Formal Methods: Module I: Automated Reasoning Ch. 02: Reasoning in First-Order Logic

Roberto Sebastiani

DISI, Università di Trento, Italy - roberto.sebastiani@unitn.it URL: http://disi.unitn.it/rseba/DIDATTICA/fm2021/ Teaching assistant: Giuseppe Spallitta - giuseppe.spallitta@unitn.it
M.S. in Computer Science, Mathematics, \& Artificial Intelligence Systems Academic year 2020-2021
last update: Tuesday $13^{\text {th }}$ April, 2021, 13:55
Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti,
M. Di Natale, P. Pandya, M. Pistore, M. Roveri, C. Tinelli, and S. Tonetta, who detain its copyright. Some exampes displayed in these slides are taken from [Clarke, Grunberg \& Peled, "Model Checking", MIT Press], and their copyright is detained by the authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this material is strictly forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be displayed in public without containing this copyright notice.

Outline

(1) First-Order Logic

- Generalities
- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(2) Basic First-Order Reasoning
- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(3) Resolution-based First-Order Reasoning
- CNF-Ization
- Resolution
- Dealing with Equalities
- A Complete Example

Outline

(1) First-Order Logic

- Generalities
- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(2) Basic First-Order Reasoning
- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting

3. Resolution-based First-Order Reasoning

- CNF-Ization
- Resolution
- Dealing with Equalities
- A Complete Example

Outline

(1) First-Order Logic

- Generalities
- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(2) Basic First-Order Reasoning
- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting

3 Resolution-based First-Order Reasoning

- CNF-Ization
- Resolution
- Dealing with Equalities
- A Complete Example

A Brief History of Logical Reasoning

When	Who	What
322 B.C.	Aristotle	"Syllogisms" (inference rules), quantifiers
1867	Boole	Propositional Logic
1879	Frege	First-Order Logic
1922	Wittgenstein	proof by truth tables
1930	Gödel	\exists complete algorithm for FOL
1930	Herbrand	complete algorithm for FOL
1931	Gödel	Э complete algorithm for arithmetic
1960	Davis/Putnam	"practical" algorithm for PL (DP/DPLL)
1965	Robinson	"practical" algorithm for FOL (resolution)

Logics

- A logic is a triple $\langle\mathcal{L}, \mathcal{S}, \mathcal{R}\rangle$ where
- \mathcal{L}, the logic's language: a class of sentences described by a formal grammar
- \mathcal{S}, the logic's semantics: a formal specification of how to assign meaning in the "real world" to the elements of \mathcal{L}
- \mathcal{R}, the logic's inference system: is a set of formal derivation rules over \mathcal{L}
- There are several logics:
- propositional logic (PL)
o first-order logic (FOL)
- modal logics (MLs)
- temporal logics (TLs)

Logics

- A logic is a triple $\langle\mathcal{L}, \mathcal{S}, \mathcal{R}\rangle$ where
- \mathcal{L}, the logic's language: a class of sentences described by a formal grammar
- \mathcal{S}, the logic's semantics: a formal specification of how to assign meaning in the "real world" to the elements of \mathcal{L}
- \mathcal{R}, the logic's inference system: is a set of formal derivation rules over \mathcal{L}
- There are several logics:
- propositional logic (PL)
- first-order logic (FOL)
- modal logics (MLs)
- temporal logics (TLs)
- ...

Limits of Propositional Logic

Limits of Propositional Logic

- Is "Atomic": based on atomic events which cannot be decomposed

Limits of Propositional Logic

Limits of Propositional Logic

- Is "Atomic": based on atomic events which cannot be decomposed
- Has very limited expressive power
- assumes the world contains facts in the world that are either true or false, nothing else
- ex: Man_Socrates, Man_Plato, Man_Aristotle, ... distinct atoms
\Longrightarrow cannot concisely describe an environment with many objects

First-Order Logic (FOL)

- Is structured: a world/state includes objects, each of which may have attributes of its own as well as relationships to other objects
- Allows to quantify on objects

First-Order Logic (FOL)

- Is structured: a world/state includes objects, each of which may have attributes of its own as well as relationships to other objects
- Assumes the world contains:
- Objects: e.g., people, houses, numbers, theories, Jim Morrison, colors, basketball games, wars, centuries, ...
- Relations: e.g., red, round, bogus, prime, tall
brother of, bigger than, inside, part of, has color, occurred after,
owns, comes between,
- Functions: e.g., father of, best friend, one more than, end of,
- Allows to quantify on objects
- ex: "All man are equal", "some persons are left-handed",

First-Order Logic (FOL)

- Is structured: a world/state includes objects, each of which may have attributes of its own as well as relationships to other objects
- Assumes the world contains:
- Objects: e.g., people, houses, numbers, theories, Jim Morrison, colors, basketball games, wars, centuries, ...
- Relations: e.g., red, round, bogus, prime, tall ..., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
- Allows to quantify on objects
- ex: "All man are equal", "some persons are left-handed",

First-Order Logic (FOL)

- Is structured: a world/state includes objects, each of which may have attributes of its own as well as relationships to other objects
- Assumes the world contains:
- Objects: e.g., people, houses, numbers, theories, Jim Morrison, colors, basketball games, wars, centuries, ...
- Relations: e.g., red, round, bogus, prime, tall ..., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
- Functions: e.g., father of, best friend, one more than, end of, ...
- Allows to quantify on objects
- ex: "All man are equal", "some persons are left-handed",

First-Order Logic (FOL)

- Is structured: a world/state includes objects, each of which may have attributes of its own as well as relationships to other objects
- Assumes the world contains:
- Objects: e.g., people, houses, numbers, theories, Jim Morrison, colors, basketball games, wars, centuries, ...
- Relations: e.g., red, round, bogus, prime, tall ..., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
- Functions: e.g., father of, best friend, one more than, end of, ...
- Allows to quantify on objects
- ex: "All man are equal", "some persons are left-handed", ...

