackrel{\text { def }}{=} L_{1}\left(s_{1}\right) \cup L_{2}\left(s_{2}\right)$.

Note: combined states must agree on the values of Boolean variables.

Asynchronous composition is associative:
$\left.\left(\ldots\left(M_{1} \| M_{2}\right) \| \ldots\right) \| M_{n}\right)=\left(M 1\left\|\left(M_{2} \|\left(\ldots \| M_{n}\right) \ldots\right)=M_{1}\right\| M_{2}\|\ldots\| M_{n}\right.$

## Asynchronous Composition: Example 1



## Asynchronous Composition: Example 2


non-reachable state


## Asynchronous Composition: Example 2



## Synchronous Composition

- Components evolve in parallel.
- At each time instant, every component performs a transition.

- Typical example: sequential hardware circuits.


## Synchronous Composition/Product: formal definition

Synchronous product of Kripke models
Let $M_{1} \stackrel{\text { def }}{=}\left\langle S_{1}, l_{1}, R_{1}, A P_{1}, L_{1}\right\rangle, M_{2} \stackrel{\text { def }}{=}\left\langle S_{2}, I_{2}, R_{2}, A P_{2}, L_{2}\right\rangle$. Then the synchronous product $M \stackrel{\text { def }}{=} M_{1} \times M_{2}$ is $M \stackrel{\text { def }}{=}\langle S, I, R, A P, L\rangle$, where

- $S \subseteq S_{1} \times S_{2}$ s.t.,

$$
\forall\left\langle s_{1}, s_{2}\right\rangle \in S, \forall I \in A P_{1} \cap A P_{2}, I \in L_{1}\left(s_{1}\right) \text { iff } I \in L_{2}\left(s_{2}\right)
$$

- $I \subseteq I_{1} \times I_{2}$ s.t. $I \subseteq S$
- $R\left(\left\langle s_{1}, s_{2}\right\rangle,\left\langle t_{1}, t_{2}\right\rangle\right)$ iff $\quad\left(R_{1}\left(s_{1}, t_{1}\right)\right.$ and $\left.R_{2}\left(s_{2}, t_{2}\right)\right)$
- $A P=A P_{1} \cup A P_{2}$
- $L: S \longmapsto 2^{A P}$ s.t. $L\left(\left\langle s_{1}, s_{2}\right\rangle\right) \stackrel{\text { def }}{=} L_{1}\left(s_{1}\right) \cup L_{2}\left(s_{2}\right)$.

Note: combined states must agree on the values of Boolean variables.

[^0]
## Synchronous Composition/Product: formal definition

Synchronous product of Kripke models
Let $M_{1} \stackrel{\text { def }}{=}\left\langle S_{1}, I_{1}, R_{1}, A P_{1}, L_{1}\right\rangle, M_{2} \stackrel{\text { def }}{=}\left\langle S_{2}, I_{2}, R_{2}, A P_{2}, L_{2}\right\rangle$. Then the synchronous product $M \stackrel{\text { def }}{=} M_{1} \times M_{2}$ is $M \stackrel{\text { def }}{=}\langle S, I, R, A P, L\rangle$, where

- $S \subseteq S_{1} \times S_{2}$ s.t., $\forall\left\langle s_{1}, s_{2}\right\rangle \in S, \forall I \in A P_{1} \cap A P_{2}, I \in L_{1}\left(s_{1}\right)$ iff $I \in L_{2}\left(s_{2}\right)$
- $I \subseteq I_{1} \times I_{2}$ s.t. $I \subseteq S$
- $R\left(\left\langle s_{1}, s_{2}\right\rangle,\left\langle t_{1}, t_{2}\right\rangle\right)$ iff $\quad\left(R_{1}\left(s_{1}, t_{1}\right)\right.$ and $\left.R_{2}\left(s_{2}, t_{2}\right)\right)$
- $A P=A P_{1} \cup A P_{2}$
- $L: S \longmapsto 2^{A P}$ s.t. $L\left(\left\langle s_{1}, s_{2}\right\rangle\right) \stackrel{\text { def }}{=} L_{1}\left(s_{1}\right) \cup L_{2}\left(s_{2}\right)$.

Note: combined states must agree on the values of Boolean variables.

Synchronous composition is associative:
$\left.\left(\ldots\left(M_{1} \times M_{2}\right) \times \ldots\right) \times M_{n}\right)=\left(M 1 \times\left(M_{2} \times\left(\ldots \times M_{n}\right) \ldots\right)=M_{1} \times M_{2} \times \ldots \times M_{n}\right.$

## Synchronous Composition: Example 1



## Synchronous Composition: Example 2



## Synchronous Composition: Example 2 (cont.)



## Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems
- Properties
(2) Linear Temporal Logic - LTL
- Generalities on Temporal Logics
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples

Exercises

## Description languages for Kripke Model

- Most often a Kripke model is not given explicitly (states, arcs),...

- even a piece of SW can be seen as a Kripke model!
- Each component is presented by specifying

[^1]
## Description languages for Kripke Model

- Most often a Kripke model is not given explicitly (states, arcs),...
- ... rather it is usually presented in a structured language
(e.g., SMV, PROMELA, StateCharts, VHDL, ...)
- even a piece of SW can be seen as a Kripke model!


## Description languages for Kripke Model

- Most often a Kripke model is not given explicitly (states, arcs),...
- ... rather it is usually presented in a structured language
(e.g., SMV, PROMELA, StateCharts, VHDL, ...)
- even a piece of SW can be seen as a Kripke model!
- Each component is presented by specifying
state space $S$ and the labeling $L$.
- described as a relation $I\left(V_{0}\right)$ in terms of state variables at step 0
- described as a relation $R\left(V, V^{\prime}\right)$ in terms of current state variables $V$ and next state variables $V^{\prime}$


## Description languages for Kripke Model

- Most often a Kripke model is not given explicitly (states, arcs),...
- ... rather it is usually presented in a structured language
(e.g., SMV, PROMELA, StateCharts, VHDL, ...)
- even a piece of SW can be seen as a Kripke model!
- Each component is presented by specifying
- state variables: determine the set of atomic propositions AP, the state space $S$ and the labeling $L$.
- described as a relation $I\left(V_{0}\right)$ in terms of state variables at step 0
- described as a relation $R\left(V, V^{\prime}\right)$ in terms of current state variables $V$ and next state variables $V$


