Course Formal Methods Module I: Automated Reasoning Ch. 03: Satisfiability Modulo Theories

Roberto Sebastiani

DISI, Università di Trento, Italy - roberto.sebastiani@unitn.it URL:http://disi.unitn.it/rseba/DIDATTICA/fm2021/ Teaching assistant: Giuseppe Spallitta - giuseppe.spallitta@unitn.it

M.S. in Computer Science, Mathematics, & Artificial Intelligence Systems Academic year 2020-2021

last update: Tuesday 13th April, 2021

Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti, M. Di Natale, P. Pandya, M. Pistore, M. Roveri, and S. Tonetta, who detain its copyright. Some exampes displayed in these slides are taken from [Clarke, Grunberg & Peled, "Model Checking", MIT Press], and their copyright is detained by the authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this material is strictly forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be displayed in public without containing this copyright notice.

Introduction

- What is a Theory?
- Satisfiability Modulo Theories
- Motivations and Goals of SMT
- Efficient SMT solving
 - Combining SAT with Theory Solvers
 - Theory Solvers for Theories of Interest (hints)
 - SMT for Combinations of Theories
- Beyond Solving: Advanced SMT Functionalities
 - Proofs and Unsatisfiable Cores
 - Interpolants
 - All-SMT & Predicate Abstraction (hints)
 - SMT with Optimization (Optimization Modulo Theories)

Introduction

- What is a Theory?
- Satisfiability Modulo Theories
- Motivations and Goals of SMT

Efficient SMT solving

- Combining SAT with Theory Solvers
- Theory Solvers for Theories of Interest (hints)
- SMT for Combinations of Theories
- Beyond Solving: Advanced SMT Functionalities
 - Proofs and Unsatisfiable Cores
 - Interpolants
 - All-SMT & Predicate Abstraction (hints)
 - SMT with Optimization (Optimization Modulo Theories)

Introduction

• What is a Theory?

- Satisfiability Modulo Theories
- Motivations and Goals of SMT

Efficient SMT solving

- Combining SAT with Theory Solvers
- Theory Solvers for Theories of Interest (hints)
- SMT for Combinations of Theories
- Beyond Solving: Advanced SMT Functionalities
 - Proofs and Unsatisfiable Cores
 - Interpolants
 - All-SMT & Predicate Abstraction (hints)
 - SMT with Optimization (Optimization Modulo Theories)

- Typically used to provide some intended interpretation to the symbols in the signature Σ
- FOL formulas deduces from these axioms via inference rules
- Definition used by logicians,
- Very low practical use in AR & Formal Verification

- Typically used to provide some intended interpretation to the symbols in the signature $\boldsymbol{\Sigma}$
- FOL formulas deduces from these axioms via inference rules
- Definition used by logicians,
- Very low practical use in AR & Formal Verification

- Typically used to provide some intended interpretation to the symbols in the signature $\boldsymbol{\Sigma}$
- FOL formulas deduces from these axioms via inference rules
- Definition used by logicians,
- Very low practical use in AR & Formal Verification

- Typically used to provide some intended interpretation to the symbols in the signature $\boldsymbol{\Sigma}$
- FOL formulas deduces from these axioms via inference rules
- Definition used by logicians,
- Very low practical use in AR & Formal Verification

- Typically used to provide some intended interpretation to the symbols in the signature $\boldsymbol{\Sigma}$
- FOL formulas deduces from these axioms via inference rules
- Definition used by logicians,
- Very low practical use in AR & Formal Verification

- Signature
 - (basic) unary predicate symbol: NatNum ("natural number")
 - (basic) unary function symbol: S ("successor")
 - (basic) constant symbol: 0
 - (derived) binary function symbols: +,* (infix)
 - (derived) constant symbols: 1,2,3,4,5,6,...
- Axioms
 - **1** NatNum(0)
 - $2 \forall x.(NatNum(x) \rightarrow NatNum(S(x))$
 - $\exists \forall x.(NatNum(x) \rightarrow (0 \neq S(x)))$

 - $\forall x, y. ((NatNum(x) \land NatNum(y)) \rightarrow (S(x) + y) = S(x + y))$
 - \bigcirc 1 = S(0), 2 = S(1), 3 = S(2), ...
- Formulas deduced
 - ex: *P* ⊢ *NatNum*(25)
 - ex: $\mathcal{P} \vdash \forall x, y.((NatNum(x) \land NatNum(y)) \rightarrow ((x + y) = (y + x)))$

- Signature
 - (basic) unary predicate symbol: NatNum ("natural number")
 - (basic) unary function symbol: S ("successor")
 - (basic) constant symbol: 0
 - (derived) binary function symbols: +,* (infix)
 - (derived) constant symbols: 1,2,3,4,5,6,...
- Axioms
 - NatNum(0)
 - $2 \quad \forall x. (NatNum(x) \rightarrow NatNum(S(x))$
 - $\exists \forall x. (NatNum(x) \rightarrow (0 \neq S(x)))$

 - $\forall x, y.((NatNum(x) \land NatNum(y)) \rightarrow (S(x) + y) = S(x + y))$
 - \bigcirc 1 = S(0), 2 = S(1), 3 = S(2), ...
- Formulas deduced
 - ex: *P* ⊢ *NatNum*(25)
 - ex: $\mathcal{P} \vdash \forall x, y.((NatNum(x) \land NatNum(y)) \rightarrow ((x + y) = (y + x)))$

- Signature
 - (basic) unary predicate symbol: NatNum ("natural number")
 - (basic) unary function symbol: S ("successor")
 - (basic) constant symbol: 0
 - (derived) binary function symbols: +,* (infix)
 - (derived) constant symbols: 1,2,3,4,5,6,...
- Axioms
 - 1 NatNum(0)
 - 2 $\forall x.(NatNum(x) \rightarrow NatNum(S(x)))$

 - \bigcirc 1 = S(0), 2 = S(1), 3 = S(2), ...
- Formulas deduced
 - ex: *P* ⊢ *NatNum*(25)
 - ex: $\mathcal{P} \vdash \forall x, y.((NatNum(x) \land NatNum(y)) \rightarrow ((x + y) = (y + x)))$

- Signature
 - (basic) unary predicate symbol: NatNum ("natural number")
 - (basic) unary function symbol: S ("successor")
 - (basic) constant symbol: 0
 - (derived) binary function symbols: +,* (infix)
 - (derived) constant symbols: 1,2,3,4,5,6,...
- Axioms
 - 1 NatNum(0)
 - 2 $\forall x.(NatNum(x) \rightarrow NatNum(S(x)))$

 - \bigcirc 1 = S(0), 2 = S(1), 3 = S(2), ...
- Formulas deduced
 - ex: *P* ⊢ *NatNum*(25)
 - ex: $\mathcal{P} \vdash \forall x, y.((NatNum(x) \land NatNum(y)) \rightarrow ((x + y) = (y + x)))_{6/130}$

SMT Definition

Given a FOL signature Σ , a Σ -Theory T (hereafter simply "theory") is one (or more) model(s) constraining the interpretations of Σ

- Provides an intended interpretation to the symbols in $\boldsymbol{\Sigma}$
 - constants mapped into domain elements
 - ex: "1" mapped into the number one
 - predicate symbols mapped into relations on domain elements
 - ex: ". < ." mapped into the arithmetical relation "less then"
 function symbols mapped into functions on domain elements
 ex: "S(.)" mapped into the arithmetical function "successor of"
- Compliant with previous definition: model(s) satisfying all axioms
- Ad hoc "T-aware" decision procedures for reasoning on formulas
- Very effective in practical applications

SMT Definition

Given a FOL signature Σ , a Σ -Theory \mathcal{T} (hereafter simply "theory") is one (or more) model(s) constraining the interpretations of Σ

- Provides an intended interpretation to the symbols in Σ
 - constants mapped into domain elements
 - ex: "1" mapped into the number one
 - predicate symbols mapped into relations on domain elements
 - ex: ". < ." mapped into the arithmetical relation "less then"
 - function symbols mapped into functions on domain elements
 - ex: "*S*(.)" mapped into the arithmetical function "successor of"

These symbols are called interpreted

• Compliant with previous definition: model(s) satisfying all axioms

- Ad hoc "T-aware" decision procedures for reasoning on formulas
- Very effective in practical applications

SMT Definition

Given a FOL signature Σ , a Σ -Theory \mathcal{T} (hereafter simply "theory") is one (or more) model(s) constraining the interpretations of Σ

- Provides an intended interpretation to the symbols in Σ
 - constants mapped into domain elements
 - ex: "1" mapped into the number one
 - predicate symbols mapped into relations on domain elements
 - ex: ". < ." mapped into the arithmetical relation "less then"
 - function symbols mapped into functions on domain elements
 - ex: "S(.)" mapped into the arithmetical function "successor of"

These symbols are called interpreted

Compliant with previous definition: model(s) satisfying all axioms

- Ad hoc "*T*-aware" decision procedures for reasoning on formulas
- Very effective in practical applications

SMT Definition

Given a FOL signature Σ , a Σ -Theory \mathcal{T} (hereafter simply "theory") is one (or more) model(s) constraining the interpretations of Σ

- Provides an intended interpretation to the symbols in Σ
 - constants mapped into domain elements
 - ex: "1" mapped into the number one
 - predicate symbols mapped into relations on domain elements
 - ex: ". < ." mapped into the arithmetical relation "less then"
 - function symbols mapped into functions on domain elements
 - ex: "S(.)" mapped into the arithmetical function "successor of"

These symbols are called interpreted

- Compliant with previous definition: model(s) satisfying all axioms
- Ad hoc "*T*-aware" decision procedures for reasoning on formulas

Very effective in practical applications

SMT Definition

Given a FOL signature Σ , a Σ -Theory \mathcal{T} (hereafter simply "theory") is one (or more) model(s) constraining the interpretations of Σ

- Provides an intended interpretation to the symbols in Σ
 - constants mapped into domain elements
 - ex: "1" mapped into the number one
 - predicate symbols mapped into relations on domain elements
 - ex: ". < ." mapped into the arithmetical relation "less then"
 - function symbols mapped into functions on domain elements
 - ex: "S(.)" mapped into the arithmetical function "successor of"

These symbols are called interpreted

- Compliant with previous definition: model(s) satisfying all axioms
- Ad hoc "*T*-aware" decision procedures for reasoning on formulas
- Very effective in practical applications

Domain: integer numbers

• Numerical constants interpreted as numbers

• ex: "1", "1346231" mapped directly into the corresponding number

• function and predicates interpreted as arithmetical operations

• "+" as addiction, "*" as multiplication, "<" as less-then, . etc.

ILP solvers used to do logical reasoning

• ex: $(3x - 2y \le 3) \land (4y - 2z < -7) \models (6x - 2z < -1)$

- Domain: integer numbers
- Numerical constants interpreted as numbers
 - ex: "1", "1346231" mapped directly into the corresponding number
- function and predicates interpreted as arithmetical operations
 "+" as addiction, "*" as multiplication, "<" as less-then, . etc.
 ILP solvers used to do logical reasoning
 ex: (3x 2y ≤ 3) ∧ (4y 2z < -7) ⊨ (6x 2z < -1)

- Domain: integer numbers
- Numerical constants interpreted as numbers
 - ex: "1", "1346231" mapped directly into the corresponding number
- function and predicates interpreted as arithmetical operations
 - "+" as addiction, "*" as multiplication, "<" as less-then, . etc.

• ILP solvers used to do logical reasoning

• ex: $(3x - 2y \le 3) \land (4y - 2z < -7) \models (6x - 2z < -1)$

- Domain: integer numbers
- Numerical constants interpreted as numbers
 - ex: "1", "1346231" mapped directly into the corresponding number
- function and predicates interpreted as arithmetical operations
 - "+" as addiction, "*" as multiplication, "<" as less-then, . etc.
- ILP solvers used to do logical reasoning
 - ex: $(3x 2y \le 3) \land (4y 2z < -7) \models (6x 2z < -1)$

Definitions

- Idea: We restrict to models satisfying \mathcal{T} (" \mathcal{T} -models")
- A formula is satisfiable in *T* (aka "φ is *T*-satisfiable") iff some model satisfying *T* satisfies also φ
 ex: (x < 3) satisfiable in *LIA*
- A formula φ is valid in T (aka "φ is T-valid" or "⊨_T φ") iff all models satisfying T satisfy also φ

• ex: $(x < 3) \rightarrow (x < 4)$ valid in \mathcal{LIA}

A formula φ entails ψ in T (aka "φ T-entails ψ" or "φ ⊨_T ψ") iff all models satisfying T and φ satisfy also ψ

• ex: $(x < 3) \models_{LIA} (x < 4)$

- arphi is $\mathcal T$ -valid iff eg arphi is $\mathcal T$ -unsatisfiable
- $\varphi \models_{\mathcal{T}} \psi$ iff $\varphi \to \psi$ is \mathcal{T} -valid
- $\Rightarrow arphi \models_{\mathcal{T}} \psi$ iff $arphi \wedge
 eg \psi \, \mathcal{T}$ -unsatisfiable

Definitions

- Idea: We restrict to models satisfying \mathcal{T} (" \mathcal{T} -models")
- A formula is satisfiable in *T* (aka "φ is *T*-satisfiable") iff some model satisfying *T* satisfies also φ
 - ex: (x < 3) satisfiable in \mathcal{LIA}
- A formula φ is valid in T (aka "φ is T-valid" or "⊨_T φ") iff all models satisfying T satisfy also φ

• ex: $(x < 3) \rightarrow (x < 4)$ valid in \mathcal{LIA}

A formula φ entails ψ in T (aka "φ T-entails ψ" or "φ ⊨_T ψ") iff all models satisfying T and φ satisfy also ψ

• ex: $(x < 3) \models_{LIA} (x < 4)$

- arphi is $\mathcal T$ -valid iff eg arphi is $\mathcal T$ -unsatisfiable
- $\varphi \models_{\mathcal{T}} \psi$ iff $\varphi \to \psi$ is \mathcal{T} -valid
- $\Rightarrow arphi \models_{\mathcal{T}} \psi$ iff $arphi \wedge
 eg \psi \, \mathcal{T}$ -unsatisfiable

Definitions

- Idea: We restrict to models satisfying \mathcal{T} (" \mathcal{T} -models")
- A formula is satisfiable in *T* (aka "φ is *T*-satisfiable") iff some model satisfying *T* satisfies also φ
 - ex: (x < 3) satisfiable in \mathcal{LIA}
- A formula φ is valid in T (aka "φ is T-valid" or "⊨_T φ") iff all models satisfying T satisfy also φ

• ex: $(x < 3) \rightarrow (x < 4)$ valid in \mathcal{LIA}

A formula φ entails ψ in T (aka "φ T-entails ψ" or "φ ⊨_T ψ") iff all models satisfying T and φ satisfy also ψ
 ex: (x < 3) ⊨_{LIA} (x < 4)

- arphi is $\mathcal T$ -valid iff eg arphi is $\mathcal T$ -unsatisfiable
- $\varphi \models_{\mathcal{T}} \psi$ iff $\varphi \to \psi$ is \mathcal{T} -valid
- $\Rightarrow \varphi \models_{\mathcal{T}} \psi$ iff $\varphi \land \neg \psi \mathcal{T}$ -unsatisfiable

Definitions

- Idea: We restrict to models satisfying \mathcal{T} (" \mathcal{T} -models")
- A formula is satisfiable in *T* (aka "φ is *T*-satisfiable") iff some model satisfying *T* satisfies also φ
 - ex: (x < 3) satisfiable in \mathcal{LIA}
- A formula φ is valid in T (aka "φ is T-valid" or "⊨_T φ") iff all models satisfying T satisfy also φ

• ex: $(x < 3) \rightarrow (x < 4)$ valid in \mathcal{LIA}

A formula φ entails ψ in T (aka "φ T-entails ψ" or "φ ⊨_T ψ") iff all models satisfying T and φ satisfy also ψ

• ex: $(x < 3) \models_{\mathcal{LIA}} (x < 4)$

- arphi is $\mathcal T$ -valid iff eg arphi is $\mathcal T$ -unsatisfiable
- $\varphi \models_{\mathcal{T}} \psi$ iff $\varphi \to \psi$ is \mathcal{T} -valid
- $\Rightarrow \varphi \models_{\mathcal{T}} \psi$ iff $\varphi \land \neg \psi \mathcal{T}$ -unsatisfiable

Definitions

- Idea: We restrict to models satisfying \mathcal{T} (" \mathcal{T} -models")
- A formula is satisfiable in *T* (aka "φ is *T*-satisfiable") iff some model satisfying *T* satisfies also φ
 - ex: (x < 3) satisfiable in \mathcal{LIA}
- A formula φ is valid in T (aka "φ is T-valid" or "⊨_T φ") iff all models satisfying T satisfy also φ

• ex: $(x < 3) \rightarrow (x < 4)$ valid in \mathcal{LIA}

A formula φ entails ψ in T (aka "φ T-entails ψ" or "φ ⊨_T ψ") iff all models satisfying T and φ satisfy also ψ

• ex: $(x < 3) \models_{\mathcal{LIA}} (x < 4)$

Properties

• φ is \mathcal{T} -valid iff $\neg \varphi$ is \mathcal{T} -unsatisfiable

• $\varphi \models_{\mathcal{T}} \psi$ iff $\varphi \rightarrow \psi$ is \mathcal{T} -valid

 $\Rightarrow \varphi \models_{\mathcal{T}} \psi$ iff $\varphi \land \neg \psi \mathcal{T}$ -unsatisfiable

Definitions

- Idea: We restrict to models satisfying \mathcal{T} (" \mathcal{T} -models")
- A formula is satisfiable in *T* (aka "φ is *T*-satisfiable") iff some model satisfying *T* satisfies also φ
 - ex: (x < 3) satisfiable in \mathcal{LIA}
- A formula φ is valid in T (aka "φ is T-valid" or "⊨_T φ") iff all models satisfying T satisfy also φ

• ex: $(x < 3) \rightarrow (x < 4)$ valid in \mathcal{LIA}

A formula φ entails ψ in T (aka "φ T-entails ψ" or "φ ⊨_T ψ") iff all models satisfying T and φ satisfy also ψ

• ex: $(x < 3) \models_{\mathcal{LIA}} (x < 4)$

Properties

• φ is \mathcal{T} -valid iff $\neg \varphi$ is \mathcal{T} -unsatisfiable

• $\varphi \models_{\mathcal{T}} \psi$ iff $\varphi \rightarrow \psi$ is \mathcal{T} -valid

 $\Rightarrow \varphi \models_{\mathcal{T}} \psi$ iff $\varphi \land \neg \psi \mathcal{T}$ -unsatisfiable

Definitions

- Idea: We restrict to models satisfying \mathcal{T} (" \mathcal{T} -models")
- A formula is satisfiable in *T* (aka "φ is *T*-satisfiable") iff some model satisfying *T* satisfies also φ
 - ex: (x < 3) satisfiable in \mathcal{LIA}
- A formula φ is valid in T (aka "φ is T-valid" or "⊨_T φ") iff all models satisfying T satisfy also φ

• ex: $(x < 3) \rightarrow (x < 4)$ valid in \mathcal{LIA}

A formula φ entails ψ in T (aka "φ T-entails ψ" or "φ ⊨_T ψ") iff all models satisfying T and φ satisfy also ψ

• ex: $(x < 3) \models_{\mathcal{LIA}} (x < 4)$

Properties

- φ is \mathcal{T} -valid iff $\neg \varphi$ is \mathcal{T} -unsatisfiable
- $\varphi \models_{\mathcal{T}} \psi$ iff $\varphi \rightarrow \psi$ is \mathcal{T} -valid

 $\Rightarrow \varphi \models_{\mathcal{T}} \psi$ iff $\varphi \land \neg \psi \mathcal{T}$ -unsatisfiable

Definitions

- Idea: We restrict to models satisfying \mathcal{T} (" \mathcal{T} -models")
- A formula is satisfiable in *T* (aka "φ is *T*-satisfiable") iff some model satisfying *T* satisfies also φ
 - ex: (x < 3) satisfiable in \mathcal{LIA}
- A formula φ is valid in T (aka "φ is T-valid" or "⊨_T φ") iff all models satisfying T satisfy also φ

• ex: $(x < 3) \rightarrow (x < 4)$ valid in \mathcal{LIA}

A formula φ entails ψ in T (aka "φ T-entails ψ" or "φ ⊨_T ψ") iff all models satisfying T and φ satisfy also ψ

• ex: $(x < 3) \models_{\mathcal{LIA}} (x < 4)$

•
$$arphi$$
 is $\mathcal T$ -valid iff $eg arphi$ is $\mathcal T$ -unsatisfiable

•
$$\varphi \models_{\mathcal{T}} \psi$$
 iff $\varphi \to \psi$ is \mathcal{T} -valid

$$\implies \varphi \models_{\mathcal{T}} \psi$$
 iff $\varphi \land \neg \psi \mathcal{T}$ -unsatisfiable

Introduction

- What is a Theory?
- Satisfiability Modulo Theories
- Motivations and Goals of SMT

Efficient SMT solving

- Combining SAT with Theory Solvers
- Theory Solvers for Theories of Interest (hints)
- SMT for Combinations of Theories
- 3 Beyond Solving: Advanced SMT Functionalities
 - Proofs and Unsatisfiable Cores
 - Interpolants
 - All-SMT & Predicate Abstraction (hints)
 - SMT with Optimization (Optimization Modulo Theories)

Satisfiability Modulo Theories (SMT(T))

Satisfiability Modulo Theories (SMT(T))

The problem of deciding the satisfiability of (typically quantifier-free) formulas in some decidable first-order theory ${\cal T}$

• \mathcal{T} can also be a combination of theories $\bigcup_i \mathcal{T}_i$.

0 ...

- Equality and Uninterpreted Functions (\mathcal{EUF}): ((x = y) \land (y = f(z))) \rightarrow (g(x) = g(f(z)))
- Difference logic (\mathcal{DL}): ((x = y) \land ($y z \le 4$)) \rightarrow ($x z \le 6$)
- UTVPI (\mathcal{UTVPI}) : $((x = y) \land (y z \le 4)) \rightarrow (x + z \le 6)$
- Linear arithmetic over the rationals (\mathcal{LRA}) : $(T_{\delta} \rightarrow (s_1 = s_0 + 3.4 \cdot t - 3.4 \cdot t_0)) \land (\neg T_{\delta} \rightarrow (s_1 = s_0))$
- Linear arithmetic over the integers (\mathcal{LIA}): ($x = x_l + 2^{16}x_h$) \land ($x \ge 0$) \land ($x \le 2^{16} - 1$)
- Arrays (AR): $(i = j) \lor read(write(a, i, e), j) = read(a, j)$
- Bit vectors (\mathcal{BV}) : $x_{[16]}[15:0] = (y_{[16]}[15:8] :: z_{[16]}[7:0]) << w_{[8]}[3:0]$
- Non-Linear arithmetic over the reals $(\mathcal{NLA}(\mathbb{R}))$: $((c = a \cdot b) \land (a_1 = a - 1) \land (b_1 = b + 1)) \rightarrow (c = a_1 \cdot b_1 + b_1)$

0 ...

- Equality and Uninterpreted Functions (\mathcal{EUF}): ((x = y) \land (y = f(z))) \rightarrow (g(x) = g(f(z)))
- Difference logic (\mathcal{DL}): ((x = y) \land ($y z \le 4$)) \rightarrow ($x z \le 6$)
- UTVPI (\mathcal{UTVPI}) : $((x = y) \land (y z \le 4)) \rightarrow (x + z \le 6)$
- Linear arithmetic over the rationals (\mathcal{LRA}) : $(T_{\delta} \rightarrow (s_1 = s_0 + 3.4 \cdot t - 3.4 \cdot t_0)) \land (\neg T_{\delta} \rightarrow (s_1 = s_0))$
- Linear arithmetic over the integers (\mathcal{LIA}): ($x = x_l + 2^{16}x_h$) \land ($x \ge 0$) \land ($x \le 2^{16} - 1$)
- Arrays (AR): $(i = j) \lor read(write(a, i, e), j) = read(a, j)$
- Bit vectors (\mathcal{BV}) : $x_{[16]}[15:0] = (y_{[16]}[15:8] :: z_{[16]}[7:0]) << w_{[8]}[3:0]$
- Non-Linear arithmetic over the reals $(\mathcal{NLA}(\mathbb{R}))$: $((c = a \cdot b) \land (a_1 = a - 1) \land (b_1 = b + 1)) \rightarrow (c = a_1 \cdot b_1 - b_1)$

0 ...

- Equality and Uninterpreted Functions (\mathcal{EUF}): ((x = y) \land (y = f(z))) \rightarrow (g(x) = g(f(z)))
- Difference logic (\mathcal{DL}): ((x = y) \land ($y z \le 4$)) \rightarrow ($x z \le 6$)
- UTVPI (\mathcal{UTVPI}): ((x = y) \land ($y z \le 4$)) \rightarrow ($x + z \le 6$)
- Linear arithmetic over the rationals (\mathcal{LRA}) : $(T_{\delta} \rightarrow (s_1 = s_0 + 3.4 \cdot t - 3.4 \cdot t_0)) \land (\neg T_{\delta} \rightarrow (s_1 = s_0))$
- Linear arithmetic over the integers (\mathcal{LIA}): ($x = x_l + 2^{16}x_h$) \land ($x \ge 0$) \land ($x \le 2^{16} - 1$)
- Arrays (AR): $(i = j) \lor read(write(a, i, e), j) = read(a, j)$
- Bit vectors (\mathcal{BV}) : $x_{[16]}[15:0] = (y_{[16]}[15:8] :: z_{[16]}[7:0]) << w_{[8]}[3:0]$
- Non-Linear arithmetic over the reals $(\mathcal{NLA}(\mathbb{R}))$: $((c = a \cdot b) \land (a_1 = a - 1) \land (b_1 = b + 1)) \rightarrow (c = a_1 \cdot b_1 - b_1)$

0 ...

- Equality and Uninterpreted Functions (\mathcal{EUF}): ((x = y) \land (y = f(z))) \rightarrow (g(x) = g(f(z)))
- Difference logic (\mathcal{DL}): ((x = y) \land ($y z \le 4$)) \rightarrow ($x z \le 6$)
- UTVPI (\mathcal{UTVPI}): ((x = y) \land ($y z \le 4$)) \rightarrow ($x + z \le 6$)
- Linear arithmetic over the rationals (\mathcal{LRA}) : $(T_{\delta} \rightarrow (s_1 = s_0 + 3.4 \cdot t - 3.4 \cdot t_0)) \land (\neg T_{\delta} \rightarrow (s_1 = s_0))$
- Linear arithmetic over the integers (\mathcal{LIA}) : $(x = x_l + 2^{16}x_h) \land (x \ge 0) \land (x \le 2^{16} - 1)$
- Arrays (AR): $(i = j) \lor read(write(a, i, e), j) = read(a, j)$
- Bit vectors (\mathcal{BV}) : $x_{[16]}[15:0] = (y_{[16]}[15:8] :: z_{[16]}[7:0]) << w_{[8]}[3:0]$
- Non-Linear arithmetic over the reals $(\mathcal{NLA}(\mathbb{R}))$: $((c = a \cdot b) \land (a_1 = a - 1) \land (b_1 = b + 1)) \rightarrow (c = a_1 \cdot b_1 + b_1)$

0 ...

- Equality and Uninterpreted Functions (\mathcal{EUF}): ((x = y) \land (y = f(z))) \rightarrow (g(x) = g(f(z)))
- Difference logic (\mathcal{DL}): ((x = y) \land ($y z \le 4$)) \rightarrow ($x z \le 6$)
- UTVPI (\mathcal{UTVPI}): ((x = y) \land ($y z \le 4$)) \rightarrow ($x + z \le 6$)
- Linear arithmetic over the rationals (\mathcal{LRA}) : $(T_{\delta} \rightarrow (s_1 = s_0 + 3.4 \cdot t - 3.4 \cdot t_0)) \land (\neg T_{\delta} \rightarrow (s_1 = s_0))$
- Linear arithmetic over the integers (\mathcal{LIA}): $(x = x_l + 2^{16}x_h) \land (x \ge 0) \land (x \le 2^{16} - 1)$
- Arrays (AR): $(i = j) \lor read(write(a, i, e), j) = read(a, j)$
- Bit vectors (\mathcal{BV}): $x_{[16]}[15:0] = (y_{[16]}[15:8] :: z_{[16]}[7:0]) << w_{[8]}[3:0]$
- Non-Linear arithmetic over the reals $(\mathcal{NLA}(\mathbb{R}))$: $((c = a \cdot b) \land (a_1 = a - 1) \land (b_1 = b + 1)) \rightarrow (c = a_1 \cdot b_1)$

0 ...

- Equality and Uninterpreted Functions (\mathcal{EUF}): ((x = y) \land (y = f(z))) \rightarrow (g(x) = g(f(z)))
- Difference logic (\mathcal{DL}): ((x = y) \land ($y z \le 4$)) \rightarrow ($x z \le 6$)
- UTVPI (\mathcal{UTVPI}): ((x = y) \land ($y z \le 4$)) \rightarrow ($x + z \le 6$)
- Linear arithmetic over the rationals (\mathcal{LRA}) : $(T_{\delta} \rightarrow (s_1 = s_0 + 3.4 \cdot t - 3.4 \cdot t_0)) \land (\neg T_{\delta} \rightarrow (s_1 = s_0))$
- Linear arithmetic over the integers (\mathcal{LIA}): ($x = x_l + 2^{16}x_h$) \land ($x \ge 0$) \land ($x \le 2^{16} - 1$)
- Arrays (AR): $(i = j) \lor read(write(a, i, e), j) = read(a, j)$
- Bit vectors (\mathcal{BV}) : $x_{[16]}[15:0] = (y_{[16]}[15:8] :: z_{[16]}[7:0]) << w_{[8]}[3:0]$
- Non-Linear arithmetic over the reals $(\mathcal{NLA}(\mathbb{R}))$: $((c = a \cdot b) \land (a_1 = a - 1) \land (b_1 = b + 1)) \rightarrow (c = a_1 \cdot b_1)$

0 ...