Outline

(1) First-Order Logic

- Generalities
- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(2) Basic First-Order Reasoning
- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(3) Resolution-based First-Order Reasoning
- CNF-Ization
- Resolution
- Dealing with Equalities
- A Complete Example

Syntax of FOL: Basic Elements

- Constant symbols: KingJohn, 2, UniversityofTrento,...
- Predicate symbols: Man(.), Brother(...), (.> .), AllDifferent(...), ...
- may have different arities $(1,2,3, \ldots)$
- may be prefix (e.g. Brother(...)) or infix (e.g. (. > .))
- Function symbols: Sqrt, LeftLeg, MotherOf
- may have different arities (1,2,3,...)
- may be prefix (e.g. Sqrt(.)) or infix (e.g. (. + .))
- Variable symbols: x, y, a, b, ...
- Propositional Connectives:
- Equality: "=" (also " $=$ " s.t. " $a=b$ " shortcut for " $\neg(a=b)$ ")
- Quantifiers: " \forall " ("forall"), " \exists " ("exists", aka "for some")
- Punctuation Symbols

Syntax of FOL: Basic Elements

- Constant symbols: KingJohn, 2, UniversityofTrento,...
- Predicate symbols: Man(.), Brother(...), (. > .), AllDifferent(...),...
- may have different arities ($1,2,3, \ldots$)
- may be prefix (e.g. Brother(...)) or infix (e.g. (. > .))
- may have different arities ($1,2,3, \ldots$)
- may be prefix (e.g. Sqrt(.)) or infix (e.g. (.t.))
- Variable symbols: x, y, a, b,
- Propositional Connectives:
- Equality: "=" (also " $=$ " s.t. " $a=b$ " shortcut for " $\neg(a=b)$ ")
- Quantifiers: " \forall " ("forall"), " \exists " ("exists", aka "for some")
- Punctuation Symbols:

Syntax of FOL: Basic Elements

- Constant symbols: KingJohn, 2, UniversityofTrento,...
- Predicate symbols: Man(.), Brother(...), (. > .), AllDifferent(...),...
- may have different arities ($1,2,3, \ldots$)
- may be prefix (e.g. Brother(...)) or infix (e.g. (. > .))
- Function symbols: Sqrt, LeftLeg, MotherOf
- may have different arities (1,2,3,...)
- may be prefix (e.g. Sqrt(.)) or infix (e.g. (.+.))
- Propositional Connectives:
- Equality: "=" (also " $=$ " s.t. " $a=b$ " shortcut for " $\neg(a=b)$ ")
- Quantifiers: "V" ("forall"), "ヨ" ("exists", aka "for some")

Syntax of FOL: Basic Elements

- Constant symbols: KingJohn, 2, UniversityofTrento,...
- Predicate symbols: Man(.), Brother(...), (. > .), AllDifferent(...),...
- may have different arities ($1,2,3, \ldots$)
- may be prefix (e.g. Brother(...)) or infix (e.g. (. > .))
- Function symbols: Sqrt, LeftLeg, MotherOf
- may have different arities (1,2,3,...)
- may be prefix (e.g. Sqrt(.)) or infix (e.g. (. +.))
- Variable symbols: x, y, a, b, \ldots
\square

Syntax of FOL: Basic Elements

- Constant symbols: KingJohn, 2, UniversityofTrento,...
- Predicate symbols: Man(.), Brother(...), (. > .), AllDifferent(...),...
- may have different arities ($1,2,3, \ldots$)
- may be prefix (e.g. Brother(...)) or infix (e.g. (. > .))
- Function symbols: Sqrt, LeftLeg, MotherOf
- may have different arities (1,2,3,...)
- may be prefix (e.g. Sqrt(.)) or infix (e.g. (. + .))
- Variable symbols: x, y, a, b, \ldots
- Propositional Connectives: $\neg, \wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus$

- Quantifiers: " "" ("forall"), " \exists " ("exists", aka "for some") $^{\text {- }}$

Syntax of FOL: Basic Elements

- Constant symbols: KingJohn, 2, UniversityofTrento,...
- Predicate symbols: Man(.), Brother(...), (. > .), AllDifferent(...),...
- may have different arities ($1,2,3, \ldots$)
- may be prefix (e.g. Brother(...)) or infix (e.g. (. > .))
- Function symbols: Sqrt, LeftLeg, MotherOf
- may have different arities ($1,2,3, \ldots$)
- may be prefix (e.g. Sqrt(.)) or infix (e.g. (.+.))
- Variable symbols: x, y, a, b, \ldots
- Propositional Connectives: $\neg, \wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus$
- Equality: "=" (also " \neq " s.t. " $a \neq b$ " shortcut for " $\neg(a=b)$ ")
- Quantifiers:
"exists", aka "for some")

Syntax of FOL: Basic Elements

- Constant symbols: KingJohn, 2, UniversityofTrento,...
- Predicate symbols: Man(.), Brother(...), (. > .), AllDifferent(...),...
- may have different arities ($1,2,3, \ldots$)
- may be prefix (e.g. Brother(...)) or infix (e.g. (. > .))
- Function symbols: Sqrt, LeftLeg, MotherOf
- may have different arities ($1,2,3, \ldots$)
- may be prefix (e.g. Sqrt(.)) or infix (e.g. (.+.))
- Variable symbols: x, y, a, b, \ldots
- Propositional Connectives: $\neg, \wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus$
- Equality: "=" (also " \neq " s.t. " $a \neq b$ " shortcut for " $\neg(a=b)$ ")
- Quantifiers: " \forall " ("forall"), " \exists " ("exists", aka "for some")

Syntax of FOL: Basic Elements

- Constant symbols: KingJohn, 2, UniversityofTrento,...
- Predicate symbols: Man(.), Brother(...), (. > .), AllDifferent(...),...
- may have different arities ($1,2,3, \ldots$)
- may be prefix (e.g. Brother(...)) or infix (e.g. (. > .))
- Function symbols: Sqrt, LeftLeg, MotherOf
- may have different arities ($1,2,3, \ldots$)
- may be prefix (e.g. Sqrt(.)) or infix (e.g. (.+.))
- Variable symbols: x, y, a, b, \ldots
- Propositional Connectives: $\neg, \wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus$
- Equality: "=" (also " \neq " s.t. " $a \neq b$ " shortcut for " $\neg(a=b)$ ")
- Quantifiers: " \forall " ("forall"), " \exists " ("exists", aka "for some")
- Punctuation Symbols: ",", "(", ")"

Syntax of FOL: Basic Elements

- Constant symbols: KingJohn, 2, UniversityofTrento,...
- Predicate symbols: Man(.), Brother(...), (. > .), AllDifferent(...),...
- may have different arities ($1,2,3, \ldots$)
- may be prefix (e.g. Brother(...)) or infix (e.g. (. > .))
- Function symbols: Sqrt, LeftLeg, MotherOf
- may have different arities ($1,2,3, \ldots$)
- may be prefix (e.g. Sqrt(.)) or infix (e.g. (.+.))
- Variable symbols: x, y, a, b, \ldots
- Propositional Connectives: $\neg, \wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus$
- Equality: "=" (also " \neq " s.t. " $a \neq b$ " shortcut for " $\neg(a=b)$ ")
- Quantifiers: " \forall " ("forall"), " \exists " ("exists", aka "for some")
- Punctuation Symbols: ",", "(", ")"
- Constants symbols are 0-ary function symbols

