
Formal Methods:
Module I: Automated Reasoning
Ch. 04: Linear Temporal Logic

Roberto Sebastiani

DISI, Università di Trento, Italy – roberto.sebastiani@unitn.it
URL: http://disi.unitn.it/rseba/DIDATTICA/fm2021/

Teaching assistant: Giuseppe Spallitta – giuseppe.spallitta@unitn.it

M.S. in Computer Science, Mathematics, & Artificial Intelligence Systems
Academic year 2020-2021

last update: Tuesday 13th April, 2021, 13:56

Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti,
M. Di Natale, P. Pandya, M. Pistore, M. Roveri, C. Tinelli, and S.Tonetta, who detain its copyright. Some exampes

displayed in these slides are taken from [Clarke, Grunberg & Peled, “Model Checking”, MIT Press], and their copyright is
detained by the authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this

material is strictly forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be
displayed in public without containing this copyright notice.

1 / 61

roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/fm2021/
giuseppe.spallitta@unitn.it

Outline

1 Transition Systems as Kripke Models
Kripke Models
Languages for Transition Systems
Properties

2 Linear Temporal Logic – LTL
Generalities on Temporal Logics
LTL: Syntax and Semantics
Some LTL Model Checking Examples

3 Exercises

2 / 61

Outline

1 Transition Systems as Kripke Models
Kripke Models
Languages for Transition Systems
Properties

2 Linear Temporal Logic – LTL
Generalities on Temporal Logics
LTL: Syntax and Semantics
Some LTL Model Checking Examples

3 Exercises

3 / 61

Outline

1 Transition Systems as Kripke Models
Kripke Models
Languages for Transition Systems
Properties

2 Linear Temporal Logic – LTL
Generalities on Temporal Logics
LTL: Syntax and Semantics
Some LTL Model Checking Examples

3 Exercises

4 / 61

Kripke Models

Theoretical role: the semantic framework for a variety of logics
Modal Logics
Description Logics
Temporal Logics
...

Practical role: used to describe reactive systems:
nonterminating systems with infinite behaviors
(e.g. communication protocols, hardware circuits);
represent the dynamic evolution of modeled systems;
a state includes values to state variables, program counters,
content of communication channels.
can be animated and validated before their actual implementation

5 / 61

Kripke Model: Formal Definition

A Kripke model 〈S, I,R,AP,L〉 consists of
a finite set of states S;
a set of initial states I ⊆ S;
a set of transitions R ⊆ S × S;
a set of atomic propositions AP;
a labeling function L : S 7−→ 2AP .

We assume R total: for every state s, there
exists (at least) one state s′ s.t. (s, s′) ∈ R
Sometimes we use variables with discrete
bounded values vi ∈ {d1, ...,dk} (can be
encoded with dlog(k)e Boolean variables)

p

q

1

2

3

4

p

Remark
Unlike with other types of Automata (e.g., Buechi), in Kripke models
the values of all variables are always assigned in each state.

6 / 61

Kripke Structures: Two Alternative Representations:

each state identifies univocally the values of the atomic
propositions which hold there
each state is labeled by a bit vector

{ } {q}

{p} {p, q}

0 0 0 1

1 11 0

7 / 61

Example: a Kripke model for mutual exclusion

N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical, T = trying, C = critical User 1 User 2

8 / 61

Path in a Kripke Model

A path in a Kripke model M is an infinite sequence of states

π = s0, s1, s2, . . . ∈ Sω

such that s0 ∈ I and (si , si+1) ∈ R.

N1, N2

turn=0

N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

turn=1

turn=1 turn=1

turn=1

T1, T2

C1, T2

C1, N2

T1, N2

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

A state s is reachable in M if there is a path from the initial states to s.

9 / 61

Composing Kripke Models

Complex Kripke Models are tipically obtained by composition of
smaller ones
Components can be combined via

asynchronous composition.
synchronous composition,

10 / 61

Asynchronous Composition

Interleaving of evolution of components.
At each time instant, one component is selected to perform a
transition.

x = 1x = 0
y = b y = b

x = 0
y = a

x = 1
y = a

y = by = a

x = 1x = 0
asynchronous

composition

Typical example: communication protocols.