- Equality and Uninterpreted Functions (\mathcal{EUF}): ((x = y) \land (y = f(z))) \rightarrow (g(x) = g(f(z)))
- Difference logic (\mathcal{DL}): ((x = y) \land ($y z \le 4$)) \rightarrow ($x z \le 6$)
- UTVPI (\mathcal{UTVPI}): ((x = y) \land ($y z \le 4$)) \rightarrow ($x + z \le 6$)
- Linear arithmetic over the rationals (\mathcal{LRA}) : $(T_{\delta} \rightarrow (s_1 = s_0 + 3.4 \cdot t - 3.4 \cdot t_0)) \land (\neg T_{\delta} \rightarrow (s_1 = s_0))$
- Linear arithmetic over the integers (\mathcal{LIA}) : $(x = x_l + 2^{16}x_h) \land (x \ge 0) \land (x \le 2^{16} - 1)$
- Arrays (AR): $(i = j) \lor read(write(a, i, e), j) = read(a, j)$
- Bit vectors (\mathcal{BV}) : $x_{[16]}[15:0] = (y_{[16]}[15:8] :: z_{[16]}[7:0]) << w_{[8]}[3:0]$
- Non-Linear arithmetic over the reals $(\mathcal{NLA}(\mathbb{R}))$: $((c = a \cdot b) \land (a_1 = a - 1) \land (b_1 = b + 1)) \rightarrow (c = a_1 \cdot b_1 + b_1)$

- Equality and Uninterpreted Functions (\mathcal{EUF}): ((x = y) \land (y = f(z))) \rightarrow (g(x) = g(f(z)))
- Difference logic (\mathcal{DL}): ((x = y) \land ($y z \le 4$)) \rightarrow ($x z \le 6$)
- UTVPI (\mathcal{UTVPI}): ((x = y) \land ($y z \le 4$)) \rightarrow ($x + z \le 6$)
- Linear arithmetic over the rationals (\mathcal{LRA}) : $(T_{\delta} \rightarrow (s_1 = s_0 + 3.4 \cdot t - 3.4 \cdot t_0)) \land (\neg T_{\delta} \rightarrow (s_1 = s_0))$
- Linear arithmetic over the integers (\mathcal{LIA}) : $(x = x_l + 2^{16}x_h) \land (x \ge 0) \land (x \le 2^{16} - 1)$
- Arrays (AR): $(i = j) \lor read(write(a, i, e), j) = read(a, j)$
- Bit vectors (\mathcal{BV}) : $x_{[16]}[15:0] = (y_{[16]}[15:8] :: z_{[16]}[7:0]) << w_{[8]}[3:0]$
- Non-Linear arithmetic over the reals $(\mathcal{NLA}(\mathbb{R}))$: $((c = a \cdot b) \land (a_1 = a - 1) \land (b_1 = b + 1)) \rightarrow (c = a_1 \cdot b_1 + 1)$

Satisfiability Modulo Theories (SMT(T)): Example

Example: SMT($\mathcal{LIA} \cup \mathcal{EUF} \cup \mathcal{AR}$)

 $\varphi \stackrel{\text{def}}{=} (d \ge 0) \land (d < 1) \land$

$$((f(d) = f(0)) \rightarrow (read(write(V, i, x), i + d) = x + 1))$$

 involves arithmetical, arrays, and uninterpreted function/predicate symbols, plus Boolean operators

• No:

$$\begin{array}{l} \varphi \\ \Rightarrow_{\mathcal{EIA}} & (d = 0) \\ \Rightarrow_{\mathcal{EUF}} & (f(d) = f(0)) \\ \Rightarrow_{Bool} & (read(write(V, i, x), i + d) = x + 1) \\ \Rightarrow_{\mathcal{LIA}} & (read(write(V, i, x), i) = x + 1) \\ \Rightarrow_{\mathcal{LIA}} & \neg (read(write(V, i, x), i) = x) \\ \Rightarrow_{\mathcal{AR}} & \bot \end{array}$$

Satisfiability Modulo Theories (SMT(T)): Example

Example: SMT($\mathcal{LIA} \cup \mathcal{EUF} \cup \mathcal{AR}$)

 $\varphi \stackrel{\text{def}}{=} (d \ge 0) \land (d < 1) \land$ ((f(d) = f(0)) \rightarrow (read(write(V, i, x), i + d) = x + 1))

- involves arithmetical, arrays, and uninterpreted function/predicate symbols, plus Boolean operators
 - Is it satisfiable?

• No:

$$\begin{array}{l} \varphi \\ \Leftrightarrow_{\mathcal{LIA}} & (d = 0) \\ \Rightarrow_{\mathcal{EUF}} & (f(d) = f(0)) \\ \Rightarrow_{Bool} & (read(write(V, i, x), i + d) = x + 1) \\ \Rightarrow_{\mathcal{LIA}} & (read(write(V, i, x), i) = x + 1) \\ \Rightarrow_{\mathcal{LIA}} & \neg (read(write(V, i, x), i) = x) \\ \Rightarrow_{\mathcal{AR}} & \bot \end{array}$$

Satisfiability Modulo Theories (SMT(T)): Example

Example: SMT($\mathcal{LIA} \cup \mathcal{EUF} \cup \mathcal{AR}$)

 $\varphi \stackrel{\text{def}}{=} (d \ge 0) \land (d < 1) \land \\ ((f(d) = f(0)) \rightarrow (read(write(V, i, x), i + d) = x + 1))$

- involves arithmetical, arrays, and uninterpreted function/predicate symbols, plus Boolean operators
 - Is it satisfiable?
 - No:

$$\begin{array}{l} \varphi \\ \Leftrightarrow_{\mathcal{LIA}} & (d = 0) \\ \Longrightarrow_{\mathcal{EUF}} & (f(d) = f(0)) \\ \Rightarrow_{Bool} & (read(write(V, i, x), i + d) = x + 1) \\ \Longrightarrow_{\mathcal{LIA}} & (read(write(V, i, x), i) = x + 1) \\ \Longrightarrow_{\mathcal{LIA}} & \neg (read(write(V, i, x), i) = x) \\ \Longrightarrow_{\mathcal{AR}} & \bot \end{array}$$

Common fact about SMT problems from various applications

SMT requires capabilities for heavy Boolean reasoning combined with capabilities for reasoning in expressive decidable F.O. theories

- SAT alone not expressive enough
- standard automated theorem proving inadequate (e.g., arithmetic)
- may involve also numerical computation (e.g., simplex)

- combine SAT solvers with *T*-specific decision procedures (theory solvers or *T*-solvers)
 - contributions from SAT, Automated Theorem Proving (ATP), formal verification (FV) and operational research (OR)

Common fact about SMT problems from various applications

SMT requires capabilities for heavy Boolean reasoning combined with capabilities for reasoning in expressive decidable F.O. theories

- SAT alone not expressive enough
- standard automated theorem proving inadequate (e.g., arithmetic)
- may involve also numerical computation (e.g., simplex)

- combine SAT solvers with *T*-specific decision procedures (theory solvers or *T*-solvers)
 - contributions from SAT, Automated Theorem Proving (ATP), formal verification (FV) and operational research (OR)

Common fact about SMT problems from various applications

SMT requires capabilities for heavy Boolean reasoning combined with capabilities for reasoning in expressive decidable F.O. theories

- SAT alone not expressive enough
- standard automated theorem proving inadequate (e.g., arithmetic)
- may involve also numerical computation (e.g., simplex)

- combine SAT solvers with \mathcal{T} -specific decision procedures (theory solvers or \mathcal{T} -solvers)
 - contributions from SAT, Automated Theorem Proving (ATP), formal verification (FV) and operational research (OR)

Common fact about SMT problems from various applications

SMT requires capabilities for heavy Boolean reasoning combined with capabilities for reasoning in expressive decidable F.O. theories

- SAT alone not expressive enough
- standard automated theorem proving inadequate (e.g., arithmetic)
- may involve also numerical computation (e.g., simplex)

- combine SAT solvers with \mathcal{T} -specific decision procedures (theory solvers or \mathcal{T} -solvers)
 - contributions from SAT, Automated Theorem Proving (ATP), formal verification (FV) and operational research (OR)

Common fact about SMT problems from various applications

SMT requires capabilities for heavy Boolean reasoning combined with capabilities for reasoning in expressive decidable F.O. theories

- SAT alone not expressive enough
- standard automated theorem proving inadequate (e.g., arithmetic)
- may involve also numerical computation (e.g., simplex)

- combine SAT solvers with *T*-specific decision procedures (theory solvers or *T*-solvers)
 - contributions from SAT, Automated Theorem Proving (ATP), formal verification (FV) and operational research (OR)

For better readability, in most/all the examples of this presentation we will use the theory of linear arithmetic on rational numbers (\mathcal{LRA}) because of its intuitive semantics. E.g.:

 $(\neg A_1 \lor (3x_1 - 2x_2 - 3 \le 5)) \land (A_2 \lor (-2x_1 + 4x_3 + 2 = 3))$

Nevertheless, analogous examples can be built with all other theories of interest.

Notational remark (2): "constants" vs. "variables"

• Consider, e.g., the formula:

 $(\neg A_1 \lor (3x_1 - 2x_2 - 3 \le 5)) \land (A_2 \lor (-2x_1 + 4x_3 + 2 = 3))$

- How do we call A_1, A_2 ?:
 - (a) Boolean/propositional variables?
 - (b) uninterpreted 0-ary predicates?
- How do we call *x*₁, *x*₂, *x*₃?:
 - (a) domain variables?
 - (b) uninterpreted Skolem constants/0-ary uninterpreted functions?
- Hint:
 - (a) typically used in SAT, CSP and OR communities
 - (b) typically used in logic & ATP communities

Hereafter we call A_1 , A_2 "Boolean/propositional variables" and x_1 , x_2 , x_3 "domain variables" (logic purists, please forgive me!)

Notational remark (2): "constants" vs. "variables"

• Consider, e.g., the formula:

 $(\neg A_1 \lor (3x_1 - 2x_2 - 3 \le 5)) \land (A_2 \lor (-2x_1 + 4x_3 + 2 = 3))$

- How do we call A_1, A_2 ?:
 - (a) Boolean/propositional variables?
 - (b) uninterpreted 0-ary predicates?
- How do we call *x*₁, *x*₂, *x*₃?:
 - (a) domain variables?
 - (b) uninterpreted Skolem constants/0-ary uninterpreted functions?
- Hint:
 - (a) typically used in SAT, CSP and OR communities
 - (b) typically used in logic & ATP communities

Hereafter we call A_1 , A_2 "Boolean/propositional variables" and x_1 , x_2 , x_3 "domain variables" (logic purists, please forgive me!)

Notational remark (2): "constants" vs. "variables"

• Consider, e.g., the formula:

 $(\neg A_1 \lor (3x_1 - 2x_2 - 3 \le 5)) \land (A_2 \lor (-2x_1 + 4x_3 + 2 = 3))$

- How do we call A_1, A_2 ?:
 - (a) Boolean/propositional variables?
 - (b) uninterpreted 0-ary predicates?
- How do we call *x*₁, *x*₂, *x*₃?:
 - (a) domain variables?
 - (b) uninterpreted Skolem constants/0-ary uninterpreted functions?
- Hint:
 - (a) typically used in SAT, CSP and OR communities
 - (b) typically used in logic & ATP communities

Hereafter we call A_1 , A_2 "Boolean/propositional variables" and x_1 , x_2 , x_3 "domain variables" (logic purists, please forgive me!)

Outline

Introduction

- What is a Theory?
- Satisfiability Modulo Theories
- Motivations and Goals of SMT

Efficient SMT solving

- Combining SAT with Theory Solvers
- Theory Solvers for Theories of Interest (hints)
- SMT for Combinations of Theories
- Beyond Solving: Advanced SMT Functionalities
 - Proofs and Unsatisfiable Cores
 - Interpolants
 - All-SMT & Predicate Abstraction (hints)
 - SMT with Optimization (Optimization Modulo Theories)

Some Motivating Applications

Interest in SMT triggered by some real-word applications

- Verification of Hybrid & Timed Systems
- Verification of RTL Circuit Designs & of Microcode
- SW Verification
- Planning with Resources
- Temporal reasoning
- Scheduling
- Compiler optimization
- ...

Verification of Timed Systems

- Bounded/inductive model checking of Timed Systems [6, 33, 53],
- Timed Automata encoded into \mathcal{T} -formulas:
 - discrete information (locations, transitions, events) with Boolean vars.
 - timed information (clocks, elapsed time) with differences $(t_3 x_3 \le 2)$, equalities $(x_4 = x_3)$ and linear constraints $(t_8 x_8 = t_2 x_2)$ on \mathbb{Q}
- \Rightarrow SMT on $\mathcal{DL}(\mathbb{Q})$ or \mathcal{LRA} required

...

Verification of Hybrid Systems ...

- Bounded model checking of Hybrid Systems [5],...
- Hybrid Automata encoded into *L*-formulas:
 - discrete information (locs, trans., events) with Boolean vars.
 - timed information (clocks, elapsed time) with differences
 - $(t_3 x_3 \le 2)$, equalities $(x_4 = x_3)$ and linear constraints

$$(t_8 - x_8 = t_2 - x_2)$$
 on \mathbb{Q}

- Evolution of Physical Variables (e.g., speed, pressure) with linear $(\omega_4 = 2\omega_3)$ and non-linear constraints $(P_1 V_1 = 4T_1)$ on \mathbb{Q}
- Undecidable under simple hypotheses!
- \implies SMT on $\mathcal{DL}(\mathbb{Q})$, \mathcal{LRA} or $\mathcal{NLA}(\mathbb{R})$ required

Verification of HW circuit designs & microcode

- SAT/SMT-based Model Checking & Equiv. Checking of RTL designs, symbolic simulation of μ-code [24, 21, 39]
- Control paths handled by Boolean reasoning
- Data paths information abstracted into theory-specific terms
 - words (bit-vectors, integers, \mathcal{EUF} vars, ...): <u>a[31 : 0]</u>, a
 - word operations: $(\mathcal{BV}, \mathcal{EUF}, \mathcal{AR}, \mathcal{LIA}, \mathcal{NLA}(\mathbb{Z}) \text{ operators})$ $x_{[16]}[15:0] = (y_{[16]}[15:8] :: z_{[16]}[7:0]) << w_{[8]}[3:0],$ $(a = a_L + 2^{16}a_H), (m_1 = store(m_0, l_0, v_0)), ...$

• Trades heavy Boolean reasoning ($\approx 2^{64}$ factors) with \mathcal{T} -solving \Rightarrow SMT on $\mathcal{BV}, \mathcal{EUF}, \mathcal{AR},$ modulo- $\mathcal{LIA}[\mathcal{NLA}(\mathbb{Z})]$ required

Verification of SW systems

- Verification of SW code
 - BMC, K-induction, Check of proof obligations, interpolation-based model checking, symbolic simulation, concolic testing, ...
- \implies SMT on $\mathcal{BV}, \mathcal{EUF}, \mathcal{AR}, (modulo-)\mathcal{LIA} [\mathcal{NLA}(\mathbb{Z})]$ required

Planning with Resources [72]

- SAT-bases planning augmented with numerical constraints
- Straightforward to encode into into SMT(LRA)

Example (sketch) [72]	
(Deliver)	\wedge // goal
(MaxLoad)	\land // load constraint
(MaxFuel)	\land // fuel constraint
(Move ightarrow MinFuel)	\wedge // move requires fuel
$(\mathit{Move} ightarrow \mathit{Deliver})$	\wedge // move implies delivery
(GoodTrip ightarrow Deliver)	\wedge // a good trip requires
$(\mathit{GoodTrip} ightarrow \mathit{AllLoaded})$	\wedge // a full delivery
$(MaxLoad ightarrow (load \leq 30))$	∧ // load limit
$(MaxFuel ightarrow (fuel \le 15))$	\land // fuel limit
$(MinFuel \rightarrow (fuel \geq 7 + 0.5load))$	\land // fuel constraint
(AllLoaded ightarrow (load = 45))	//

(Disjunctive) Temporal Reasoning [69, 2]

 Temporal reasoning problems encoded as disjunctions of difference constraints

Straightforward to encode into into SMT(DL)

Goal

Provide an overview of standard "lazy" SMT:

- foundations
- SMT-solving techniques
- beyond solving: advanced SMT functionalities
- ongoing research

We do not cover related approaches like:

- Eager SAT encodings
- Rewrite-based approaches

We refer to [64, 10] for an overview and references.

Goal

Provide an overview of standard "lazy" SMT:

- foundations
- SMT-solving techniques
- beyond solving: advanced SMT functionalities
- ongoing research

We do not cover related approaches like:

- Eager SAT encodings
- Rewrite-based approaches

We refer to [64, 10] for an overview and references.

Outline

Introduction

- What is a Theory?
- Satisfiability Modulo Theories
- Motivations and Goals of SMT

Efficient SMT solving

- Combining SAT with Theory Solvers
- Theory Solvers for Theories of Interest (hints)
- SMT for Combinations of Theories
- Beyond Solving: Advanced SMT Functionalities
 - Proofs and Unsatisfiable Cores
 - Interpolants
 - All-SMT & Predicate Abstraction (hints)
 - SMT with Optimization (Optimization Modulo Theories)

Outline

Introduction

- What is a Theory?
- Satisfiability Modulo Theories
- Motivations and Goals of SMT

Efficient SMT solving

- Combining SAT with Theory Solvers
- Theory Solvers for Theories of Interest (hints)
- SMT for Combinations of Theories
- Beyond Solving: Advanced SMT Functionalities
 - Proofs and Unsatisfiable Cores
 - Interpolants
 - All-SMT & Predicate Abstraction (hints)
 - SMT with Optimization (Optimization Modulo Theories)

Modern "lazy" $SMT(\mathcal{T})$ solvers

A prominent "lazy" approach [42, 2, 72, 3, 8, 33] (aka "DPLL(\mathcal{T})")

- a CDCL SAT solver is used to enumerate truth assignments μ_i for (the Boolean abstraction of) the input formula φ
- a theory-specific solver *T*-solver checks the *T*-satisfiability of the set of *T*-literals corresponding to each assignment
- Built on top of modern SAT CDCL solvers
 - benefit for free from all modern CDCL techniques (e.g., Boolean preprocessing, backjumping & learning, restarts,...
 - benefit for free from all state-of-the-art data structures and implementation tricks (e.g., two-watched literals,...)
- Many techniques to maximize the benefits of integration [64, 10]
- Many lazy SMT tools available (Barcelogic, CVC4, MathSAT, OpenSMT, Yices, Z3, ...)

Modern "lazy" $SMT(\mathcal{T})$ solvers

A prominent "lazy" approach [42, 2, 72, 3, 8, 33] (aka "DPLL(\mathcal{T})")

- a CDCL SAT solver is used to enumerate truth assignments μ_i for (the Boolean abstraction of) the input formula φ
- a theory-specific solver *T*-solver checks the *T*-satisfiability of the set of *T*-literals corresponding to each assignment
- Built on top of modern SAT CDCL solvers
 - benefit for free from all modern CDCL techniques (e.g., Boolean preprocessing, backjumping & learning, restarts,...)
 - benefit for free from all state-of-the-art data structures and implementation tricks (e.g., two-watched literals,...)
- Many techniques to maximize the benefits of integration [64, 10]
- Many lazy SMT tools available (Barcelogic, CVC4, MathSAT, OpenSMT, Yices, Z3, ...)

$$\begin{array}{l} \varphi = \\ c_1 : \quad \neg (2v_2 - v_3 > 2) \lor A_1 \\ c_2 : \quad \neg A_2 \lor (v_1 - v_5 \le 1) \\ c_3 : \quad (3v_1 - 2v_2 \le 3) \lor A_2 \\ c_4 : \quad \neg (2v_3 + v_4 \ge 5) \lor \neg (3v_1 - v_3 \le 6) \lor \neg A_1 \\ c_5 : \quad A_1 \lor (3v_1 - 2v_2 \le 3) \\ c_6 : \quad (v_2 - v_4 \le 6) \lor (v_5 = 5 - 3v_4) \lor \neg A_1 \\ c_7 : \quad A_1 \lor (v_3 = 3v_5 + 4) \lor A_2 \end{array}$$

$$\varphi^{P} = \\ \neg B_{1} \lor A_{1} \\ \neg A_{2} \lor B_{2} \\ B_{3} \lor A_{2} \\ \neg B_{4} \lor \neg B_{5} \lor \neg A_{1} \\ A_{1} \lor B_{3} \\ B_{6} \lor B_{7} \lor \neg A_{1} \\ A_{1} \lor B_{8} \lor A_{2}$$

true, false

$$\begin{array}{lll} \mu^{\rho} & = & \{\neg B_5, B_8, B_6, \neg B_1, \neg B_3, A_1, A_2, B_2\} \\ \mu & = & \{\underline{\neg (3v_1 - v_3 \leq 6)}, \underline{(v_3 = 3v_5 + 4)}, (v_2 - v_4 \leq 6), \\ \neg (2v_2 - v_3 > 2), \neg (3v_1 - 2v_2 \leq 3), \underline{(v_1 - v_5 \leq 1)}\} \end{array}$$

 \Rightarrow unsatisfiable in $\mathcal{LRA} \Longrightarrow$ backtrack

$$\varphi = c_1 : \neg (2v_2 - v_3 > 2) \lor A_1 c_2 : \neg A_2 \lor (v_1 - v_5 \le 1) c_3 : (3v_1 - 2v_2 \le 3) \lor A_2 c_4 : \neg (2v_3 + v_4 \ge 5) \lor \neg (3v_1 - v_3 \le 6) \lor \neg A_1 c_5 : A_1 \lor (3v_1 - 2v_2 \le 3) c_6 : (v_2 - v_4 \le 6) \lor (v_5 = 5 - 3v_4) \lor \neg A_1 c_7 : A_1 \lor (v_3 = 3v_5 + 4) \lor A_2$$

$$\begin{split} \varphi^{\rho} &= \\ \neg B_1 \lor A_1 \\ \neg A_2 \lor B_2 \\ B_3 \lor A_2 \\ \neg B_4 \lor \neg B_5 \lor \neg A_1 \\ A_1 \lor B_3 \\ B_6 \lor B_7 \lor \neg A_1 \\ A_1 \lor B_8 \lor A_2 \end{split}$$

true, false

$$\begin{array}{lll} \mu^{\rho} & = & \{\neg B_5, B_8, B_6, \neg B_1, \neg B_3, A_1, A_2, B_2\} \\ \mu & = & \{\underline{\neg (3v_1 - v_3 \leq 6)}, \underline{(v_3 = 3v_5 + 4)}, (v_2 - v_4 \leq 6), \\ \neg (2v_2 - v_3 > 2), \neg (3v_1 - 2v_2 \leq 3), \underline{(v_1 - v_5 \leq 1)}\} \end{array}$$

 \Rightarrow unsatisfiable in $\mathcal{LRA} \Longrightarrow$ backtrack

$$\begin{split} \varphi &= & \varphi^{\rho} = \\ C_{1}: & \neg (2v_{2} - v_{3} > 2) \lor A_{1} & \neg B_{1} \lor A_{1} \\ C_{2}: & \neg A_{2} \lor (v_{1} - v_{5} \le 1) & \neg A_{2} \lor B_{2} \\ C_{3}: & (3v_{1} - 2v_{2} \le 3) \lor A_{2} & \neg B_{3} \lor A_{2} \\ C_{4}: & \neg (2v_{3} + v_{4} \ge 5) \lor \neg (3v_{1} - v_{3} \le 6) \lor \neg A_{1} & \neg B_{4} \lor \neg B_{5} \lor \neg A_{1} \\ C_{5}: & A_{1} \lor (3v_{1} - 2v_{2} \le 3) & A_{2} & A_{1} \lor B_{3} \\ C_{6}: & (v_{2} - v_{4} \le 6) \lor (v_{5} = 5 - 3v_{4}) \lor \neg A_{1} & B_{6} \lor B_{7} \lor \neg A_{1} \\ C_{7}: & A_{1} \lor (v_{3} = 3v_{5} + 4) \lor A_{2} & A_{1} \lor B_{8} \lor A_{2} \\ true, false & \mu^{\rho} &= \{\neg B_{5}, B_{8}, B_{6}, \neg B_{1}, \neg B_{3}, A_{1}, A_{2}, B_{2}\} \\ \mu &= \{\neg (3v_{1} - v_{3} \le 6), (v_{3} = 3v_{5} + 4), (v_{2} - v_{4} \le 6), \\ \neg (2v_{2} - v_{3} > 2), \neg (3v_{1} - 2v_{2} \le 3), (v_{1} - v_{5} \le 1)\} \\ \Longrightarrow \text{ unsatisfiable in } \mathcal{LRA} \Longrightarrow \text{ backtrack} \end{aligned}$$

29/136

\mathcal{T} -Backjumping & \mathcal{T} -learning [47, 72, 3, 8, 33]

- Similar to Boolean backjumping & learning
- important property of \mathcal{T} -solver:
 - extraction of *T*-conflict sets: if μ is
 T-unsatisfiable, then *T*-solver (μ) returns the subset η of μ causing the *T*-unsatisfiability of μ (*T*-conflict set)
- If so, the *T*-conflict clause *C* := ¬η is used to drive the backjumping & learning mechanism of the SAT solver

 \implies lots of search saved

• the less redundant is η , the more search is saved

 $\neg l_1 \lor \neg l_2 \lor \neg l_3 \lor \neg l_4 \lor$

\mathcal{T} -Backjumping & \mathcal{T} -learning: example

\mathcal{T} -Backjumping & \mathcal{T} -learning: example

\mathcal{T} -Backjumping & \mathcal{T} -learning: example

31/136

\mathcal{T} -Backjumping & \mathcal{T} -learning: example (2)

32/136

\mathcal{T} -Backjumping & \mathcal{T} -learning: example (2)

\mathcal{T} -Backjumping & \mathcal{T} -learning: example (2)

Early Pruning [42, 2, 72]

- Introduce a \mathcal{T} -satisfiability test on intermediate assignments: if \mathcal{T} -solver returns UNSAT, the procedure backtracks.
 - benefit: prunes drastically the Boolean search
 - Drawback: possibly many useless calls to \mathcal{T} -solver

Early Pruning [42, 2, 72] (cont.)

- Different strategies for interleaving Boolean search steps and $\mathcal{T}\mbox{-solver}$ calls
 - Eager E.P. [72, 11, 70, 41]): invoke \mathcal{T} -solver every time a new \mathcal{T} -atom is added to the assignment (unit propagations included)
 - Selective E.P.: Do not call \mathcal{T} -solver if the have been added only literals which hardly cause any \mathcal{T} -conflict with the previous assignment (e.g., Boolean literals, disequalities $(x y \neq 3)$, \mathcal{T} -literals introducing new variables (x z = 3))
 - Weakened E.P.: for intermediate checks only, use weaker but faster versions of \mathcal{T} -solver (e.g., check μ on \mathbb{R} rather than on \mathbb{Z}): $\{(x y \le 4), (z x \le -6), (z = y), (3x + 2y 3z = 4)\}$

Early pruning: example

$$\begin{split} \varphi &= \{ \neg (2v_2 - v_3 > 2) \lor A_1 \} \land \\ \{ \neg A_2 \lor (2v_1 - 4v_5 > 3) \} \land \\ \{ (3v_1 - 2v_2 \le 3) \lor A_2 \} \land \\ \{ \neg (2v_3 + v_4 \ge 5) \lor \neg (3v_1 - v_3 \le 6) \lor \neg A_1 \} \land \\ \{ A_1 \lor (3v_1 - 2v_2 \le 3) \} \land \\ \{ (v_1 - v_5 \le 1) \lor (v_5 = 5 - 3v_4) \lor \neg A_1 \} \land \\ \{ A_1 \lor (v_3 = 3v_5 + 4) \lor A_2 \}. \end{split}$$

$$\begin{aligned} \varphi^{\rho} &= \{ \neg B_1 \lor A_1 \} \land \\ \{ \neg A_2 \lor B_2 \} \land \\ \{ B_3 \lor A_2 \} \land \\ \{ \neg B_4 \lor \neg B_5 \lor \neg A_1 \} \land \\ \{ A_1 \lor B_3 \} \land \\ \{ B_6 \lor B_7 \lor \neg A_1 \} \land \\ \{ A_1 \lor B_8 \lor A_2 \}. \end{aligned}$$

• Suppose it is built the intermediate assignment:

 $\mu'^{\rho} = \neg B_1 \wedge \neg A_2 \wedge B_3 \wedge \neg B_5.$

corresponding to the following set of \mathcal{T} -literals

 $\mu' = \neg (2v_2 - v_3 > 2) \land \neg A_2 \land (3v_1 - 2v_2 \le 3) \land \neg (3v_1 - v_3 \le 6).$

If *T*-solver is invoked on μ', then it returns UNSAT, and DPLL backtracks without exploring any extension of μ'.