Syntax of FOL: Basic Elements

- Constant symbols: KingJohn, 2, UniversityofTrento,...
- Predicate symbols: Man(.), Brother(...), (. > .), AllDifferent(...),...
- may have different arities ($1,2,3, \ldots$)
- may be prefix (e.g. Brother(...)) or infix (e.g. (. > .))
- Function symbols: Sqrt, LeftLeg, MotherOf
- may have different arities ($1,2,3, \ldots$)
- may be prefix (e.g. Sqrt(.)) or infix (e.g. (.+.))
- Variable symbols: x, y, a, b, \ldots
- Propositional Connectives: $\neg, \wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus$
- Equality: "=" (also " \neq " s.t. " $a \neq b$ " shortcut for " $\neg(a=b)$ ")
- Quantifiers: " \forall " ("forall"), " \exists " ("exists", aka "for some")
- Punctuation Symbols: ",", "(", ")"
- Constants symbols are 0-ary function symbols
- Propositions are 0-ary predicates \Longrightarrow PL subcase of FOL

Syntax of FOL: Basic Elements

- Constant symbols: KingJohn, 2, UniversityofTrento,...
- Predicate symbols: Man(.), Brother(...), (. > .), AllDifferent(...),...
- may have different arities ($1,2,3, \ldots$)
- may be prefix (e.g. Brother(...)) or infix (e.g. (. > .))
- Function symbols: Sqrt, LeftLeg, MotherOf
- may have different arities ($1,2,3, \ldots$)
- may be prefix (e.g. Sqrt(.)) or infix (e.g. (.+.))
- Variable symbols: x, y, a, b, \ldots
- Propositional Connectives: $\neg, \wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus$
- Equality: "=" (also " \neq " s.t. " $a \neq b$ " shortcut for " $\neg(a=b)$ ")
- Quantifiers: " \forall " ("forall"), " \exists " ("exists", aka "for some")
- Punctuation Symbols: ",", "(", ")"
- Constants symbols are 0-ary function symbols
- Propositions are 0-ary predicates \Longrightarrow PL subcase of FOL
- Signature: the set of predicate, function \& constant symbols

FOL: Syntax

- Terms:
- constánt or variable or function(termi termn)
- ex: KingJohn, x, LeftLeg(Richard), (z*log(2))
- denote objects in the real world (aka domain)
- Atomic sentences (aka atomic formulas):
- \top, \perp
- proposition or predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ or term $=$ term $_{2}$
- (Length $($ LeftLeg $($ Richard $))>$ Length(LeftLeg(KingJohn) $))$
- denote facts
- Non-atomic sentences/formulas:
$\forall x . \alpha, \exists x . \alpha$ s.t. x (typically) occurs in α
- Ex: $\forall y$. (Italian $(y) \rightarrow$ President(Mattarella, y)) $\exists x \forall y$. President $(x, y) \rightarrow \forall y \exists x$. President (x, y) $\forall x .(P(x) \wedge Q(x)) \leftrightarrow((\forall x \cdot P(x)) \wedge(\forall x \cdot Q(x)))$ $\forall x .(((x \geq 0) \wedge(x \leq \pi)) \rightarrow(\sin (x) \geq 0))$
- denote (complex) facts

FOL: Syntax

- Terms:
- constant or variable or function(term,\ldots, term $\left._{n}\right)$
- ex: KingJohn, x, LeftLeg(Richard), (z*log(2))
- denote objects in the real world (aka domain)
- Atomic sentences (aka atomic formulas):
- proposition or predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ or term $=$ term $_{2}$
- (Length(LeftLeg(Richard) $)>$ Length(LeftLeg(KingJohn)))
- denote facis
- Non-atomic sentences/formulas:

- denote (complex) facts

FOL: Syntax

- Terms:
- constant or variable or function(term,\ldots, term $\left._{n}\right)$
- ex: KingJohn, x, LeftLeg(Richard), (z*log(2))
- denote objects in the real world (aka domain)
- Atomic sentences (aka atomic formulas):
- T, \perp
- proposition or predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ or term $_{1}=$ term $_{2}$
- (Length(LeftLeg(Richard)) > Length(LeftLeg(KingJohn)))
- denote facts
- Non-atomic sentences/formulas:

- denote (complex) facts

FOL: Syntax

- Terms:
- constant or variable or function(term ${ }_{1}, \ldots$, term $\left._{n}\right)$
- ex: KingJohn, x, LeftLeg(Richard), (z*log(2))
- denote objects in the real world (aka domain)
- Atomic sentences (aka atomic formulas):
- \top, \perp
- proposition or predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ or term $=$ term $_{2}$
- (Length(LeftLeg(Richard)) > Length(LeftLeg(KingJohn)))
- denote facts
- Non-atomic sentences/formulas:
- $\neg \alpha, \alpha \wedge \beta, \alpha \vee \beta, \alpha \rightarrow \beta, \alpha \leftrightarrow \beta, \alpha \oplus \beta$, $\forall x . \alpha, \exists x . \alpha$ s.t. x (typically) occurs in α
- Ex: $\forall y$. (Italian $(y) \rightarrow$ President(Mattarella, y)) $\exists x \forall y$.President $(x, y) \rightarrow \forall y \exists x$.President (x, y) $\forall x .(P(x) \wedge Q(x)) \leftrightarrow((\forall x . P(x)) \wedge(\forall x . Q(x)))$ $\forall x .(((x \geq 0) \wedge(x \leq \pi)) \rightarrow(\sin (x) \geq 0))$
- denote (complex) facts

FOL: Ground and Closed Formulas

- A term/formula is ground iff no variable occurs in it (ex: $2 \geq 1$)
- A formula is closed iff all variables occurring in it are quantified

FOL: Ground and Closed Formulas

- A term/formula is ground iff no variable occurs in it (ex: $2 \geq 1$)
- A formula is closed iff all variables occurring in it are quantified (ex: $\forall x \exists y .(x>y))$

FOL：Syntax（BNF）

〈Sentence〉		〈AtomicSentence〉｜＜ComplexSentence〉
〈AtomicSentence〉	：：$=$	$\top\|\perp\|$
		$\left\langle\right.$ PredicateSymbol ${ }^{\text {（ }}$（ Term \rangle, \ldots ）｜
		\langle Term $\rangle=\langle$ Term〉
〈ComplexSentence〉	：：$=$	$\neg\langle$ Sentence \rangle｜
		〈Sentence〉＜Connective〉 〈Sentence〉｜
		〈Quantifier〉＜Sentence〉
〈Term〉	$=$	〈ConstantSymbol＞｜＜Variable〉｜
		〈FunctionSymbol ${ }^{\text {a }}$（〈Term〉，．．．）
〈Connective〉	：：$=$	$\wedge\|\vee\| \rightarrow\|\leftarrow\| \leftrightarrow \mid \oplus$
〈Quantifier〉		$\forall\langle$ Variable \rangle ． $\mid \exists\langle$ Variable \rangle ．
〈Variable〉		$a\|b\| \cdots\|x\| y \mid$ ．
＜ConstantSymbol＞		$A\|B\| \cdots \mid$ John ${ }^{\text {O }}$｜ $1\|\cdots\| \pi \mid$ ．
〈FunctionSymbol＞		$F\|G\| \cdots \mid$ Cos \mid FatherOf $\|+\| \ldots$
〈PredicateSymbol＞		$P\|Q\| \cdots \mid$ Red \mid Brother $\|>\| \cdots$

POLARITY of subformulas

Polarity: the number of nested negations modulo 2.