## Description languages for Kripke Model

- Most often a Kripke model is not given explicitly (states, arcs),...
- ... rather it is usually presented in a structured language
(e.g., SMV, PROMELA, StateCharts, VHDL, ...)
- even a piece of SW can be seen as a Kripke model!
- Each component is presented by specifying
- state variables: determine the set of atomic propositions AP, the state space $S$ and the labeling $L$.
- initial values of variables $V$ : determine the set of initial states $I$.
- described as a relation $I\left(V_{0}\right)$ in terms of state variables at step 0
- described as a relation $R\left(V, V^{\prime}\right)$ in terms of current state variables $V$ and next state variables - Aka as symbolic representation of a Kripke model


## Description languages for Kripke Model

- Most often a Kripke model is not given explicitly (states, arcs),...
- ... rather it is usually presented in a structured language (e.g., SMV, PROMELA, StateCharts, VHDL, ...)
- even a piece of SW can be seen as a Kripke model!
- Each component is presented by specifying
- state variables: determine the set of atomic propositions AP, the state space $S$ and the labeling $L$.
- initial values of variables $V$ : determine the set of initial states $I$.
- described as a relation $I\left(V_{0}\right)$ in terms of state variables at step 0
- instructions: determine the transition relation $R$.
- described as a relation $R\left(V, V^{\prime}\right)$ in terms of current state variables $V$ and next state variables $V^{\prime}$
- Aka as symbolic representation of a Kripke model
$\square$ than the explicit representation of the Kripke model.


## Description languages for Kripke Model

- Most often a Kripke model is not given explicitly (states, arcs),...
- ... rather it is usually presented in a structured language
(e.g., SMV, PROMELA, StateCharts, VHDL, ...)
- even a piece of SW can be seen as a Kripke model!
- Each component is presented by specifying
- state variables: determine the set of atomic propositions $A P$, the state space $S$ and the labeling $L$.
- initial values of variables $V$ : determine the set of initial states $I$.
- described as a relation $I\left(V_{0}\right)$ in terms of state variables at step 0
- instructions: determine the transition relation $R$.
- described as a relation $R\left(V, V^{\prime}\right)$ in terms of current state variables $V$ and next state variables $V^{\prime}$
- Aka as symbolic representation of a Kripke model
$\square$ than the explicit representation of the Kripke model.


## Description languages for Kripke Model

- Most often a Kripke model is not given explicitly (states, arcs),...
- ... rather it is usually presented in a structured language (e.g., SMV, PROMELA, StateCharts, VHDL, ...)
- even a piece of SW can be seen as a Kripke model!
- Each component is presented by specifying
- state variables: determine the set of atomic propositions $A P$, the state space $S$ and the labeling $L$.
- initial values of variables $V$ : determine the set of initial states $I$.
- described as a relation $I\left(V_{0}\right)$ in terms of state variables at step 0
- instructions: determine the transition relation $R$.
- described as a relation $R\left(V, V^{\prime}\right)$ in terms of current state variables $V$ and next state variables $V^{\prime}$
- Aka as symbolic representation of a Kripke model


## Remark

Tipically symbolic description are much more compact (and intuitive) than the explicit representation of the Kripke model.

## The SMV language

- The input language of the SMV M.C. (and NuSMV)
- Booleans, enumerative and bounded integers as data types
- now enriched with other constructs, e.g. in NuXMV language
- An SMV program consists of:
- Declarations of the state variables (e.g., b0);
- Assignments that define the initial states

$$
\text { (e.g., init (b0) }:=0 \text { ). }
$$

- Assignments that define the transition relation (e.g., next (b0) := ! b0).
- Allows for both synchronous and asyncronous composition of modules (though synchronous interaction more natural)


## Example: a Simple Counter Circuit

## MODULE main

VAR
v0 : boolean;
v1 : boolean;
out : 0..3;
ASSIGN
init $(\mathrm{v} 0):=0 ;$
next $(\mathrm{v} 0):=$ !vo;
init(v1) := 0;
next (v1) := (v0 xor v1);
out := toint(v0) + 2*toint(v1);


## Example: a Simple Counter Circuit

## MODULE main

VAR
$\begin{array}{ll}\text { vo } & \text { boolean; } \\ \text { v1 } & \text { boolean; } \\ \text { out } & : 0 . .3 ;\end{array}$
ASSIGN
init (vo) $:=0 ;$
next (vo)
$:=$
$=$ ! vo
init (vi) := 0;
next (vi) := (vo xor vi);
out := toint(v0) + 2*toint(v1);


## Standard Programming Languages

- Standard programming languages are typically sequential Transition relation defined in terms also of the program counter



## Standard Programming Languages

- Standard programming languages are typically sequential
$\Longrightarrow$ Transition relation defined in terms also of the program counter
- Numbers \& values Booleanized



## Standard Programming Languages

- Standard programming languages are typically sequential
$\Longrightarrow$ Transition relation defined in terms also of the program counter
- Numbers \& values Booleanized



## Standard Programming Languages

- Standard programming languages are typically sequential
$\Longrightarrow$ Transition relation defined in terms also of the program counter
- Numbers \& values Booleanized

```
10. i = 0;
11. acc = 0.0;
12. while (i<dim) {
13. acc += V[i];
14. i++;
15. }
```

$$
\begin{aligned}
& (p c=10) \rightarrow\left(\left(i^{\prime}=0\right) \wedge\left(p c^{\prime}=11\right)\right) \\
& (p c=11) \rightarrow\left(\left(a c c^{\prime}=0.0\right) \wedge\left(p c^{\prime}=12\right)\right) \\
& (p c=12) \rightarrow\left((i<\operatorname{dim}) \rightarrow\left(p c^{\prime}=13\right)\right) \\
& (p c=12) \rightarrow\left(\neg(i<\operatorname{dim}) \rightarrow\left(p c^{\prime}=16\right)\right) \\
& (p c=13) \rightarrow\left(\left(a c c^{\prime}=a c c+\operatorname{read}(V, i)\right) \wedge\left(p c^{\prime}=14\right)\right) \\
& \left.(p c=14) \rightarrow\left(i^{\prime}=i+1\right) \wedge\left(p c^{\prime}=15\right)\right) \\
& \left.(p c=15) \rightarrow\left(p c^{\prime}=16\right)\right)
\end{aligned}
$$

## Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems
- Properties
(3) Exercises


## Safety Properties

- Bad events never happen
- deadlock: two processes waiting for input from each other, the system is unable to perform a transition.
- no reachable state satisfies a "bad" condition, e.g. never two processes in critical section at the same time
- can be refuted by a finite behaviour
- Ex.: it is never the case that $p$.