Early pruning: remark

Incrementality & Backtrackability of T-solvers With early pruning, lots of incremental calls to *T*-solver. \Rightarrow Sat Undo μ_4, μ_3, μ_2 \mathcal{T} -solver (μ_1) \mathcal{T} -solver ($\mu_1 \cup \mu_2$) \Rightarrow Sat \mathcal{T} -solver $(\mu_1 \cup \mu'_2)$ \Rightarrow Sat \mathcal{T} -solver $(\mu_1 \cup \mu_2 \cup \mu_3) \Rightarrow Sat \qquad \mathcal{T}$ -solver $(\mu_1 \cup \mu_2' \cup \mu_3')$ \Rightarrow Sat \mathcal{T} -solver $(\mu_1 \cup \mu_2 \cup \mu_3 \cup \mu_4) \Rightarrow Unsat$ • incrementality: T-solver($\mu_1 \cup \mu_2$) reuses computation of backtrackability (resettability): T-solver can efficiently undo steps

Early pruning: remark

Incrementality & Backtrackability of T-solvers

• With early pruning, lots of incremental calls to \mathcal{T} -solver. \mathcal{T} -solver (μ_1) \Rightarrow Sat Undo μ_4, μ_3, μ_2

 \implies Desirable features of \mathcal{T} -solvers:

- incrementality: T-solver($\mu_1 \cup \mu_2$) reuses computation of T-solver(μ_1) without restarting from scratch
- backtrackability (resettability): *T*-solver can efficiently undo steps and return to a previous status on the stack

 $\Rightarrow \mathcal{T}$ -solver requires a stack-based interface

Early pruning: remark

Incrementality & Backtrackability of T-solvers

• With early pruning, lots of incremental calls to \mathcal{T} -solver: \mathcal{T} -solver $(\mu_1) \Rightarrow Sat$ Undo μ_4, μ_3, μ_2 \mathcal{T} -solver $(\mu_1 \cup \mu_2) \Rightarrow Sat$ \mathcal{T} -solver $(\mu_1 \cup \mu'_2) \Rightarrow Sat$ \mathcal{T} -solver $(\mu_1 \cup \mu_2 \cup \mu_3) \Rightarrow Sat$ \mathcal{T} -solver $(\mu_1 \cup \mu'_2 \cup \mu'_3) \Rightarrow Sat$

 $\mathcal{T}\text{-solver}\left(\mu_1 \cup \mu_2 \cup \mu_3 \cup \mu_4\right) \Rightarrow \textit{Unsat} \quad ...$

 \implies Desirable features of \mathcal{T} -solvers:

• incrementality: T-solver($\mu_1 \cup \mu_2$) reuses computation of T-solver(μ_1) without restarting from scratch

- backtrackability (resettability): *T*-solver can efficiently undo steps and return to a previous status on the stack
- $\implies \mathcal{T}$ -solver requires a stack-based interface

$\mathcal{T}\text{-}Propagation$ [2, 3, 41]

- strictly related to early pruning
- important property of *T*-solver:
 - \mathcal{T} -deduction: when a partial assignment μ is \mathcal{T} -satisfiable, \mathcal{T} -solver may be able to return also an assignment η to some unassigned atom occurring in φ s.t. $\mu \models_{\mathcal{T}} \eta$.
- If so:
 - the literal η is then unit-propagated;
 - optionally, a *T*-deduction clause *C* := ¬μ' ∨ η can be learned, μ' being the subset of μ which caused the deduction (μ' ⊨_T η)
 - lazy explanation: compute C only if needed for conflict analysis
- \implies may prune drastically the search

Both \mathcal{T} -deduction clauses and \mathcal{T} -conflict clauses are called \mathcal{T} -lemmas since they are valid in \mathcal{T}

\mathcal{T} -Propagation [2, 3, 41]

- strictly related to early pruning
- important property of *T*-solver:
 - *T*-deduction: when a partial assignment μ is *T*-satisfiable,
 T-solver may be able to return also an assignment η to some unassigned atom occurring in φ s.t. μ ⊨_T η.
- If so:
 - the literal η is then unit-propagated;
 - optionally, a *T*-deduction clause *C* := ¬μ' ∨ η can be learned, μ' being the subset of μ which caused the deduction (μ' ⊨_T η)
 - lazy explanation: compute C only if needed for conflict analysis
- \implies may prune drastically the search

Both $\mathcal T$ -deduction clauses and $\mathcal T$ -conflict clauses are called $\mathcal T$ -lemmas since they are valid in $\mathcal T$

\mathcal{T} -propagation: example

38/136

\mathcal{T} -propagation: example

38/136

\mathcal{T} -propagation: example

Pure-literal filtering [72, 3, 16]

Property

If we have non-Boolean \mathcal{T} -atoms occurring only positively [negatively] in the original formula φ (learned clauses are not considered), we can drop every negative [positive] occurrence of them from the assignment to be checked by \mathcal{T} -solver (and from the \mathcal{T} -deducible ones).

- increases the chances of finding a model
- reduces the effort for the *T*-solver
- eliminates unnecessary "nasty" negated literals (e.g. negative equalities like ¬(3v₁ − 9v₂ = 3) in *L*IA force splitting: (3v₁ − 9v₂ > 3) ∨ (3v₁ − 9v₂ < 3)).
- may weaken the effect of early pruning.

Pure-literal filtering [72, 3, 16]

Property

If we have non-Boolean \mathcal{T} -atoms occurring only positively [negatively] in the original formula φ (learned clauses are not considered), we can drop every negative [positive] occurrence of them from the assignment to be checked by \mathcal{T} -solver (and from the \mathcal{T} -deducible ones).

- increases the chances of finding a model
- reduces the effort for the \mathcal{T} -solver
- eliminates unnecessary "nasty" negated literals (e.g. negative equalities like ¬(3v₁ − 9v₂ = 3) in *L*IA force splitting: (3v₁ − 9v₂ > 3) ∨ (3v₁ − 9v₂ < 3)).
- may weaken the effect of early pruning.

Pure literal filtering: example

$$\begin{split} \varphi &= \{\neg (2v_2 - v_3 > 2) \lor A_1\} \land \\ \{\neg A_2 \lor (2v_1 - 4v_5 > 3)\} \land \\ \{(3v_1 - 2v_2 \le 3) \lor A_2\} \land \\ \{\neg (2v_3 + v_4 \ge 5) \lor \neg (3v_1 - v_3 \le -2) \lor \neg A_1\} \land \\ \{A_1 \lor (3v_1 - 2v_2 \le 3)\} \land \\ \{(v_1 - v_5 \le 1) \lor (v_5 = 5 - 3v_4) \lor \neg A_1\} \land \\ \{A_1 \lor (v_3 = 3v_5 + 4) \lor A_2\} \land \\ \{(2v_2 - v_3 > 2) \lor \neg (3v_1 - 2v_2 \le 3) \lor (3v_1 - v_3 \le -2)\} \text{ learned} \end{split}$$

$$\begin{aligned} \varphi &= \{\neg (2v_2 - v_3 > 2), \neg A_2, (3v_1 - 2v_2 \le 3), \neg A_1, (v_3 = 3v_5 + 4), (3v_1 - v_3 \le -2)\} \}. \\ \Rightarrow \text{Sat: } v_1 = v_2 = v_3 = 0, v_5 = -4/3 \text{ is a solution} \end{split}$$

Note

 μ

 (3v₁ − v₃ ≤ −2) "filtered out" from μ' because it occurs only negatively in the original formula φ

• $\mu' \cup \{(3v_1 - v_3 \leq -2)\}$ is \mathcal{LRA} -unsatisfiable

Pure literal filtering: example

$$\begin{split} \varphi &= \{\neg (2v_2 - v_3 > 2) \lor A_1\} \land \\ \{\neg A_2 \lor (2v_1 - 4v_5 > 3)\} \land \\ \{(3v_1 - 2v_2 \le 3) \lor A_2\} \land \\ \{\neg (2v_3 + v_4 \ge 5) \lor \neg (3v_1 - v_3 \le -2) \lor \neg A_1\} \land \\ \{A_1 \lor (3v_1 - 2v_2 \le 3)\} \land \\ \{(v_1 - v_5 \le 1) \lor (v_5 = 5 - 3v_4) \lor \neg A_1\} \land \\ \{A_1 \lor (v_3 = 3v_5 + 4) \lor A_2\} \land \\ \{(2v_2 - v_3 > 2) \lor \neg (3v_1 - 2v_2 \le 3) \lor (3v_1 - v_3 \le -2)\} \text{ learned} \\ Y &= \{\neg (2v_2 - v_3 > 2), \neg A_2, (3v_1 - 2v_2 \le 3), \neg A_1, (v_3 = 3v_5 + 4), (3v_1 - v_3 \le -2)\}. \\ \Rightarrow \text{Sat: } v_1 = v_2 = v_3 = 0, v_5 = -4/3 \text{ is a solution} \end{split}$$

Note

 μ

- (3ν₁ − ν₃ ≤ −2) "filtered out" from μ' because it occurs only negatively in the original formula φ
- $\mu' \cup \{(3\nu_1 \nu_3 \leq -2)\}$ is \mathcal{LRA} -unsatisfiable

Pure literal filtering: example

$$\begin{split} \varphi &= \{\neg (2v_2 - v_3 > 2) \lor A_1\} \land \\ \{\neg A_2 \lor (2v_1 - 4v_5 > 3)\} \land \\ \{(3v_1 - 2v_2 \le 3) \lor A_2\} \land \\ \{\neg (2v_3 + v_4 \ge 5) \lor \neg (3v_1 - v_3 \le -2) \lor \neg A_1\} \land \\ \{A_1 \lor (3v_1 - 2v_2 \le 3)\} \land \\ \{(v_1 - v_5 \le 1) \lor (v_5 = 5 - 3v_4) \lor \neg A_1\} \land \\ \{A_1 \lor (v_3 = 3v_5 + 4) \lor A_2\} \land \\ \{(2v_2 - v_3 > 2) \lor \neg (3v_1 - 2v_2 \le 3) \lor (3v_1 - v_3 \le -2)\} \text{ learned} \\ Y &= \{\neg (2v_2 - v_3 > 2), \neg A_2, (3v_1 - 2v_2 \le 3), \neg A_1, (v_3 = 3v_5 + 4), (3v_1 - v_3 \le -2)\}. \\ \Rightarrow \text{Sat: } v_1 = v_2 = v_3 = 0, v_5 = -4/3 \text{ is a solution} \end{split}$$

Note

 μ

- (3ν₁ − ν₃ ≤ −2) "filtered out" from μ' because it occurs only negatively in the original formula φ
- $\mu' \cup \{(3v_1 v_3 \le -2)\}$ is \mathcal{LRA} -unsatisfiable

Source of inefficiency:

Semantically equivalent but syntactically different atoms are not recognized to be identical [resp. one the negation of the other]

 \Longrightarrow they may be assigned different [resp. identical] truth values.

 \implies lots of redundant unsatisfiable assignment generated

Solution

Source of inefficiency:

Semantically equivalent but syntactically different atoms are not recognized to be identical [resp. one the negation of the other]

- \implies they may be assigned different [resp. identical] truth values.
- \implies lots of redundant unsatisfiable assignment generated

Solution

Source of inefficiency:

Semantically equivalent but syntactically different atoms are not recognized to be identical [resp. one the negation of the other]

- \implies they may be assigned different [resp. identical] truth values.
- \implies lots of redundant unsatisfiable assignment generated

Solution

Source of inefficiency:

Semantically equivalent but syntactically different atoms are not recognized to be identical [resp. one the negation of the other]

- \implies they may be assigned different [resp. identical] truth values.
- \implies lots of redundant unsatisfiable assignment generated

Solution

• Sorting: $(v_1 + v_2 \le v_3 + 1)$, $(v_2 + v_1 \le v_3 + 1)$, $(v_1 + v_2 - 1 \le v_3)$ $\implies (v_1 + v_2 - v_3 \le 1)$;

- Rewriting dual operators: (v₁ < v₂), (v₁ ≥ v₂) ⇒ (v₁ < v₂), ¬(v₁ < v₂)
 Exploiting associativity:
 - $(v_1 + (v_2 + v_3) = 1), ((v_1 + v_2) + v_3) = 1) \Longrightarrow (v_1 + v_2 + v_3 = 1);$
- Factoring $(v_1 + 2.0v_2 \le 4.0)$, $(-2.0v_1 4.0v_2 \ge -8.0)$, \Longrightarrow $(0.25v_1 + 0.5v_2 \le 1.0)$;
- Exploiting properties of \mathcal{T} : ($v_1 \leq 3$), ($v_1 < 4$) \Longrightarrow ($v_1 \leq 3$) if $v_1 \in \mathbb{Z}$

- Sorting: $(v_1 + v_2 \le v_3 + 1)$, $(v_2 + v_1 \le v_3 + 1)$, $(v_1 + v_2 1 \le v_3)$ $\implies (v_1 + v_2 - v_3 \le 1)$;
- Rewriting dual operators: $(v_1 < v_2), (v_1 \ge v_2) \Longrightarrow (v_1 < v_2), \neg (v_1 < v_2)$
- Exploiting associativity: $(v_1 + (v_2 + v_3) = 1), ((v_1 + v_2) + v_3) = 1) \Longrightarrow (v_1 + v_2 + v_3 = 1);$
- Factoring $(v_1 + 2.0v_2 \le 4.0)$, $(-2.0v_1 4.0v_2 \ge -8.0)$, \Longrightarrow $(0.25v_1 + 0.5v_2 \le 1.0)$;
- Exploiting properties of *T*:
 (v₁ ≤ 3), (v₁ < 4) ⇒ (v₁ ≤ 3) if v₁ ∈ Z

- Sorting: $(v_1 + v_2 \le v_3 + 1)$, $(v_2 + v_1 \le v_3 + 1)$, $(v_1 + v_2 1 \le v_3)$ $\implies (v_1 + v_2 - v_3 \le 1)$;
- Rewriting dual operators: $(v_1 < v_2), (v_1 \ge v_2) \Longrightarrow (v_1 < v_2), \neg (v_1 < v_2)$ • Exploiting associativity: $(v_1 + (v_2 + v_3) = 1), ((v_1 + v_2) + v_3) = 1) \Longrightarrow (v_1 + v_2 + v_3 = 1);$
- Factoring $(v_1 + 2.0v_2 \le 4.0)$, $(-2.0v_1 4.0v_2 \ge -8.0)$, \Longrightarrow $(0.25v_1 + 0.5v_2 \le 1.0)$;
- Exploiting properties of *T*:
 (v₁ ≤ 3), (v₁ < 4) ⇒ (v₁ ≤ 3) if v₁ ∈ Z

• ...

- Sorting: $(v_1 + v_2 \le v_3 + 1), (v_2 + v_1 \le v_3 + 1), (v_1 + v_2 1 \le v_3)$ $\implies (v_1 + v_2 - v_3 \le 1));$
- Rewriting dual operators: (v₁ < v₂), (v₁ ≥ v₂) ⇒ (v₁ < v₂), ¬(v₁ < v₂)
 Exploiting associativity: (v₁ + (v₂ + v₃) = 1), ((v₁ + v₂) + v₃) = 1) ⇒ (v₁ + v₂ + v₃ = 1);
- Factoring $(v_1 + 2.0v_2 \le 4.0)$, $(-2.0v_1 4.0v_2 \ge -8.0)$, \implies $(0.25v_1 + 0.5v_2 \le 1.0)$;
- Exploiting properties of *T*:
 (v₁ ≤ 3), (v₁ < 4) ⇒ (v₁ ≤ 3) if v₁ ∈ Z;

• ...

- Sorting: $(v_1 + v_2 \le v_3 + 1)$, $(v_2 + v_1 \le v_3 + 1)$, $(v_1 + v_2 1 \le v_3)$ $\implies (v_1 + v_2 - v_3 \le 1)$;
- Rewriting dual operators: (v₁ < v₂), (v₁ ≥ v₂) ⇒ (v₁ < v₂), ¬(v₁ < v₂)
 Exploiting associativity:
 - $(v_1 + (v_2 + v_3) = 1), ((v_1 + v_2) + v_3) = 1) \Longrightarrow (v_1 + v_2 + v_3 = 1);$

・ロト ・ 同ト ・ ヨト ・ ヨト

42/136

- Factoring $(v_1 + 2.0v_2 \le 4.0)$, $(-2.0v_1 4.0v_2 \ge -8.0)$, \implies $(0.25v_1 + 0.5v_2 \le 1.0)$;
- Exploiting properties of \mathcal{T} : ($v_1 \leq 3$), ($v_1 < 4$) \Longrightarrow ($v_1 \leq 3$) if $v_1 \in \mathbb{Z}$;

• ...

Static Learning [2, 4]

- Often possible to quickly detect a priori short and "obviously unsatisfiable" pairs or triplets of literals occurring in φ .
 - mutual exclusion $\{x = 0, x = 1\}$,
 - congruence $\{(x_1 = y_1), (x_2 = y_2), \neg (f(x_1, x_2) = f(y_1, y_2))\},\$
 - transitivity $\{(x y = 2), (y z \le 4), \neg (x z \le 7)\},\$
 - substitution $\{(x = y), (2x 3z \le 3), \neg (2y 3z \le 3)\}$
 - ...
- Preprocessing step: detect these literals and add blocking clauses to the input formula:

e.g.,
$$\neg(x = 0) \lor \neg(x = 1))$$

No assignment including one such group of literals is ever generated: as soon as all but one literals are assigned, the remaining one is immediately assigned false by unit-propagation.

Static Learning [2, 4]

- Often possible to quickly detect a priori short and "obviously unsatisfiable" pairs or triplets of literals occurring in φ .
 - mutual exclusion $\{x = 0, x = 1\}$,
 - congruence $\{(x_1 = y_1), (x_2 = y_2), \neg (f(x_1, x_2) = f(y_1, y_2))\},\$
 - transitivity $\{(x y = 2), (y z \le 4), \neg (x z \le 7)\},\$
 - substitution $\{(x = y), (2x 3z \le 3), \neg (2y 3z \le 3)\}$
 - ...
- Preprocessing step: detect these literals and add blocking clauses to the input formula:

(e.g., $\neg(x = 0) \lor \neg(x = 1)$)

→ No assignment including one such group of literals is ever generated: as soon as all but one literals are assigned, the remaining one is immediately assigned false by unit-propagation.

Static Learning [2, 4]

- Often possible to quickly detect a priori short and "obviously unsatisfiable" pairs or triplets of literals occurring in φ .
 - mutual exclusion $\{x = 0, x = 1\}$,
 - congruence $\{(x_1 = y_1), (x_2 = y_2), \neg (f(x_1, x_2) = f(y_1, y_2))\},\$
 - transitivity $\{(x y = 2), (y z \le 4), \neg (x z \le 7)\},\$
 - substitution $\{(x = y), (2x 3z \le 3), \neg (2y 3z \le 3)\}$
 - ...
- Preprocessing step: detect these literals and add blocking clauses to the input formula:

 $(\text{e.g.}, \neg(x=0) \lor \neg(x=1))$

No assignment including one such group of literals is ever generated: as soon as all but one literals are assigned, the remaining one is immediately assigned false by unit-propagation.

Other optimization techniques

- *T*-deduced-literal filtering
- Ghost-literal filtering
- *T*-solver layering
- *T*-solver clustering
- ...

(see [64, 10] for an overview)

Other SAT-solving techniques for SMT?

Frequently-asked question:

Are CDCL SAT solvers the only suitable Boolean Engines for SMT?

Some previous attempts:

- Ordered Binary Decision Diagrams (OBDDs) [73, 55, 1]
- Stochastic Local Search [46]

CDCL based currently much more efficient.

Other SAT-solving techniques for SMT?

Frequently-asked question:

Are CDCL SAT solvers the only suitable Boolean Engines for SMT?

Some previous attempts:

- Ordered Binary Decision Diagrams (OBDDs) [73, 55, 1]
- Stochastic Local Search [46]

CDCL based currently much more efficient.

- a "partially-invisible" Boolean CNF formula $\varphi^{p} \wedge \tau^{p}$:
 - φ^p : the Boolean abstraction of the input formula φ
 - τ^{p} : (the B. abst. of) the set τ of all \mathcal{T} -lemmas on atoms in φ .
 - $\varphi \mathcal{T}$ -satisfiable iff $\varphi^{p} \wedge \tau^{p}$ satisfiable.
 - the SAT solver:
 - "sees" only φ^p
 - finds μ^{p} s.t. $\mu^{p} \models \varphi^{p}$
 - cannot state if $\mu^{p} \models \tau$
 - invokes *T*-solver on μ^ρ
 - the T-solver:
 - "sees" τ
 - checks if $\mu^{p} \models \tau^{p}$:

- a "partially-invisible" Boolean CNF formula $\varphi^{p} \wedge \tau^{p}$:
 - φ^p : the Boolean abstraction of the input formula φ
 - τ^{p} : (the B. abst. of) the set τ of all \mathcal{T} -lemmas on atoms in φ .
 - $\varphi \mathcal{T}$ -satisfiable iff $\varphi^p \wedge \tau^p$ satisfiable.
 - the SAT solver:
 - "sees" only φ^p
 - finds μ^{p} s.t. $\mu^{p} \models \varphi^{p}$
 - cannot state if $\mu^p \models \tau^p$
 - invokes \mathcal{T} -solver on μ^p
 - the *T*-solver:
 - "sees" τ
 - checks if $\mu^{p} \models \tau^{p}$:

- a "partially-invisible" Boolean CNF formula $\varphi^{p} \wedge \tau^{p}$:
 - φ^p : the Boolean abstraction of the input formula φ
 - τ^{p} : (the B. abst. of) the set τ of all \mathcal{T} -lemmas on atoms in φ .
 - $\varphi \mathcal{T}$ -satisfiable iff $\varphi^p \wedge \tau^p$ satisfiable.
 - the SAT solver:
 - "sees" only φ^p
 - finds μ^{p} s.t. $\mu^{p} \models \varphi^{p}$
 - cannot state if $\mu^p \models \tau^p$
 - invokes \mathcal{T} -solver on μ^p
 - the *T*-solver:
 - "sees" τ
 - checks if $\mu^{p} \models \tau^{p}$:

An SMT problem φ from the perspective of a SAT solver:

- a "partially-invisible" Boolean CNF formula $\varphi^{p} \wedge \tau^{p}$:
 - φ^p : the Boolean abstraction of the input formula φ
 - τ^{p} : (the B. abst. of) the set τ of all \mathcal{T} -lemmas on atoms in φ .
 - $\varphi \mathcal{T}$ -satisfiable iff $\varphi^p \wedge \tau^p$ satisfiable.
 - the SAT solver:
 - "sees" only φ^p
 - finds μ^{p} s.t. $\mu^{p} \models \varphi^{p}$
 - cannot state if $\mu^p \models \tau^p$
 - invokes \mathcal{T} -solver on μ^p

• the *T*-solver:

- "sees" au
- checks if $\mu^p \models \tau^p$:

- a "partially-invisible" Boolean CNF formula $\varphi^{p} \wedge \tau^{p}$:
 - φ^p : the Boolean abstraction of the input formula φ
 - τ^{p} : (the B. abst. of) the set τ of all \mathcal{T} -lemmas on atoms in φ .
 - $\varphi \mathcal{T}$ -satisfiable iff $\varphi^p \wedge \tau^p$ satisfiable.
 - the SAT solver:
 - "sees" only φ^p
 - finds μ^{p} s.t. $\mu^{p} \models \varphi^{p}$
 - cannot state if $\mu^{p} \models \tau^{p}$
 - invokes *T*-solver on μ^p
 - the *T*-solver:
 - "sees" τ^p
 - checks if $\mu^{p} \models \tau^{p}$:
 - if yes, returns SAT
 - if no, returns UNSAT and some falsified clauses $c_1^p, ..., c_k^p \in \tau^p$

- a "partially-invisible" Boolean CNF formula $\varphi^{p} \wedge \tau^{p}$:
 - φ^p : the Boolean abstraction of the input formula φ
 - τ^{p} : (the B. abst. of) the set τ of all \mathcal{T} -lemmas on atoms in φ .
 - $\varphi \mathcal{T}$ -satisfiable iff $\varphi^p \wedge \tau^p$ satisfiable.
 - the SAT solver:
 - "sees" only φ^p
 - finds μ^{p} s.t. $\mu^{p} \models \varphi^{p}$
 - cannot state if $\mu^p \models \tau^p$
 - invokes \mathcal{T} -solver on μ^p
 - the *T*-solver:
 - "sees" τ^ρ
 - checks if $\mu^p \models \tau^p$:
 - if yes, returns SAT
 - if no, returns UNSAT and some falsified clauses

- a "partially-invisible" Boolean CNF formula $\varphi^{p} \wedge \tau^{p}$:
 - φ^p : the Boolean abstraction of the input formula φ
 - τ^p: (the B. abst. of) the set τ of all T-lemmas on atoms in φ.
 - $\varphi \mathcal{T}$ -satisfiable iff $\varphi^p \wedge \tau^p$ satisfiable.
 - the SAT solver:
 - "sees" only φ^p
 - finds μ^{p} s.t. $\mu^{p} \models \varphi^{p}$
 - cannot state if $\mu^p \models \tau^p$
 - invokes *T*-solver on μ^p
 - the *T*-solver:
 - "sees" τ^p
 - checks if $\mu^{p} \models \tau^{p}$:
 - if yes, returns SAT
 - if no, returns UNSAT and some falsified clauses $c_1^p, ..., c_k^p \in \tau^p$

- a "partially-invisible" Boolean CNF formula $\varphi^{p} \wedge \tau^{p}$:
 - φ^p : the Boolean abstraction of the input formula φ
 - τ^{p} : (the B. abst. of) the set τ of all \mathcal{T} -lemmas on atoms in φ .
 - $\varphi \mathcal{T}$ -satisfiable iff $\varphi^p \wedge \tau^p$ satisfiable.
 - the SAT solver:
 - "sees" only φ^p
 - finds μ^{p} s.t. $\mu^{p} \models \varphi^{p}$
 - cannot state if $\mu^p \models \tau^p$
 - invokes *T*-solver on μ^p
 - the *T*-solver:
 - "sees" τ^ρ
 - checks if $\mu^{p} \models \tau^{p}$:
 - if yes, returns SAT
 - if no, returns UNSAT and some falsified clauses $c_1^p, ..., c_k^p \in \tau^p$

- a "partially-invisible" Boolean CNF formula $\varphi^{p} \wedge \tau^{p}$:
 - φ^p : the Boolean abstraction of the input formula φ
 - τ^{p} : (the B. abst. of) the set τ of all \mathcal{T} -lemmas on atoms in φ .
 - $\varphi \mathcal{T}$ -satisfiable iff $\varphi^p \wedge \tau^p$ satisfiable.
 - the SAT solver:
 - "sees" only φ^p
 - finds μ^{p} s.t. $\mu^{p} \models \varphi^{p}$
 - cannot state if $\mu^p \models \tau^p$
 - invokes \mathcal{T} -solver on μ^p
 - the *T*-solver:
 - "sees" τ^ρ
 - checks if $\mu^p \models \tau^p$:
 - if yes, returns SAT
 - if no, returns UNSAT and some falsified clauses $c_1^p, ..., c_k^p \in \tau^p$

Example

 φ^{p} : φ : $C_1: \{A_1\}$ $C_1: \{A_1\}$ $c_2: \{\neg A_1 \lor (x-z > 4)\}$ $c_3: \{\neg A_3 \lor A_1 \lor (y > 1)\}$ $c_4: \{\neg A_2 \lor \neg (x-z > 4) \lor \neg A_1\}$ $c_5: \{(x-y<3) \lor \neg A_4 \lor A_5\}$ $c_6: \{\neg (y-z \le 1) \lor (x+y=1) \lor \neg A_5\}$ $c_7: \{A_3 \lor \neg (x + y = 0) \lor A_2\}$ $\{\neg A_3 \lor (z + y = 2)\}$ **C**8 : (all possible \mathcal{T} -lemmas on the \mathcal{T} -atoms of φ) τ^p : τ : $\{\neg(x + y = 0) \lor \neg(x + y = 1)\}$ **C**9 : $c_{10}: \{\neg(x-z>4) \lor \neg(x-y<3) \lor \neg(y-z<1)\}$ $\{(x-z > 4) \lor (x-y \le 3) \lor (y-z \le 1)\}$ C11 : $c_{12}: \{\neg(x-z>4) \lor \neg(x+y=1) \lor \neg(z+y=2)\}$ $c_{13}: \{\neg(x-z>4) \lor \neg(x+y=0) \lor \neg(z+y=2)\}$

 $C_2: \{\neg A_1 \lor B_1\}$ $c_3: \{\neg A_3 \lor A_1 \lor B_2\}$ $c_4: \{\neg A_2 \lor \neg B_1 \lor \neg A_1\}$ $c_5: \{B_3 \vee \neg A_4 \vee A_5\}$ $c_6: \{\neg B_4 \lor B_5 \lor \neg A_5\}$ $C_7: \{A_3 \vee \neg B_6 \vee A_2\}$ $C_8: \{\neg A_3 \lor B_7\}$ $c_9: \{\neg B_6 \lor \neg B_5\}$ $c_{10}: \{\neg B_1 \lor \neg B_3 \lor \neg B_4\}$ $C_{11}: \{B_1 \lor B_3 \lor B_4\}$ $C_{12}: \{\neg B_1 \lor \neg B_5 \lor \neg B_7\}$ $C_{13}: \{\neg B_1 \lor \neg B_6 \lor \neg B_7\}$

47/1

Example

 φ^{p} : φ : $C_1: \{A_1\}$ $C_1: \{A_1\}$ $c_2: \{\neg A_1 \lor (x-z > 4)\}$ $c_2: \{\neg A_1 \lor B_1\}$ $c_3: \{\neg A_3 \lor A_1 \lor (y > 1)\}$ $c_3: \{\neg A_3 \lor A_1 \lor B_2\}$ $c_4: \{\neg A_2 \lor \neg (x-z > 4) \lor \neg A_1\}$ $C_4: \{\neg A_2 \lor \neg B_1 \lor \neg A_1\}$ $c_5: \{(x-y<3) \lor \neg A_4 \lor A_5\}$ $c_5: \{B_3 \lor \neg A_4 \lor A_5\}$ $c_6: \{\neg (y-z \le 1) \lor (x+y=1) \lor \neg A_5\}$ $c_6: \{\neg B_4 \lor B_5 \lor \neg A_5\}$ $c_7: \{A_3 \lor \neg (x + y = 0) \lor A_2\}$ $c_7: \{A_3 \lor \neg B_6 \lor A_2\}$ $c_8: \{\neg A_3 \lor (z+y=2)\}$ $C_8: \{\neg A_3 \lor B_7\}$ τ : (all possible \mathcal{T} -lemmas on the \mathcal{T} -atoms of φ) τ^{p} : $\{\neg(x + y = 0) \lor \neg(x + y = 1)\}$ $c_9: \{\neg B_6 \lor \neg B_5\}$ Co : $c_{10}: \{\neg(x-z>4) \lor \neg(x-y<3) \lor \neg(y-z<1)\}$ $c_{10}: \{\neg B_1 \lor \neg B_3 \lor \neg B_4\}$ $C_{11}: \{(x-z > 4) \lor (x-y \le 3) \lor (y-z \le 1)\}$ $C_{11}: \{B_1 \lor B_3 \lor B_4\}$ $C_{12}: \{\neg(x-z>4) \lor \neg(x+y=1) \lor \neg(z+y=2)\}$ $C_{12}: \{\neg B_1 \lor \neg B_5 \lor \neg B_7\}$ $C_{13}: \{\neg B_1 \lor \neg B_6 \lor \neg B_7\}$ $c_{13}: \{\neg(x-z>4) \lor \neg(x+y=0) \lor \neg(z+y=2)\}$ μ_1^p : { $A_1, B_1, \neg A_2, A_3, \neg A_4, \neg A_5, \neg B_6, B_5, B_3, B_4, B_7, \neg B_2$ } $\mu_1: \{(x-z>4), \neg (x+y=0), (x+y=1), (x-y\leq 3), (y-z\leq 1), \}$ $(z + y = 2), \neg (y > 1)$ satisfies φ^{p} , but violates both c_{10} and c_{12} in τ^{p} .