11 / 61

Asynchronous Composition/Product: formal definition
Asynchronous product of Kripke models

Let M1
def
= 〈S1, I1,R1,AP1,L1〉, M2

def
= 〈S2, I2,R2,AP2,L2〉. Then the

asynchronous product M def
= M1||M2 is M def

= 〈S, I,R,AP,L〉, where
S ⊆ S1 × S2 s.t.,
∀〈s1, s2〉 ∈ S, ∀l ∈ AP1 ∩ AP2, l ∈ L1(s1) iff l ∈ L2(s2)

I ⊆ I1 × I2 s.t. I ⊆ S
R(〈s1, s2〉, 〈t1, t2〉) iff (R1(s1, t1) and s2 = t2) or

(s1 = t1 and R2(s2, t2))
AP = AP1 ∪ AP2

L : S 7−→ 2AP s.t. L(〈s1, s2〉)
def
= L1(s1) ∪ L2(s2).

Note: combined states must agree on the values of Boolean
variables.

Asynchronous composition is associative:
(...(M1||M2)||...)||Mn) = (M1||(M2||(...||Mn)...) = M1||M2||...||Mn

12 / 61

Asynchronous Composition: Example 1

1

3 4

2 1

3 4

2A A

AA

B B

BB

C C

CC

A B

C

1

3 4

2

1

3 4

2

13 / 61

Asynchronous Composition: Example 2

1

3 4

2 A A

A B

C C

C

A B

C

4

1

3

2

x=0 x=0

x=0

x=0

x=0

x=1

x=1

1

3

2

non−reachable state

x=0 x=0

x=0

x=0

x=0x=0

x=1

14 / 61

Asynchronous Composition: Example 2

1

3 4

2 A A

A

C C

C

A B

C

1

3

2

x=0 x=0

x=0

x=0

x=0

x=1

x=1

1

3

2

x=0 x=0

x=0

x=0

x=0x=0

.

15 / 61

Synchronous Composition

Components evolve in parallel.
At each time instant, every component performs a transition.

y = by = a

x = 1x = 0
synchronous

composition

x = 0
y = a

x = 1x = 0

x = 1
y = a

y = b y = b

Typical example: sequential hardware circuits.

16 / 61

Synchronous Composition/Product: formal definition

Synchronous product of Kripke models

Let M1
def
= 〈S1, I1,R1,AP1,L1〉, M2

def
= 〈S2, I2,R2,AP2,L2〉. Then the

synchronous product M def
= M1 ×M2 is M def

= 〈S, I,R,AP,L〉, where
S ⊆ S1 × S2 s.t.,
∀〈s1, s2〉 ∈ S, ∀l ∈ AP1 ∩ AP2, l ∈ L1(s1) iff l ∈ L2(s2)

I ⊆ I1 × I2 s.t. I ⊆ S
R(〈s1, s2〉, 〈t1, t2〉) iff (R1(s1, t1) and R2(s2, t2))

AP = AP1 ∪ AP2

L : S 7−→ 2AP s.t. L(〈s1, s2〉)
def
= L1(s1) ∪ L2(s2).

Note: combined states must agree on the values of Boolean
variables.

Synchronous composition is associative:
(...(M1×M2)×...)×Mn) = (M1×(M2×(...×Mn)...) = M1×M2×...×Mn

17 / 61

Synchronous Composition: Example 1

1

3 4

2

A B

C

A A

AA

BB

BB

C C

CC

1

3 4

2 1

3 4

2

1

3 4

2

18 / 61

Synchronous Composition: Example 2

1

3 4

2

A B

C

A A

A B

C C

C

1

3

2

4

1

3

2

x=0 x=0

x=0

x=0

x=0

x=1

x=1

x=1

x=0 x=0

x=0

x=0 x=0

x=0

NON−reachable state

19 / 61

Synchronous Composition: Example 2 (cont.)

1

3 4

2

A B

C

A

A B

C C

C

1

3 4

1

3

2

x=0 x=0

x=0

x=0

x=0

x=1

x=1

x=1

x=0

x=0

x=0 x=0

x=0

20 / 61

Outline

1 Transition Systems as Kripke Models
Kripke Models
Languages for Transition Systems
Properties

2 Linear Temporal Logic – LTL
Generalities on Temporal Logics
LTL: Syntax and Semantics
Some LTL Model Checking Examples

3 Exercises

21 / 61

Description languages for Kripke Model

Most often a Kripke model is not given explicitly (states, arcs),...
... rather it is usually presented in a structured language
(e.g., SMV, PROMELA, StateCharts, VHDL, ...)

even a piece of SW can be seen as a Kripke model!
Each component is presented by specifying

state variables: determine the set of atomic propositions AP, the
state space S and the labeling L.
initial values of variables V : determine the set of initial states I.

described as a relation I(V0) in terms of state variables at step 0
instructions: determine the transition relation R.

described as a relation R(V ,V ′) in terms of current state variables
V and next state variables V ′

Aka as symbolic representation of a Kripke model

Remark
Tipically symbolic description are much more compact (and intuitive)
than the explicit representation of the Kripke model.