- Positive/negative occurrences
- φ occurs positively in φ;
- if $\neg \varphi_{1}$ occurs positively [negatively] in φ, then φ_{1} occurs negatively [positively] in φ
- if $\varphi_{1} \wedge \varphi_{2}$ or $\varphi_{1} \vee \varphi_{2}$ occur positively [negatively] in φ, then φ_{1} and φ_{2} occur positively [negatively] in φ;
- if $\varphi_{1} \rightarrow \varphi_{2}$ occurs positively [negatively] in φ, then φ_{1} occurs negatively [positively] in φ and φ_{2} occurs positively [negatively] in φ;
- if $\varphi_{1} \leftrightarrow \varphi_{2}$ or $\varphi_{1} \oplus \varphi_{2}$ occurs in φ, then φ_{1} and φ_{2} occur positively and negatively in φ;
- if $\forall x . \varphi_{1}$ or $\exists x . \varphi_{1}$ occurs positively [negatively] in φ, then φ_{1} occurs positively [negatively] in φ

Outline

(1) First-Order Logic

- Generalities
- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(2) Basic First-Order Reasoning
- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(3) Resolution-based First-Order Reasoning
- CNF-Ization
- Resolution
- Dealing with Equalities
- A Complete Example

Truth in FOL: Intuitions

- Sentences are true with respect to a model
- containing a domain and an interpretation
- The domain contains ≥ 1 objects (domain elements) and relations and functions over them
- An interpretation specifies referents for
- variables \rightarrow objects
- constant symbols \rightarrow objects
- predicate symbols \rightarrow relations
- function symbols \rightarrow functional relations
- An atomic sentence $P\left(t_{1}, \ldots, t_{n}\right)$ is true in an interpretation iff the objects referred to by t_{1}, \ldots, t_{n} are in the relation referred to by P

Truth in FOL: Intuitions

- Sentences are true with respect to a model
- containing a domain and an interpretation
- The domain contains ≥ 1 objects (domain elements) and relations and functions over them
- An interpretation specifies referents for
- variables \rightarrow objects
- constant symbols \rightarrow objects
- predicate symbois \rightarrow relations
- function symbols \rightarrow functional relations
- An atomic sentence $P\left(t_{1}, \ldots, t_{n}\right)$ is true in an interpretation iff the objects referred to by t_{1}, \ldots, t_{n} are in the relation referred to by P

Truth in FOL: Intuitions

- Sentences are true with respect to a model
- containing a domain and an interpretation
- The domain contains ≥ 1 objects (domain elements) and relations and functions over them
- An interpretation specifies referents for
- variables \rightarrow objects
- constant symbols \rightarrow objects
- predicate symbols \rightarrow relations
- function symbols \rightarrow functional relations
\square
- An atomic sentence $P\left(t_{1}\right.$
t_{n}) is true in an interpretation iff the objects referred to by t_{1}, \ldots, t_{n} are in the relation referred to by P

Truth in FOL: Intuitions

- Sentences are true with respect to a model
- containing a domain and an interpretation
- The domain contains ≥ 1 objects (domain elements) and relations and functions over them
- An interpretation specifies referents for
- variables \rightarrow objects
- constant symbols \rightarrow objects
- predicate symbols \rightarrow relations
- function symbols \rightarrow functional relations
- An atomic sentence $P\left(t_{1}, \ldots, t_{n}\right)$ is true in an interpretation iff the objects referred to by t_{1}, \ldots, t_{n} are in the relation referred to by P

FOL: Semantics

FOL Models (aka possible worlds)

- A model \mathcal{M} is a pair $\langle\mathcal{D}, \mathcal{I}\rangle(\langle$ domain, interpretation $\rangle)$
- Domain D: a non-empty set of objects (aka domain elements)
- Interpretation I: a (non-injective) map on elements of the signature
- constant symbols \longmapsto domain elements:
a constant symbol C is mapped into a particular object $\llbracket C \rrbracket^{\mathcal{I}}$ in \mathcal{D}
- predicate symbols \longmapsto domain relations:
a k-ary predicate $P(\ldots)$ is mapped into a subset $\llbracket P \rrbracket^{I}$ of D^{k}
(i.e., the set of object tuples satisiying the predicate in this world)
- functions symbols \longmapsto domain functions:
a k-ary function f is mapped into a domain function
$\llbracket f \rrbracket^{\mathcal{I}}: \mathcal{D}^{k} \longmapsto \mathcal{D}\left(\llbracket f \rrbracket^{\mathcal{I}}\right.$ must be total)
(we denote by $\llbracket . \rrbracket^{\mathcal{I}}$ the result of the interpretation \mathcal{I})

An Interpretation \mathcal{I} is extended to assign domain values to variables, domain values to terms and truth values to formulas.

FOL: Semantics

FOL Models (aka possible worlds)

- A model \mathcal{M} is a pair $\langle\mathcal{D}, \mathcal{I}\rangle$ (\langle domain, interpretation $\rangle)$
- Domain \mathcal{D} : a non-empty set of objects (aka domain elements)
- Interpretation I: a (non-injective) map on elements of the signature
a constant symbol C is mapped into a particular object $\llbracket C \rrbracket^{\mathcal{I}}$ in \mathcal{D}
a k-ary predicate $P(\ldots)$ is mapped into a subset $\llbracket P \rrbracket^{I}$ of \mathcal{D}^{k}
(i.e., the set of object tuples satisfying the predicate in this world)
a k-ary function f is mapped into a domain function
$\llbracket f \rrbracket^{\mathcal{I}}: \mathcal{D}^{k} \longmapsto \mathcal{D}\left(\llbracket f \rrbracket^{\mathcal{I}}\right.$ must be total)
(ve denote by $\mathbb{I} . \|^{\mathcal{I}}$ the result of the interpretation I)

An Interpretation \mathcal{I} is extended to assign domain values to variables, domain values to terms and truth values to formulas.