Exercise

Consider the following formula in the theory \mathcal{EUF} .

$$\varphi = \begin{cases} (f(x) = f(f(y))) \lor A_2 \} \land \\ \{\neg(h(x, f(y)) = h(g(x), y)) \lor \neg(h(x, g(z) = h(f(x), y))) \lor \neg A_1 \} \land \\ \{A_1 \lor (h(x, y) = h(y, x))\} \land \\ \{(x = f(x)) \lor A_3 \lor \neg A_1 \} \land \\ \{\underline{\neg(w(x) = g(f(y)))} \lor A_1 \} \land \\ \{\neg(w(x) = g(f(y))) \lor A_1 \} \land \\ \{\neg A_2 \lor (w(g(x)) = w(f(x)))\} \land \\ \{A_1 \lor (y = g(z)) \lor A_2 \} \end{cases}$$

and consider the partial truth assignment μ given by the underlined literals above:

$$\{\neg(w(x) = g(f(y))), \neg A_2, \neg(h(x, g(z) = h(f(x), y))), (x = f(x)), (y = g(z))\}.$$

- Is μ satisfiable in \mathcal{EUF} ?
 - If no, find a minimal conflict set for μ and the corresponding conflict clause C.
 - 2 If yes, show one unassigned literal which can be deduced from μ , and show the corresponding deduction clause *C*.

Outline

Introduction

- What is a Theory?
- Satisfiability Modulo Theories
- Motivations and Goals of SMT

Efficient SMT solving

- Combining SAT with Theory Solvers
- Theory Solvers for Theories of Interest (hints)
- SMT for Combinations of Theories
- Beyond Solving: Advanced SMT Functionalities
 - Proofs and Unsatisfiable Cores
 - Interpolants
 - All-SMT & Predicate Abstraction (hints)
 - SMT with Optimization (Optimization Modulo Theories)

Summary: desirable properties for T-solver

- Correctness & Completeness: be correct & complete
- Time efficiency: be fast
- Incrementality & backtrackability: *T*-solver(μ₁ ∪ μ₂) reuses computation of *T*-solver(μ₁)
- Diagnosis capabilities: *T*-solver able to produce conflict sets
- Deduction capabilities: *T*-solver able to deduce assignments

$\mathcal{T}\text{-solvers}$ for Equality and Uninterpreted Functions (\mathcal{EUF})

- Typically used as a "core" \mathcal{T} -solver
- \mathcal{EUF} polynomial: $O(n \cdot log(n))$
- Fully incremental and backtrackable (stack-based)
- use a congruence closure data structures (E-Graphs)
 [36, 59, 32], based on the Union-Find data-structure for equivalence classes
- Supports efficient \mathcal{T} -propagation
 - Exhaustive for positive equalities
 - Incomplete for disequalities
- Supports Lazy explanations and conflict generation
 - However, minimality not guaranteed
- Supports efficient extensions

(e.g., Integer offsets, Bit-vector slicing and concatenation)

ヘロン ヘロン ヘヨン ヘヨン

- if (t = s), then merge the eq. classes of t and s
 - e.g. use the union-find data structure
- if $\forall i \in 1...k$, t_i and s_i pairwise belong to the same eq. classes, then merge the eq. classes of $f(t_1, ..., t_k)$ and $f(s_1, ..., s_k)$
- if $(t \neq s)$ and t and s belong to the same eq. class, then conflict

- if (t = s), then merge the eq. classes of t and s
 - e.g. use the union-find data structure
- if $\forall i \in 1...k$, t_i and s_i pairwise belong to the same eq. classes, then merge the eq. classes of $f(t_1, ..., t_k)$ and $f(s_1, ..., s_k)$
- if $(t \neq s)$ and t and s belong to the same eq. class, then conflict

- if (t = s), then merge the eq. classes of t and s
 - e.g. use the union-find data structure
- if $\forall i \in 1...k$, t_i and s_i pairwise belong to the same eq. classes, then merge the eq. classes of $f(t_1, ..., t_k)$ and $f(s_1, ..., s_k)$
- if $(t \neq s)$ and t and s belong to the same eq. class, then conflict

- if (t = s), then merge the eq. classes of t and s
 - e.g. use the union-find data structure
- if $\forall i \in 1...k$, t_i and s_i pairwise belong to the same eq. classes, then merge the eq. classes of $f(t_1, ..., t_k)$ and $f(s_1, ..., s_k)$
- if $(t \neq s)$ and t and s belong to the same eq. class, then conflict

- if (t = s), then merge the eq. classes of t and s
 - e.g. use the union-find data structure
- if $\forall i \in 1...k$, t_i and s_i pairwise belong to the same eq. classes, then merge the eq. classes of $f(t_1, ..., t_k)$ and $f(s_1, ..., s_k)$
- if $(t \neq s)$ and t and s belong to the same eq. class, then conflict

\mathcal{T} -solvers for Difference logic (\mathcal{DL})

- *DL* polynomial: *O*(*#vars* · *#constraints*)
- variants of the Bellman-Ford shortest-path algorithm: a negative cycle reveals a conflict [60, 31]
- Ex:

$$\{ (x_1 - x_2 \le -1), (x_1 - x_4 \le -1), (x_1 - x_3 \le -2), (x_2 - x_1 \le 2), (x_3 - x_4 \le -2), (x_3 - x_2 \le -1), (x_4 - x_2 \le 3), (x_4 - x_3 \le 6) \}$$

\mathcal{T} -solvers for Difference logic (\mathcal{DL})

- *DL* polynomial: *O*(*#vars* · *#constraints*)
- variants of the Bellman-Ford shortest-path algorithm: a negative cycle reveals a conflict [60, 31]
- Ex:

$$\{ (x_1 - x_2 \le -1), (x_1 - x_4 \le -1), (x_1 - x_3 \le -2), (x_2 - x_1 \le 2), (x_3 - x_4 \le -2), (x_3 - x_2 \le -1), (x_4 - x_2 \le 3), (x_4 - x_3 \le 6) \}$$

$\mathcal{T}\text{-solvers}$ for Linear arithmetic over the rationals (\mathcal{LRA})

- EX: { $(s_1 s_2 \le 5.2), (s_1 = s_0 + 3.4 \cdot t 3.4 \cdot t_0), \neg(s_1 = s_0)$ }
- \mathcal{LRA} polynomial
- variants of the simplex LP algorithm [38]
- [38] allows for detecting conflict sets & performing \mathcal{T} -propagation
- strict inequalities *t* < 0 rewritten as *t* + *ϵ* ≤ 0, *ϵ* treated symbolically

$$\begin{bmatrix} \mathcal{B} \\ x_1 \\ \vdots \\ x_i \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} \dots A_{1j} \dots \\ \vdots \\ A_{i1} \dots A_{ij} \dots A_{iM} \\ \vdots \\ \dots A_{Nj} \dots \end{bmatrix} \begin{bmatrix} x_{N+1} \\ \vdots \\ x_j \\ \vdots \\ x_{N+M} \end{bmatrix}$$

Invariant: $\beta(x_j) \in [l_j, u_j] \ \forall x_j \in \mathcal{N}$

Remark: infinite precision arithmetic

In order to avoid incorrect results due to numerical errors and to overflows, all \mathcal{T} -solvers for \mathcal{LRA} , \mathcal{LIA} and their subtheories which are based on numerical algorithms must be implemented on top of infinite-precision-arithmetic software packages.

 \mathcal{T} -solvers for Linear arithmetic over the integers (\mathcal{LIA})

- EX: $\{(x := x_l + 2^{16}x_h), (x \ge 0), (x \le 2^{16} 1)\}$
- LIA NP-complete
- combination of many techniques: simplex, branch&bound, cutting planes, ... [38, 44]

$\mathcal{T}\text{-solvers}$ for Arrays (\mathcal{AR})

- EX: $(write(A, i, v) = write(B, i, w)) \land \neg (v = w)$
- NP-complete
- congruence closure (EUF) plus on-the-fly instantiation of array's axioms:

 $\begin{array}{l} \forall a.\forall i.\forall e. \ (read(write(a, i, e), i) = e), \\ \forall a.\forall i.\forall j.\forall e. \ ((i \neq j) \rightarrow read(write(a, i, e), j) = read(a, j)) (2) \\ \forall a.\forall b. \ (\forall i.(read(a, i) = read(b, i)) \rightarrow (a = b)). \end{array}$

• many strategies discussed in the literature (e.g., [36, 43, 19, 35])

$\mathcal T\text{-solvers}$ for Bit vectors $(\mathcal B\mathcal V)$

Bit vectors (\mathcal{BV})

• EX:

 $\{(x_{[16]}[15:0] = (y_{[16]}[15:8] :: z_{[16]}[7:0]) << w_{[16]}[3:0]), ...\}$

- NP-hard
- involve complex word-level operations: word partition/concat, modulo-2^N arithmetic, shifts, bitwise-operations, multiplexers, ...
- *T*-solving: combination of rewriting & simplification techniques with either:
 - final encoding into \mathcal{LIA} [18, 21]
 - final encoding into SAT (lazy bit-blasting) [24, 40, 20, 39]

Eager approach

Most solvers use an eager approach for \mathcal{BV} (e.g., [20]):

- Heavy preprocessing, based on rewriting rules
- bit-blasting

$\mathcal T\text{-solvers}$ for Bit vectors $(\mathcal B\mathcal V)$

Bit vectors (\mathcal{BV})

• EX:

 $\{(x_{[16]}[15:0] = (y_{[16]}[15:8] :: z_{[16]}[7:0]) << w_{[16]}[3:0]), ...\}$

- NP-hard
- involve complex word-level operations: word partition/concat, modulo-2^N arithmetic, shifts, bitwise-operations, multiplexers, ...
- *T*-solving: combination of rewriting & simplification techniques with either:
 - final encoding into \mathcal{LIA} [18, 21]
 - final encoding into SAT (lazy bit-blasting) [24, 40, 20, 39]

Eager approach

Most solvers use an eager approach for \mathcal{BV} (e.g., [20]):

- Heavy preprocessing, based on rewriting rules
- bit-blasting

\mathcal{T} -solvers for Bit vectors (\mathcal{BV}) [cont.]

\mathcal{T} -solvers for Bit vectors (\mathcal{BV}) [cont.]

Lazy bit-blasting

- Two nested SAT solvers
- bit-blast each \mathcal{BV} atom ψ_i

 $\Longrightarrow \Phi \stackrel{\text{\tiny def}}{=} \bigwedge_i (A_i \leftrightarrow BB(\psi_i)),$

 \pmb{A}_i fresh variables labeling \mathcal{BV} -atoms ψ_i in φ

 $\implies \varphi \ \mathcal{BV}$ -satisfiable iff $\varphi^p \land \Phi$ satisfiable

Exploit SAT under assumptions

- let μ^{p} an assignment for φ^{p} , s.t. $\mu^{p} \stackrel{\text{def}}{=} \{ [\neg] A_{1}, ..., [\neg] A_{n} \}$
- \mathcal{T} -solver for \mathcal{BV} : $SAT_{assumption}(\Phi, \mu^p)$
- If UNSAT, generate the unsat core $\eta^{p} \subseteq \mu^{p}$
- $\implies \neg \eta^{p}$ used as blocking clause

Outline

Introduction

- What is a Theory?
- Satisfiability Modulo Theories
- Motivations and Goals of SMT

Efficient SMT solving

- Combining SAT with Theory Solvers
- Theory Solvers for Theories of Interest (hints)
- SMT for Combinations of Theories
- Beyond Solving: Advanced SMT Functionalities
 - Proofs and Unsatisfiable Cores
 - Interpolants
 - All-SMT & Predicate Abstraction (hints)
 - SMT with Optimization (Optimization Modulo Theories)

SMT for combined theories: $SMT(\bigcup_i T_i)$

Problem: Many problems can be expressed as SMT problems only in combination of theories $\bigcup_i \mathcal{T}_i - SMT(\bigcup_i \mathcal{T}_i)$

SMT for combined theories: $SMT(T_1 \cup T_2)$

- Combined theories may be much harder to decide [Pratt'77]
- Solvers have to be combined
- Standard approach for combining *T_i-solver*'s: (deterministic) Nelson-Oppen/Shostak (N.O.) [56, 58, 67]
 - based on deduction and exchange of equalities on shared variables
 - combined T_i -solver's integrated with a SAT tool
- SMT-specific approaches: Delayed Theory Combination [14, 13] and Model-Based Theory Combination [34]
 - based on Boolean search on equalities on shared variables
 - T_i -solver's integrated directly with a SAT tool

SMT for combined theories: $SMT(T_1 \cup T_2)$

- Combined theories may be much harder to decide [Pratt'77]
- Solvers have to be combined
- Standard approach for combining *T_i-solver*'s: (deterministic) Nelson-Oppen/Shostak (N.O.) [56, 58, 67]
 - based on deduction and exchange of equalities on shared variables
 - combined T_i -solver's integrated with a SAT tool
- SMT-specific approaches: Delayed Theory Combination [14, 13] and Model-Based Theory Combination [34]
 - based on Boolean search on equalities on shared variables
 - T_i -solver's integrated directly with a SAT tool

SMT for combined theories: $SMT(T_1 \cup T_2)$

- Combined theories may be much harder to decide [Pratt'77]
- Solvers have to be combined
- Standard approach for combining *T_i-solver*'s: (deterministic) Nelson-Oppen/Shostak (N.O.) [56, 58, 67]
 - based on deduction and exchange of equalities on shared variables
 - combined T_i -solver's integrated with a SAT tool
- SMT-specific approaches: Delayed Theory Combination [14, 13] and Model-Based Theory Combination [34]
 - based on Boolean search on equalities on shared variables
 - *T_i-solver*'s integrated directly with a SAT tool

Consider two theories $\mathcal{T}_1,\,\mathcal{T}_2$ with equality and disjoint signatures Σ_1,Σ_2

- W.I.o.g. we assume all input formulas $\phi \in T_1 \cup T_2$ are pure.
 - A formula ϕ is pure iff every atom in ϕ is *i*-pure for some $i \in \{1, 2\}$.
 - An atom/literal in ϕ is *i*-pure if only =, variables and symbols from Σ_i can occur in ϕ

Purification:

Maps a formula into an equisatisfiable pure formula by labeling terms with fresh variables

$$(f(\underbrace{x+3y}_{w}) = g(\underbrace{2x-y}_{t}))$$
[not put]
$$(w = x + 3y) \land (t = 2x - y) \land (f(w) = g(t))$$
[pute]

Consider two theories $\mathcal{T}_1,\,\mathcal{T}_2$ with equality and disjoint signatures Σ_1,Σ_2

- W.I.o.g. we assume all input formulas $\phi \in T_1 \cup T_2$ are pure.
 - A formula ϕ is pure iff every atom in ϕ is *i*-pure for some $i \in \{1, 2\}$.
 - An atom/literal in φ is *i*-pure if only =, variables and symbols from Σ_i can occur in φ

Purification:

Maps a formula into an equisatisfiable pure formula by labeling terms with fresh variables

$$(f(\underbrace{x+3y}_{w}) = g(\underbrace{2x-y}_{t})) \qquad [not pure]$$
$$(w = x+3y) \land (t = 2x-y) \land (f(w) = g(t)) \quad [pure]$$

Consider two theories $\mathcal{T}_1,\,\mathcal{T}_2$ with equality and disjoint signatures Σ_1,Σ_2

- W.I.o.g. we assume all input formulas $\phi \in T_1 \cup T_2$ are pure.
 - A formula ϕ is pure iff every atom in ϕ is *i*-pure for some $i \in \{1, 2\}$.
 - An atom/literal in φ is *i*-pure if only =, variables and symbols from Σ_i can occur in φ

Purification:

Maps a formula into an equisatisfiable pure formula by labeling terms with fresh variables

$$(f(\underbrace{x+3y}_{w}) = g(\underbrace{2x-y}_{t})) \qquad [not pure]$$
$$(w = x+3y) \land (t = 2x-y) \land (f(w) = g(t)) \quad [pure]$$

Consider two theories $\mathcal{T}_1,\,\mathcal{T}_2$ with equality and disjoint signatures Σ_1,Σ_2

- W.I.o.g. we assume all input formulas $\phi \in T_1 \cup T_2$ are pure.
 - A formula ϕ is pure iff every atom in ϕ is *i*-pure for some $i \in \{1, 2\}$.
 - An atom/literal in φ is *i*-pure if only =, variables and symbols from Σ_i can occur in φ

Purification:

Maps a formula into an equisatisfiable pure formula by labeling terms with fresh variables

$$(f(\underbrace{x+3y}_{w}) = g(\underbrace{2x-y}_{t})) \qquad [not pure]$$
$$(w = x + 3y) \land (t = 2x - y) \land (f(w) = g(t)) \quad [pure]$$

Purify the following *LIA* ∪ *EUF* ∪ *AR*-formula (see beginning of chapter):

$$\varphi \stackrel{\text{\tiny oer}}{=} (d \ge 0) \land (d < 1) \land \\ ((f(d) = f(0)) \rightarrow (read(write(V, i, x), i + d) = x + 1))$$

Background: Interface equalities

Interface variables & equalities

- A variable *v* occurring in a pure formula φ is an interface variable iff it occurs in both 1-pure and 2-pure atoms of φ.
- An equality (v_i = v_j) is an interface equality for φ iff v_i, v_j are interface variables for φ.
- We denote the interface equality v_i = v_j by "e_{ij}"

Example:

 v_0 , v_1 , v_2 , v_3 , v_4 , v_5 are interface variables, v_6 , v_7 , v_8 are not $\implies (v_0 = v_1)$ is an interface equality, $(v_0 = v_6)$ is not.

Background: Interface equalities

Interface variables & equalities

- A variable *v* occurring in a pure formula *φ* is an interface variable iff it occurs in both 1-pure and 2-pure atoms of *φ*.
- An equality (v_i = v_j) is an interface equality for φ iff v_i, v_j are interface variables for φ.
- We denote the interface equality $v_i = v_j$ by " e_{ij} "

Example:

\mathcal{LIA} :	$(GE_{01} \leftrightarrow (v_0 \geq v_1)) \wedge (LE_{01} \leftrightarrow (v_0 \leq v_1)) \wedge$
\mathcal{EUF} :	$(v_3 = h(v_0)) \land (v_4 = h(v_1)) \land$
\mathcal{LIA} :	$(v_2 = v_3 - v_4) \land (RESET_5 \rightarrow (v_5 = 0)) \land$
\mathcal{EUF} or \mathcal{LIA} :	$(\neg \textit{RESET}_5 ightarrow (\textit{v}_5 = \textit{v}_8)) \land$
\mathcal{EUF} :	$(v_6 = f(v_2)) \land (v_7 = f(v_5)) \land$
\mathcal{EUF} or \mathcal{LIA} :	$(EQ_{67} \leftrightarrow (v_6 = v_7)) \wedge$

 v_0 , v_1 , v_2 , v_3 , v_4 , v_5 are interface variables, v_6 , v_7 , v_8 are not $\implies (v_0 = v_1)$ is an interface equality, $(v_0 = v_6)$ is not.

Stably-infinite Theories

A Σ -theory \mathcal{T} is stably-infinite iff every quantifier-free \mathcal{T} -satisfiable formula is satisfiable in an infinite model of \mathcal{T} .

• EUF, DL, LRA, LIA are stably-infinite

• (fixed-width) bit-vector theories are not stably-infinite

Intuition: a variable can be given an infinite amount of distinct values

Convex Theories

A Σ -theory \mathcal{T} is convex iff, for every collection $l_1, ..., l_k, l', l''$ of literals in \mathcal{T} s.t. l', l'' are in the form (x = y), x, y being variables, we have that: $\{l_1, ..., l_k\} \models_{\mathcal{T}} (l' \lor l'') \iff \{l_1, ..., l_k\} \models_{\mathcal{T}} l'$ or $\{l_1, ..., l_k\} \models_{\mathcal{T}} l''$

• \mathcal{EUF} , \mathcal{DL} , \mathcal{LRA} are convex

• \mathcal{LTA} is not convex: $\{(v_0 = 0), (v_1 = 1), (v \ge v_0), (v \le v_1)\} \models ((v = v_0) \lor (v = v_1)), (v_0 = 0), (v_1 = 1), (v \ge v_0), (v \le v_1)\} \nvDash (v = v_0), (v_1 = 1), (v \ge 0), (v \le v_1)\} \nvDash (v = v_1)$ ituition: non-convexity produces "case splits"

Stably-infinite Theories

A Σ -theory \mathcal{T} is stably-infinite iff every quantifier-free \mathcal{T} -satisfiable formula is satisfiable in an infinite model of \mathcal{T} .

- $\mathcal{EUF}, \mathcal{DL}, \mathcal{LRA}, \mathcal{LIA}$ are stably-infinite
- (fixed-width) bit-vector theories are not stably-infinite

Intuition: a variable can be given an infinite amount of distinct values

Convex Theories

A Σ -theory \mathcal{T} is convex iff, for every collection $l_1, ..., l_k, l', l''$ of literals in \mathcal{T} s.t. l', l'' are in the form (x = y), x, y being variables, we have that: $\{l_1, ..., l_k\} \models_{\mathcal{T}} (l' \lor l'') \iff \{l_1, ..., l_k\} \models_{\mathcal{T}} l'$ or $\{l_1, ..., l_k\} \models_{\mathcal{T}} l''$

- \mathcal{EUF} , \mathcal{DL} , \mathcal{LRA} are convex
- \mathcal{LIA} is not convex:

 $\{(v_0 = 0), (v_1 = 1), (v \ge v_0), (v \le v_1)\} \models ((v = v_0) \lor (v = v_1) \\ \{(v_0 = 0), (v_1 = 1), (v \ge v_0), (v \le v_1)\} \not\models (v = v_0)$

 $\{(v_0 = 0), (v_1 = 1), (v \ge 0), (v \le v_1)\} \neq (v = v_1)$

Stably-infinite Theories

A Σ -theory \mathcal{T} is stably-infinite iff every quantifier-free \mathcal{T} -satisfiable formula is satisfiable in an infinite model of \mathcal{T} .

- $\mathcal{EUF}, \mathcal{DL}, \mathcal{LRA}, \mathcal{LIA}$ are stably-infinite
- (fixed-width) bit-vector theories are not stably-infinite

Intuition: a variable can be given an infinite amount of distinct values

Convex Theories

A Σ -theory \mathcal{T} is convex iff, for every collection $l_1, ..., l_k, l', l''$ of literals in \mathcal{T} s.t. l', l'' are in the form (x = y), x, y being variables, we have that: $\{l_1, ..., l_k\} \models_{\mathcal{T}} (l' \lor l'') \iff \{l_1, ..., l_k\} \models_{\mathcal{T}} l'$ or $\{l_1, ..., l_k\} \models_{\mathcal{T}} l''$

- \mathcal{EUF} , \mathcal{DL} , \mathcal{LRA} are convex
- \mathcal{LIA} is not convex: $\{(v_0 = 0), (v_1 = 1), (v \ge v_0), (v \le v_1)\} \models ((v = v_0) \lor (v = v_0), (v_0 = 0), (v_1 = 1), (v \ge v_0), (v \le v_1)\} \nvDash (v = v_0)$ $\{(v_0 = 0), (v_1 = 1), (v > 0), (v \le v_1)\} \nvDash (v = v_1)$

Stably-infinite Theories

A Σ -theory \mathcal{T} is stably-infinite iff every quantifier-free \mathcal{T} -satisfiable formula is satisfiable in an infinite model of \mathcal{T} .

- $\mathcal{EUF}, \mathcal{DL}, \mathcal{LRA}, \mathcal{LIA}$ are stably-infinite
- (fixed-width) bit-vector theories are not stably-infinite

Intuition: a variable can be given an infinite amount of distinct values

Convex Theories

A Σ -theory \mathcal{T} is convex iff, for every collection $l_1, ..., l_k, l', l''$ of literals in \mathcal{T} s.t. l', l'' are in the form (x = y), x, y being variables, we have that: $\{l_1, ..., l_k\} \models_{\mathcal{T}} (l' \vee l'') \iff \{l_1, ..., l_k\} \models_{\mathcal{T}} l'$ or $\{l_1, ..., l_k\} \models_{\mathcal{T}} l''$

- \mathcal{EUF} , \mathcal{DL} , \mathcal{LRA} are convex
- \mathcal{LIA} is not convex: $\{(v_0 = 0), (v_1 = 1), (v \ge v_0), (v \le v_1)\} \models ((v = v_0) \lor (v = (v_0 = 0), (v_1 = 1), (v \ge v_0), (v \le v_1)\} \not\models (v = v_0)$ $\{(v_0 = 0), (v_1 = 1), (v \ge 0), (v \le v_1)\} \not\models (v = v_1)$

Stably-infinite Theories

A Σ -theory \mathcal{T} is stably-infinite iff every quantifier-free \mathcal{T} -satisfiable formula is satisfiable in an infinite model of \mathcal{T} .

- $\mathcal{EUF}, \mathcal{DL}, \mathcal{LRA}, \mathcal{LIA}$ are stably-infinite
- (fixed-width) bit-vector theories are not stably-infinite

Intuition: a variable can be given an infinite amount of distinct values

Convex Theories

A Σ -theory \mathcal{T} is convex iff, for every collection $l_1, ..., l_k, l', l''$ of literals in \mathcal{T} s.t. l', l'' are in the form (x = y), x, y being variables, we have that: $\{l_1, ..., l_k\} \models_{\mathcal{T}} (l' \lor l'') \iff \{l_1, ..., l_k\} \models_{\mathcal{T}} l'$ or $\{l_1, ..., l_k\} \models_{\mathcal{T}} l''$ • $\mathcal{EUF}, \mathcal{DL}, \mathcal{LRA}$ are convex

• \mathcal{LIA} is not convex: $\{(v_0 = 0), (v_1 = 1), (v \ge v_0), (v \le v_1)\} \models ((v = v_0) \lor (v = v_1)), (v \ge v_0), (v \le v_1)\} \nvDash (v = v_0), (v_1 = 1), (v \ge v_0), (v \le v_1)\} \nvDash (v = v_1)$

Stably-infinite Theories

A Σ -theory \mathcal{T} is stably-infinite iff every quantifier-free \mathcal{T} -satisfiable formula is satisfiable in an infinite model of \mathcal{T} .

- $\mathcal{EUF}, \mathcal{DL}, \mathcal{LRA}, \mathcal{LIA}$ are stably-infinite
- (fixed-width) bit-vector theories are not stably-infinite

Intuition: a variable can be given an infinite amount of distinct values

Convex Theories

A Σ -theory \mathcal{T} is convex iff, for every collection $l_1, ..., l_k, l', l''$ of literals in \mathcal{T} s.t. l', l'' are in the form (x = y), x, y being variables, we have that: $\{l_1, ..., l_k\} \models_{\mathcal{T}} (l' \lor l'') \iff \{l_1, ..., l_k\} \models_{\mathcal{T}} l'$ or $\{l_1, ..., l_k\} \models_{\mathcal{T}} l''$

• $\mathcal{EUF}, \mathcal{DL}, \mathcal{LRA}$ are convex

• \mathcal{LIA} is not convex: $\{(v_0 = 0), (v_1 = 1), (v \ge v_0), (v \le v_1)\} \models ((v = v_0) \lor (v = v_1)), (v \ge v_0), (v \le v_1)\} \not\models (v = v_0), (v_1 = 1), (v \ge v_0), (v \le v_1)\} \not\models (v = v_1)$

Stably-infinite Theories

A Σ -theory \mathcal{T} is stably-infinite iff every quantifier-free \mathcal{T} -satisfiable formula is satisfiable in an infinite model of \mathcal{T} .

- $\mathcal{EUF}, \mathcal{DL}, \mathcal{LRA}, \mathcal{LIA}$ are stably-infinite
- (fixed-width) bit-vector theories are not stably-infinite

Intuition: a variable can be given an infinite amount of distinct values

Convex Theories

A Σ -theory \mathcal{T} is convex iff, for every collection $l_1, ..., l_k, l', l''$ of literals in \mathcal{T} s.t. l', l'' are in the form (x = y), x, y being variables, we have that: $\{l_1, ..., l_k\} \models_{\mathcal{T}} (l' \vee l'') \iff \{l_1, ..., l_k\} \models_{\mathcal{T}} l'$ or $\{l_1, ..., l_k\} \models_{\mathcal{T}} l''$

• $\mathcal{EUF}, \mathcal{DL}, \mathcal{LRA}$ are convex

• \mathcal{LIA} is not convex: { $(v_0 = 0), (v_1 = 1), (v \ge v_0), (v \le v_1)$ } $\models ((v = v_0) \lor (v = v_1)),$ { $(v_0 = 0), (v_1 = 1), (v \ge v_0), (v \le v_1)$ } $\not\models (v = v_0)$ { $(v_0 = 0), (v_1 = 1), (v \ge 0), (v \le v_1)$ } $\not\models (v = v_1)$

Stably-infinite Theories

A Σ -theory \mathcal{T} is stably-infinite iff every quantifier-free \mathcal{T} -satisfiable formula is satisfiable in an infinite model of \mathcal{T} .