22 / 61

The SMV language

The input language of the SMV M.C. (and NUSMV)
Booleans, enumerative and bounded integers as data types
now enriched with other constructs, e.g. in NuXMV language
An SMV program consists of:

Declarations of the state variables (e.g., b0);
Assignments that define the initial states
(e.g., init(b0) := 0).
Assignments that define the transition relation
(e.g., next(b0) := !b0).

Allows for both synchronous and asyncronous composition of
modules (though synchronous interaction more natural)

23 / 61

Example: a Simple Counter Circuit
MODULE main
VAR
v0 : boolean;
v1 : boolean;
out : 0..3;

ASSIGN
init(v0) := 0;
next(v0) := !v0;

init(v1) := 0;
next(v1) := (v0 xor v1);

out := toint(v0) + 2*toint(v1);

v
0

v1

v1 v0 v ′
1 v ′

0

0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

00

11

01

10

I(V) = (¬v0 ∧ ¬v1)
R(V ,V ′) = (v ′

0 ↔ ¬v0) ∧ (v ′
1 ↔ v0

⊕
v1)

24 / 61

Standard Programming Languages

Standard programming languages are typically sequential
=⇒ Transition relation defined in terms also of the program counter

Numbers & values Booleanized

...
10. i = 0;
11. acc = 0.0;
12. while (i<dim) {
13. acc += V[i];
14. i++;
15. }
...

....
(pc = 10) → ((i ′ = 0) ∧ (pc′ = 11))
(pc = 11) → ((acc′ = 0.0) ∧ (pc′ = 12))
(pc = 12) → ((i < dim) → (pc′ = 13))
(pc = 12) → (¬(i < dim) → (pc′ = 16))
(pc = 13) → ((acc′ = acc + read(V , i)) ∧ (pc′ = 14))
(pc = 14) → (i ′ = i + 1) ∧ (pc′ = 15))
(pc = 15) → (pc′ = 16))
...

25 / 61

Outline

1 Transition Systems as Kripke Models
Kripke Models
Languages for Transition Systems
Properties

2 Linear Temporal Logic – LTL
Generalities on Temporal Logics
LTL: Syntax and Semantics
Some LTL Model Checking Examples

3 Exercises

26 / 61

Safety Properties

Bad events never happen
deadlock: two processes waiting for input from each other,
the system is unable to perform a transition.
no reachable state satisfies a “bad” condition,
e.g. never two processes in critical section at the same time

can be refuted by a finite behaviour
Ex.: it is never the case that p.

p

27 / 61

Liveness Properties

Something desirable will eventually happen
sooner or later this will happen

can be refuted by infinite behaviour

−p −p
−p

−p −p
−p

−p

−p

an infinite behaviour can be typically presented as a loop

28 / 61

Fairness Properties

Something desirable will happen infinitely often
important subcase of liveness
whenever a subroutine takes control, it will always return it
(sooner or later)

can be refuted by infinite behaviour
a subroutine takes control and never returns it

p

p

p

p

p

p

p

p

an infinite behaviour can be typically presented as a loop

29 / 61

Outline

1 Transition Systems as Kripke Models
Kripke Models
Languages for Transition Systems
Properties

2 Linear Temporal Logic – LTL
Generalities on Temporal Logics
LTL: Syntax and Semantics
Some LTL Model Checking Examples

3 Exercises

30 / 61

Outline

1 Transition Systems as Kripke Models
Kripke Models
Languages for Transition Systems
Properties

2 Linear Temporal Logic – LTL
Generalities on Temporal Logics
LTL: Syntax and Semantics
Some LTL Model Checking Examples

3 Exercises

31 / 61

Computation tree vs. computation paths

Consider the following Kripke structure:

done!done

Its execution can be seen as:
an infinite set of
computation paths

done done done!done

!done

!done

!done

donedone

done!done !done

!done !done !done

!done

.....

an infinite
computation tree

done

done

done done done

done

!done

!done

!done

!done

32 / 61

Temporal Logics

Express properties of “Reactive Systems”
nonterminating behaviours,
without explicit reference to time.