## Safety Properties

- Bad events never happen
- deadlock: two processes waiting for input from each other, the system is unable to perform a transition.
- no reachable state satisfies a "bad" condition, e.g. never two processes in critical section at the same time
- can be refuted by a finite behaviour
- Ex.: it is never the case that p.


## Safety Properties

- Bad events never happen
- deadlock: two processes waiting for input from each other, the system is unable to perform a transition.
- no reachable state satisfies a "bad" condition, e.g. never two processes in critical section at the same time
- can be refuted by a finite behaviour
- Ex.: it is never the case that $p$.



## Liveness Properties

- Something desirable will eventually happen
- sooner or later this will happen
- can be refuted by infinite behaviour


## Liveness Properties

- Something desirable will eventually happen
- sooner or later this will happen
- can be refuted by infinite behaviour



## Liveness Properties

- Something desirable will eventually happen
- sooner or later this will happen
- can be refuted by infinite behaviour

- an infinite behaviour can be typically presented as a loop


## Fairness Properties

- Something desirable will happen infinitely often
- important subcase of liveness
- whenever a subroutine takes control, it will always return it (sooner or later)
- can be refuted by infinite behaviour
- a subroutine takes control and never returns it


## Fairness Properties

- Something desirable will happen infinitely often
- important subcase of liveness
- whenever a subroutine takes control, it will always return it (sooner or later)
- can be refuted by infinite behaviour
- a subroutine takes control and never returns it



## Fairness Properties

- Something desirable will happen infinitely often
- important subcase of liveness
- whenever a subroutine takes control, it will always return it (sooner or later)
- can be refuted by infinite behaviour
- a subroutine takes control and never returns it

- an infinite behaviour can be typically presented as a loop


## Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems
- Properties
(2) Linear Temporal Logic - LTL
- Generalities on Temporal Logics
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples
(3) Exercises


## Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems
- Properties
(2) Linear Temporal Logic - LTL
- Generalities on Temporal Logics
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples
(3) Exercises


## Computation tree vs. computation paths

- Consider the following Kripke structure:

- Its execution can be seen as:


## Computation tree vs. computation paths

- Consider the following Kripke structure:

- Its execution can be seen as:


## Computation tree vs. computation paths

- Consider the following Kripke structure:

- Its execution can be seen as:
- an infinite set of
- an infinite computation paths
computation tree



## Computation tree vs. computation paths

- Consider the following Kripke structure:

- Its execution can be seen as:
- an infinite set of computation paths

- an infinite computation tree



## Temporal Logics

- Express properties of "Reactive Systems"
- nonterminating behaviours,
- without explicit reference to time.
- interpreted over each path of the Kripke structure
- linear model of time
- temporal operators
- "Medieval": "since birth, one's destiny is set".
- Computation Tree Loaic (CTL)
- interpreted over computation tree of Kripke model
- branching model of time
- temporal operators plus path quantifiers
- "Humanistic": "one makes his/her own destiny step-by-step".


## Temporal Logics

- Express properties of "Reactive Systems"
- nonterminating behaviours,
- without explicit reference to time.
- Linear Temporal Logic (LTL)
- interpreted over each path of the Kripke structure
- linear model of time
- temporal operators
- "Medieval": "since birth, one's destiny is set".
- interpreted over computation tree of Kripke model
- branching model of time
- temporal operators plus path quantifiers
- "Humanistic": "one makes his/her own destiny step-by-step".


## Temporal Logics

- Express properties of "Reactive Systems"
- nonterminating behaviours,
- without explicit reference to time.
- Linear Temporal Logic (LTL)
- interpreted over each path of the Kripke structure
- linear model of time
- temporal operators
- "Medieval": "since birth, one's destiny is set".
- Computation Tree Logic (CTL)
- interpreted over computation tree of Kripke model
- branching model of time
- temporal operators plus path quantifiers
- "Humanistic": "one makes his/her own destiny step-by-step".


## Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems
- Properties
(2) Linear Temporal Logic - LTL
- Generalities on Temporal Logics
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples
(3) Exercises


## Linear Temporal Logic (LTL): Syntax

- An atomic proposition is a LTL formula;
- if $\varphi_{1}$ and $\varphi_{2}$ are LTL formulae, then are LTL formulae;
- if $\varphi_{1}$ and $\varphi_{2}$ are $L T L$ formulae, then $\mathbf{X} \varphi_{1}, \varphi_{1} \mathbf{U} \varphi_{2}, G \varphi_{1}, F \varphi_{1}$ are LTL formulae, where X, G, F, U are the "next", "globally", "eventually","until" temporal operators respectively.
- Another operator R "releases" (the dual of $\mathbf{U}$ ) is used sometimes.


## Linear Temporal Logic (LTL): Syntax

- An atomic proposition is a LTL formula;
- if $\varphi_{1}$ and $\varphi_{2}$ are LTL formulae, then $\neg \varphi_{1}, \varphi_{1} \wedge \varphi_{2}, \varphi_{1} \vee \varphi_{2}$, $\varphi_{1} \rightarrow \varphi_{2}, \varphi_{1} \leftrightarrow \varphi_{2}, \varphi_{1} \oplus \varphi_{2}$ are LTL formulae;


## Linear Temporal Logic (LTL): Syntax

- An atomic proposition is a LTL formula;
- if $\varphi_{1}$ and $\varphi_{2}$ are LTL formulae, then $\neg \varphi_{1}, \varphi_{1} \wedge \varphi_{2}, \varphi_{1} \vee \varphi_{2}$, $\varphi_{1} \rightarrow \varphi_{2}, \varphi_{1} \leftrightarrow \varphi_{2}, \varphi_{1} \oplus \varphi_{2}$ are LTL formulae;
- if $\varphi_{1}$ and $\varphi_{2}$ are LTL formulae, then $\mathbf{X} \varphi_{1}, \varphi_{1} \mathbf{U} \varphi_{2}, \mathbf{G} \varphi_{1}, \mathbf{F} \varphi_{1}$ are LTL formulae, where X, G, F, U are the "next", "globally", "eventually","until" temporal operators respectively.