- $\mathcal{EUF}, \mathcal{DL}, \mathcal{LRA}, \mathcal{LIA}$ are stably-infinite
- (fixed-width) bit-vector theories are not stably-infinite

Intuition: a variable can be given an infinite amount of distinct values

Convex Theories

A Σ -theory \mathcal{T} is convex iff, for every collection $l_1, ..., l_k, l', l''$ of literals in \mathcal{T} s.t. l', l'' are in the form (x = y), x, y being variables, we have that: $\{l_1, ..., l_k\} \models_{\mathcal{T}} (l' \vee l'') \iff \{l_1, ..., l_k\} \models_{\mathcal{T}} l'$ or $\{l_1, ..., l_k\} \models_{\mathcal{T}} l''$

- $\mathcal{EUF}, \mathcal{DL}, \mathcal{LRA}$ are convex
- \mathcal{LIA} is not convex: $\{(v_0 = 0), (v_1 = 1), (v \ge v_0), (v \le v_1)\} \models ((v = v_0) \lor (v = v_1)),$ $\{(v_0 = 0), (v_1 = 1), (v \ge v_0), (v \le v_1)\} \not\models (v = v_0)$ $\{(v_0 = 0), (v_1 = 1), (v \ge 0), (v \le v_1)\} \not\models (v = v_1)$

Main Problem

• One predicate shared between distinct theories T_i : equality "="

Given μ ^{def} ∪_i μ_i s.t. each μ_i contains i-pure literals
 distinct T_i-solver can be invoked separately on each μ_i...
 ...producing distinct T_i-specific models M_i

• Problem: all models must agree on interface equalities:

 $\mathcal{M}_i \models_{\mathcal{T}_i} (\mathbf{v}_k = \mathbf{v}_l) \text{ iff } \mathcal{M}_j \models_{\mathcal{T}_j} (\mathbf{v}_k = \mathbf{v}_l),$

for every pair of shared variables v_k, v_l

Main idea

- based on the deduction and exchange of equalities between shared variables/terms (interface equalities, e_{ij}s)
- important improvements and evolutions [62, 7, 36]

Main Problem

One predicate shared between distinct theories T_i: equality "="

• Given $\mu \stackrel{\text{def}}{=} \bigcup_{i} \mu_{i}$ s.t. each μ_{i} contains i-pure literals

distinct *T_i*-solver can be invoked separately on each μ_i...
...producing distinct *T_i*-specific models *M_i*

• Problem: all models must agree on interface equalities:

 $\mathcal{M}_i \models_{\mathcal{T}_i} (\mathbf{v}_k = \mathbf{v}_l) \text{ iff } \mathcal{M}_j \models_{\mathcal{T}_j} (\mathbf{v}_k = \mathbf{v}_l),$

for every pair of shared variables v_k, v_l

Main idea

- based on the deduction and exchange of equalities between shared variables/terms (interface equalities, e_{ij}s)
- important improvements and evolutions [62, 7, 36]

Main Problem

- One predicate shared between distinct theories T_i: equality "="
- Given $\mu \stackrel{\text{def}}{=} \bigcup_{i} \mu_{i}$ s.t. each μ_{i} contains i-pure literals
 - distinct T_i -solver can be invoked separately on each μ_i ...
 - ...producing distinct \mathcal{T}_i -specific models \mathcal{M}_i
- Problem: all models must agree on interface equalities:

 $\mathcal{M}_i \models_{\mathcal{T}_i} (\mathbf{v}_k = \mathbf{v}_l) \text{ iff } \mathcal{M}_j \models_{\mathcal{T}_j} (\mathbf{v}_k = \mathbf{v}_l),$

for every pair of shared variables v_k, v_l

Main idea

- based on the deduction and exchange of equalities between shared variables/terms (interface equalities, e_{ij}s)
- important improvements and evolutions [62, 7, 36]

Main Problem

- One predicate shared between distinct theories T_i: equality "="
- Given $\mu \stackrel{\text{def}}{=} \bigcup_{i} \mu_{i}$ s.t. each μ_{i} contains i-pure literals
 - distinct *T_i*-solver can be invoked separately on each μ_i...
 - ...producing distinct \mathcal{T}_i -specific models \mathcal{M}_i

• Problem: all models must agree on interface equalities: $\mathcal{M}_i \models_{\mathcal{T}_i} (v_k = v_l) \text{ iff } \mathcal{M}_j \models_{\mathcal{T}_j} (v_k = v_l),$

for every pair of shared variables v_k, v_l

Main idea

- based on the deduction and exchange of equalities between shared variables/terms (interface equalities, e_{ij}s)
- important improvements and evolutions [62, 7, 36]

Main Problem

- One predicate shared between distinct theories T_i: equality "="
- Given $\mu \stackrel{\text{\tiny def}}{=} \bigcup_i \mu_i$ s.t. each μ_i contains i-pure literals
 - distinct *T_i*-solver can be invoked separately on each μ_i...
 - ...producing distinct \mathcal{T}_i -specific models \mathcal{M}_i
- Problem: all models must agree on interface equalities:

 $\mathcal{M}_i \models_{\mathcal{T}_i} (\mathbf{v}_k = \mathbf{v}_l) \text{ iff } \mathcal{M}_j \models_{\mathcal{T}_j} (\mathbf{v}_k = \mathbf{v}_l),$

for every pair of shared variables v_k, v_l

Main idea

- based on the deduction and exchange of equalities between shared variables/terms (interface equalities, e_{ij}s)
- important improvements and evolutions [62, 7, 36]

Main Problem

- One predicate shared between distinct theories T_i: equality "="
- Given $\mu \stackrel{\text{\tiny def}}{=} \bigcup_i \mu_i$ s.t. each μ_i contains i-pure literals
 - distinct *T_i*-solver can be invoked separately on each μ_i...
 - ...producing distinct *T_i*-specific models *M_i*
- Problem: all models must agree on interface equalities:

 $\mathcal{M}_i \models_{\mathcal{T}_i} (\mathbf{v}_k = \mathbf{v}_l) \text{ iff } \mathcal{M}_j \models_{\mathcal{T}_j} (\mathbf{v}_k = \mathbf{v}_l),$

for every pair of shared variables v_k, v_l

Main idea

- based on the deduction and exchange of equalities between shared variables/terms (interface equalities, e_{ij}s)
- important improvements and evolutions [62, 7, 36]

For $i \in \{1, 2\}$, let \mathcal{T}_i be a stably infinite theory admitting a satisfiability \mathcal{T}_i -solver, and μ_i a set of *i*-pure literals. We want to to decide the $\mathcal{T}_1 \cup \mathcal{T}_2$ -satisfiability of $\mu_1 \cup \mu_2$ • each \mathcal{T}_i -solver, in turn • checks the T-satisfiability of μ_i • deduces all the (disjunctions of) interface equalities which derive from μ_i • passes from to \mathcal{T}_i -solver, $j \neq l$, which adds them to μ_i until either:

- one \mathcal{T}_i -solver detects unsatisfiability ($\mu_1 \cup \mu_2$ is $\mathcal{T}_1 \cup \mathcal{T}_2$ -unsat)
- no more deductions are possible $(\mu_1 \cup \mu_2 \text{ is } \mathcal{T}_1 \cup \mathcal{T}_2 \text{-sat})$

For $i \in \{1, 2\}$, let T_i be a stably infinite theory admitting a satisfiability T_i -solver, and μ_i a set of *i*-pure literals.

We want to to decide the $\mathcal{T}_1 \cup \mathcal{T}_2$ -satisfiability of $\mu_1 \cup \mu_2$

• each T_i -solver, in turn

- checks the T_i -satisfiability of μ_i ,
- deduces all the (disjunctions of) interface equalities which derive from μ_i
- passes them to T_j -solve, $j \neq i$, which adds them to μ_j
- until either:
 - one T_i -solver detects unsatisfiability ($\mu_1 \cup \mu_2$ is $T_1 \cup T_2$ -unsat)
 - no more deductions are possible ($\mu_1 \cup \mu_2$ is $\mathcal{T}_1 \cup \mathcal{T}_2$ -sat)

For $i \in \{1, 2\}$, let T_i be a stably infinite theory admitting a satisfiability T_i -solver, and μ_i a set of *i*-pure literals.

We want to to decide the $\mathcal{T}_1 \cup \mathcal{T}_2$ -satisfiability of $\mu_1 \cup \mu_2$

- each T_i -solver, in turn
 - checks the T_i -satisfiability of μ_i ,
 - deduces all the (disjunctions of) interface equalities which derive from μ_i
 - passes them to T_j -solve, $j \neq i$, which adds them to μ_j
 - until either:
 - one T_i -solver detects unsatisfiability ($\mu_1 \cup \mu_2$ is $T_1 \cup T_2$ -unsat)
 - no more deductions are possible ($\mu_1 \cup \mu_2$ is $\mathcal{T}_1 \cup \mathcal{T}_2$ -sat)

For $i \in \{1, 2\}$, let T_i be a stably infinite theory admitting a satisfiability T_i -solver, and μ_i a set of *i*-pure literals.

We want to to decide the $T_1 \cup T_2$ -satisfiability of $\mu_1 \cup \mu_2$

- each T_i -solver, in turn
 - checks the T_i -satisfiability of μ_i ,
 - deduces all the (disjunctions of) interface equalities which derive from μ_i
 - passes them to T_j -solve, $j \neq i$, which adds them to μ_j

until either:

- one \mathcal{T}_i -solver detects unsatisfiability ($\mu_1 \cup \mu_2$ is $\mathcal{T}_1 \cup \mathcal{T}_2$ -unsat)
- no more deductions are possible ($\mu_1 \cup \mu_2$ is $\mathcal{T}_1 \cup \mathcal{T}_2$ -sat)

For $i \in \{1, 2\}$, let T_i be a stably infinite theory admitting a satisfiability T_i -solver, and μ_i a set of *i*-pure literals.

We want to to decide the $T_1 \cup T_2$ -satisfiability of $\mu_1 \cup \mu_2$

- each T_i -solver, in turn
 - checks the T_i -satisfiability of μ_i ,
 - deduces all the (disjunctions of) interface equalities which derive from μ_i
 - passes them to T_j -solve, $j \neq i$, which adds them to μ_j

until either:

- one T_i -solver detects unsatisfiability ($\mu_1 \cup \mu_2$ is $T_1 \cup T_2$ -unsat)
- no more deductions are possible ($\mu_1 \cup \mu_2$ is $\mathcal{T}_1 \cup \mathcal{T}_2$ -sat)

For $i \in \{1, 2\}$, let T_i be a stably infinite theory admitting a satisfiability T_i -solver, and μ_i a set of *i*-pure literals.

We want to to decide the $\mathcal{T}_1 \cup \mathcal{T}_2$ -satisfiability of $\mu_1 \cup \mu_2$

- each T_i -solver, in turn
 - checks the T_i -satisfiability of μ_i ,
 - deduces all the (disjunctions of) interface equalities which derive from μ_i
 - passes them to T_j -solve, $j \neq i$, which adds them to μ_j
 - until either:
 - one *T_i*-solver detects unsatisfiability (µ₁ ∪ µ₂ is *T*₁ ∪ *T*₂-unsat)
 no more deductions are possible (µ₁ ∪ µ₂ is *T*₁ ∪ *T*₂-sat)

For $i \in \{1, 2\}$, let T_i be a stably infinite theory admitting a satisfiability T_i -solver, and μ_i a set of *i*-pure literals.

We want to to decide the $\mathcal{T}_1 \cup \mathcal{T}_2$ -satisfiability of $\mu_1 \cup \mu_2$

- each T_i -solver, in turn
 - checks the T_i -satisfiability of μ_i ,
 - deduces all the (disjunctions of) interface equalities which derive from μ_i
 - passes them to T_j -solve, $j \neq i$, which adds them to μ_j

until either:

- one T_i -solver detects unsatisfiability ($\mu_1 \cup \mu_2$ is $T_1 \cup T_2$ -unsat)
- no more deductions are possible ($\mu_1 \cup \mu_2$ is $\mathcal{T}_1 \cup \mathcal{T}_2$ -sat)

For $i \in \{1, 2\}$, let T_i be a stably infinite theory admitting a satisfiability T_i -solver, and μ_i a set of *i*-pure literals.

We want to to decide the $T_1 \cup T_2$ -satisfiability of $\mu_1 \cup \mu_2$

- each T_i -solver, in turn
 - checks the T_i -satisfiability of μ_i ,
 - deduces all the (disjunctions of) interface equalities which derive from μ_i
 - passes them to T_j -solve, $j \neq i$, which adds them to μ_j

until either:

- one *T_i*-solver detects unsatisfiability (μ₁ ∪ μ₂ is *T*₁ ∪ *T*₂-unsat)
- no more deductions are possible ($\mu_1 \cup \mu_2$ is $\mathcal{T}_1 \cup \mathcal{T}_2$ -sat)

For $i \in \{1,2\}$, let T_i be a stably infinite theory admitting a satisfiability T_i -solver, and μ_i a set of *i*-pure literals.

We want to to decide the $\mathcal{T}_1 \cup \mathcal{T}_2$ -satisfiability of $\mu_1 \cup \mu_2$

- each T_i -solver, in turn
 - checks the T_i -satisfiability of μ_i ,
 - deduces all the (disjunctions of) interface equalities which derive from μ_i
 - passes them to T_j -solve, $j \neq i$, which adds them to μ_j

until either:

- one \mathcal{T}_i -solver detects unsatisfiability ($\mu_1 \cup \mu_2$ is $\mathcal{T}_1 \cup \mathcal{T}_2$ -unsat)
- no more deductions are possible ($\mu_1 \cup \mu_2$ is $\mathcal{T}_1 \cup \mathcal{T}_2$ -sat)

Schema of N.O. combination of T-solvers: $no(T_1, T_2)$

$$\begin{array}{ll} \mathcal{EUF}: & (v_3 = h(v_0)) \land (v_4 = h(v_1)) \land (v_6 = f(v_2)) \land (v_7 = f(v_5)) \land \\ \mathcal{LRA}: & (v_0 \ge v_1) \land (v_0 \le v_1) \land (v_2 = v_3 - v_4) \land (\textit{RESET}_5 \to (v_5 = 0)) \land \\ \textit{Both}: & (\neg \textit{RESET}_5 \to (v_5 = v_8)) \land \neg (v_6 = v_7). \end{array}$$

$$\begin{array}{lll} \mathcal{EUF}: & (v_3 = h(v_0)) \land (v_4 = h(v_1)) \land (v_6 = f(v_2)) \land (v_7 = f(v_5)) \land \\ \mathcal{LRA}: & (v_0 \ge v_1) \land (v_0 \le v_1) \land (v_2 = v_3 - v_4) \land (RESET_5 \to (v_5 = 0)) \land \\ Both: & (\neg RESET_5 \to (v_5 = v_8)) \land \neg (v_6 = v_7). \end{array}$$

$$\begin{array}{ll} \mathcal{EUF}: & (v_3 = h(v_0)) \land (v_4 = h(v_1)) \land (v_6 = f(v_2)) \land (v_7 = f(v_5)) \land \\ \mathcal{LRA}: & (v_0 \ge v_1) \land (v_0 \le v_1) \land (v_2 = v_3 - v_4) \land (RESET_5 \to (v_5 = 0)) \land \\ Both: & (\neg RESET_5 \to (v_5 = v_8)) \land \neg (v_6 = v_7). \end{array}$$

$$\begin{array}{ll} \mathcal{EUF}: & (v_3 = h(v_0)) \land (v_4 = h(v_1)) \land (v_6 = f(v_2)) \land (v_7 = f(v_5)) \land \\ \mathcal{LRA}: & (v_0 \ge v_1) \land (v_0 \le v_1) \land (v_2 = v_3 - v_4) \land (RESET_5 \to (v_5 = 0)) \land \\ Both: & (\neg RESET_5 \to (v_5 = v_8)) \land \neg (v_6 = v_7). \end{array}$$

$$\begin{array}{ll} \mathcal{EUF}: & (v_3 = h(v_0)) \land (v_4 = h(v_1)) \land (v_6 = f(v_2)) \land (v_7 = f(v_5)) \land \\ \mathcal{LRA}: & (v_0 \ge v_1) \land (v_0 \le v_1) \land (v_2 = v_3 - v_4) \land (RESET_5 \to (v_5 = 0)) \land \\ Both: & (\neg RESET_5 \to (v_5 = v_8)) \land \neg (v_6 = v_7). \end{array}$$

$$\begin{array}{ll} \mathcal{EUF}: & (v_3 = h(v_0)) \land (v_4 = h(v_1)) \land (v_6 = f(v_2)) \land (v_7 = f(v_5)) \land \\ \mathcal{LRA}: & (v_0 \ge v_1) \land (v_0 \le v_1) \land (v_2 = v_3 - v_4) \land (RESET_5 \to (v_5 = 0)) \land \\ Both: & (\neg RESET_5 \to (v_5 = v_8)) \land \neg (v_6 = v_7). \end{array}$$

$$\begin{array}{lll} \mathcal{EUF}: & (v_3 = h(v_0)) \land (v_4 = h(v_1)) \land (v_6 = f(v_2)) \land (v_7 = f(v_5)) \land \\ \mathcal{LRA}: & (v_0 \ge v_1) \land (v_0 \le v_1) \land (v_2 = v_3 - v_4) \land (\textit{RESET}_5 \to (v_5 = 0)) \land \\ \textit{Both}: & (\neg \textit{RESET}_5 \to (v_5 = v_8)) \land \neg (v_6 = v_7). \end{array}$$

71/136

(日)

$$\begin{array}{ll} \mathcal{EUF}: & (v_3 = h(v_0)) \land (v_4 = h(v_1)) \land (v_6 = f(v_2)) \land (v_7 = f(v_5)) \land \\ \mathcal{LRA}: & (v_0 \ge v_1) \land (v_0 \le v_1) \land (v_2 = v_3 - v_4) \land (RESET_5 \to (v_5 = 0)) \land \\ Both: & (\neg RESET_5 \to (v_5 = v_8)) \land \neg (v_6 = v_7). \end{array}$$

(日)

$$\begin{array}{lll} \mathcal{EUF}: & (v_3 = h(v_0)) \land (v_4 = h(v_1)) \land (v_6 = f(v_2)) \land (v_7 = f(v_5)) \land \\ \mathcal{LRA}: & (v_0 \ge v_1) \land (v_0 \le v_1) \land (v_2 = v_3 - v_4) \land (RESET_5 \to (v_5 = 0)) \land \\ Both: & (\neg RESET_5 \to (v_5 = v_8)) \land \neg (v_6 = v_7). \end{array}$$

$$\begin{array}{lll} \mathcal{EUF}: & (v_3 = h(v_0)) \land (v_4 = h(v_1)) \land (v_6 = f(v_2)) \land (v_7 = f(v_5)) \land \\ \mathcal{LRA}: & (v_0 \ge v_1) \land (v_0 \le v_1) \land (v_2 = v_3 - v_4) \land (RESET_5 \to (v_5 = 0)) \land \\ Both: & (\neg RESET_5 \to (v_5 = v_8)) \land \neg (v_6 = v_7). \end{array}$$

N.O.: example (convex theory) [cont.]

For the previous N.O. example:

- write the (minimal) clauses corresponding to each eij-deduction
- find the final conflict clauses by resolving the *e_{ij}*-deduction clauses

For the previous N.O. example:

- write the (minimal) clauses corresponding to each eij-deduction
- find the final conflict clauses by resolving the e_{ij}-deduction clauses

$SMT(\bigcup_i T_i)$ via "classic" Nelson-Oppen

Main idea

Combine two or more T_i -solvers into one ($\bigcup_i T_i$)-solver via Nelson-Oppen/Shostak (N.O.) combination procedure [57, 68]

- based on the deduction and exchange of equalities between shared variables/terms (interface equalities, e_{ij}s)
- important improvements and evolutions [62, 7, 36]
- drawbacks [22, 23]:
 - require (possibly expensive) deduction capabilities from T_i -solvers
 - [with non-convex theories] case-splits forced by the deduction of disjunctions of *e*_{ij}'s
 - generate (typically long) (U_i T_i)-lemmas, without interface equalities ⇒ no backjumping & learning from e_{ii}-reasoning

$SMT(\bigcup_i T_i)$ via "classic" Nelson-Oppen

Main idea

Combine two or more T_i -solvers into one ($\bigcup_i T_i$)-solver via Nelson-Oppen/Shostak (N.O.) combination procedure [57, 68]

- based on the deduction and exchange of equalities between shared variables/terms (interface equalities, e_{ij}s)
- important improvements and evolutions [62, 7, 36]
- o drawbacks [22, 23]:
 - require (possibly expensive) deduction capabilities from T_i -solvers
 - [with non-convex theories] case-splits forced by the deduction of disjunctions of e_{ij}'s
 - generate (typically long) (U_i T_i)-lemmas, without interface equalities ⇒ no backjumping & learning from e_{ij}-reasoning

$SMT(\bigcup_i T_i)$ via Delayed Theory Combination (DTC)

Main idea

Delegate to the CDCL SAT solver part/most of the (possibly very expensive) reasoning effort on interface equalities previously due to the T_i -solvers (e_{ij} -deduction, case-split). [14, 15, 23]

- based on Boolean reasoning on interface equalities via CDCL (plus *T*-propagation)
- important improvements and evolutions [34, 9]
- feature wrt N.O. [22, 23]
 - do not require (possibly expensive) deduction capabilities from \mathcal{T}_i -solvers
 - with non-convex theories, case-splits on e_{ij}'s handled by SAT
 - generate \mathcal{T}_i -lemmas with interface equalities
 - \implies backjumping & learning from e_{ij} -reasoning

...until either:
• some μ propositionally satisfies φ and both μ'_i := μ_i ∪ μ_θ are T_i-consistent ⇒ (φ is T₁ ∪ T₂-sat)
• no more assignment μ are available ⇒ (φ is T₁ ∪ T₂-unsat)

DTC: enhanced schema

o ...

- CDCL-based assignment enumeration on Atoms(φ) ∪ {e_{ij}}_{ij},
 ⇒ benefits of state-of-the-art SAT techniques
- Early pruning: invoke the T_i -solver's before every Boolean decision
 - \Longrightarrow total assignments generated only when strictly necessary
- Branching: branching on *e_{ij}*'s postponed
 Boolean search on *e_{ij}*'s performed only when strictly necessary
- Theory-Backjumping & Learning: e_{ij} 's are involved in conflicts $\implies e_{ij}$'s can be assigned by unit propagation
- Theory-deduction & learning: if *T_i*-solver deduces unassigned literals *I* on *Atoms*(φ) ∪ {*e_{ij}*}_{ij}
 - I is passed back to the Boolean solver, which unit-propagates it
 - the deduction $\mu' \models I$ is learned as a clause $\mu' \rightarrow I$ (deduction clause)

$$\begin{array}{c} \mu_{\mathcal{EUF}}: & \mu_{\mathcal{LIA}}: \\ \neg(f(v_1) = f(v_2)) & v_1 \ge 0 \\ \neg(f(v_2) = f(v_4)) & v_1 \le 1 \\ f(v_3) = v_5 & v_2 \ge v_6 \\ f(v_1) = v_6 & v_2 \le v_6 + 1 \end{array}$$

 $\mathcal{C}_{13}:(\mu'_{\mathcal{LIA}})
ightarrow ((\pmb{v_1}=\pmb{v_3})ee(\pmb{v_1}=\pmb{v_4}))$

$$\begin{array}{c} \mu_{\mathcal{EUF}}: & \mu_{\mathcal{LIA}}: \\ \neg(f(v_1) = f(v_2)) & v_1 \ge 0 & v_5 = v_4 - 1 \\ \neg(f(v_2) = f(v_4)) & v_1 \le 1 & v_3 = 0 \\ f(v_3) = v_5 & v_2 \ge v_6 & v_4 = 1 \\ f(v_1) = v_6 & v_2 \le v_6 + 1 \end{array}$$

$$\neg(v_1 = v_4) \\ \neg(v_1 = v_3) & v_1 = v_3$$

 $\mathcal{C}_{13}:(\mu'_{\mathcal{LIA}})
ightarrow ((v_1=v_3)ee(v_1=v_4))$

$$\begin{array}{c} \mu_{\mathcal{E}\mathcal{U}\mathcal{F}}: & \mu_{\mathcal{L}\mathcal{I}\mathcal{A}}: \\ \neg (f(v_1) = f(v_2)) & v_1 \ge 0 & v_5 = v_4 - 1 \\ \neg (f(v_2) = f(v_4)) & v_1 \le 1 & v_3 = 0 \\ f(v_3) = v_5 & v_2 \ge v_6 & v_4 = 1 \\ f(v_1) = v_6 & v_2 \le v_6 + 1 \end{array}$$

$$\neg (v_1 = v_4) \\ \neg (v_1 = v_3) & v_1 = v_3 \\ \neg (v_5 = v_6) \\ \mathcal{E}\mathcal{U}\mathcal{F}\text{-unsat, } C_{56} & C_{13}: (\mu_{\mathcal{L}\mathcal{I}\mathcal{A}}) \rightarrow ((v_1 = v_3) \lor (v_1 = v_4) \\ C_{56}: (\mu_{\mathcal{E}\mathcal{U}\mathcal{F}} \land (v_1 = v_3)) \rightarrow (v_5 = v_6) \end{array}$$

$$\begin{array}{c} \mu_{\mathcal{EUF}} & & \mu_{\mathcal{LIA}} \\ \neg (f(v_1) = f(v_2)) & & v_1 \ge 0 \\ \neg (f(v_2) = f(v_4)) & & v_1 \ge 1 \\ f(v_3) = v_5 & & v_2 \ge v_6 \\ f(v_1) = v_6 & & v_2 \le v_6 + 1 \end{array} \\ \neg (v_1 = v_4) \\ \neg (v_1 = v_3) & v_5 = v_6 \\ \neg (v_5 = v_6) \\ \end{array}$$

 $C_{56}: (\mu'_{\mathcal{EUF}} \land (v_1 = v_3)) \rightarrow (v_5 = v_6)$

$$\begin{array}{c} \mu_{\mathcal{E}\mathcal{U}\mathcal{F}}: & \mu_{\mathcal{L}\mathcal{I}\mathcal{A}}: \\ \neg (f(v_{1}) = f(v_{2})) & v_{1} \geq 0 & v_{5} = v_{4} - 1 \\ \neg (f(v_{2}) = f(v_{4})) & v_{1} \geq 1 & v_{3} = 0 \\ f(v_{3}) = v_{5} & v_{2} \geq v_{6} & v_{4} = 1 \\ f(v_{1}) = v_{6} & v_{2} \leq v_{6} + 1 \\ \neg (v_{1} = v_{4}) & v_{5} = v_{6} \\ \neg (v_{1} = v_{3}) & v_{5} = v_{6} \\ \neg (v_{5} = v_{6}) & & \\ \neg (v_{2} = v_{4}) & C_{13}: (\mu_{\mathcal{L}\mathcal{I}\mathcal{A}}) \rightarrow ((v_{1} = v_{3}) \lor (v_{1} = v_{4})) \\ C_{56}: (\mu_{\mathcal{E}\mathcal{U}\mathcal{F}} \land (v_{1} = v_{3})) \rightarrow (v_{5} = v_{6}) \\ C_{23}: (\mu_{\mathcal{L}\mathcal{I}\mathcal{A}}' \land (v_{5} = v_{6})) \rightarrow ((v_{2} = v_{3}) \lor (v_{2} = v_{4})) \\ \end{array}$$

$$\begin{array}{c} \mu_{\mathcal{E}\mathcal{U}\mathcal{F}}: & \mu_{\mathcal{L}\mathcal{I}\mathcal{A}}: \\ \neg (f(v_{1}) = f(v_{2})) & v_{1} \geq 0 & v_{5} = v_{4} - 1 \\ \neg (f(v_{2}) = f(v_{4})) & v_{1} \geq 1 & v_{3} = 0 \\ f(v_{3}) = v_{5} & v_{2} \geq v_{6} & v_{4} = 1 \\ \neg (v_{1} = v_{4}) & v_{5} = v_{6} \\ \neg (v_{1} = v_{3}) & v_{5} = v_{6} \\ \neg (v_{1} = v_{3}) & v_{5} = v_{6} \\ \neg (v_{2} = v_{4}) & v_{5} = v_{6} \\ \neg (v_{2} = v_{4}) & C_{13}: (\mu_{\mathcal{L}\mathcal{I}\mathcal{A}}) \rightarrow ((v_{1} = v_{3}) \lor (v_{1} = v_{4})) \\ C_{56}: (\mu_{\mathcal{E}\mathcal{U}\mathcal{F}} \land (v_{1} = v_{3})) \rightarrow (v_{5} = v_{6}) \\ C_{23}: (\mu_{\mathcal{L}\mathcal{I}\mathcal{A}}' \land (v_{5} = v_{6})) \rightarrow ((v_{2} = v_{3}) \lor (v_{2} = v_{4})) \\ C_{24}: (\mu_{\mathcal{E}\mathcal{U}\mathcal{F}}' \land (v_{1} = v_{3}) \land (v_{2} = v_{3})) \rightarrow \bot \end{array}$$

$$\begin{array}{c} \mu_{\mathcal{E}\mathcal{U}\mathcal{F}}: & \mu_{\mathcal{L}\mathcal{I}\mathcal{A}}: \\ \neg (f(v_1) = f(v_2)) & v_1 \ge 0 & v_5 = v_4 - 1 \\ \neg (f(v_2) = f(v_4)) & v_1 \le 1 & v_3 = 0 \\ f(v_3) = v_5 & v_2 \ge v_6 & v_4 = 1 \\ f(v_1) = v_6 & v_2 \le v_6 + 1 \end{array}$$

$$\begin{array}{c} \neg (v_1 = v_4) & v_1 = v_3 \\ \neg (v_1 = v_3) & v_5 = v_6 \\ v_2 = v_4 \\ \neg (v_5 = v_6) & \mathcal{E}\mathcal{U}\mathcal{F}\text{-unsat, } C_{14} \\ \neg (v_2 = v_4) & \mathcal{C}_{13}: (\mu'_{\mathcal{L}\mathcal{I}\mathcal{A}}) \rightarrow ((v_1 = v_3) \lor (v_1 = v_4)) \\ \neg (v_2 = v_4) & \mathcal{C}_{56}: (\mu'_{\mathcal{E}\mathcal{U}\mathcal{F}} \land (v_1 = v_3)) \rightarrow (v_5 = v_6) \\ \mathcal{C}_{23}: (\mu''_{\mathcal{L}\mathcal{I}\mathcal{A}} \land (v_5 = v_6)) \rightarrow ((v_2 = v_3) \lor (v_2 = v_4)) \\ \neg (v_2 = v_3) & \mathcal{C}_{14}: (\mu''_{\mathcal{E}\mathcal{U}\mathcal{F}} \land (v_1 = v_3) \land (v_2 = v_4)) \rightarrow \bot \end{array}$$