Linear Temporal Logic (LTL)
interpreted over each path of the Kripke structure
linear model of time
temporal operators
“Medieval”: “since birth, one’s destiny is set”.

Computation Tree Logic (CTL)
interpreted over computation tree of Kripke model
branching model of time
temporal operators plus path quantifiers
“Humanistic”: “one makes his/her own destiny step-by-step”.

33 / 61

Outline

1 Transition Systems as Kripke Models
Kripke Models
Languages for Transition Systems
Properties

2 Linear Temporal Logic – LTL
Generalities on Temporal Logics
LTL: Syntax and Semantics
Some LTL Model Checking Examples

3 Exercises

34 / 61

Linear Temporal Logic (LTL): Syntax

An atomic proposition is a LTL formula;
if ϕ1 and ϕ2 are LTL formulae, then ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2,
ϕ1 → ϕ2, ϕ1 ↔ ϕ2, ϕ1 ⊕ ϕ2 are LTL formulae;
if ϕ1 and ϕ2 are LTL formulae, then Xϕ1, ϕ1Uϕ2, Gϕ1, Fϕ1 are
LTL formulae, where X, G, F, U are the “next”, “globally”,
“eventually”,“until” temporal operators respectively.
Another operator R “releases” (the dual of U) is used sometimes.

35 / 61

LTL semantics: intuitions

LTL is given by the standard boolean logic enhanced with the
following temporal operators, which operate through paths
〈s0, s1, ..., sk , ...〉:

“Next” X: Xϕ is true in st iff ϕ is true in st+1

“Finally” (or “eventually”) F: Fϕ is true in st iff ϕ is true in some
st ′ with t ′ ≥ t
“Globally” (or “henceforth”) G: Gϕ is true in st iff ϕ is true in all
st ′ with t ′ ≥ t
“Until” U: ϕUψ is true in st iff, for some state st ′ s.t t ′ ≥ t :

ψ is true in st′ and
ϕ is true in all states st′′ s.t. t ≤ t ′′ < t ′

“Releases” R: ϕRψ is true in st iff, for all states st ′ s.t. t ′ ≥ t :
ψ is true or
ϕ is true in some states st′′ with t ≤ t ′′ < t ′

“ψ can become false only if ϕ becomes true first"

36 / 61

LTL semantics: intuitions

Pfinally

F P

Pglobally

PG

PX

Pnext P until q

P U q

37 / 61

LTL: Some Noteworthy Examples

Safety: “it never happens that a train is arriving and the bar is up”

G(¬(train_arriving ∧ bar_up))

Liveness: “if input, then eventually output”

G(input→ Foutput)

Releases: “the device is not working if you don’t first repair it”

(repair_device R ¬working_device)

Fairness: “infinitely often send ”

GFsend

Strong fairness: “infinitely often send implies infinitely often recv.”

GFsend→ GFrecv 38 / 61

LTL Formal Semantics

π, si |= a iff a ∈ L(si)
π, si |= ¬ϕ iff π, si 6|= ϕ
π, si |= ϕ ∧ ψ iff π, si |= ϕ and

π, si |= ψ
π, si |= Xϕ iff π, si+1 |= ϕ
π, si |= Fϕ iff for some j ≥ i : π, sj |= ϕ
π, si |= Gϕ iff for all j ≥ i : π, sj |= ϕ
π, si |= ϕUψ iff for some j ≥ i : (π, sj |= ψ and

for all k s.t . i ≤ k < j : π, sk |= ϕ)
π, si |= ϕRψ iff for all j ≥ i : (π, sj |= ψ or

for some k s.t . i ≤ k < j : π, sk |= ϕ)

39 / 61

LTL Formal Semantics (cont.)

LTL properties are evaluated over paths, i.e., over infinite, linear
sequences of states: π = s0 → s1 → · · · → st → st+1 → · · ·
Given an infinite sequence π = s0, s1, s2, . . .

π, si |= φ if φ is true in state si of π.
π |= φ if φ is true in the initial state s0 of π.

The LTL model checking problemM |= φ

check if π |= φ for every path π of the Kripke structureM
(e.g., φ = Fdone)

done!done
done done done!done

!done

!done

!done

donedone

done!done !done

!done !done !done

!done

.....