FOL: Semantics

FOL Models (aka possible worlds)

- A model \mathcal{M} is a pair $\langle\mathcal{D}, \mathcal{I}\rangle$ (\langle domain, interpretation $\rangle)$
- Domain \mathcal{D} : a non-empty set of objects (aka domain elements)
- Interpretation \mathcal{I} : a (non-injective) map on elements of the signature
- constant symbols \longmapsto domain elements: a constant symbol C is mapped into a particular object $\llbracket C \rrbracket^{\mathcal{I}}$ in \mathcal{D}
- predicate symbols \longmapsto domain relations:
a k-ary predicate $P(\ldots)$ is mapped into a subset $\llbracket P \rrbracket^{\mathcal{I}}$ of \mathcal{D}^{k} (i.e., the set of object tuples satisfying the predicate in this world)
- functions symbols \longmapsto domain functions:
a k-ary function f is mapped into a domain function $\llbracket f \rrbracket^{\mathcal{I}}: \mathcal{D}^{k} \longmapsto \mathcal{D}$ ($\llbracket f \rrbracket^{\mathcal{I}}$ must be total)
(we denote by $\llbracket \cdot \rrbracket^{\mathcal{I}}$ the result of the interpretation \mathcal{I}) domain values to terms and truth values to formulas.

FOL: Semantics

FOL Models (aka possible worlds)

- A model \mathcal{M} is a pair $\langle\mathcal{D}, \mathcal{I}\rangle$ (\langle domain, interpretation $\rangle)$
- Domain \mathcal{D} : a non-empty set of objects (aka domain elements)
- Interpretation \mathcal{I} : a (non-injective) map on elements of the signature
- constant symbols \longmapsto domain elements: a constant symbol C is mapped into a particular object $\llbracket C \rrbracket^{\mathcal{I}}$ in \mathcal{D}
- predicate symbols \longmapsto domain relations:
a k-ary predicate $P(\ldots)$ is mapped into a subset $\llbracket P \rrbracket^{\mathcal{I}}$ of \mathcal{D}^{k} (i.e., the set of object tuples satisfying the predicate in this world)
- functions symbols \longmapsto domain functions:
a k-ary function f is mapped into a domain function $\llbracket f \rrbracket^{\mathcal{I}}: \mathcal{D}^{k} \longmapsto \mathcal{D}$ ($\llbracket f \rrbracket^{\mathcal{I}}$ must be total)
(we denote by $\llbracket \cdot \rrbracket^{\mathcal{I}}$ the result of the interpretation \mathcal{I})

An Interpretation \mathcal{I} is extended to assign domain values to variables, domain values to terms and truth values to formulas.

FOL: Semantics [cont.]

Interpretation of terms

\mathcal{I} maps terms into domain elements

- Variables are assigned domain values
- variables \longmapsto domain elements:
a variable x is mapped into a particular object $\llbracket x \rrbracket^{\mathcal{I}}$ in \mathcal{D}
- A term $f\left(t_{1}, \ldots, t_{k}\right)$ is mapped by \mathcal{I} into the value $\llbracket f\left(t_{1}, \ldots, t_{k}\right) \rrbracket^{\mathcal{I}}$ returned by applying the domain function $\llbracket f \rrbracket^{\mathcal{I}}$, into which f is mapped, to the values $\llbracket t_{1} \rrbracket^{\mathcal{I}}, \ldots, \llbracket t_{k} \rrbracket^{\mathcal{I}}$ obtained by applying recursively \mathcal{I} to the terms t_{1}, \ldots, t_{k} :
- Ex: if "Me, Mother, Father" are interpreted as usual, then "Mother(Father(Me))" is interpreted as my (paternal) grandm other
- Ex: if " - $-0,1,2,3,4^{\prime \prime}$ are interpreted as usual, then
" $(3-1) \cdot(0+2)$ " is interpreted as 4

FOL: Semantics [cont.]

Interpretation of terms
\mathcal{I} maps terms into domain elements

- Variables are assigned domain values
- variables \longmapsto domain elements: a variable x is mapped into a particular object $\llbracket x \rrbracket^{\mathcal{I}}$ in \mathcal{D}

FOL: Semantics [cont.]

Interpretation of terms

I maps terms into domain elements

- Variables are assigned domain values
- variables \longmapsto domain elements: a variable x is mapped into a particular object $\llbracket x \rrbracket^{\mathcal{I}}$ in \mathcal{D}
- A term $f\left(t_{1}, \ldots, t_{k}\right)$ is mapped by \mathcal{I} into the value $\llbracket f\left(t_{1}, \ldots, t_{k}\right) \rrbracket^{\mathcal{I}}$ returned by applying the domain function $\llbracket f \rrbracket^{\mathcal{I}}$, into which f is mapped, to the values $\llbracket t_{1} \rrbracket^{\mathcal{I}}, \ldots, \llbracket t_{k} \rrbracket^{\mathcal{I}}$ obtained by applying recursively \mathcal{I} to the terms t_{1}, \ldots, t_{k} :
- $\llbracket f\left(t_{1}, \ldots, t_{k}\right) \rrbracket^{\mathcal{I}}=\llbracket f \rrbracket^{\mathcal{I}}\left(\llbracket t_{1} \rrbracket^{\mathcal{I}}, \ldots, \llbracket t_{k} \rrbracket^{\mathcal{I}}\right)$
- Ex: if "Me, Mother, Father" are interpreted as usual, then "Mother(Father(Me))" is interpreted as my (paternal) grandmother
- Ex: if " $+,-, \cdot, 0,1,2,3,4$ " are interpreted as usual, then " $(3-1) \cdot(0+2)$ " is interpreted as 4

FOL: Semantics [cont.]

Interpretation of formulas

I maps formulas into truth values

- An atomic formula $P\left(t_{1}, \ldots, t_{k}\right)$ is true in \mathcal{I} iff the objects into which the terms $t_{1}, \ldots t_{k}$ are mapped by \mathcal{I} comply to the relation into which P is mapped
- $\llbracket P\left(t_{1}, \ldots, t_{k}\right) \rrbracket^{I}$ is true iff $\left\langle\left[t_{1} \rrbracket^{I}, \ldots, \llbracket t_{k} \rrbracket^{I}\right\rangle \in \llbracket P \rrbracket^{I}\right.$
- Ex: if "Me, Mother, Father, Married" are interpreted as traditon, then "Married(Mother(Me), Father(Me))" is interpreted as true
- Ex: if " $+,-,>, 0,1,2,3,4$ " are interpreted as usual, then " $(4-0)>(1-2)$ " is interpreted as true
- An atomic formula $t_{1}=t_{2}$ is true in \mathcal{I} iff the terms t_{1}, t_{2} are mapped by \mathcal{I} into the same domain element
- $\llbracket t_{1}=t_{2} \rrbracket^{I}$ is true iff $\llbracket t_{1} \rrbracket^{I}$ same as $\llbracket t_{2} \rrbracket^{\mathcal{I}}$
- Ex: if "Mother" is interpreted as usual, Richard, John are brothers, then "Mother(Richard)=Mother(John))" is interpreted as true
- Ex: if " $+,-, 0,1,2,3,4$ " are interpreted as usual, then
" $(4-1)=(1+2)$ " is interpreted as true
- $\neg, \wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus$ interpreted by \mathcal{I} as in PL

FOL: Semantics [cont.]