$$\begin{array}{c} \mu_{\mathcal{E}\mathcal{U}\mathcal{F}}: & \mu_{\mathcal{L}\mathcal{I}\mathcal{A}}: \\ \neg (f(v_1) = f(v_2)) & v_1 \ge 0 & v_5 = v_4 - 1 \\ \neg (f(v_2) = f(v_4)) & v_1 \ge 1 & v_3 = 0 \\ f(v_3) = v_5 & v_2 \ge v_6 & v_4 = 1 \\ f(v_1) = v_6 & v_2 \ge v_6 + 1 \\ \neg (v_1 = v_4) & v_1 = v_4 \\ \neg (v_1 = v_3) & v_5 = v_6 \\ (v_2 = v_4) & v_5 = v_6 \\ \neg (v_5 = v_6) & v_2 \ge v_4 \\ \neg (v_2 = v_4) & c_{13}: (\mu'_{\mathcal{L}\mathcal{I}\mathcal{A}}) \rightarrow ((v_1 = v_3) \lor (v_1 = v_4)) \\ (v_2 = v_4) & c_{56}: (\mu'_{\mathcal{E}\mathcal{U}\mathcal{F}} \land (v_1 = v_3)) \rightarrow (v_5 = v_6) \\ C_{23}: (\mu''_{\mathcal{L}\mathcal{I}\mathcal{A}} \land (v_5 = v_6)) \rightarrow ((v_2 = v_3) \lor (v_2 = v_4)) \\ \neg (v_2 = v_3) & c_{24}: (\mu'_{\mathcal{E}\mathcal{U}\mathcal{F}} \land (v_1 = v_3) \land (v_2 = v_4)) \rightarrow \bot \\ \end{array}$$

$$\begin{array}{c} \mu_{\mathcal{E}\mathcal{U}\mathcal{F}}: & \mu_{\mathcal{L}\mathcal{I}\mathcal{A}}: \\ \neg (f(v_1) = f(v_2)) & v_1 \ge 0 & v_5 = v_4 - 1 \\ \neg (f(v_2) = f(v_4)) & v_1 \ge 1 & v_3 = 0 \\ f(v_3) = v_5 & v_2 \ge v_6 & v_4 = 1 \\ f(v_1) = v_6 & v_2 \ge v_6 + 1 \\ \neg (v_1 = v_4) & & \\ \neg (v_1 = v_4) & v_1 = v_4 \\ \neg (v_1 = v_3) & v_5 = v_6 \\ v_2 = v_4 & & \\ \neg (v_5 = v_6) & & \\ \neg (v_2 = v_4) & & \\ \neg (v_2 = v_4) & & \\ \neg (v_2 = v_3) & & \\ \neg (v_2 = v_3) & & \\ \hline (v_2 = v_3) & & \\ \hline (v_2 = v_3) & & \\ \hline (v_2 = v_4) & & \\ \neg (v_2 = v_4) & & \\ \neg (v_2 = v_3) & & \\ \hline (v_2 =$$

$$\begin{array}{c} \mu_{\mathcal{E}\mathcal{U}\mathcal{F}}: & \mu_{\mathcal{L}\mathcal{I}\mathcal{A}}: \\ \neg (f(v_1) = f(v_2)) & v_1 \ge 0 & v_5 = v_4 - 1 \\ \neg (f(v_2) = f(v_4)) & v_1 \ge 1 & v_3 = 0 \\ f(v_3) = v_5 & v_2 \ge v_6 & v_4 = 1 \\ f(v_1) = v_6 & v_2 \ge v_6 + 1 \\ \neg (v_1 = v_4) & \text{SAT!} & 6 \text{ branches} \\ \neg (v_1 = v_4) & v_5 = v_6 \\ \neg (v_1 = v_3) & v_5 = v_6 \\ \neg (v_5 = v_6) & v_2 = v_4 \\ \neg (v_2 = v_4) & C_{13}: (\mu'_{\mathcal{L}\mathcal{I}\mathcal{A}}) \rightarrow ((v_1 = v_3) \lor (v_1 = v_4)) \\ \neg (v_2 = v_4) & C_{56}: (\mu'_{\mathcal{E}\mathcal{U}\mathcal{F}} \land (v_1 = v_3)) \rightarrow (v_5 = v_6) \\ \neg (v_2 = v_3) & C_{23}: (\mu''_{\mathcal{L}\mathcal{I}\mathcal{A}} \land (v_5 = v_6)) \rightarrow ((v_2 = v_3) \lor (v_2 = v_4)) \\ \neg (v_2 = v_3) & C_{14}: (\mu_{\mathcal{E}\mathcal{U}\mathcal{F}} \land (v_1 = v_3) \land (v_2 = v_4)) \rightarrow \bot \\ \end{array}$$

$$\begin{array}{c} \mu_{\mathcal{E}\mathcal{U}\mathcal{F}}: & \mu_{\mathcal{L}\mathcal{I}\mathcal{A}}: \\ \neg \left(f(v_{2}) = f(v_{2})\right) & v_{1} \geq 0 & v_{5} = v_{4} - 1 \\ \neg \left(f(v_{2}) = f(v_{4})\right) & v_{1} \geq 1 & v_{3} = 0 \\ f(v_{3}) = v_{5} & v_{2} \geq v_{6} & v_{4} = 1 \\ \neg \left(v_{1} = v_{4}\right) & v_{1} \leq v_{5} \\ \neg \left(v_{1} = v_{3}\right) & v_{2} \leq v_{6} + 1 \end{array}$$

$$\begin{array}{c} \text{Minics the } e_{ij}\text{-deduction} \\ \mu'_{\mathcal{L}\mathcal{I}\mathcal{A}} \models_{\mathcal{L}\mathcal{I}\mathcal{A}} \left((v_{1} = v_{3}) \lor \left(v_{1} = v_{4}\right)\right) \\ \neg \left(v_{1} = v_{3}\right) & v_{5} = v_{6} \\ v_{2} = v_{4} \\ \neg \left(v_{5} = v_{6}\right) & v_{5} = v_{6} \\ v_{2} = v_{4} \\ \neg \left(v_{5} = v_{6}\right) & v_{5} = v_{6} \\ \neg \left(v_{2} = v_{4}\right) & v_{5} = v_{6} \\ \neg \left(v_{2} = v_{4}\right) & v_{5} = v_{6} \\ \neg \left(v_{2} = v_{3}\right) & v_{6} = v_{6} \\ \neg \left(v_{2} = v_{3}\right) & v_{6} = v_{6} \\ \neg \left(v_{2} = v_{3}\right) & v_{6} = v_{6} \\ \neg \left(v_{2} = v_{3}\right) & v_{6} = v_{6} \\ \neg \left(v_{2} = v_{3}\right) & v_{6} = v_{6} \\ \neg \left(v_{2} = v_{3}\right) & v_{6} = v_{6} \\ \neg \left(v_{2} =$$

$$\begin{array}{c} \mu_{\mathcal{EUF}}: & \mu_{\mathcal{LIA}}: \\ \neg(f(v_1) = f(v_2)) & v_1 \ge 0 \\ \neg(f(v_2) = f(v_4)) & v_1 \le 1 \\ f(v_3) = v_5 & v_2 \ge v_6 \\ f(v_1) = v_6 & v_2 \le v_6 + 1 \end{array}$$

$$\begin{array}{c} \mu_{\mathcal{EUF}}: & \mu_{\mathcal{LIA}}: \\ \neg (f(v_1) = f(v_2)) & v_1 \ge 0 & v_5 = v_4 - 1 \\ \neg (f(v_2) = f(v_4)) & v_1 \le 1 & v_3 = 0 \\ f(v_3) = v_5 & v_2 \ge v_6 & v_4 = 1 \\ f(v_1) = v_6 & v_2 \le v_6 + 1 \\ \end{array}$$

$$C_{13}:(\mu'_{\mathcal{LIA}})
ightarrow ((v_1=v_3)\lor (v_1=v_4))$$

$$\begin{array}{c} \mu_{\mathcal{EUF}}: & \mu_{\mathcal{LIA}}: \\ \neg (f(v_1) = f(v_2)) & v_1 \ge 0 \\ \neg (f(v_2) = f(v_4)) & v_1 \le 1 \\ f(v_3) = v_5 & v_2 \ge v_6 \\ f(v_1) = v_6 & v_2 \le v_6 + 1 \end{array}$$

$$\mathcal{C}_{13}:(\mu'_{\mathcal{LIA}})
ightarrow ((v_1=v_3)\lor (v_1=v_4))$$

$$\begin{array}{c} \mu_{\mathcal{EUF}}: & \mu_{\mathcal{LIA}}: \\ \mu_{\mathcal{CIA}}: & v_{5} = v_{4} - 1 \\ f(v_{2}) = f(v_{4})) & v_{1} \ge 0 \\ f(v_{3}) = v_{5} & v_{2} \ge v_{6} \\ f(v_{1}) = v_{6} & v_{2} \le v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) \\ v_{1} = v_{3} \\ v_{5} = v_{6} \end{array}$$

$$\begin{array}{l} \mathcal{C}_{13}: (\mu_{\mathcal{LIA}}') \rightarrow ((v_1 = v_3) \lor (v_1 = v_4)) \\ \mathcal{C}_{56}: (\mu_{\mathcal{EUF}}' \land (v_1 = v_3)) \rightarrow (v_5 = v_6) \end{array}$$

$$\begin{array}{c} \mu_{\mathcal{E}\mathcal{U}\mathcal{F}}: & \mu_{\mathcal{L}\mathcal{I}\mathcal{A}}: \\ \mu_{\mathcal{L}\mathcal{I}\mathcal{A}}: & \mu_{\mathcal{L}\mathcal{I}\mathcal{A}}: \\ n(f(v_{1}) = f(v_{2})) & v_{1} \geq 0 & v_{5} = v_{4} - 1 \\ n(f(v_{2}) = f(v_{4})) & v_{1} \leq 1 & v_{3} = 0 \\ f(v_{3}) = v_{5} & v_{2} \geq v_{6} & v_{4} = 1 \\ f(v_{1}) = v_{6} & v_{2} \leq v_{6} + 1 \\ \hline n(v_{1} = v_{4}) & v_{1} = v_{3} \\ v_{1} = v_{3} & v_{5} = v_{6} \\ \mathcal{L}\mathcal{I}\mathcal{A}\text{-deduce } (v_{2} = v_{4}) \lor (v_{2} = v_{3}), C_{23} \end{array}$$

$$\begin{aligned} & C_{13} : (\mu'_{\mathcal{LIA}}) \to ((v_1 = v_3) \lor (v_1 = v_4)) \\ & C_{56} : (\mu'_{\mathcal{EUF}} \land (v_1 = v_3)) \to (v_5 = v_6) \\ & C_{23} : (\mu''_{\mathcal{LIA}} \land (v_5 = v_6)) \to ((v_2 = v_3) \lor (v_2 = v_4)) \end{aligned}$$

$$\begin{array}{c} \mu_{\mathcal{E}\mathcal{U}\mathcal{F}}: & \downarrow \mu_{\mathcal{L}\mathcal{I}\mathcal{A}}: \\ \neg (f(v_{1}) = f(v_{2})) & \downarrow v_{1} \geq 0 & v_{5} = v_{4} - 1 \\ \neg (f(v_{2}) = f(v_{4})) & \downarrow v_{1} \leq 1 & v_{3} = 0 \\ f(v_{3}) = v_{5} & v_{2} \geq v_{6} & v_{4} = 1 \\ f(v_{1}) = v_{6} & v_{2} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{2} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{2} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{2} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{2} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{2} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{2} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{2} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{2} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{2} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{2} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{2} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{2} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{2} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{2} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{2} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{2} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{2} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{2} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \leq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \geq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \geq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \geq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \geq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \geq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \geq v_{6} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \geq v_{4} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \geq v_{4} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \geq v_{4} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \geq v_{4} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \geq v_{4} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \geq v_{4} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \geq v_{4} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \geq v_{4} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \geq v_{4} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} \geq v_{4} + 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} = 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} = 1 \\ \hline \neg (v_{1} = v_{4}) & v_{4} = 1 \\ \hline \neg (v_{1} = v_{$$

$$\begin{array}{c} \mu_{\mathcal{E}\mathcal{U}\mathcal{F}}: & \mu_{\mathcal{L}\mathcal{I}\mathcal{A}}: \\ \neg (f(v_1) = f(v_2)) & v_1 \ge 0 & v_5 = v_4 - 1 \\ \neg (f(v_2) = f(v_4)) & v_1 \ge 1 & v_3 = 0 \\ f(v_3) = v_5 & v_2 \ge v_6 & v_4 = 1 \\ f(v_1) = v_6 & v_2 \le v_6 + 1 \end{array}$$

$$\neg (v_1 = v_4) \\ v_1 = v_3 \\ v_5 = v_6 \\ \neg (v_2 = v_4) & v_2 = v_4 \\ v_2 = v_3 & \mathcal{E}\mathcal{U}\mathcal{F}\text{-unsat}, \ C_{14} \\ \end{array}$$

$$\begin{array}{c} C_{13}: (\mu_{\mathcal{L}\mathcal{I}\mathcal{A}}) \rightarrow ((v_1 = v_3) \lor (v_1 = v_4) \\ C_{56}: (\mu_{\mathcal{E}\mathcal{U}\mathcal{F}} \land (v_1 = v_3)) \rightarrow (v_5 = v_6) \end{array}$$

$$\begin{array}{c} \mu_{\mathcal{EUT}}: & \mu_{\mathcal{LTA}}: \\ \neg (f(v_1) = f(v_2)) & v_1 \ge 0 \\ \neg (f(v_2) = f(v_4)) & v_1 \le 1 \\ f(v_3) = v_5 & v_2 \ge v_6 \\ f(v_1) = v_6 & v_2 \le v_6 + 1 \end{array}$$

$$\begin{array}{c} \neg (v_1 = v_4) \\ \neg (v_1 = v_4) \\ v_5 = v_6 \\ \neg (v_2 = v_4) \\ v_2 = v_3 \end{array}$$

$$\begin{array}{l} C_{13} : (\mu'_{\mathcal{LIA}}) \to ((v_1 = v_3) \lor (v_1 = v_4)) \\ C_{56} : (\mu'_{\mathcal{EUF}} \land (v_1 = v_3)) \to (v_5 = v_6) \\ C_{23} : (\mu''_{\mathcal{LIA}} \land (v_5 = v_6)) \to ((v_2 = v_3) \lor (v_2 = v_4)) \\ C_{24} : (\mu''_{\mathcal{EUF}} \land (v_1 = v_3) \land (v_2 = v_3)) \to \bot \\ C_{14} : (\mu''_{\mathcal{EUF}} \land (v_1 = v_3) \land (v_2 = v_4)) \to \bot \end{array}$$

DTC: example with \mathcal{T} -prop. (non-convex theory)

$$\begin{array}{c} \mu_{\mathcal{E}\mathcal{U}\mathcal{F}}: & \mu_{\mathcal{L}\mathcal{I}\mathcal{A}}: \\ \neg (f(v_{1}) = f(v_{2})) & v_{1} \geq 0 & v_{5} = v_{4} - 1 \\ \neg (f(v_{2}) = f(v_{4})) & v_{1} \geq 1 & v_{3} = 0 \\ f(v_{3}) = v_{5} & v_{2} \geq v_{6} & v_{4} = 1 \\ f(v_{1}) = v_{6} & v_{2} \leq v_{6} + 1 \\ \neg (v_{1} = v_{4}) & v_{1} = v_{4} \\ v_{1} = v_{3} & sAT! & 3 \ e_{ij}\text{-deductions} \\ v_{5} = v_{6} & v_{2} = v_{4} \\ v_{2} = v_{4} & v_{2} = v_{4} \\ v_{2} = v_{3} & c_{13}: (\mu_{\mathcal{L}\mathcal{I}\mathcal{A}}) \rightarrow ((v_{1} = v_{3}) \lor (v_{1} = v_{4})) \\ C_{56}: (\mu_{\mathcal{E}\mathcal{U}\mathcal{F}} \land (v_{1} = v_{3})) \rightarrow (v_{5} = v_{6}) \\ C_{23}: (\mu_{\mathcal{L}\mathcal{I}\mathcal{A}}' \land (v_{5} = v_{6})) \rightarrow ((v_{2} = v_{3}) \lor (v_{2} = v_{4})) \\ C_{24}: (\mu_{\mathcal{E}\mathcal{U}\mathcal{F}}' \land (v_{1} = v_{3}) \land (v_{2} = v_{4})) \rightarrow \bot \\ C_{14}: (\mu_{\mathcal{E}\mathcal{U}\mathcal{F}}' \land (v_{1} = v_{3}) \land (v_{2} = v_{4})) \rightarrow \bot \end{array}$$

<u>《 티 〉 《 태 〉 《 문 〉 《 문 〉 《 문 · 《) 또()</u>

DTC: example without T-propagation (convex theory)

$$\begin{array}{ll} \mathcal{EUF}: & (v_3 = h(v_0)) \land (v_4 = h(v_1)) \land (v_6 = f(v_2)) \land (v_7 = f(v_5)) \land \\ \mathcal{LRA}: & (v_0 \ge v_1) \land (v_0 \le v_1) \land (v_2 = v_3 - v_4) \land (RESET_5 \to (v_5 = 0)) \land \\ Both: & (\neg RESET_5 \to (v_5 = v_8)) \land \neg (v_6 = v_7). \end{array}$$

DTC: example with T-propagation (convex theory)

$$\begin{split} \mathcal{EUF}: & (v_{3} = h(v_{0})) \land (v_{4} = h(v_{1})) \land (v_{6} = f(v_{2})) \land (v_{7} = f(v_{5})) \land \\ \mathcal{LRA}: & (v_{0} \geq v_{1}) \land (v_{0} \leq v_{1}) \land (v_{2} = v_{3} - v_{4}) \land (RESET_{5} \rightarrow (v_{5} = 0)) \land \\ Both: & (\neg RESET_{5} \rightarrow (v_{5} = v_{8})) \land \neg (v_{6} = v_{7}). \\ & \mu_{\mathcal{LRA}}: \\ \{(v_{3} = h(v_{0})), (v_{4} = h(v_{1})), \neg (v_{6} = v_{7}), \\ (v_{5} = f(v_{2})), (v_{7} = f(v_{2}))\} & \neg (v_{6} = v_{7}), \\ (v_{5} = f(v_{2})), (v_{7} = f(v_{2}))\} & \neg (v_{6} = v_{7}), \\ & \mathcal{LRA}-deduce (v_{9} = v_{4}) \\ & \ell v_{5} = v_{3}) \\ \mathcal{LRA}-deduce (v_{9} = v_{4}) \\ & \ell v_{7} = f(v_{1}) \\ \ell v_{9} = v_{4}) \\ \mathcal{LRA}-deduce (v_{2} = v_{5}) & (v_{9} = v_{1}) \\ & \ell v_{3} = v_{4}) \\ \mathcal{LRA}-deduce (v_{2} = v_{5}) & \ell v_{9} = v_{1}) \\ & \ell v_{2} = v_{5}) & SAT \\ & learn C_{25} \\ & \mathcal{LIF}-unsat \\ & C_{67} \\ & C_{01}: (\mu_{\mathcal{LRA}} \land (v_{5} = 0) \land (v_{3} = v_{4})) \\ & C_{25}: (\mu_{\mathcal{LRA}}^{\prime\prime} \land (v_{5} = 0) \land (v_{3} = v_{4})) \rightarrow (v_{2} = v_{5}) \\ & C_{67}: (\mu_{\mathcal{LLF}}^{\prime\prime} \land (v_{5} = v_{5})) \rightarrow (v_{6} = v_{7}) \\ \end{split}$$

・ロト・日本・日本・日本・日本・日本

DTC + Model-based heuristic (aka Model-Based Theory Combination) [34]

- Initially, no interface equalities generated
- When a model is found, check against all the possible interface equalities
 - If \mathcal{T}_1 and \mathcal{T}_2 agree on the implied equalities, then return SAT
 - Otherwise, branch on equalities implied by $\mathcal{T}_1\text{-model}$ but not by $\mathcal{T}_2\text{-model}$
- "Optimistic" approach, similar to axiom instantiation

For each of the previous DTC examples:

- write the (minimal) clauses corresponding to each *e_{ij}*-deduction (as clauses rather than as implications)
- compute the conflict-analysis steps leading to the backjumping steps in the figures.

For each of the previous DTC examples:

- write the (minimal) clauses corresponding to each *e_{ij}*-deduction (as clauses rather than as implications)
- compute the conflict-analysis steps leading to the backjumping steps in the figures.

Exercise

Let \mathcal{LRA} be the logic of linear arithmetic over the rationals and \mathcal{EUF} be the logic of equality and uninterpreted functions. Consider the following pure formula φ in the combined logic $\mathcal{LRA} \cup \mathcal{EUF}$:

> $(x = 1.0) \land (h = 1.0) \land (k = 1.0) \land (y = 2h - k) \land (z < w)$ $(z = f(x)) \land (w = f(y))$

- Say which variables are interface variables,
- Iist the interface equalities for this formula (modulo symmetry),
- Idecide whether this formulas is LRA ∪ EUF-satisfiable or not, using both Nelson-Oppen or Delayed Theory Combination.

Outline

Introduction

- What is a Theory?
- Satisfiability Modulo Theories
- Motivations and Goals of SMT

Efficient SMT solving

- Combining SAT with Theory Solvers
- Theory Solvers for Theories of Interest (hints)
- SMT for Combinations of Theories

Beyond Solving: Advanced SMT Functionalities

- Proofs and Unsatisfiable Cores
- Interpolants
- All-SMT & Predicate Abstraction (hints)
- SMT with Optimization (Optimization Modulo Theories)

- Building proofs of *T*-unsatisfiability
- Extracting *T*-unsatisfiable Cores
- Computing Craig interpolants
- Performing All-SMT and Predicate Abstraction
- Deciding/optimizing SMT problems with costs

- Building proofs of *T*-unsatisfiability
- Extracting *T*-unsatisfiable Cores
- Computing Craig interpolants
- Performing All-SMT and Predicate Abstraction
- Deciding/optimizing SMT problems with costs

- Building proofs of *T*-unsatisfiability
- Extracting *T*-unsatisfiable Cores
- Computing Craig interpolants
- Performing All-SMT and Predicate Abstraction
- Deciding/optimizing SMT problems with costs

- Building proofs of *T*-unsatisfiability
- Extracting *T*-unsatisfiable Cores
- Computing Craig interpolants
- Performing All-SMT and Predicate Abstraction
- Deciding/optimizing SMT problems with costs

- Building proofs of *T*-unsatisfiability
- Extracting *T*-unsatisfiable Cores
- Computing Craig interpolants
- Performing All-SMT and Predicate Abstraction
- Deciding/optimizing SMT problems with costs

Outline

Introduction

- What is a Theory?
- Satisfiability Modulo Theories
- Motivations and Goals of SMT

Efficient SMT solving

- Combining SAT with Theory Solvers
- Theory Solvers for Theories of Interest (hints)
- SMT for Combinations of Theories

Beyond Solving: Advanced SMT Functionalities Proofs and Unsatisfiable Cores

- Interpolants
- All-SMT & Predicate Abstraction (hints)
- SMT with Optimization (Optimization Modulo Theories)

Building (Resolution) Proofs of \mathcal{T} -Unsatisfiability

Resolution proof of \mathcal{T} -unsatisfiability

Very similar to building proofs with plain SAT:

- resolution proofs whose leaves are original clauses and \mathcal{T} -lemmas returned by the \mathcal{T} -solver (i.e., \mathcal{T} -conflict and \mathcal{T} -deduction clauses)
- built by backward traversal of implication graphs, as in CDCL SAT
- Sub-proofs of *T*-lemmas can be built in some *T*-specific deduction framework if requested

Important for:

- certifying \mathcal{T} -unsatisfiability results
- computing unsatisfiable cores
- computing interpolants

Building (Resolution) Proofs of \mathcal{T} -Unsatisfiability

Resolution proof of \mathcal{T} -unsatisfiability

Very similar to building proofs with plain SAT:

- resolution proofs whose leaves are original clauses and \mathcal{T} -lemmas returned by the \mathcal{T} -solver (i.e., \mathcal{T} -conflict and \mathcal{T} -deduction clauses)
- built by backward traversal of implication graphs, as in CDCL SAT
- Sub-proofs of *T*-lemmas can be built in some *T*-specific deduction framework if requested

Important for:

- certifying *T*-unsatisfiability results
- computing unsatisfiable cores
- computing interpolants

Building Proofs of T-Unsatisfiability: example

 $(x = 0 \lor \neg (x = 1) \lor A_1) \land (x = 0 \lor x = 1 \lor A_2) \land (\neg (x = 0) \lor x = 1 \lor A_2) \land (\neg A_2 \lor y = 1) \land (\neg A_1 \lor x + y > 3) \land (y < 0) \land (A_2 \lor x - y = 4) \land (y = 2 \lor \neg A_1) \land (x \ge 0),$

A proof of unsatisfiability for a set of non-strict *LRA* inequalities can be obtained by building a linear combination of such inequalities, each time eliminating one or more variables, until you get a contradictory inequality on constant values.
 Example:

 $\varphi \stackrel{\text{def}}{=} (0 \le x_1 - 3x_2 + 1), (0 \le x_1 + x_2), (0 \le x_3 - 2x_1 - 3), (0 \le 1 - 2x_3)$

A proof of unsatisfiability *P* for φ is the following:

- It is possible to produce such proof from an unsatisfiable tableau in Simplex procedure for *LRA* [27, 29]
- It is straightforward to produce such proof from a negative cycle in the graph-based procedure for DL [27, 29]

- A proof of unsatisfiability for a set of non-strict *LRA* inequalities can be obtained by building a linear combination of such inequalities, each time eliminating one or more variables, until you get a contradictory inequality on constant values.
- Example:

 $\varphi \stackrel{\text{def}}{=} (0 \le x_1 - 3x_2 + 1), (0 \le x_1 + x_2), (0 \le x_3 - 2x_1 - 3), (0 \le 1 - 2x_3).$

A proof of unsatisfiability *P* for φ is the following:

- It is possible to produce such proof from an unsatisfiable tableau in Simplex procedure for *LRA* [27, 29]
- It is straightforward to produce such proof from a negative cycle in the graph-based procedure for DL [27, 29]

- A proof of unsatisfiability for a set of non-strict *LRA* inequalities can be obtained by building a linear combination of such inequalities, each time eliminating one or more variables, until you get a contradictory inequality on constant values.
- Example:

 $\varphi \stackrel{\text{def}}{=} (0 \le x_1 - 3x_2 + 1), (0 \le x_1 + x_2), (0 \le x_3 - 2x_1 - 3), (0 \le 1 - 2x_3).$

A proof of unsatisfiability *P* for φ is the following:

- It is possible to produce such proof from an unsatisfiable tableau in Simplex procedure for *LRA* [27, 29]
- It is straightforward to produce such proof from a negative cycle in the graph-based procedure for DL [27, 29]

- A proof of unsatisfiability for a set of non-strict *LRA* inequalities can be obtained by building a linear combination of such inequalities, each time eliminating one or more variables, until you get a contradictory inequality on constant values.
- Example:

 $\varphi \stackrel{\text{def}}{=} (0 \le x_1 - 3x_2 + 1), (0 \le x_1 + x_2), (0 \le x_3 - 2x_1 - 3), (0 \le 1 - 2x_3).$

A proof of unsatisfiability *P* for φ is the following:

- It is possible to produce such proof from an unsatisfiable tableau in Simplex procedure for *LRA* [27, 29]
- It is straightforward to produce such proof from a negative cycle in the graph-based procedure for DL [27, 29]

Extraction of \mathcal{T} -unsatisfiable cores

The problem

Given a \mathcal{T} -unsatisfiable set of clauses, extract from it a (possibly small/minimal/minimum) \mathcal{T} -unsatisfiable subset (\mathcal{T} -unsatisfiable core)

- Wide literature in SAT
- Some implementations, very few literature for SMT [26, 51]
- We recognize three approaches:
 - Proof-based approach (CVC4, MathSAT): byproduct of finding a resolution proof
 - Assumption-based approach (Yices): use extra variables labeling clauses, as in the plain Boolean case
 - Lemma-Lifting approach [26] : use an external (possibly-optimized) Boolean unsat-core extractor

Idea (adapted from [74])

Unsatisfiable core of φ :

- in SAT: the set of leaf clauses of a resolution proof of unsatisfiability of φ
- in SMT(*T*): the set of leaf clauses of a resolution proof of *T*-unsatisfiability of *φ*, minus the *T*-lemmas

The proof-based approach to \mathcal{T} -unsat cores: example

 $\begin{aligned} (x = 0 \lor \neg (x = 1) \lor A_1) \land (x = 0 \lor x = 1 \lor A_2) \land (\neg (x = 0) \lor x = 1 \lor A_2) \land \\ (\neg A_2 \lor y = 1) \land (\neg A_1 \lor x + y > 3) \land (y < 0) \land (A_2 \lor x - y = 4) \land (y = 2 \lor \neg A_1) \land (x \ge 0), \end{aligned}$

Idea (adapted from [52])

Let φ be $\bigwedge_{i=1}^{n} C_i$ s.t. φ unsatisfiable.

- 1 each clause C_i in φ is substituted by $\neg S_i \lor C_i$, s.t. S_i fresh "selector" variable
- 2 the resulting formula is checked for satisfiability under the assumption of all *S*_i's

3 final conflict clause at dec. level 0: $\bigvee_j \neg S_j \implies \{C_j\}_j$ is the unsat core

Extends straightforwardly to $SMT(\mathcal{T})$.

Idea (adapted from [52])

Let φ be $\bigwedge_{i=1}^{n} C_i$ s.t. φ unsatisfiable.

- 1 each clause C_i in φ is substituted by $\neg S_i \lor C_i$, s.t. S_i fresh "selector" variable
- 2 the resulting formula is checked for satisfiability under the assumption of all *S*_i's

3 final conflict clause at dec. level 0: $\bigvee_j \neg S_j \implies \{C_j\}_j$ is the unsat core

Extends straightforwardly to $SMT(\mathcal{T})$.

The assumption-based approach to $\mathcal{T}\text{-unsat}$ cores: Example

$$\begin{array}{l} (S_1 \rightarrow (x=0 \lor \neg (x=1) \lor A_1)) \land (S_2 \rightarrow (x=0 \lor x=1 \lor A_2)) \land \\ (S_3 \rightarrow (\neg (x=0) \lor x=1 \lor A_2)) \land (S_4 \rightarrow (\neg A_2 \lor y=1)) \land \\ (S_5 \rightarrow (\neg A_1 \lor x+y>3)) \land (S_6 \rightarrow y<0) \land \\ (S_7 \rightarrow (A_2 \lor x-y=4)) \land (S_8 \rightarrow (y=2 \lor \neg A_1)) \land (S_9 \rightarrow x \ge 0) \end{array}$$

Conflict analysis (Yices 1.0.6) returns:

$$\neg S_1 \lor \neg S_2 \lor \neg S_3 \lor \neg S_4 \lor \neg S_6 \lor \neg S_7 \lor \neg S_8$$

corresponding to the unsat core in red.