## Linear Temporal Logic (LTL): Syntax

- An atomic proposition is a LTL formula;
- if $\varphi_{1}$ and $\varphi_{2}$ are LTL formulae, then $\neg \varphi_{1}, \varphi_{1} \wedge \varphi_{2}, \varphi_{1} \vee \varphi_{2}$, $\varphi_{1} \rightarrow \varphi_{2}, \varphi_{1} \leftrightarrow \varphi_{2}, \varphi_{1} \oplus \varphi_{2}$ are LTL formulae;
- if $\varphi_{1}$ and $\varphi_{2}$ are LTL formulae, then $\mathbf{X} \varphi_{1}, \varphi_{1} \mathbf{U} \varphi_{2}, \mathbf{G} \varphi_{1}, \mathbf{F} \varphi_{1}$ are LTL formulae, where X, G, F, U are the "next", "globally", "eventually","until" temporal operators respectively.
- Another operator $\mathbf{R}$ "releases" (the dual of $\mathbf{U}$ ) is used sometimes.


## LTL semantics: intuitions

LTL is given by the standard boolean logic enhanced with the following temporal operators, which operate through paths $\left\langle s_{0}, s_{1}, \ldots, s_{k}, \ldots\right\rangle$ :

- "Next" $\mathbf{X}: \mathbf{X} \varphi$ is true in $s_{t}$ iff $\varphi$ is true in $s_{t+1}$
- "Finally" (or "eventually") $\mathbf{F}$ : $\mathbf{F} \varphi$ is true in $s_{t}$ iff $\varphi$ is true in some $s_{t^{\prime}}$ with $t^{\prime} \geq t$
- "Globally" (or "henceforth") $\mathbf{G}: \mathbf{G} \varphi$ is true in $s_{t}$ iff $\varphi$ is true in all $s_{t^{\prime}}$ with $t^{\prime} \geq t$
- "Until" $\mathbf{U}: \varphi \mathbf{U} \psi$ is true in $s_{t}$ iff, for some state $s_{t^{\prime}}$ s.t $t^{\prime} \geq t$ :
- $\psi$ is true in $s_{t^{\prime}}$ and
- $\varphi$ is true in all states $s_{t^{\prime \prime}}$ s.t. $t \leq t^{\prime \prime}<t^{\prime}$
- "Releases" $\mathbf{R}: \varphi \mathbf{R} \psi$ is true in $s_{t}$ iff, for all states $s_{t^{\prime}}$ s.t. $t^{\prime} \geq t$ :
- $\psi$ is true or
- $\varphi$ is true in some states $s_{t^{\prime \prime}}$ with $t \leq t^{\prime \prime}<t^{\prime}$
" $\psi$ can become false only if $\varphi$ becomes true first"


## LTL semantics: intuitions


globally P


F P


G $\mathbf{P}$
next $P$
$P$ until $q$

$X_{P}$


## LTL: Some Noteworthy Examples

- Safety: "it never happens that a train is arriving and the bar is up"

$$
\mathbf{G}(\neg(\text { train_arriving } \wedge \text { bar_up }))
$$

- Liveness: "if input, then eventually output"

$$
\text { G(input } \rightarrow \text { Foutput) }
$$

- Releases: "the device is not working if you don't first repair it"

$$
\text { (repair_device } \mathbf{R} \neg \text { working_device) }
$$

- Fairness: "infinitely often send "


## GFsend

- Strong fairness: "infinitely often send implies infinitely often recv."


## LTL Formal Semantics



## LTL Formal Semantics (cont.)

- LTL properties are evaluated over paths, i.e., over infinite, linear sequences of states: $\pi=s_{0} \rightarrow s_{1} \rightarrow \cdots \rightarrow s_{t} \rightarrow s_{t+1} \rightarrow \cdots$
- Given an infinite sequence $\pi=s_{0}, s_{1}, s_{2}$,
- $\pi, s_{i} \models \phi$ if $\phi$ is true in state $s_{i}$ of $\pi$.
- $\pi \models \phi$ if $\phi$ is true in the initial state $s_{0}$ of $\pi$.
- The LTL model checking problem $\mathcal{M}=\phi$
- check if $\pi \models \phi$ for every path $\pi$ of the Kripke structure $\mathcal{M}$ (e.g., $\phi=$ Fdone)


## LTL Formal Semantics (cont.)

- LTL properties are evaluated over paths, i.e., over infinite, linear sequences of states: $\pi=s_{0} \rightarrow s_{1} \rightarrow \cdots \rightarrow s_{t} \rightarrow s_{t+1} \rightarrow \cdots$
- Given an infinite sequence $\pi=s_{0}, s_{1}, s_{2}, \ldots$
- $\pi, s_{i} \models \phi$ if $\phi$ is true in state $s_{i}$ of $\pi$.
- $\pi \models \phi$ if $\phi$ is true in the initial state $s_{0}$ of $\pi$.



## LTL Formal Semantics (cont.)

- LTL properties are evaluated over paths, i.e., over infinite, linear sequences of states: $\pi=s_{0} \rightarrow s_{1} \rightarrow \cdots \rightarrow s_{t} \rightarrow s_{t+1} \rightarrow \cdots$
- Given an infinite sequence $\pi=s_{0}, s_{1}, s_{2}, \ldots$
- $\pi, s_{i} \models \phi$ if $\phi$ is true in state $s_{i}$ of $\pi$.
- $\pi \models \phi$ if $\phi$ is true in the initial state $s_{0}$ of $\pi$.
- The LTL model checking problem $\mathcal{M} \models \phi$
- check if $\pi \models \phi$ for every path $\pi$ of the Kripke structure $\mathcal{M}$ (e.g., $\phi=$ Fdone)



## The LTL model checking problem $\mathcal{M} \models \phi$ : remark

The LTL model checking problem $\mathcal{M} \models \phi$
$\pi \models \phi$ for every path $\pi$ of the Kripke structure $\mathcal{M}$

## The LTL model checking problem $\mathcal{M} \models \phi$ : remark

The LTL model checking problem $\mathcal{M} \models \phi$ $\pi \models \phi$ for every path $\pi$ of the Kripke structure $\mathcal{M}$

Important Remark
$\mathcal{M} \not \models \phi \nRightarrow \mathcal{M} \models \neg \phi(!!)$

- E.g. if $\phi$ is a LTL formula and two paths $\pi_{1}$ and $\pi_{2}$ are s.t. $\pi_{1}=\phi$ and $\pi_{2} \models \neg \phi$.