Interpretation of formulas

I maps formulas into truth values

- An atomic formula $P\left(t_{1}, \ldots, t_{k}\right)$ is true in \mathcal{I} iff the objects into which the terms $t_{1}, \ldots t_{k}$ are mapped by \mathcal{I} comply to the relation into which P is mapped
- $\llbracket P\left(t_{1}, \ldots, t_{k}\right) \rrbracket^{\mathcal{I}}$ is true iff $\left\langle\llbracket t_{1} \rrbracket^{\mathcal{I}}, \ldots, \llbracket t_{k} \rrbracket^{\mathcal{I}}\right\rangle \in \llbracket P \rrbracket^{\mathcal{I}}$
- Ex: if "Me, Mother, Father, Married" are interpreted as traditon, then "Married(Mother(Me),Father(Me))" is interpreted as true
- Ex: if " $+,-,>, 0,1,2,3,4$ " are interpreted as usual, then " $(4-0)>(1+2)$ " is interpreted as true
- An atomic formula $t_{1}=t_{2}$ is true in \mathcal{I} iff the terms t_{1}, t_{2} are mapped by \mathcal{I} into the same domain element
\square then "Mother(Richard)=Mother(John))" is interpreted as true

FOL: Semantics [cont.]

Interpretation of formulas

I maps formulas into truth values

- An atomic formula $P\left(t_{1}, \ldots, t_{k}\right)$ is true in \mathcal{I} iff the objects into which the terms $t_{1}, \ldots t_{k}$ are mapped by \mathcal{I} comply to the relation into which P is mapped
- $\llbracket P\left(t_{1}, \ldots, t_{k}\right) \rrbracket^{\mathcal{I}}$ is true iff $\left\langle\llbracket t_{1} \rrbracket^{\mathcal{I}}, \ldots, \llbracket t_{k} \rrbracket^{\mathcal{I}}\right\rangle \in \llbracket P \rrbracket^{\mathcal{I}}$
- Ex: if "Me, Mother, Father, Married" are interpreted as traditon, then "Married(Mother(Me),Father(Me))" is interpreted as true
- Ex: if "+, -, >, 0, 1, 2, 3, 4" are interpreted as usual, then " $(4-0)>(1+2)$ " is interpreted as true
- An atomic formula $t_{1}=t_{2}$ is true in \mathcal{I} iff the terms t_{1}, t_{2} are mapped by \mathcal{I} into the same domain element
- $\llbracket t_{1}=t_{2} \rrbracket^{\mathcal{I}}$ is true iff $\llbracket t_{1} \rrbracket^{\mathcal{I}}$ same as $\llbracket t_{2} \rrbracket^{\mathcal{I}}$
- Ex: if "Mother" is interpreted as usual, Richard, John are brothers, then "Mother(Richard)=Mother(John))" is interpreted as true
- Ex: if " $+,-, 0,1,2,3,4$ " are interpreted as usual, then " $(4-1)=(1+2)$ " is interpreted as true

FOL: Semantics [cont.]

Interpretation of formulas

I maps formulas into truth values

- An atomic formula $P\left(t_{1}, \ldots, t_{k}\right)$ is true in \mathcal{I} iff the objects into which the terms $t_{1}, \ldots t_{k}$ are mapped by \mathcal{I} comply to the relation into which P is mapped
- $\llbracket P\left(t_{1}, \ldots, t_{k}\right) \rrbracket^{\mathcal{I}}$ is true iff $\left\langle\llbracket t_{1} \rrbracket^{\mathcal{I}}, \ldots, \llbracket t_{k} \rrbracket^{\mathcal{I}}\right\rangle \in \llbracket P \rrbracket^{\mathcal{I}}$
- Ex: if "Me, Mother, Father, Married" are interpreted as traditon, then "Married(Mother(Me),Father(Me))" is interpreted as true
- Ex: if " $+,-,>, 0,1,2,3,4$ " are interpreted as usual, then " $(4-0)>(1+2)$ " is interpreted as true
- An atomic formula $t_{1}=t_{2}$ is true in \mathcal{I} iff the terms t_{1}, t_{2} are mapped by \mathcal{I} into the same domain element
- $\llbracket t_{1}=t_{2} \rrbracket^{\mathcal{I}}$ is true iff $\llbracket t_{1} \rrbracket^{\mathcal{I}}$ same as $\llbracket t_{2} \rrbracket^{\mathcal{I}}$
- Ex: if "Mother" is interpreted as usual, Richard, John are brothers, then "Mother(Richard)=Mother(John))" is interpreted as true
- Ex: if " $+,-, 0,1,2,3,4$ " are interpreted as usual, then " $(4-1)=(1+2)$ " is interpreted as true
- $\neg, \wedge, \vee, \rightarrow, \leftarrow, \leftrightarrow, \oplus$ interpreted by \mathcal{I} as in PL

Models for FOL: Example

Richard Lionhearth and John Lackland

- \mathcal{D} : domain at right

(© S. Russell \& P. Norwig, AIMA)

Models for FOL: Example

Richard Lionhearth and John Lackland

- \mathcal{D} : domain at right
- I: s.t.
- \llbracket Richard $\rrbracket^{\text {I }}$: Richard the Lionhearth
- $\llbracket J o h n \rrbracket^{\text {I }}$: evil King John
- \llbracket Brother \rrbracket^{I} : brotherhood
- \llbracket Brother(Richard, John) \rrbracket^{I} is true
- 【LeftLeg』 maps any individual to his left leg

(© S. Russell \& P. Norwig, AIMA)

Models for FOL: Example

Richard Lionhearth and John Lackland

- \mathcal{D} : domain at right
- I: s.t.
- \llbracket Richard $\rrbracket^{\text {I }}$: Richard the Lionhearth
- $\llbracket J o h n \rrbracket^{\mathcal{I}}$: evil King John
- \llbracket Brother $\rrbracket^{\text {I }}$: brotherhood
- \llbracket Brother (Richard, John $) \rrbracket^{I}$ is true
- [LeftLeg] ${ }^{I}$ maps any individual to his left leg

(© S. Russell \& P. Norwig, AIMA)

Models for FOL: Example

Richard Lionhearth and John Lackland

- \mathcal{D} : domain at right
- I: s.t.
- \llbracket Richard \rrbracket^{I} : Richard the Lionhearth
- $\llbracket J o h n \rrbracket^{\mathcal{I}}$: evil King John
- \llbracket Brother $\rrbracket^{\mathcal{I}}$: brotherhood
- \llbracket Brother (Richard, John) $\rrbracket^{\mathcal{I}}$ is true
- $\llbracket L e f t L e g \rrbracket^{\mathcal{I}}$ maps any individual to his left leg