The lemma-lifting approach to \mathcal{T} -unsat cores

Idea [26, 30]

- (i) The \mathcal{T} -lemmas D_i are valid in \mathcal{T}
- (ii) The conjunction of φ with all the \mathcal{T} -lemmas D_1, \ldots, D_k is propositionally unsatisfiable: $\mathcal{T2B}(\varphi \land \bigwedge_{i=1}^n D_i) \models \bot$.

interfaces with an external Boolean Unsat-core Extractor
 benefits for free of all state-of-the-art size-reduction techniques

The lemma-lifting approach to T-unsat cores (cont.)

$$\begin{array}{l} \langle \text{SatValue, Clause_set} \rangle \ \mathcal{T}\text{-Unsat_Core}\left(\text{Clause_set} \ \varphi \right) \\ \langle \ & // \ \varphi \text{ is } \{ \textbf{C}_1, \ldots, \textbf{C}_n \} \\ \text{if } (\text{Lazy_SMT_Solver}\left(\varphi\right) == \text{ sat}) \\ \text{then return } \langle \text{sat}, \emptyset \rangle; \\ // \ D_1, \ldots, D_k \text{ are the } \mathcal{T}\text{-lemmas stored by Lazy_SMT_Solver} \\ \psi^p = \text{Boolean_Core_Extractor}\left(\mathcal{T2B}(\{ \textbf{C}_1, \ldots, \textbf{C}_n, \textbf{D}_1, \ldots, \textbf{D}_k \}) \right); \\ // \ \psi^p \text{ is } \mathcal{T2B}(\{ \textbf{C}_1', \ldots, \textbf{C}_m', \textbf{D}_1', \ldots, \textbf{D}_j' \})); \\ \text{return } \langle \text{UNSAT}, \{ \textbf{C}_1', \ldots, \textbf{C}_m' \} \rangle; \\ \end{array} \right\}$$

The lemma-lifting approach to T-unsat cores: example

 $(x = 0 \lor \neg (x = 1) \lor A_1) \land (x = 0 \lor x = 1 \lor A_2) \land (\neg (x = 0) \lor x = 1 \lor A_2) \land$

 $(\neg A_2 \lor y = 1) \land (\neg A_1 \lor x + y > 3) \land (y < 0) \land (A_2 \lor x - y = 4) \land (y = 2 \lor \neg A_1) \land (x \ge 0),$

1 The SMT solver generates the following set of $\mathcal{LIA}\text{-lemmas:}$

 $\{(\neg(x = 1) \lor \neg(x = 0)), \ (\neg(y = 2) \lor \neg(y < 0)), \ (\neg(y = 1) \lor \neg(y < 0))\}.$

2 The following formula is passed to the external Boolean core extractor

 $\begin{array}{c} (B_0 \lor \neg B_1 \lor A_1) \land (B_0 \lor B_1 \lor A_2) \land (\neg B_0 \lor B_1 \lor A_2) \land \\ (\neg A_2 \lor B_2) \land (\neg A_1 \lor B_3) \land B_4 \land (A_2 \lor B_5) \land (B_6 \lor \neg A_1) \land B_7 \land \\ (\neg B_1 \lor \neg B_0) \land (\neg B_6 \lor \neg B_4) \land (\neg B_2 \lor \neg B_4) \end{aligned}$

which returns the unsat core in red.

3 The unsat-core is mapped back, the three \mathcal{T} -lemmas are removed \implies the final \mathcal{T} -unsat core (in red above).

The lemma-lifting approach to T-unsat cores: example

 $(x = 0 \lor \neg (x = 1) \lor A_1) \land (x = 0 \lor x = 1 \lor A_2) \land (\neg (x = 0) \lor x = 1 \lor A_2) \land$

 $(\neg A_2 \lor y = 1) \land (\neg A_1 \lor x + y > 3) \land (y < 0) \land (A_2 \lor x - y = 4) \land (y = 2 \lor \neg A_1) \land (x \ge 0),$

1 The SMT solver generates the following set of \mathcal{LIA} -lemmas:

 $\{(\neg(x=1) \lor \neg(x=0)), (\neg(y=2) \lor \neg(y<0)), (\neg(y=1) \lor \neg(y<0))\}.$

2 The following formula is passed to the external Boolean core extractor

 $\begin{array}{c} (B_0 \lor \neg B_1 \lor A_1) \land (B_0 \lor B_1 \lor A_2) \land (\neg B_0 \lor B_1 \lor A_2) \land \\ (\neg A_2 \lor B_2) \land (\neg A_1 \lor B_3) \land B_4 \land (A_2 \lor B_5) \land (B_6 \lor \neg A_1) \land B_7 \land \\ (\neg B_1 \lor \neg B_0) \land (\neg B_6 \lor \neg B_4) \land (\neg B_2 \lor \neg B_4) \end{array}$

which returns the unsat core in red.

3 The unsat-core is mapped back, the three \mathcal{T} -lemmas are removed \implies the final \mathcal{T} -unsat core (in red above).

The lemma-lifting approach to T-unsat cores: example

 $(x = 0 \lor \neg (x = 1) \lor A_1) \land (x = 0 \lor x = 1 \lor A_2) \land (\neg (x = 0) \lor x = 1 \lor A_2) \land$

 $(\neg A_2 \lor y = 1) \land (\neg A_1 \lor x + y > 3) \land (y < 0) \land (A_2 \lor x - y = 4) \land (y = 2 \lor \neg A_1) \land (x \ge 0),$

1 The SMT solver generates the following set of \mathcal{LIA} -lemmas:

 $\{(\neg(x=1) \lor \neg(x=0)), (\neg(y=2) \lor \neg(y<0)), (\neg(y=1) \lor \neg(y<0))\}.$

2 The following formula is passed to the external Boolean core extractor

 $\begin{array}{c} (B_0 \lor \neg B_1 \lor A_1) \land (B_0 \lor B_1 \lor A_2) \land (\neg B_0 \lor B_1 \lor A_2) \land \\ (\neg A_2 \lor B_2) \land (\neg A_1 \lor B_3) \land B_4 \land (A_2 \lor B_5) \land (B_6 \lor \neg A_1) \land B_7 \land \\ (\neg B_1 \lor \neg B_0) \land (\neg B_6 \lor \neg B_4) \land (\neg B_2 \lor \neg B_4) \end{array}$

which returns the unsat core in red.

 $3\,$ The unsat-core is mapped back, the three $\mathcal T\text{-lemmas}$ are removed

 \implies the final \mathcal{T} -unsat core (in red above).

Consider the following set of clauses φ in \mathcal{EUF} .

$$\begin{cases} (\neg(x = y) \lor (f(x) = f(y))), \\ (\neg(x = y) \lor \neg(f(x) = f(y))), \\ ((x = y) \lor (f(x) = f(y))), \\ ((x = y) \lor \neg(f(x) = f(y))) \end{cases}$$

Find a minimal \mathcal{EUF} -unsatisfiable core.

Outline

Introduction

- What is a Theory?
- Satisfiability Modulo Theories
- Motivations and Goals of SMT

Efficient SMT solving

- Combining SAT with Theory Solvers
- Theory Solvers for Theories of Interest (hints)
- SMT for Combinations of Theories

Beyond Solving: Advanced SMT Functionalities

Proofs and Unsatisfiable Cores

Interpolants

- All-SMT & Predicate Abstraction (hints)
- SMT with Optimization (Optimization Modulo Theories)

Computing (Craig) Interpolants in SMT

Craig Interpolant

Given an ordered pair (A, B) of formulas such that $A \land B \models_{\mathcal{T}} \bot$, a *Craig interpolant* is a formula *I* s.t.:

- a) $A \models_{\mathcal{T}} I$,
- b) $I \wedge B \models_{\mathcal{T}} \bot$,
- c) $I \leq A$ and $I \leq B$.

" $I \leq A$ " meaning that all non-interpreted (in T) symbols in I occur in A (including variables)

- Important in some FV applications
- A few works presented for various theories:
 - EUF [54, 63], DL [27, 29], UTVPI [28, 29], LRA
 [54, 63, 27, 29], LIA [48, 17, 45], BV [49], ...

Computing (Craig) Interpolants in SMT

Craig Interpolant

Given an ordered pair (*A*, *B*) of formulas such that $A \land B \models_{\mathcal{T}} \bot$, a *Craig interpolant* is a formula *I* s.t.:

- a) $A \models_{\mathcal{T}} I$,
- b) $I \wedge B \models_{\mathcal{T}} \bot$,
- c) $I \preceq A$ and $I \preceq B$.

" $I \leq A$ " meaning that all non-interpreted (in T) symbols in I occur in A (including variables)

- Important in some FV applications
- A few works presented for various theories:
 - *EUF* [54, 63], *DL* [27, 29], *UTVPI* [28, 29], *LRA* [54, 63, 27, 29], *LIA* [48, 17, 45], *BV* [49], ...

A General Algorithm

Algorithm: Interpolant generation for $SMT(\mathcal{T})$ [61, 54]

- (i) Generate a resolution proof of \mathcal{T} -unsatisfiability \mathcal{P} for $A \wedge B$.
- (ii) ...
- (iii) For every original leaf clause *C* in *P*, set $I_C \stackrel{\text{def}}{=} C \downarrow B$ if $C \in A$, and $I_C \stackrel{\text{def}}{=} \top$ if $C \in B$.
- (iv) For every inner node *C* of *P* obtained by resolution from $C_1 \stackrel{\text{def}}{=} p \lor \phi_1$ and $C_2 \stackrel{\text{def}}{=} \neg p \lor \phi_2$, set $I_C \stackrel{\text{def}}{=} I_{C_1} \lor I_{C_2}$ if *p* does not occur in *B*, and $I_C \stackrel{\text{def}}{=} I_{C_1} \land I_{C_2}$ otherwise.
- (v) Output I_{\perp} as an interpolant for (A, B).

```
"\eta \setminus B" [resp. "\eta \downarrow B"] is the set of literals in \eta whose atoms do not [resp. do] occur in B.
```

ullet row 2. only takes place where ${\mathcal T}$ comes in to play

⇒ Reduced to the problem of finding an interpolant for two sets of *T*-literals (Boolean and *T*-specific component decoupled)

A General Algorithm

Algorithm: Interpolant generation for SMT(\mathcal{T}) [61, 54]

- (i) Generate a resolution proof of $\mathcal T\text{-unsatisfiability}\ \mathcal P$ for $A\wedge B.$
- (ii) Foreach \mathcal{T} -lemma $\neg \eta$ in \mathcal{P} , generate an interpolant I_{η} for $(\eta \setminus B, \eta \downarrow B)$.
- (iii) For every original leaf clause C in \mathcal{P} , set $I_C \stackrel{\text{def}}{=} C \downarrow B$ if $C \in A$, and $I_C \stackrel{\text{def}}{=} \top$ if $C \in B$.
- (iv) For every inner node *C* of *P* obtained by resolution from $C_1 \stackrel{\text{def}}{=} p \lor \phi_1$ and $C_2 \stackrel{\text{def}}{=} \neg p \lor \phi_2$, set $I_C \stackrel{\text{def}}{=} I_{C_1} \lor I_{C_2}$ if *p* does not occur in *B*, and $I_C \stackrel{\text{def}}{=} I_{C_1} \land I_{C_2}$ otherwise.
- (v) Output I_{\perp} as an interpolant for (A, B).

```
"\eta \setminus B" [resp. "\eta \downarrow B"] is the set of literals in \eta whose atoms do not [resp. do] occur in B.
```

• row 2. only takes place where \mathcal{T} comes in to play

 $\Rightarrow \text{ Reduced to the problem of finding an interpolant for two sets of } \mathcal{T}\text{-literals (Boolean and } \mathcal{T}\text{-specific component decoupled)}$

A General Algorithm

Algorithm: Interpolant generation for $SMT(\mathcal{T})$ [61, 54]

- (i) Generate a resolution proof of \mathcal{T} -unsatisfiability \mathcal{P} for $A \wedge B$.
- (ii) Foreach \mathcal{T} -lemma $\neg \eta$ in \mathcal{P} , generate an interpolant I_{η} for $(\eta \setminus B, \eta \downarrow B)$.
- (iii) For every original leaf clause C in \mathcal{P} , set $I_C \stackrel{\text{def}}{=} C \downarrow B$ if $C \in A$, and $I_C \stackrel{\text{def}}{=} \top$ if $C \in B$.
- (iv) For every inner node *C* of *P* obtained by resolution from $C_1 \stackrel{\text{def}}{=} p \lor \phi_1$ and $C_2 \stackrel{\text{def}}{=} \neg p \lor \phi_2$, set $I_C \stackrel{\text{def}}{=} I_{C_1} \lor I_{C_2}$ if *p* does not occur in *B*, and $I_C \stackrel{\text{def}}{=} I_{C_1} \land I_{C_2}$ otherwise.
- (v) Output I_{\perp} as an interpolant for (A, B).

```
"\eta \setminus B" [resp. "\eta \downarrow B"] is the set of literals in \eta whose atoms do not [resp. do] occur in B.
```

- row 2. only takes place where T comes in to play
- $\implies \text{Reduced to the problem of finding an interpolant for two sets of} \\ \mathcal{T}\text{-literals} (Boolean and \mathcal{T}\text{-specific component decoupled})$

Computing Craig Interpolants in SMT: example

 $\begin{aligned} A &\stackrel{\text{def}}{=} (B_1 \lor (0 \le x_1 - 3x_2 + 1)) \land (0 \le x_1 + x_2) \land (\neg B_2 \lor \neg (0 \le x_1 + x_2)) \\ B &\stackrel{\text{def}}{=} (\neg (0 \le x_3 - 2x_1 - 3) \lor (0 \le 1 - 2x_3)) \land (\neg B_1 \lor B_2) \land (B_1 \lor (0 \le x_3 - 2x_1 - 3)) \end{aligned}$

Computing Craig Interpolants in SMT: example

McMillan's algorithm for non-strict \mathcal{LRA} inequalities

 $A \stackrel{\text{def}}{=} \{ (0 \le x_1 - 3x_2 + 1), (0 \le x_1 + x_2) \}$ $B \stackrel{\text{def}}{=} \{ (0 \le x_3 - 2x_1 - 3), (0 \le 1 - 2x_3) \}.$

McMillan's algorithm for non-strict \mathcal{LRA} inequalities

 $A \stackrel{\text{def}}{=} \{ (0 \le x_1 - 3x_2 + 1), (0 \le x_1 + x_2) \}$ $B \stackrel{\text{def}}{=} \{ (0 < x_3 - 2x_1 - 3), (0 < 1 - 2x_3) \}.$ A proof of unsatisfiability *P* for $A \wedge B$ is the following: $(0 \le x_1 - 3x_2 + 1)$ $(0 \le x_1 + x_2)$ $(0 \le x_3 - 2x_1 - 3)$ $(0 \le 1 - 2x_3)$ COMB $(0 < 4x_1 + 1)$ with c. 1 and 3 COMB $(0 < -4x_1 - 5)$ with c. 2 and 1 COMB (0 < -4) with c. 1 and 1

McMillan's algorithm for non-strict \mathcal{LRA} inequalities

$$A \stackrel{\text{def}}{=} \{ (0 \le x_1 - 3x_2 + 1), (0 \le x_1 + x_2) \}$$

$$B \stackrel{\text{def}}{=} \{ (0 \le x_3 - 2x_1 - 3), (0 \le 1 - 2x_3) \}.$$

A proof of unsatisfiability *P* for $A \land B$ is the following:

 $\frac{(0 \le x_1 - 3x_2 + 1) \quad (0 \le x_1 + x_2)}{\text{COMB} \ (0 \le 4x_1 + 1) \text{ with } c. \ 1 \text{ and } 3} \quad \frac{(0 \le x_3 - 2x_1 - 3) \quad (0 \le 1 - 2x_3)}{\text{COMB} \ (0 \le -4x_1 - 5) \text{ with } c. \ 2 \text{ and } 1}$

By replacing inequalities in *B* with $(0 \le 0)$, we obtain the proof *P*':

 $\frac{\frac{(0 \le x_1 - 3x_2 + 1)}{COMB} (0 \le 4x_1 + 1)}{COMB} \frac{(0 \le 0)}{(0 \le 0)} \frac{(0 \le 0)}{COMB} (0 \le 4x_1 + 1)}$

Thus, the interpolant obtained is $(0 \le 4x_1 + 1)$.

An inference-based algorithm [54]

$$A \stackrel{\text{def}}{=} \{ (0 \le x_1 - x_2 + 1), (0 \le x_2 - x_3), (0 \le x_4 - x_5 - 1) \}$$

$$B \stackrel{\text{def}}{=} \{ (0 \le x_5 - x_1), (0 \le x_3 - x_4 - 1) \}.$$

An inference-based algorithm [54]

$$A \stackrel{\text{def}}{=} \{ (0 \le x_1 - x_2 + 1), (0 \le x_2 - x_3), (0 \le x_4 - x_5 - 1) \}$$

$$B \stackrel{\text{def}}{=} \{ (0 \le x_5 - x_1), (0 \le x_3 - x_4 - 1) \}.$$

An inference-based algorithm [54]

$$A \stackrel{\text{def}}{=} \{ (0 \le x_1 - x_2 + 1), (0 \le x_2 - x_3), (0 \le x_4 - x_5 - 1) \}$$

$$B \stackrel{\text{def}}{=} \{ (0 \le x_5 - x_1), (0 \le x_3 - x_4 - 1) \}.$$

An inference-based algorithm [54]

$$A \stackrel{\text{def}}{=} \{ (0 \le x_1 - x_2 + 1), (0 \le x_2 - x_3), (0 \le x_4 - x_5 - 1) \}$$

$$B \stackrel{\text{def}}{=} \{ (0 \le x_5 - x_1), (0 \le x_3 - x_4 - 1) \}.$$

109/136

Exercise

Consider the following formulas in difference logic (\mathcal{DL}):

$$arphi_1 \stackrel{ ext{def}}{=} egin{array}{cccc} (x_2 - x_3 \leq -4) & \wedge \ (x_3 - x_4 \leq -6) & \wedge \ (x_5 - x_6 \leq 4) & \wedge \ (x_6 - x_1 \leq 2) & \wedge \ (x_6 - x_7 \leq -2) & \wedge \ (x_7 - x_8 \leq 1) \end{array}$$

$$arphi_2 \stackrel{ ext{def}}{=} egin{array}{ccc} (x_4 - x_9 \leq 2) & \land \ (x_9 - x_5 \leq 0) & \land \ (x_1 - x_2 \leq 1) \end{array}$$

which are such that $\varphi_1 \land \varphi_2 \models_{D\mathcal{L}} \bot$. Compute an interpolant for $\langle \varphi_1, \varphi_2 \rangle$, using both methods presented in previous slides.

Outline

- Introduction
 - What is a Theory?
 - Satisfiability Modulo Theories
 - Motivations and Goals of SMT

Efficient SMT solving

- Combining SAT with Theory Solvers
- Theory Solvers for Theories of Interest (hints)
- SMT for Combinations of Theories

Beyond Solving: Advanced SMT Functionalities

- Proofs and Unsatisfiable Cores
- Interpolants
- All-SMT & Predicate Abstraction (hints)
- SMT with Optimization (Optimization Modulo Theories)

- All-SAT: enumerate all truth assignments satisfying φ
- All-SMT: enumerate all \mathcal{T} -satisfiable truth assignments propositionally satisfying φ
- All-SMT over an "important" subset of atoms Γ ^{def} {γ_i}_i: enumerate all assignments over Γ which can be extended to *T*-satisfiable truth assignments propositionally satisfying φ ⇒ can compute predicate abstraction
- Algorithms:
 - BCLT [50]

each time a \mathcal{T} -satisfiable assignment $\{l_1, ..., l_n\}$ is found, perform conflict-driven backjumping as if the restricted clause $(\bigvee_i \neg l_i) \downarrow \Gamma$ belonged to the clause set

- All-SAT: enumerate all truth assignments satisfying φ
- All-SMT: enumerate all *T*-satisfiable truth assignments propositionally satisfying φ
- All-SMT over an "important" subset of atoms Γ ^{def} {γ_i}_i: enumerate all assignments over Γ which can be extended to *T*-satisfiable truth assignments propositionally satisfying φ ⇒ can compute predicate abstraction
- Algorithms:
 - BCLT [50]

each time a \mathcal{T} -satisfiable assignment $\{l_1, ..., l_n\}$ is found, perform conflict-driven backjumping as if the restricted clause $(\bigvee_i \neg l_i) \downarrow \Gamma$ belonged to the clause set

- All-SAT: enumerate all truth assignments satisfying φ
- All-SMT: enumerate all *T*-satisfiable truth assignments propositionally satisfying φ
- All-SMT over an "important" subset of atoms Γ ^{det} {γ_i}_i: enumerate all assignments over Γ which can be extended to *T*-satisfiable truth assignments propositionally satisfying φ ⇒ can compute predicate abstraction

• Algorithms:

• BCLT [50]

each time a \mathcal{T} -satisfiable assignment $\{l_1, ..., l_n\}$ is found, perform conflict-driven backjumping as if the restricted clause $(\bigvee_i \neg l_i) \downarrow \Gamma$ belonged to the clause set

- All-SAT: enumerate all truth assignments satisfying φ
- All-SMT: enumerate all \mathcal{T} -satisfiable truth assignments propositionally satisfying φ
- All-SMT over an "important" subset of atoms $\Gamma \stackrel{\text{def}}{=} \{\gamma_i\}_i$: enumerate all assignments over Γ which can be extended to \mathcal{T} -satisfiable truth assignments propositionally satisfying φ \implies can compute predicate abstraction
- Algorithms:
 - BCLT [50]

each time a \mathcal{T} -satisfiable assignment $\{I_1, ..., I_n\}$ is found, perform conflict-driven backjumping as if the restricted clause $(\bigvee_i \neg I_i) \downarrow \Gamma$ belonged to the clause set

Predicate Abstraction

Predicate abstraction

if $\varphi(\mathbf{v})$ is a SMT formula over the domain variables $\mathbf{v} \stackrel{\text{def}}{=} \{v_j\}_j, \{\gamma_i\}_i$ is a set of "relevant" predicates over \mathbf{v} , and $\mathbf{P} \stackrel{\text{def}}{=} \{P_i\}_i$ a set of fresh Boolean labels, then:

 $PredAbs_{\mathbf{P}}(\varphi)$ $\stackrel{\text{def}}{=} \exists \mathbf{v}.(\varphi(\mathbf{v}) \land \bigwedge_{i} \mathbf{P}_{i} \leftrightarrow \gamma_{i}(\mathbf{v}))$ $= \bigvee \left\{ \begin{array}{c} \mu \mid & \mu \text{ truth assignment on } \mathbf{P} \\ & \text{s.t. } \mu \land \varphi \land \bigwedge_{i}(\mathbf{P}_{i} \leftrightarrow \gamma_{i}) \text{ is } \mathcal{T}\text{-satisfiable} \end{array} \right\}$

• projection of φ over (the Boolean abstraction of) the set $\{\gamma_i\}_i$.

• important step in FV: extracts finite-state abstractions from a infinite state space

Predicate Abstraction

Predicate abstraction

if $\varphi(\mathbf{v})$ is a SMT formula over the domain variables $\mathbf{v} \stackrel{\text{def}}{=} \{v_j\}_j, \{\gamma_i\}_i$ is a set of "relevant" predicates over \mathbf{v} , and $\mathbf{P} \stackrel{\text{def}}{=} \{P_i\}_i$ a set of fresh Boolean labels, then:

 $PredAbs_{\mathbf{P}}(\varphi)$ $\stackrel{\text{def}}{=} \exists \mathbf{v}.(\varphi(\mathbf{v}) \land \bigwedge_{i} \mathbf{P}_{i} \leftrightarrow \gamma_{i}(\mathbf{v}))$ $= \bigvee \left\{ \begin{array}{c} \mu \mid & \mu \text{ truth assignment on } \mathbf{P} \\ & \text{s.t. } \mu \land \varphi \land \bigwedge_{i}(\mathbf{P}_{i} \leftrightarrow \gamma_{i}) \text{ is } \mathcal{T}\text{-satisfiable} \end{array} \right\}$

- projection of φ over (the Boolean abstraction of) the set {γ_i}_i.
- important step in FV: extracts finite-state abstractions from a infinite state space

Predicate Abstraction: example

$$\begin{split} \varphi &\stackrel{\text{def}}{=} (v_1 + v_2 > 12) \\ \gamma_1 &\stackrel{\text{def}}{=} (v_1 + v_2 = 2) \\ \gamma_2 &\stackrel{\text{def}}{=} (v_1 - v_2 < 10) \\ \downarrow \\ \end{split}$$

$$\begin{split} PreAbs(\varphi)_{\{P_1, P_2\}} &\stackrel{\text{def}}{=} \exists v_1 v_2 \cdot \begin{pmatrix} (v_1 + v_2 > 12) & \land \\ (P_1 \leftrightarrow (v_1 + v_2 = 2)) & \land \\ (P_2 \leftrightarrow (v_1 - v_2 < 10)) & \land \end{pmatrix} \\ &= (\neg P_1 \land \neg P_2) \lor (\neg P_1 \land P_2) \\ &= \neg P_1. \end{split}$$

Predicate Abstraction: example

$$\varphi \stackrel{\text{def}}{=} (v_1 + v_2 > 12)$$

$$\gamma_1 \stackrel{\text{def}}{=} (v_1 + v_2 = 2)$$

$$\gamma_2 \stackrel{\text{def}}{=} (v_1 - v_2 < 10)$$

$$\Downarrow$$

$$PreAbs(\varphi)_{\{P_1, P_2\}} \stackrel{\text{def}}{=} \exists v_1 v_2 . \begin{pmatrix} (v_1 + v_2 > 12) & \land \\ (P_1 \leftrightarrow (v_1 + v_2 = 2)) & \land \\ (P_2 \leftrightarrow (v_1 - v_2 < 10)) & \land \end{pmatrix}$$

$$= (\neg P_1 \land \neg P_2) \lor (\neg P_1 \land P_2)$$

$$= \neg P_1.$$

def

115/136

Outline

- Introduction
 - What is a Theory?
 - Satisfiability Modulo Theories
 - Motivations and Goals of SMT

Efficient SMT solving

- Combining SAT with Theory Solvers
- Theory Solvers for Theories of Interest (hints)
- SMT for Combinations of Theories

Beyond Solving: Advanced SMT Functionalities

- Proofs and Unsatisfiable Cores
- Interpolants
- All-SMT & Predicate Abstraction (hints)

• SMT with Optimization (Optimization Modulo Theories)

Optimization Modulo Theories: General Case

Ingredients: $\langle \varphi, cost \rangle$

• a SMT formula φ in some background theory $\mathcal{T} = \mathcal{T}_{\preceq} \cup \bigcup_i \mathcal{T}_i$

- $\bigcup_i \mathcal{T}_i$ may be empty
- \mathcal{T}_{\preceq} has a predicate \preceq representing a total order
- a \mathcal{T}_{\prec} -variable/term "*cost*" occurring in φ

Optimization Modulo $\mathcal{T}_{\leq} \cup \bigcup_{i} \mathcal{T}_{i} (\mathsf{OMT}(\mathcal{T}_{\leq} \cup \bigcup_{i} \mathcal{T}_{i}))$

The problem of finding a model \mathcal{M} for φ whose value of *cost* is minimum according to \leq .

maximization is dual

Note

The cost term can be rewritten as a variable

 $\langle \varphi, \textit{term} \rangle \implies \langle \varphi \land (\textit{cost} = \textit{term}), \textit{cost} \rangle, \text{ cost fresh}$

Optimization Modulo Theories: General Case

Ingredients: $\langle \varphi, cost \rangle$

• a SMT formula φ in some background theory $\mathcal{T} = \mathcal{T}_{\preceq} \cup \bigcup_i \mathcal{T}_i$

- $\bigcup_i \mathcal{T}_i$ may be empty
- \mathcal{T}_{\preceq} has a predicate \preceq representing a total order
- a \mathcal{T}_{\preceq} -variable/term "*cost*" occurring in φ

Optimization Modulo $\mathcal{T}_{\leq} \cup \bigcup_{i} \mathcal{T}_{i} (\mathsf{OMT}(\mathcal{T}_{\leq} \cup \bigcup_{i} \mathcal{T}_{i}))$

The problem of finding a model \mathcal{M} for φ whose value of *cost* is minimum according to \leq .

maximization is dual

Note

The cost term can be rewritten as a variable

 $\langle \varphi, \textit{term} \rangle \implies \langle \varphi \land (\textit{cost} = \textit{term}), \textit{cost} \rangle, \text{ cost fresh}$

Optimization Modulo Theories with $\mathcal{L}\mathcal{A}\xspace$ costs

Ingredients

- an SMT formula φ on $\mathcal{LA} \cup \mathcal{T}$
 - \mathcal{LA} can be \mathcal{LRA} , \mathcal{LIA} or a combination of both
 - $\mathcal{T} \stackrel{\text{def}}{=} \bigcup_i \mathcal{T}_i$, possibly empty
 - *LA* and *T_i* Nelson-Oppen theories (i.e. signature-disjoint infinite-domain theories)
- a \mathcal{LA} variable [term] "*cost*" occurring in φ
- (optionally) two constant numbers lb (lower bound) and ub (upper bound) s.t. lb ≤ cost < ub (lb, ub may be ∓∞)

Optimization Modulo Theories with $\mathcal{LA}\ \mbox{costs}\ (\mbox{OMT}(\mathcal{LA}\cup\mathcal{T})\)$

Find a model for φ whose value of *cost* is minimum.

maximization dual

We first restrict to the case $\mathcal{LA} = \mathcal{LRA}$ and $\bigcup_i \mathcal{T}_i = \{\}$ (OMT(\mathcal{LRA})).