40 / 61

The LTL model checking problemM |= φ: remark

The LTL model checking problemM |= φ

π |= φ for every path π of the Kripke structureM

Important Remark

M 6|= φ 6=⇒M |= ¬φ (!!)
E.g. if φ is a LTL formula and two paths π1 and π2 are s.t. π1 |= φ
and π2 |= ¬φ.

41 / 61

Example: M 6|= φ 6=⇒M |= ¬φ

Let π1
def
= {s1}ω, π2

def
= {s2}ω.

M 6|= Gp, in fact:
π1 6|= Gp
π2 |= Gp

M 6|= ¬Gp, in fact:
π1 |= ¬Gp
π2 6|= ¬Gp

pq
s0

¬p¬q
s1

p¬q
s2

42 / 61

Syntactic properties of LTL operators

ϕ1 ∨ ϕ2 ⇐⇒ ¬(¬ϕ1 ∧ ¬ϕ2)
...
F ϕ1 ⇐⇒ >Uϕ1
G ϕ1 ⇐⇒ ⊥Rϕ1
Fϕ1 ⇐⇒ ¬G¬ϕ1
Gϕ1 ⇐⇒ ¬F¬ϕ1
¬Xϕ1 ⇐⇒ X¬ϕ1
ϕ1Rϕ2 ⇐⇒ ¬(¬ϕ1U¬ϕ2)
ϕ1Uϕ2 ⇐⇒ ¬(¬ϕ1R¬ϕ2)

Note
LTL can be defined in terms of ∧, ¬, X, U only

Exercise
Prove that ϕ1Rϕ2 ⇐⇒ Gϕ2 ∨ ϕ2U(ϕ1 ∧ ϕ2)

43 / 61

Proof of ϕRψ ⇔ (Gψ ∨ ψU(ϕ ∧ ψ))

[Solution proposed by the student Samuel Valentini, 2016]

(All state indexes below are implicitly assumed to be ≥ 0.)
⇒: Let π be s.t. π, s0 |= ϕRψ

If ∀j , π, sj |= ψ, then π, s0 |= Gψ.
Otherwise, let sk be the first state s.t. π, sk 6|= ψ.
Since π, s0 |= ϕRψ, then k > 0 and exists k ′ < k s.t. π,Sk ′ |= ϕ
By construction, π, sk ′ |= ϕ ∧ ψ and, for every w < k ′, π, sw |= ψ,
so that π, s0 |= ψU(ϕ ∧ ψ).
Thus, π, s0 |= Gψ ∨ ψU(ϕ ∧ ψ)

⇐: Let π be s.t. π, s0 |= Gψ ∨ ψU(ϕ ∧ ψ)
If π, s0 |= Gψ, then ∀j , π, sj |= ψ, so that π, s0 |= ϕRψ.
Otherwise, π, s0 |= ψU(ϕ ∧ ψ).
Let sk be the first state s.t. π, sk 6|= ψ.
by construction, ∃k ′ such that π,Sk ′ |= ϕ ∧ ψ
by the definition of k , we have that k ′ < k and ∀w < k , π,Sw |= ψ.
Thus π, s0 |= ϕRψ

44 / 61

Strength of LTL operators

Gϕ |= ϕ |= Fϕ
Gϕ |= Xϕ |= Fϕ
Gϕ |= XX...Xϕ |= Fϕ
ϕUψ |= Fψ
Gψ |= ϕRψ

45 / 61

LTL tableaux rules

Let ϕ1 and ϕ2 be LTL formulae:

Fϕ1 ⇐⇒ (ϕ1 ∨ XFϕ1)
Gϕ1 ⇐⇒ (ϕ1 ∧ XGϕ1)

ϕ1Uϕ2 ⇐⇒ (ϕ2 ∨ (ϕ1 ∧ X(ϕ1Uϕ2)))
ϕ1Rϕ2 ⇐⇒ (ϕ2 ∧ (ϕ1 ∨ X(ϕ1Rϕ2)))

If applied recursively, rewrite an LTL formula in terms of atomic
and X-formulas:

(pUq) ∧ (G¬p) =⇒ (q ∨ (p ∧ X(pUq))) ∧ (¬p ∧ XG¬p)

46 / 61

Tableaux Rules: a Quote

“After all... tomorrow is another day."
[Scarlett O’Hara, “Gone with the Wind”]

47 / 61

Outline

1 Transition Systems as Kripke Models
Kripke Models
Languages for Transition Systems
Properties

2 Linear Temporal Logic – LTL
Generalities on Temporal Logics
LTL: Syntax and Semantics
Some LTL Model Checking Examples

3 Exercises

48 / 61

Example 1: mutual exclusion (safety)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= G¬(C1 ∧ C2) ?