## The LTL model checking problem $\mathcal{M} \models \phi$ : remark

The LTL model checking problem $\mathcal{M} \models \phi$
$\pi \models \phi$ for every path $\pi$ of the Kripke structure $\mathcal{M}$

## Important Remark

$\mathcal{M} \not \vDash \phi \nRightarrow \mathcal{M} \models \neg \phi(!!)$

- E.g. if $\phi$ is a LTL formula and two paths $\pi_{1}$ and $\pi_{2}$ are s.t. $\pi_{1} \models \phi$ and $\pi_{2} \models \neg \phi$.


## Example: $\mathcal{M} \not \vDash \phi \nRightarrow \mathcal{M} \models \neg \phi$

Let $\pi_{1} \stackrel{\text { dot }}{=}\left\{s_{1}\right\}^{\omega}, \pi_{2} \stackrel{\text { dot }}{=}\left\{s_{2}\right\}^{\omega}$.

- $\mathcal{M} \not \vDash \mathbf{G} p$, in fact:

$$
\begin{aligned}
& \text { - } \pi_{1} \not \models \mathbf{G} p \\
& -\pi_{2} \models \mathbf{G} p
\end{aligned}
$$

- $\mathcal{M} \not \vDash \neg \mathbf{G} p$, in fact:
- $\pi_{1} \models \neg \mathbf{G} p$
- $\pi_{2} \not \vDash \neg \mathbf{G} p$



## Syntactic properties of LTL operators

$$
\begin{aligned}
\varphi_{1} \vee \varphi_{2} & \Longleftrightarrow \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right) \\
\ldots & \Longleftrightarrow \neg \mathbf{U} \varphi_{1} \\
\mathbf{F} \varphi_{1} & \Longleftrightarrow \mathbf{R}_{1} \\
\mathbf{G} \varphi_{1} & \Longleftrightarrow \mathbf{R}_{1} \\
\mathbf{F} \varphi_{1} & \Longleftrightarrow \neg \mathbf{G} \neg \varphi_{1} \\
\mathbf{G} \varphi_{1} & \Longleftrightarrow \neg \mathbf{F}^{\prime} \\
\neg \mathbf{X} \varphi_{1} & \Longleftrightarrow \mathbf{X} \neg \varphi_{1} \\
\varphi_{1} \mathbf{R} \varphi_{2} & \Longleftrightarrow \neg\left(\neg \varphi_{1} \mathbf{U} \neg \varphi_{2}\right) \\
\varphi_{1} \mathbf{U} \varphi_{2} & \Longleftrightarrow \neg\left(\neg \varphi_{1} \mathbf{R} \neg \varphi_{2}\right)
\end{aligned}
$$

## Syntactic properties of LTL operators

$$
\begin{aligned}
\varphi_{1} \vee \varphi_{2} & \Longleftrightarrow \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right) \\
\ldots & \Longleftrightarrow \neg \mathbf{U} \varphi_{1} \\
\mathbf{F} \varphi_{1} & \Longleftrightarrow \mathbf{R}_{1} \\
\mathbf{G} \varphi_{1} & \Longleftrightarrow \mathbf{P}_{1} \\
\mathbf{F} \varphi_{1} & \Longleftrightarrow \neg \neg \neg \varphi_{1} \\
\mathbf{G} \varphi_{1} & \Longleftrightarrow \neg \neg \neg \varphi_{1} \\
\neg \mathbf{X} \varphi_{1} & \Longleftrightarrow \mathbf{X} \neg \varphi_{1} \\
\varphi_{1} \mathbf{R} \varphi_{2} & \Longleftrightarrow \neg\left(\neg \varphi_{1} \mathbf{U} \neg \varphi_{2}\right) \\
\varphi_{1} \mathbf{U} \varphi_{2} & \Longleftrightarrow \neg\left(\neg \varphi_{1} \mathbf{R} \neg \varphi_{2}\right)
\end{aligned}
$$

Note
LTL can be defined in terms of $\wedge, \neg, \mathbf{X}, \mathbf{U}$ only


## Syntactic properties of LTL operators

$$
\begin{aligned}
\varphi_{1} \vee \varphi_{2} & \Longleftrightarrow \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right) \\
\ldots & \Longleftrightarrow \neg \mathbf{U} \varphi_{1} \\
\mathbf{F} \varphi_{1} & \Longleftrightarrow \mathbf{R}_{1} \\
\mathbf{G} \varphi_{1} & \Longleftrightarrow \mathbf{R}_{1} \\
\mathbf{F} \varphi_{1} & \Longleftrightarrow \neg \mathbf{G} \neg \varphi_{1} \\
\mathbf{G} \varphi_{1} & \Longleftrightarrow \neg \mathbf{F}^{\prime} \\
\neg \mathbf{X} \varphi_{1} & \Longleftrightarrow \mathbf{X} \neg \varphi_{1} \\
\varphi_{1} \mathbf{R} \varphi_{2} & \Longleftrightarrow \neg\left(\neg \varphi_{1} \mathbf{U} \neg \varphi_{2}\right) \\
\varphi_{1} \mathbf{U} \varphi_{2} & \Longleftrightarrow \neg\left(\neg \varphi_{1} \mathbf{R} \neg \varphi_{2}\right)
\end{aligned}
$$

## Note

LTL can be defined in terms of $\wedge, \neg, \mathbf{X}, \mathbf{U}$ only

## Exercise

Prove that $\varphi_{1} \mathbf{R} \varphi_{2} \Longleftrightarrow \mathbf{G} \varphi_{2} \vee \varphi_{2} \mathbf{U}\left(\varphi_{1} \wedge \varphi_{2}\right)$

## Proof of $\varphi \mathbf{R} \psi \Leftrightarrow(\mathbf{G} \psi \vee \psi \mathbf{U}(\varphi \wedge \psi))$

[Solution proposed by the student Samuel Valentini, 2016]
(All state indexes below are implicitly assumed to be $\geq 0$.)