Optimization Modulo Theories with \mathcal{LRA} costs

Ingredients

- an SMT formula φ on $\mathcal{LRA} \cup \mathcal{T}$
 - *LA* can be *LRA*, *LIA* or a combination of both
 - $\mathcal{T} \stackrel{\text{def}}{=} \bigcup_i \mathcal{T}_i$, possibly empty
 - *LRA* and *T_i* Nelson-Oppen theories (i.e. signature-disjoint infinite-domain theories)
- a \mathcal{LRA} variable [term] "cost" occurring in φ
- (optionally) two constant numbers lb (lower bound) and ub (upper bound) s.t. lb ≤ cost < ub (lb, ub may be ∓∞)

Optimization Modulo Theories with \mathcal{LRA} costs (OMT($\mathcal{LRA} \cup \mathcal{T}$))

Find a model for φ whose value of *cost* is minimum.

maximization dual

We first restrict to the case $\mathcal{LA} = \mathcal{LRA}$ and $\bigcup_i \mathcal{T}_i = \{\}$ (OMT(\mathcal{LRA})).

Solving OMT(\mathcal{LRA}) [65, 66]

General idea

Combine standard SMT and LP minimization techniques.

Offline Schema

- Minimizer: based on the Simplex *LRA*-solver by [37]
 - Handles strict inequalities
- Search Strategies:
 - Linear-Search strategy
 - Mixed Linear/Binary strategy

[w. pure-literal filt. \implies partial assignments] OMT(LRA) problem: $\omega \stackrel{\text{def}}{=} (\neg A_1 \lor (2x + y \ge -2))$ \wedge ($A_1 \lor (x + y > 3)$) $\wedge \quad (\neg A_2 \lor (4x - y \ge -4))$ ∧ ($A_2 \lor (2x - y \ge -6)$) \wedge (cost < -1.0) \wedge (cost < -2.0) $(2x + y \ge -2)$ $\textit{cost} \stackrel{\text{def}}{=}$ X $(2x - y \ge -6)$ • $\mu = \Big\{$

[w. pure-literal filt. \implies partial assignments] OMT(LRA) problem: $\varphi \stackrel{\text{def}}{=} (\neg A_1 \lor (2x + y \ge -2))$ $\wedge \quad (A_1 \lor (x+y > 3))$ $\wedge \quad (\neg A_2 \lor (4x - y > -4))$ ∧ ($A_2 \lor (2x - y > -6)$) \wedge (cost < -1.0) \wedge (cost < -2.0) $cost \stackrel{\text{def}}{=}$ X • $\mu = \begin{cases} A_1, \neg A_1, A_2, \neg A_2, \\ (4x - y \ge -4), \\ (x + y \ge 3), \\ (2x + y \ge -2), \\ (2x - y \ge -6) \\ (cost < -0.2) \end{cases}$ (cost < -1.0)cost < -2.0 \implies SAT, min = -0.2

[w. pure-literal filt. \implies partial assignments] OMT(LRA) problem: $\varphi \stackrel{\text{def}}{=} (\neg A_1 \lor (2x + y \ge -2))$ $\wedge \quad (A_1 \lor (x+y > 3))$ $\wedge \quad (\neg A_2 \lor (4x - y \ge -4))$ $\land \quad (A_2 \lor (2x - y \ge -6))$ \wedge (cost < -0.2) \wedge (cost < -1.0) \wedge (cost < -2.0) $\textit{cost} \stackrel{\text{def}}{=}$ X • $\mu = \begin{cases} A_1, \neg A_1, A_2, \neg A_2, \\ (4x - y \ge -4), \\ (x + y \ge 3), \\ (2x + y \ge -2), \\ (2x - y \ge -6) \\ (cost < -0.2) \end{cases}$ (cost < -1.0)(cost < -2.0) \implies SAT, min = -1.0

[w. pure-literal filt. \implies partial assignments] OMT(LRA) problem: $\omega \stackrel{\text{def}}{=} (\neg A_1 \lor (2x + y \ge -2))$ $\land \quad (A_1 \lor (x+y \ge 3))$ $\wedge \quad (\neg A_2 \lor (4x - y \ge -4))$ $\land \quad (A_2 \lor (2x - y \ge -6))$ \land (cost < -0.2) \land (cost < -1.0) \wedge (cost < -2.0) $\textit{cost} \stackrel{\text{def}}{=}$ X • $\mu = \begin{cases} A_1, \neg A_1, A_2, \neg A_2, \\ (4x - y \ge -4), \\ (x + y \ge 3), \\ (2x + y \ge -2), \\ (2x - y \ge -6) \\ (cost < -0.2) \end{cases}$ (cost < -1.0)(cost < -2.0) \implies SAT, min = -2.0

Input: $\langle \varphi, cost, lb, ub \rangle // lb can be -\infty$, ub can be $+\infty$ $l \leftarrow lb; u \leftarrow ub; \mathcal{M} \leftarrow \emptyset; \varphi \leftarrow \varphi \cup \{\neg(cost < lb), (cost < ub)\};$ while (l < u) do


```
Input: \langle \varphi, cost, lb, ub \rangle // lb can be <math>-\infty, ub can be +\infty
I \leftarrow Ib; u \leftarrow ub; \mathcal{M} \leftarrow \emptyset; \varphi \leftarrow \varphi \cup \{\neg (cost < Ib), (cost < ub)\};
while (I < u) do
      if (BinSearchMode()) then // Binary-search Mode
      else // Linear-search Mode
```

<ロ><合><注><注U;注・のへの 121/136

```
Input: \langle \varphi, cost, lb, ub \rangle // lb can be <math>-\infty, ub can be +\infty
I \leftarrow Ib; u \leftarrow ub; \mathcal{M} \leftarrow \emptyset; \varphi \leftarrow \varphi \cup \{\neg (cost < Ib), (cost < ub)\};
while (I < u) do
      if (BinSearchMode()) then // Binary-search Mode
      else // Linear-search Mode
            \langle \text{res}, \mu \rangle \leftarrow \text{SMT.IncrementalSolve}(\varphi);
```

U,

121/136

```
Input: \langle \varphi, cost, lb, ub \rangle // lb can be <math>-\infty, ub can be +\infty
I \leftarrow Ib; u \leftarrow ub; \mathcal{M} \leftarrow \emptyset; \varphi \leftarrow \varphi \cup \{\neg (cost < Ib), (cost < ub)\};
while (I < u) do
      if (BinSearchMode()) then // Binary-search Mode
      else // Linear-search Mode
            \langle res, \mu \rangle \leftarrow SMT.IncrementalSolve(\varphi);
      if (res = SAT) then
            \langle \mathcal{M}, \mathbf{u} \rangle \leftarrow \mathcal{LRA}-Solver.Minimize(cost, \mu);
            \varphi \leftarrow \varphi \cup \{(cost < u)\};
      else {res = UNSAT}
                                                                                     山注小 ∢ ⊒
```

```
Input: \langle \varphi, cost, lb, ub \rangle // lb can be <math>-\infty, ub can be +\infty
I \leftarrow Ib; u \leftarrow ub; \mathcal{M} \leftarrow \emptyset; \varphi \leftarrow \varphi \cup \{\neg (cost < Ib), (cost < ub)\};
while (I < u) do
       if (BinSearchMode()) then // Binary-search Mode
       else // Linear-search Mode
              \langle \text{res}, \mu \rangle \leftarrow \text{SMT.IncrementalSolve}(\varphi);
       if (res = SAT) then
       else {res = UNSAT}
                    I \leftarrow u;
return\langle \mathcal{M}, u \rangle
                                                         li
                                                                                           < □ > < @ > < ∄<sub>i ≥1</sub> ←≡ U<sub>i</sub>
```

121/136


```
Input: \langle \varphi, cost, lb, ub \rangle // lb can be <math>-\infty, ub can be +\infty
I \leftarrow Ib; u \leftarrow ub; \mathcal{M} \leftarrow \emptyset; \varphi \leftarrow \varphi \cup \{\neg (cost < Ib), (cost < ub)\};
while (l < u) do
       if (BinSearchMode()) then // Binary-search Mode
              pivot \leftarrow ComputePivot(I, u);
              \varphi \leftarrow \varphi \cup \{(cost < pivot)\};
              \langle res, \mu \rangle \leftarrow SMT.IncrementalSolve(\varphi);
       else // Linear-search Mode
       if (res = SAT) then
              \langle \mathcal{M}, \mathbf{u} \rangle \leftarrow \mathcal{LRA}-Solver.Minimize(cost, \mu);
              \varphi \leftarrow \varphi \cup \{(cost < u)\};
       else {res = UNSAT}
                                                                                     U_{i+1} pivot \rightarrow \langle \Box \rangle \rightarrow \langle \Box \rangle \rightarrow \langle \Box U_i
```

```
Input: \langle \varphi, cost, lb, ub \rangle // lb can be <math>-\infty, ub can be +\infty
I \leftarrow Ib; u \leftarrow ub; \mathcal{M} \leftarrow \emptyset; \varphi \leftarrow \varphi \cup \{\neg (cost < Ib), (cost < ub)\};
while (l < u) do
      if (BinSearchMode()) then // Binary-search Mode
              pivot \leftarrow ComputePivot(I, u);
              \varphi \leftarrow \varphi \cup \{(cost < pivot)\};
              \langle res, \mu \rangle \leftarrow SMT.IncrementalSolve(\varphi);
      else // Linear-search Mode
      if (res = SAT) then
      else {res = UNSAT}
              if ((cost < pivot) \notin SMT.ExtractUnsatCore(\varphi)) then
                    l \leftarrow u:
             else
return\langle \mathcal{M}, u \rangle
                                                                                        pivot_i \rightarrow \langle a \rangle \rightarrow \langle a_{i+1} \rangle \rightarrow \langle a_{i+1} \rangle
                                                          li
                                                                                                                                     121/136
```

```
Input: \langle \varphi, cost, lb, ub \rangle // lb can be <math>-\infty, ub can be +\infty
I \leftarrow Ib; u \leftarrow ub; \mathcal{M} \leftarrow \emptyset; \varphi \leftarrow \varphi \cup \{\neg (cost < Ib), (cost < ub)\};
while (l < u) do
      if (BinSearchMode()) then // Binary-search Mode
              pivot \leftarrow ComputePivot(I, u);
             \varphi \leftarrow \varphi \cup \{(cost < pivot)\};
              \langle res, \mu \rangle \leftarrow SMT.IncrementalSolve(\varphi);
      else // Linear-search Mode
      if (res = SAT) then
      else {res = UNSAT}
              if ((cost < pivot) \notin SMT.ExtractUnsatCore(\varphi)) then
             else
                  \begin{matrix} \mathsf{I} \leftarrow \mathsf{pivot}; \\ \varphi \leftarrow (\varphi \setminus \{(\mathit{cost} < \mathsf{pivot})) \cup \{\neg(\mathit{cost} < \mathsf{pivot})\}\}; \end{matrix}
                                                                                         Divota > < @ > < = > < = Ui
                                                                                                                                      121/136
```

OMT with Lexicographic Combination of Objectives [12]

The problem

Find one optimal model \mathcal{M} minimizing $\underline{c} \stackrel{\text{def}}{=} cost_1, cost_2, ..., cost_k$ lexicographically.

Solution

Intuition:
 {minimize cost1}
 when UNSAT
 {substitute unit clause (cost1 < min1) with (cost1 = min1)}
 {minimize cost2}</pre>

- improvement:
 - each time UNSAT is found, add $\bigwedge_i (cost_i \leq \mathcal{M}_i(cost_i))$ to φ

Optimization problems encoded into $\mathsf{OMT}(\mathcal{LA}\cup\mathcal{T})$ I

SMT with Pseudo-Boolean Constraints & Weighted MaxSMT
$$OMT + PB :$$
 $\sum_{j} w_j \cdot A_j, w_i > 0 \ //(\sum_{j} ite(A_j, w_j, 0))$ \downarrow $\sum_{j} x_j, x_j$ freshs.t. $\dots \land \bigwedge_{j}(A_j \to (x_j = w_j)) \land (\neg A_j \to (x_j = 0))$ $\land (x_j \ge 0) \land (x_j \le w_j)$ $MaxSMT :$ $\langle \varphi_h, \bigwedge_j \psi_j \rangle$ s.t. ψ_j soft, $w_j = weight(\psi_j), w_i > 0$ \downarrow $\psi_h \land \bigwedge_j (A_j \lor \psi_j) \land \bigwedge_j (\neg A_j \lor (x_j = w_j)) \land (A_j \lor (x_j = 0))$ $\land (x_j \ge 0) \land (x_j \le w_j)$

Range constraints " $(x_j \ge 0) \land (x_j \le w_j)$ " logically redundant, but essential for efficiency:

- Without range constraints, the SMT solver can detect the violation of a bound only after all A_i's are assigned :
 Ex: w₁ = 4, w₂ = 7, ∑_{i=1} x_i < 10, A₁ = A₂ = ⊤, A_i = * ∀i >
- With range constraints, the SMT solver detects the violation as soon as the assigned A_i's violate a bound
 ⇒ drastic pruning of the search
- same for weighted MaxSMT

Range constraints " $(x_j \ge 0) \land (x_j \le w_j)$ " logically redundant, but essential for efficiency:

- Without range constraints, the SMT solver can detect the violation of a bound only after all A_i's are assigned :
 Ex: w₁ = 4, w₂ = 7, ∑_{i=1} x_i < 10, A₁ = A₂ = ⊤, A_i = * ∀i > 2.
- With range constraints, the SMT solver detects the violation as soon as the assigned A_i's violate a bound ⇒ drastic pruning of the search
- same for weighted MaxSMT

Range constraints " $(x_j \ge 0) \land (x_j \le w_j)$ " logically redundant, but essential for efficiency:

- Without range constraints, the SMT solver can detect the violation of a bound only after all A_i's are assigned :
 Ex: w₁ = 4, w₂ = 7, ∑_{i=1} x_i < 10, A₁ = A₂ = ⊤, A_i = * ∀i > 2.
- With range constraints, the SMT solver detects the violation as soon as the assigned A_i's violate a bound
 ⇒ drastic pruning of the search
- same for weighted MaxSMT

Range constraints " $(x_j \ge 0) \land (x_j \le w_j)$ " logically redundant, but essential for efficiency:

- Without range constraints, the SMT solver can detect the violation of a bound only after all A_i's are assigned :
 Ex: w₁ = 4, w₂ = 7, ∑_{i=1} x_i < 10, A₁ = A₂ = ⊤, A_i = * ∀i > 2.
- With range constraints, the SMT solver detects the violation as soon as the assigned A_i's violate a bound
 ⇒ drastic pruning of the search
- same for weighted MaxSMT

Optimization problems encoded into $\mathsf{OMT}(\mathcal{LA}\cup\mathcal{T})$ II

OMT with Min-Max [Max-Min] optimization

Given $\langle \varphi, \{cost_1, ..., cost_k\} \rangle$, find a solution which minimizes the maximum value among $\{cost_1, ..., cost_k\}$. (Max-Min dual.)

- Frequent in some applications (e.g. [66, 71])
- ⇒ encode into OMT($\mathcal{LA} \cup \mathcal{T}$) problem { $\varphi \land \bigwedge_i (cost_i \le cost), cost$ } s.t. *cost* fresh.

OMT with linear combinations of costs

Given $\langle \varphi, \{cost_1, ..., cost_k\} \rangle$ and a set of weights $\{w_1, ..., w_k\}$, find a solution which minimizes $\sum_i w_i \cdot cost_i$.

 \implies encode into $\mathsf{OMT}(\mathcal{LA} \cup \mathcal{T})$ problem

 $\{\varphi \land (cost = \sum_{i} w_i \cdot cost_i), cost\}$ s.t. *cost* fresh.

These objectives can be composed with other $OMT(\mathcal{LA})$ objectives.

Links I

- survey papers:
 - Roberto Sebastiani: "Lazy Satisfiability Modulo Theories". Journal on Satisfiability, Boolean Modeling and Computation, JSAT. Vol. 3, 2007. Pag 141–224, ©IOS Press.
 - Clark Barrett, Roberto Sebastiani, Sanjit Seshia, Cesare Tinelli "Satisfiability Modulo Theories". Part II, Chapter 26, The Handbook of Satisfiability. 2009. ©IOS press.
 - Leonardo de Moura and Nikolaj Bjørner. "Satisfiability modulo theories: introduction and applications". Communications of the ACM, 54 (9), 2011. ©ACM press.

web links:

• The SMT library SMT-LIB:

http://goedel.cs.uiowa.edu/smtlib/

• The SMT Competition SMT-COMP:

http://www.smtcomp.org/

• The SAT/SMT Schools

http://satassociation.org/sat-smt-school.html

References I

- A. Armando. Simplifying OBDDs in Decidable Theories. In Proc. PDPAR'03., 2003.
- [2] A. Armando, C. Castellini, and E. Giunchiglia. SAT-based procedures for temporal reasoning. In Proc. European Conference on Planning, CP-99, 1999.
- [3] G. Audemard, P. Bertoli, A. Cimatti, A. Korniłowicz, and R. Sebastiani. A SAT Based Approach for Solving Formulas over Boolean and Linear Mathematical Propositions. In Proc. CADE'2002., volume 2392 of LNAI. Springer, July 2002.
- [4] G. Audemard, P. Bertoli, A. Cimatti, A. Korniłowicz, and R. Sebastiani. Integrating Boolean and Mathematical Solving: Foundations, Basic Algorithms and Requirements. In Proc. AIARSC '2002, volume 2385 of LNAI. Springer, 2002.
- [5] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying Industrial Hybrid Systems with MathSAT. In *Proc. PDPAR'03*, 2003.
- [6] G. Audemard, A. Cimatti, A. Korniłowicz, and R. Sebastiani. SAT-Based Bounded Model Checking for Timed Systems. In Proc. FORTEV2., volume 2529 of LNCS. Springer, November 2002.
- [7] C. Barret, D. Dill, and A. Stump. A Generalization of Shostak's Method for Combining Decision Procedures. In Proc. FROCOS'02, 2002.
- [8] C. Barrett, D. Dill, and A. Stump. Checking Satisfiability of First-Order Formulas by Incremental Translation to SAT. In 14th International Conference on Computer-Aided Verification, 2002.

References II

- [9] C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Splitting on Demand in SAT Modulo Theories. In Proc. LPAR'06, volume 4246 of LNAI. Springer, 2006.
- [10] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability Modulo Theories. In *Handbook of Satisfiability*, chapter 26, pages 825–885. IOS Press, 2009.
- [11] P. Baumgartner. FDPLL - A First Order Davis-Putnam-Longeman-Loveland Procedure. In Proceedings of CADE-17, pages 200–219. Springer-Verlag, 2000.
- [12] N. Bjorner and A.-D. Phan.
 - νZ Maximal Satisfaction with Z3.

In Proc International Symposium on Symbolic Computation in Software Science, Gammart, Tunisia, December 2014. EasyChair Proceedings in Computing (EPiC). http://www.easychair.org/publications/?page=862275542.

- [13] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Ranise, and R. Sebastiani. Efficient Satisfiability Modulo Theories via Boolean Search. *Information and Computation*, 2005.
- [14] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Ranise, and R. Sebastiani. Efficient Satisfiability Modulo Theories via Delayed Theory Combination. In Proc. CAV 2005, volume 3576 of LNCS. Springer, 2005.
- [15] M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, S. Ranise, P. van Rossum, and R. Sebastiani. Efficient Theory Combination via Boolean Search. *Information and Computation*, 204(10):1493–1525, 2006.
- [16] M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, P. van Rossum, S. Schulz, and R. Sebastiani. Mathsat: Tight integration of sat and mathematical decision procedures. *Journal of Automated Reasoning*, 35(1-3):265–293, 2005.

(日)

References III

- [17] A. Brillout, D. Kroening, P. Rümmer, and T. Wahl. An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic. In *Proc. JICAR*, volume 6173 of *LNCS*. Springer, 2010.
- [18] R. Brinkmann and R. Drechsler. RTL-datapath verification using integer linear programming. In Proc. ASP-DAC 2002, pages 741–746. IEEE, 2002.
- [19] R. Brummaryer and A. Biere. Lemmas on Demand for the Extensional Theory of Arrays. Journal on Satisfiability, Boolean Modeling and Computation (JSAT), 6, 2009.
- [20] R. Brummayer and A. Biere. Boolector: An efficient smt solver for bit-vectors and arrays. In *TACAS*, volume 5505 of *LNCS*, pages 174–177. Springer, 2009.
- [21] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, Z. Hanna, A. Nadel, A. Patti, and R. Sebastiani. A Lazy and Layered SMT(BV) Solver for Hard Industrial Verification Problems. In CAV, volume 4590 of LNCS, pages 547–560. Springer, 2007.
- [22] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. Delayed Theory Combination vs. Nelson-Oppen for Satisfiability Modulo Theories: A Comparative Analysis. In Proc. LPAR, volume 4246 of LNCS. Springer, 2006.
- [23] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. Delayed Theory Combination vs. Nelson-Oppen for Satisfiability Modulo Theories: A Comparative Analysis. . Annals of Mathematics and Artificial Intelligence., 55(1-2), 2009.
- [24] J. R. Burch and D. L. Dill. Automatic Verification of Pipelined Microprocessor Control. In Proc. CAV '94, volume 818 of LNCS. Springer, 1994.

References IV

- [25] R. Cavada, A. Cimatti, A. Franzén, K. Kalyanasundaram, M. Roveri, and R. K. Shyamasundar. Computing Predicate Abstractions by Integrating BDDs and SMT Solvers. In *FMCAD*, pages 69–76. IEEE Computer Society, 2007.
- [26] A. Cimatti, A. Griggio, and R. Sebastiani. A Simple and Flexible Way of Computing Small Unsatisfiable Cores in SAT Modulo Theories. In SAT, volume 4501 of LNCS, pages 334–339. Springer, 2007.
- [27] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient Interpolant Generation in Satisfiability Modulo Theories. In Tools and Algorithms for the Construction and Analysis of Systems, TACAS'08., volume 4963 of LNCS. Springer, 2008.
- [28] A. Cimatti, A. Griggio, and R. Sebastiani. Interpolant Generation for UTVPI. In CADE, volume 5663 of LNCS, pages 167–182, 2009.
- [29] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories. ACM Transaction on Computational Logics – TOCL, 12(1), October 2010.
- [30] A. Cimatti, A. Griggio, and R. Sebastiani. Computing Small Unsatisfiable Cores in SAT Modulo Theories. Journal of Artificial Intelligence Research, JAIR, 40:701–728, April 2011.
- [31] S. Cotton and O. Maler. Fast and Flexible Difference Logic Propagation for DPLL(T). In Proc. SAT'06, volume 4121 of LNCS. Springer, 2006.
- [32] L. de Moura and N. Bjørner. Efficient E-matching for SMT solvers. In Proc. CADE-21, 21st International Conference on Automated Deduction, volume 4603 of LNCS, Springer, 2007.

References V

- [33] L. de Moura, H. Ruess, and M. Sorea. Lazy Theorem Proving for Bounded Model Checking over Infinite Domains. In Proc. CADE 2002., volume 2392 of LNAI. Springer, July 2002.
- [34] L. M. de Moura and N. Bjørner. Model-based theory combination. Electr. Notes Theor. Comput. Sci., 198(2):37–49, 2008.
- [35] L. M. de Moura and N. Bjørner. Generalized, efficient array decision procedures. In *FMCAD*, pages 45–52. IEEE, 2009.
- [36] D. Detlefs, G. Nelson, and J. Saxe. Simplify: a theorem prover for program checking. *Journal of the ACM*, 52(3):365–473, 2005.
- [37] B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In CAV, volume 4144 of LNCS, 2006.
- [38] B. Dutertre and L. de Moura. System Description: Yices 1.0. In Proc. on 2nd SMT competition, SMT-COMP'06, 2006. Available at yices.csl.sri.com/yices-smtcomp06.pdf.
- [39] A. Franzen, A. Cimatti, A. Nadel, R. Sebastiani, and J. Shalev. Applying SMT in Symbolic Execution of Microcode. In Proc. Int. Conference on Formal Methods in Computer Aided Design (FMCAD'10). IEEE, 2010.
- [40] V. Ganesh and D. L. Dill. A Decision Procedure for Bit-Vectors and Arrays. In CAV, 2007.

References VI

- [41] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T): Fast decision procedures. In R. Alur and D. Peled, editors, *Proceedings of the 16th International Conference on Computer Aided Verification*, *CAV'04 (Boston, Massachusetts)*, LNCS. Springer, 2004.
 [42] F. Giunchiglia and R. Sebastiani.
 - Building decision procedures for modal logics from propositional decision procedures the case study of modal K. In *Proc. CADE'13*, LNAI, New Brunswick, NJ, USA, August 1996. Springer.
- [43] A. Goel, S. Krstić, and A. Fuchs.

Deciding array formulas with frugal axiom instantiation. In *Proceedings of SMT'08/BPR'08*, pages 12–17, New York, NY, USA, 2008. ACM.

- [44] A. Griggio. A Practical Approach to SMT(LA(Z)). In Proc. SMT 2010, 2010.
- [45] A. Griggio, T. T. H. Le, and R. Sebastiani. Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic. In Proc. Tools and Algorithms for the Construction and Analysis of Systems, TACAS'11, LNCS. Springer, 2011.
- [46] A. Griggio, Q. S. Phan, R. Sebastiani, and S. Tomasi. Stochastic Local Search for SMT: Combining Theory Solvers with WalkSAT. In Frontiers of Combining Systems, FroCoS'11, volume 6989 of LNAI. Springer, 2011.
- [47] I. Horrocks and P. F. Patel-Schneider. FaCT and DLP. In Proc. Tableaux'98, pages 27–30, 1998.
- [48] H. Jain, E. M. Clarke, and O. Grumberg. Efficient Craig Interpolation for Linear Diophantine (Dis)Equations and Linear Modular Equations. In A. Gupta and S. Malik, editors, CAV, volume 5123 of Lecture Notes in Computer Science, pages 254–267. Springer, 2008.

References VII

- [49] D. Kroening and G. Weissenbacher. Lifting Propositional Interpolants to the Word-Level. In FMCAD, pages 85–89, Los Alamitos, CA, USA, 2007. IEEE Computer Society.
- [50] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT techniques for fast predicate abstraction. In *Proc. CAV*, LNCS 4144. Springer, 2006.
- [51] M. Lifftion and K. Sakallah. Algorithms for Computing Minimal Unsatisfiable Subsets of Constraints. *Journal of Automated Fleasoning*, 40(1), 2008.
- [52] I. Lynce and J. P. Marques-Silva. On computing minimum unsatisfiable cores. In SAT, 2004.
- [53] M. Mahfoudh, P. Niebert, E. Asarin, and O. Maler. A Satisfibaility Checker for Difference Logic. In *Proceedings of SAT-02*, pages 222–230, 2002.
- [54] K. L. McMillan. An interpolating theorem prover. *Theor. Comput. Sci.*, 345(1):101–121, 2005.
- [55] J. Moeller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Fully symbolic model checking of timed systems using difference decision diagrams. In Proc. Workshop on Symbolic Model Checking (SMC), FLoC'99, Trento, Italy, July 1999.
- [56] C. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. *TOPLAS*, 1(2):245–257, 1979.

References VIII

[57] G. Nelson and D. Oppen. Simplification by Cooperating Decision Procedures. ACM Trans. on Programming Languages and Systems, 1(2):245–257, 1979.

[58] G. Nelson and D. Oppen. Fast Decision Procedures Based on Congruence Closure. *Journal of the ACM*, 27(2):356–364, 1980.

- [59] R. Nieuwenhuis and A. Oliveras. Congruence closure with integer offsets. In *In 10th Int. Conf. Logic for Programming, Artif. Intell. and Reasoning (LPAR)*, volume 2850 of *LNAI*, pages 78–90. Springer, 2003.
- [60] R. Nieuwenhuis and A. Oliveras. DPLL(1) with Exhaustive Theory Propagation and its Application to Difference Logic. In Proc. CAV'05, volume 3576 of LNCS. Springer, 2005.
- [61] P. Pudlák. Lower bounds for resolution and cutting planes proofs and monotone computations. *J. of Symb. Logic*, 62(3), 1997.
- [62] H. Rueßand N. Shankar. Deconstructing Shostak. In Proc. LICS '01. IEEE Computer Society, 2001.
- [63] A. Rybalchenko and V. Sofronie-Stokkermans. Constraint Solving for Interpolation. In Proc. VMCAI, volume 4349 of LNCS. Springer, 2007.
- [64] R. Sebastiani.

Lazy Satisfiability Modulo Theories.

Journal on Satisfiability, Boolean Modeling and Computation, JSAT, 3(3-4):141-224, 2007.

References IX

- [65] R. Sebastiani and S. Tomasi. Optimization in SMT with LA(Q) Cost Functions. In *IJCAR*, volume 7364 of *LINAI*, pages 484–498. Springer, July 2012.
- [66] R. Sebastiani and S. Tomasi. Optimization Modulo Theories with Linear Rational Costs. ACM Transactions on Computational Logics, 16(2), March 2015.
- [67] R. Shostak. A Pratical Decision Procedure for Arithmetic with Function Symbols. *Journal of the ACM*, 26(2):351–360, 1979.
- [68] R. Shostak. Deciding Combinations of Theories. Journal of the ACM, 31:1–12, 1984.
- [69] K. Stergiou and M. Koubarakis. Backtracking algorithms for disjunctions of temporal constraints. In *Proc. AAAI*, pages 248–253, 1998.
- [70] A. Stump, C. W. Barrett, and D. L. Dill. CVC: A Cooperating Validity Checker. In *Proc. CAV'02*, number 2404 in LNCS. Springer Verlag, 2002.
- [71] S. Teso, R. Sebastiani, and A. Passerini. Structured learning modulo theories. *Artificial Intelligence*, 244:166–187, 2017.
- [72] S. Wolfman and D. Weld. The LPSAT Engine & its Application to Resource Planning. In Proc. IJCAI, 1999.

References X

- [73] T. Yavuz-Kahveci, M. Tuncer, and T. Bultan. A Library for Composite Symbolic Representation. In Proc. TACA52001, volume 2031 of LNCS. Springer Verlag, 2000.
- [74] L. Zhang and S. Malik. Extracting small unsatisfiable cores from unsatisfiable boolean formula. In *Proc. of SAT*, 2003.

Disclaimer

The list of references above is by no means intended to be all-inclusive. I apologize both with the authors and with the readers for all the relevant works which are not cited here.