(© S. Russell \& P. Norwig, AIMA)

Models for FOL: Remark

- $\llbracket f \rrbracket^{\mathcal{I}}$ total: must provide an output for every input
- e.g.: $\llbracket L e f t L e g(c r o w n) \rrbracket^{\perp}$?
- possible solution: assume "null" object $\left(\llbracket \operatorname{LeftLeg}(\right.$ crown $)=$ null $\rrbracket^{\mathcal{I}}$

Universal Quantification

- $\forall x . \alpha(x, \ldots)$ (x variable, typically occurs in x)
- ex: $\forall x$. $(\operatorname{King}(x) \rightarrow$ Person $(x))$ ("all kings are persons")
- $\forall x . \alpha(x, \ldots)$ true in \mathcal{M} iff
α is true in \mathcal{M} for every possible domain value x is mapped to
- Roughly speaking, can be seen as a coniunction over all (typically infinite) possible instantiations of x in α
(King(John)
(King(Richard)
(King'crown)
(King(LeftLeg(John))
(King(LeftLeg(LeftLeg(John)))
\rightarrow Person(John)
\rightarrow Person(Richard)
\rightarrow Person'(crown)
-> Person(LeftLeg(John))
- Person(LeftLeg(LeftLeg(John)))

Universal Quantification

- $\forall x . \alpha(x, \ldots)$ (x variable, typically occurs in x)
- ex: $\forall x$. $(\operatorname{King}(x) \rightarrow \operatorname{Person}(x))$ ("all kings are persons")
- $\forall x$. $\alpha(x, \ldots)$ true in \mathcal{M} iff
α is true in \mathcal{M} for every possible domain value x is mapped to
- Rouahly speaking, can be seen as a coniunction over all (typically infinite) possible instantiations of x in α

\rightarrow Person(John)
\rightarrow Person(Richard)
\rightarrow Person(crown)
\rightarrow Person(LeftLeg(John))
\rightarrow Person(LeftLeg(LeftLeg(John)))

Universal Quantification

- $\forall x . \alpha(x, \ldots)$ (x variable, typically occurs in x)
- ex: $\forall x$. $(\operatorname{King}(x) \rightarrow$ Person $(x))$ ("all kings are persons")
- $\forall x . \alpha(x, \ldots)$ true in \mathcal{M} iff
α is true in \mathcal{M} for every possible domain value x is mapped to

Universal Quantification

- $\forall x . \alpha(x, \ldots)$ (x variable, typically occurs in x)
- ex: $\forall x$. $(\operatorname{King}(x) \rightarrow \operatorname{Person}(x))$ ("all kings are persons")
- $\forall x . \alpha(x, \ldots)$ true in \mathcal{M} iff α is true in \mathcal{M} for every possible domain value x is mapped to
- Roughly speaking, can be seen as a conjunction over all (typically infinite) possible instantiations of x in α

```
(King(John)
(King(Richard)
(King(crown)
(King(LeftLeg(John))
(King(LeftLeg(LeftLeg(John)))
```

\rightarrow Person(John)
\rightarrow Person(Richard)
\rightarrow Person(crown)
\rightarrow Person(LeftLeg(John))
\rightarrow Person(LeftLeg(LeftLeg(John))))^

Universal Quantification [cont.]

- One may want to restrict the domain of universal quantification to elements of some kind P
- ex "forall kings ...", "forall integer numbers..."
- Beware of typical mistake: do not use
- ex: " $\forall x$. $(\operatorname{King}(x) \wedge$ Person $(x))$ " means
"everything/one is a King and is a Person"

Universal Quantification [cont.]

- One may want to restrict the domain of universal quantification to elements of some kind P
- ex "forall kings ...", "forall integer numbers..."
- Idea: use an implication, with restrictive predicate as implicant: $\forall x .(P(x) \rightarrow \alpha(x, \ldots))$
- ex " $\forall x$. $(\operatorname{King}(x) \rightarrow \ldots)$ ", " $\forall x$. $(\operatorname{Integer}(x) \rightarrow \ldots)$ ",
- Beware of typical mistake: do not use " \wedge " in
- ex: " $\forall x$. (King $(x) \wedge$ Person $(x))$ " means
"everything/one is a King and is a Person"

Universal Quantification [cont.]

- One may want to restrict the domain of universal quantification to elements of some kind P
- ex "forall kings ...", "forall integer numbers..."
- Idea: use an implication, with restrictive predicate as implicant: $\forall x .(P(x) \rightarrow \alpha(x, \ldots))$
- ex " $\forall x$. $(\operatorname{King}(x) \rightarrow \ldots)$ ", " $\forall x$. (Integer $(x) \rightarrow \ldots$...",
- Beware of typical mistake: do not use " \wedge " instead of " \rightarrow "
- ex: " $\forall x$. $(\operatorname{King}(x) \wedge$ Person $(x))$ " means "everything/one is a King and is a Person"

Universal Quantification [cont.]

- One may want to restrict the domain of universal quantification to elements of some kind P
- ex "forall kings ...", "forall integer numbers..."
- Idea: use an implication, with restrictive predicate as implicant: $\forall x .(P(x) \rightarrow \alpha(x, \ldots))$
- ex " $\forall x$. $(\operatorname{King}(x) \rightarrow \ldots)$ ", " $\forall x$. (Integer $(x) \rightarrow \ldots$...",
- Beware of typical mistake: do not use " \wedge " instead of " \rightarrow "
- ex: " $\forall x$. $(\operatorname{King}(x) \wedge$ Person $(x))$ " means "everything/one is a King and is a Person"
- " \forall " distributes with " \wedge ", but not with " \vee "

Universal Quantification [cont.]

- One may want to restrict the domain of universal quantification to elements of some kind P
- ex "forall kings ...", "forall integer numbers..."
- Idea: use an implication, with restrictive predicate as implicant: $\forall x .(P(x) \rightarrow \alpha(x, \ldots))$
- ex " $\forall x$. $(\operatorname{King}(x) \rightarrow \ldots)$ ", " $\forall x$. (Integer $(x) \rightarrow \ldots$..)",
- Beware of typical mistake: do not use " \wedge " instead of " \rightarrow "
- ex: " $\forall x$. $(\operatorname{King}(x) \wedge$ Person $(x))$ " means "everything/one is a King and is a Person"
- " \forall " distributes with " \wedge ", but not with " \vee "
- $\forall x \cdot(P(x) \wedge Q(x))$ equivalent to $(\forall x \cdot P(x)) \wedge(\forall x \cdot Q(x))$
- "Everybody is a king and is a person" same as "Everybody is a king and everybody is a person"
- "Everybody is a king or is a peasant" much weaker than "Everybody is a king or everybody is a peasant'

Universal Quantification [cont.]