## $\Rightarrow$ : Let $\pi$ be s.t. $\pi, s_{0} \models \varphi \mathbf{R} \psi$

- If $\forall j, \pi, s_{j} \models \psi$, then $\pi, s_{0} \models \mathbf{G} \psi$.
- Otherwise, let $s_{k}$ be the first state s.t. $\pi, s_{k} \not \models \psi$.
- Since $\pi, s_{0} \models \varphi \mathbf{R} \psi$, then $k>0$ and exists $k^{\prime}<k$ s.t. $\pi, S_{k^{\prime}} \models \varphi$
- By construction, $\pi, s_{k^{\prime}} \models \varphi \wedge \psi$ and, for every $w<k^{\prime}, \pi, s_{w} \models \psi$, so that $\pi, s_{0} \models \psi \mathbf{U}(\varphi \wedge \psi)$.
- Thus, $\pi, s_{0} \models \mathbf{G} \psi \vee \psi \mathbf{U}(\varphi \wedge \psi)$
$\Leftarrow$ : Let $\pi$ be s.t. $\pi, s_{0} \models \mathbf{G} \psi \vee \psi \mathbf{U}(\varphi \wedge \psi)$
- If $\pi, \boldsymbol{s}_{0} \models \mathbf{G} \psi$, then $\forall j, \pi, \boldsymbol{s}_{j}=\psi$, so that $\pi, \boldsymbol{s}_{0}=\varphi \mathbf{R} \psi$.
- Otherwise, $\pi, \boldsymbol{s}_{0} \models \psi \mathbf{U}(\varphi \wedge \psi)$.
- Let $s_{k}$ be the first state s.t. $\pi, s_{k} \not \models \psi$.
- by construction, $\exists k^{\prime}$ such that $\pi, S_{k^{\prime}} \models \varphi \wedge \psi$
- by the definition of $k$, we have that $k^{\prime}<k$ and $\forall w<k, \pi, S_{w} \models \psi$.
- Thus $\pi, \boldsymbol{s}_{0}=\varphi \mathbf{R} \psi$


## Strength of LTL operators

- $\mathbf{G}_{\varphi} \models \varphi \models \mathbf{F}_{\varphi}$
- $\mathbf{G} \varphi \models \mathbf{X} \varphi \models \mathbf{F} \varphi$
- $\mathbf{G} \varphi \models \mathbf{X X} \ldots \mathbf{X} \varphi \models \mathbf{F} \varphi$
- $\varphi \mathbf{U} \psi \models \mathbf{F} \psi$
- $\mathbf{G} \psi \models \varphi \mathbf{R} \psi$

LTL tableaux rules

- Let $\varphi_{1}$ and $\varphi_{2}$ be LTL formulae:

$$
\begin{aligned}
\mathbf{F} \varphi_{1} & \Longleftrightarrow\left(\varphi_{1} \vee \mathbf{X F} \varphi_{1}\right) \\
\mathbf{G} \varphi_{1} & \Longleftrightarrow\left(\varphi_{1} \wedge \mathbf{X G} \varphi_{1}\right) \\
\varphi_{1} \mathbf{U}_{\varphi_{2}} & \Longleftrightarrow\left(\varphi_{2} \vee\left(\varphi_{1} \wedge \mathbf{X}\left(\varphi_{1} \mathbf{U}_{\varphi_{2}}\right)\right)\right) \\
\varphi_{1} \mathbf{R} \varphi_{2} & \Longleftrightarrow\left(\varphi_{2} \wedge\left(\varphi_{1} \vee \mathbf{X}\left(\varphi_{1} \mathbf{R} \varphi_{2}\right)\right)\right)
\end{aligned}
$$

- If applied recursively, rewrite an LTL formula in terms of atomic and X -formulas:

$$
(p \mathbf{U} q) \wedge(\mathbf{G} \neg p) \Longrightarrow(q \vee(p \wedge \mathbf{X}(p \mathbf{U} q))) \wedge(\neg p \wedge \mathbf{X G} \neg p)
$$

## Tableaux Rules: a Quote


"After all... tomorrow is another day." [Scarlett O'Hara, "Gone with the Wind"]

## Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems
- Properties
(2) Linear Temporal Logic - LTL
- Generalities on Temporal Logics
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples
(3) Exercises


## Example 1: mutual exclusion (safety)



$$
M \models \mathbf{G} \neg\left(C_{1} \wedge C_{2}\right) ?
$$

## Example 1: mutual exclusion (safety)



$$
M \models \mathbf{G} \neg\left(C_{1} \wedge C_{2}\right) ?
$$

YES: There is no reachable state in which $\left(C_{1} \wedge C_{2}\right)$ holds!

## Example 2: liveness


$M \models \mathbf{F} C_{1}$ ?

## Example 2: liveness



$$
M \models \mathbf{F} C_{1} \text { ? }
$$

NO: there is an infinite cyclic solution in which $C_{1}$ never holds!

## Example 3: liveness



## Example 3: liveness



YES: every path starting from each state where $T_{1}$ holds passes through a state where $C_{1}$ holds.

## Example 4: fairness



## Example 4: fairness



NO: e.g., in the initial state, there is an infinite cyclic solution in which $C_{1}$ never holds!

## Example 5: strong fairness



## Example 5: strong fairness



YES: every path which visits $T_{1}$ infinitely often also visits $C_{1}$ infinitely often (see liveness property of previous example).

## Example 6: Releases



## Example 6: Releases



YES: $C_{1}$ in paths only strictly after $T_{1}$ has occured.

## Example 7: XF



## Example 7: XF



NO: a counter-example is the $\infty$-shaped loop: $(N 1, N 2),\{(T 1, N 2),(C 1, N 2),(C 1, T 2),(N 1, T 2),(N 1, C 2),(T 1, C 2)\}$

## Example: $\mathbf{G}(T \rightarrow \mathbf{F C})$ vs. GF $T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}$ ?
- YES: if $M \models \mathbf{G}(T \rightarrow F C)$, then $M \models$ GFT $\rightarrow$ GFC!
- let $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$.


## Example: $\mathbf{G}(T \rightarrow \mathbf{F C})$ vs. $\mathbf{G F} T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}$ ?
- YES: if $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$, then $M \models \mathbf{G F} T \rightarrow \mathbf{G F} C$ !