YES: There is no reachable state in which (C1 ∧ C2) holds!

49 / 61

Example 2: liveness

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= FC1 ?

NO: there is an infinite cyclic solution in which C1 never holds!

50 / 61

Example 3: liveness

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= G(T1 → FC1) ?

YES: every path starting from each state where T1 holds passes
through a state where C1 holds.

51 / 61

Example 4: fairness

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= GFC1 ?

NO: e.g., in the initial state, there is an infinite cyclic solution in which
C1 never holds!

52 / 61

Example 5: strong fairness

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= GFT1 → GFC1 ?

YES: every path which visits T1 infinitely often also visits C1 infinitely
often (see liveness property of previous example).

53 / 61

Example 6: Releases

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= T1R¬C1 ?

YES: C1 in paths only strictly after T1 has occured.

54 / 61

Example 7: XF

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical, T = trying, C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= XF(turn = 0) ?

NO: a counter-example is the∞-shaped loop:
(N1,N2), {(T 1,N2), (C1,N2), (C1,T 2), (N1,T 2), (N1,C2), (T 1,C2)}ω

55 / 61

Example: G(T → FC) vs. GFT → GFC

G(T → FC) =⇒ GFT → GFC ?
YES: if M |= G(T → FC), then M |= GFT → GFC !
let M |= G(T → FC).
let π ∈ M s.t. π |= GFT
=⇒ π, si |= FT for each si ∈ π
=⇒ π, sj |= T for each si ∈ π and for some sj ∈ π s.t .j ≥ i
=⇒ π, sj |= FC for each si ∈ π and for some sj ∈ π s.t .j ≥ i
=⇒ π, sk |= C for each si ∈ π, for some sj ∈ π s.t .j ≥ i and for
some k ≥ j
=⇒ π, sk |= C for each si ∈ π and for some k ≥ i
=⇒ π |= GFC
=⇒ M |= GFT → GFC.

56 / 61

Example: G(T → FC) vs. GFT → GFC

G(T → FC) ⇐= GFT → GFC ?
NO!.
Counter example:

 ¬C, ¬T¬C, T

GFT → GFC is satisfied
G(T → FC) is not satisfied

(Counter-example proposed by the student Vaishak Belle, 2008)

57 / 61

“You have no respect for logic. (...)
I have no respect for those who have no respect for logic.”
https://www.youtube.com/watch?v=uGstM8QMCjQ

(Arnold Schwarzenegger in “Twins”)

58 / 61

https://www.youtube.com/watch?v=uGstM8QMCjQ

Outline

1 Transition Systems as Kripke Models
Kripke Models
Languages for Transition Systems
Properties

2 Linear Temporal Logic – LTL
Generalities on Temporal Logics
LTL: Syntax and Semantics
Some LTL Model Checking Examples

3 Exercises

59 / 61

Exercise: LTL Model Checking (path)

Consider the following path π:

¬pq
s1

p¬q
s2

p¬q
s3

p¬q
s4

¬p¬q
s0

For each of the following facts, say if it is true of false in LTL.

(a) π, s0 |= GFq
[Solution: true]

(b) π, s0 |= FG(q ↔ ¬p)
[Solution: true]

(c) π, s2 |= Gp
[Solution: false]

(d) π, s2 |= pUq
[Solution: true]

60 / 61

Ex: LTL Model Checking

Consider the following Kripke Model M:

¬pq
s2

p¬q
s1

pq
s0

For each of the following facts, say if it is true or false in LTL.

(a) M |= (pUq)
[Solution: true]

(b) M |= G(¬p → F¬q)
[Solution: true]

(c) M |= Gp → Gq
[Solution: true]

(d) M |= FGp
[Solution: false]

61 / 61

	Transition Systems as Kripke Models
	Kripke Models
	Languages for Transition Systems
	Properties

	Linear Temporal Logic – LTL
	Generalities on Temporal Logics
	LTL: Syntax and Semantics
	Some LTL Model Checking Examples

	Exercises