## Example: $\mathbf{G}(T \rightarrow \mathbf{F C})$ vs. $\mathbf{G F} T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}$ ?
- YES: if $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$, then $M \models \mathbf{G F} T \rightarrow \mathbf{G F} C$ !
- let $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$.
$\Longrightarrow \pi, s_{i} \models \mathbf{F} T$ for each $s_{i} \in \pi$
$\Longrightarrow \pi, s_{j} \models T$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $\geq i$
$\Longrightarrow \pi, s_{j}=F C$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{k} \models C$ for each $s_{i} \in \pi$, for some $s_{j} \in \pi$ s.t. $j \geq i$ and for
some $k \geq j$
$\Longrightarrow \pi, s_{k}=C$ for each $s_{i} \in \pi$ and for some $k \geq i$
$\Longrightarrow \pi \models$ GFC
$\Longrightarrow M \models$ GF $T$


## Example: $\mathbf{G}(T \rightarrow \mathbf{F C})$ vs. $\mathbf{G F} T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}$ ?
- YES: if $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$, then $M \models \mathbf{G F} T \rightarrow \mathbf{G F} C$ !
- let $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$. let $\pi \in M$ s.t. $\pi \models$ GF $T$

$\square$
$\Longrightarrow \pi, s_{k} \models \mathcal{C}$ for each $s_{i} \in \pi$ and for some $k \geq i$
$\Longrightarrow \pi \vDash$ GFC
$\Longrightarrow M \models$ GF $T \rightarrow$ GFC.


## Example: $\mathbf{G}(T \rightarrow \mathbf{F C})$ vs. GF $T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}$ ?
- YES: if $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$, then $M \models \mathbf{G F} T \rightarrow \mathbf{G F} C$ !
- let $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$. let $\pi \in M$ s.t. $\pi \models$ GF $T$
$\Longrightarrow \pi, s_{i} \models \mathbf{F} T$ for each $s_{i} \in \pi$
$\Longrightarrow \pi, s_{j} \models F C$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $\geq i$
$\Longrightarrow \pi, s_{k} \models C$ for each $s_{i} \in \pi$, for some $s_{j} \in \pi$ s.t. $j \geq i$ and for
$\Longrightarrow \pi, s_{k} \models C$ for each $s_{i} \in \pi$ and for some $k \geq i$
$\Longrightarrow \pi \models$ GFC
$\Longrightarrow M \models$ GF $T \rightarrow$ GFC.


## Example: $\mathbf{G}(T \rightarrow \mathbf{F C})$ vs. GF $T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}$ ?
- YES: if $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$, then $M \models \mathbf{G F} T \rightarrow \mathbf{G F} C$ !
- let $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$. let $\pi \in M$ s.t. $\pi \models$ GF $T$
$\Longrightarrow \pi, s_{i} \models \mathbf{F} T$ for each $s_{i} \in \pi$
$\Longrightarrow \pi, s_{j} \models T$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$



## Example: $\mathbf{G}(T \rightarrow \mathbf{F C})$ vs. $\mathbf{G F} T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}$ ?
- YES: if $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$, then $M \models \mathbf{G F} T \rightarrow \mathbf{G F} C$ !
- let $M=\mathbf{G}(T \rightarrow \mathbf{F C})$. let $\pi \in M$ s.t. $\pi \models$ GF $T$
$\Longrightarrow \pi, s_{i} \models \mathbf{F} T$ for each $s_{i} \in \pi$
$\Longrightarrow \pi, s_{j} \models T$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{j} \models F C$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$



## Example: $\mathbf{G}(T \rightarrow \mathbf{F C})$ vs. $\mathbf{G F} T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}$ ?
- YES: if $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$, then $M \models \mathbf{G F} T \rightarrow \mathbf{G F} C$ !
- let $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$.
let $\pi \in M$ s.t. $\pi \models$ GF $T$
$\Longrightarrow \pi, s_{i} \models \mathbf{F} T$ for each $s_{i} \in \pi$
$\Longrightarrow \pi, s_{j} \models T$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{j} \models F C$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{k} \models C$ for each $s_{i} \in \pi$, for some $s_{j} \in \pi$ s.t. $j \geq i$ and for some $k \geq j$



## Example: $\mathbf{G}(T \rightarrow \mathbf{F C})$ vs. $\mathbf{G F} T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}$ ?
- YES: if $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$, then $M \models \mathbf{G F} T \rightarrow \mathbf{G F} C$ !
- let $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$.
let $\pi \in M$ s.t. $\pi \models$ GF $T$
$\Longrightarrow \pi, s_{i} \models \mathbf{F} T$ for each $s_{i} \in \pi$
$\Longrightarrow \pi, s_{j} \models T$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{j} \models F C$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{k} \models C$ for each $s_{i} \in \pi$, for some $s_{j} \in \pi$ s.t. $j \geq i$ and for
some $k \geq j$
$\Longrightarrow \pi, s_{k} \models C$ for each $s_{i} \in \pi$ and for some $k \geq i$


## Example: $\mathbf{G}(T \rightarrow \mathbf{F C})$ vs. $\mathbf{G F} T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}$ ?
- YES: if $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$, then $M \models \mathbf{G F} T \rightarrow \mathbf{G F} C$ !
- let $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$.
let $\pi \in M$ s.t. $\pi \models$ GF $T$
$\Longrightarrow \pi, s_{i} \models \mathbf{F} T$ for each $s_{i} \in \pi$
$\Longrightarrow \pi, s_{j} \models T$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{j} \models F C$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{k} \models C$ for each $s_{i} \in \pi$, for some $s_{j} \in \pi$ s.t. $j \geq i$ and for
some $k \geq j$
$\Longrightarrow \pi, s_{k} \models C$ for each $s_{i} \in \pi$ and for some $k \geq i$
$\Longrightarrow \pi \vDash$ GFC


## Example: $\mathbf{G}(T \rightarrow \mathbf{F C})$ vs. $\mathbf{G F} T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}$ ?
- YES: if $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$, then $M \models \mathbf{G F} T \rightarrow \mathbf{G F} C$ !
- let $M=\mathbf{G}(T \rightarrow \mathbf{F C})$. let $\pi \in M$ s.t. $\pi \models$ GF $T$
$\Longrightarrow \pi, s_{i} \models \mathbf{F} T$ for each $s_{i} \in \pi$
$\Longrightarrow \pi, s_{j} \models T$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{j} \models F C$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{k} \models C$ for each $s_{i} \in \pi$, for some $s_{j} \in \pi$ s.t. $j \geq i$ and for
some $k \geq j$
$\Longrightarrow \pi, s_{k} \models C$ for each $s_{i} \in \pi$ and for some $k \geq i$
$\Longrightarrow \pi \vDash$ GFC
$\Longrightarrow M \vDash$ GF $T \rightarrow \mathbf{G F} C$.


## Example: $\mathbf{G}(T \rightarrow \mathbf{F C})$ vs. GF $T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F} C) \Longleftarrow \mathbf{G F} T \rightarrow \mathbf{G F} C$ ?
- Counter example:
- GFT $\rightarrow$ GFC is satisfied
- $\mathbf{G}(T \rightarrow \mathbf{F} C)$ is not satisfied


## Example: $\mathbf{G}(T \rightarrow \mathbf{F C})$ vs. GF $T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F} C) \Longleftarrow \mathbf{G F} T \rightarrow \mathbf{G F} C$ ?
- NO!.
- Counter example:
- GFT $\rightarrow$ GFC is satisfied
- $\mathbf{G}(T \rightarrow \mathbf{F} C)$ is not satisfied


## Example: $\mathbf{G}(T \rightarrow \mathbf{F C})$ vs. $\mathbf{G F} T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longleftarrow \mathbf{G F} T \rightarrow \mathbf{G F} C$ ?
- NO!.
- Counter example:

- GF $T \rightarrow$ GFC is satisfied
- $\mathbf{G}(T \rightarrow \mathbf{F C})$ is not satisfied
(Counter-example proposed by the student Vaishak Belle, 2008)
"You have no respect for logic. (...)
I have no respect for those who have no respect for logic." https://www.youtube.com/watch?v=uGstM8QMCjQ



## Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems
- Properties
(2) Linear Temporal Logic - LTL
- Generalities on Temporal Logics
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples

(3) Exercises

## Exercise: LTL Model Checking (path)

Consider the following path $\pi$ :


For each of the following facts, say if it is true of false in LTL.
(a) $\pi, s_{0} \models \mathbf{G F} q$
(b) $\pi, s_{0} \models \mathbf{F G}(q \leftrightarrow \neg p)$
(c) $\pi, s_{2} \models \mathbf{G} p$
(d) $\pi, s_{2} \models p \mathbf{U} q$

## Exercise: LTL Model Checking (path)

Consider the following path $\pi$ :


For each of the following facts, say if it is true of false in LTL.
(a) $\pi, s_{0} \models \mathbf{G F} q$
[ Solution: true ]
(b) $\pi, s_{0} \models \mathbf{F G}(q \leftrightarrow \neg p)$
(c) $\pi, s_{2} \models \mathbf{G} p$
(d) $\pi, s_{2} \models p \mathbf{U} q$

## Exercise: LTL Model Checking (path)

Consider the following path $\pi$ :


For each of the following facts, say if it is true of false in LTL.
(a) $\pi, s_{0} \models \mathbf{G F} q$
[ Solution: true ]
(b) $\pi, s_{0} \models \mathbf{F G}(q \leftrightarrow \neg p)$
[ Solution: true ]
(c) $\pi, \boldsymbol{s}_{2} \models \mathbf{G} p$
(d) $\pi, s_{2} \models p \mathbf{U} q$

## Exercise: LTL Model Checking (path)

Consider the following path $\pi$ :


For each of the following facts, say if it is true of false in LTL.
(a) $\pi, s_{0} \models \mathbf{G F} q$
[ Solution: true ]
(b) $\pi, s_{0} \models \mathbf{F G}(q \leftrightarrow \neg p)$
[ Solution: true ]
(c) $\pi, \boldsymbol{s}_{2} \models \mathbf{G} p$
[ Solution: false ]
(d) $\pi, s_{2} \models p \mathbf{U} q$

## Exercise: LTL Model Checking (path)

Consider the following path $\pi$ :


For each of the following facts, say if it is true of false in LTL.
(a) $\pi, s_{0} \models \mathbf{G F} q$
[ Solution: true ]
(b) $\pi, s_{0} \models \mathbf{F G}(q \leftrightarrow \neg p)$
[ Solution: true ]
(c) $\pi, s_{2} \models \mathbf{G} p$
[ Solution: false ]
(d) $\pi, s_{2} \models p \mathbf{U} q$ [ Solution: true ]

## Ex: LTL Model Checking

Consider the following Kripke Model $M$ :


For each of the following facts, say if it is true or false in LTL.
(a) $M \models(p \cup q)$
(b) $M \models \mathbf{G}(\neg p \rightarrow F \neg q)$
(c) $M \models \mathbf{G} p \rightarrow \mathbf{G} q$
(d) $M \models$ FG $p$

## Ex: LTL Model Checking

Consider the following Kripke Model $M$ :


For each of the following facts, say if it is true or false in LTL.
(a) $M \models(p \cup q)$
[ Solution: true ]
(b) $M \models \mathbf{G}(\neg p \rightarrow F \neg q)$
(c) $M \models \mathbf{G} p \rightarrow \mathbf{G} q$
(d) $M \models$ FG $p$

## Ex: LTL Model Checking

Consider the following Kripke Model $M$ :


For each of the following facts, say if it is true or false in LTL.
(a) $M \models(p \mathbf{U} q)$
[ Solution: true ]
(b) $M \models \mathbf{G}(\neg p \rightarrow F \neg q)$
[ Solution: true ]
(c) $M \models \mathbf{G} p \rightarrow \mathbf{G} q$
(d) $M \models$ FG $p$

## Ex: LTL Model Checking

Consider the following Kripke Model $M$ :


For each of the following facts, say if it is true or false in LTL.
(a) $M \models(p \mathbf{U} q)$
[ Solution: true ]
(b) $M \models \mathbf{G}(\neg p \rightarrow F \neg q)$
[ Solution: true ]
(c) $M \models \mathbf{G} p \rightarrow \mathbf{G} q$
[ Solution: true ]
(d) $M \models$ FG $p$

## Ex: LTL Model Checking

Consider the following Kripke Model $M$ :


For each of the following facts, say if it is true or false in LTL.
(a) $M \models(p \mathbf{U} q)$
[ Solution: true ]
(b) $M \models \mathbf{G}(\neg p \rightarrow F \neg q)$
[ Solution: true ]
(c) $M \models \mathbf{G} p \rightarrow \mathbf{G} q$
[ Solution: true ]
(d) $M \models$ FG $p$
[ Solution: false ]


[^0]:    Synchronous composition is associative

[^1]:    Remark
    Tipically symbolic description are much more compact (and intuitive) than the explicit representation of the Kripke model.