- One may want to restrict the domain of universal quantification to elements of some kind P
- ex "forall kings ...", "forall integer numbers..."
- Idea: use an implication, with restrictive predicate as implicant: $\forall x .(P(x) \rightarrow \alpha(x, \ldots))$
- ex " $\forall x$. $(\operatorname{King}(x) \rightarrow \ldots)$ ", " $\forall x$. (Integer $(x) \rightarrow \ldots$..)",
- Beware of typical mistake: do not use " \wedge " instead of " \rightarrow "
- ex: " $\forall x$. $(\operatorname{King}(x) \wedge \operatorname{Person}(x))$ " means "everything/one is a King and is a Person"
- " \forall " distributes with " \wedge ", but not with " \vee "
- $\forall x \cdot(P(x) \wedge Q(x))$ equivalent to $(\forall x \cdot P(x)) \wedge(\forall x \cdot Q(x))$
- "Everybody is a king and is a person" same as "Everybody is a king and everybody is a person"
- $\forall x .(P(x) \vee Q(x))$ not equivalent to $(\forall x . P(x)) \vee(\forall x . Q(x))$
- "Everybody is a king or is a peasant" much weaker than "Everybody is a king or everybody is a peasant"

Existential Quantification

- $\exists x . \alpha(x, \ldots)$ (x variable, typically occurs in x)
- ex: $\exists x$. $(\operatorname{King}(x) \wedge \operatorname{Evil}(x))$ ("there is an evil king")
- pronounced "exists x s.t. ..." or "for some x ..."

```
    \alpha \mp@code { i s ~ t r u e ~ i n ~ } \mathcal { M } \text { for some possible domain value x is mapped to}
- Roughly speaking, can be seen as a disjunction over all (typically
```

(King(Richard)
(King(John)
(King(crown)
(King(LeftLeg(John))
(King(LeftLeg(LeftLeg(John)))

Existential Quantification

- $\exists x . \alpha(x, \ldots)$ (x variable, typically occurs in x)
- ex: $\exists x$. $(\operatorname{King}(x) \wedge \operatorname{Evil}(x))$ ("there is an evil king")
- pronounced "exists x s.t. ..." or "for some x ..."
- $\exists x . \alpha(x, \ldots)$ true in \mathcal{M} iff
α is true in \mathcal{M} for some possible domain value x is mapped to
- Roughly speaking, can be seen as a disjunction over all (typically

Existential Quantification

- $\exists x . \alpha(x, \ldots)$ (x variable, typically occurs in x)
- ex: $\exists x$. $(\operatorname{King}(x) \wedge \operatorname{Evil}(x))$ ("there is an evil king")
- pronounced "exists x s.t. ..." or "for some x ..."
- $\exists x . \alpha(x, \ldots)$ true in \mathcal{M} iff
α is true in \mathcal{M} for some possible domain value x is mapped to
- Roughly speaking, can be seen as a disjunction over all (typically infinite) possible instantiations of x in α
(King(Richard)
(King(John)
(King(crown)
(King(LeftLeg(John))
(King(LeftLeg(LeftLeg(John)))
\wedge Evil(Richard)
\wedge Evil(John)
\wedge Evil(crown)
\wedge Evil(LeftLeg(John))
$\wedge E v i l(L e f t L e g(L e f t L e g(J o h n))) ~) \vee$

Existential Quantification [cont.]

- One may want to restrict the domain of existential quantification to elements of some kind P
- ex "exists a king s.t. ...", "for some integer numbers..."

Existential Quantification [cont.]

- One may want to restrict the domain of existential quantification to elements of some kind P
- ex "exists a king s.t. ...", "for some integer numbers..."
- Idea: use a conjunction with restrictive predicate:
$\exists x .(P(x) \wedge \alpha(x, \ldots))$
- ex " $\exists x$. $(\operatorname{King}(x) \wedge \ldots)$ ", " $\exists x$. $(\operatorname{Integer}(x) \wedge \ldots)$ ",
- Beware of typical mistake: do not use
- ex: " $\exists x$. $(\operatorname{King}(x) \rightarrow \operatorname{Evil}(x))$ " means "Someone is not a king or is evil"

Existential Quantification [cont.]

- One may want to restrict the domain of existential quantification to elements of some kind P
- ex "exists a king s.t. ...", "for some integer numbers..."
- Idea: use a conjunction with restrictive predicate: $\exists x .(P(x) \wedge \alpha(x, \ldots))$
- ex " $\exists x .(\operatorname{King}(x) \wedge \ldots) ", " \exists x$. $(\operatorname{Integer}(x) \wedge \ldots) "$,
- Beware of typical mistake: do not use " \rightarrow " instead of " \wedge "
- ex: " $\exists x$. $(\operatorname{King}(x) \rightarrow \operatorname{Evil}(x))$ " means
"Someone is not a king or is evil"

Existential Quantification [cont.]

- One may want to restrict the domain of existential quantification to elements of some kind P
- ex "exists a king s.t. ...", "for some integer numbers..."
- Idea: use a conjunction with restrictive predicate: $\exists x .(P(x) \wedge \alpha(x, \ldots))$
- ex " $\exists x .(\operatorname{King}(x) \wedge \ldots) ", " \exists x$. $(\operatorname{Integer}(x) \wedge \ldots) "$,
- Beware of typical mistake: do not use " \rightarrow " instead of " \wedge "
- ex: " $\exists x$. $(\operatorname{King}(x) \rightarrow \operatorname{Evil}(x))$ " means "Someone is not a king or is evil"
- " \exists " distributes with " \vee ", but not with " \wedge "
- "Somebody is a king or is a knight" same as
"Somebody is a king or somebody is a knight"
- $=$
- "Somebody is a king and is evil" much stronger than
"Somebody is a king and somebody is evil"

Existential Quantification [cont.]

- One may want to restrict the domain of existential quantification to elements of some kind P
- ex "exists a king s.t. ...", "for some integer numbers..."
- Idea: use a conjunction with restrictive predicate: $\exists x .(P(x) \wedge \alpha(x, \ldots))$
- ex " $\exists x$. $(\operatorname{King}(x) \wedge \ldots)$ ", " $\exists x$. $(\operatorname{Integer}(x) \wedge \ldots)$ ",
- Beware of typical mistake: do not use " \rightarrow " instead of " \wedge "
- ex: " $\exists x$. $(\operatorname{King}(x) \rightarrow \operatorname{Evil}(x))$ " means "Someone is not a king or is evil"
- " \exists " distributes with " \vee ", but not with " \wedge "
- $\exists x \cdot(P(x) \vee Q(x))$ equivalent to $(\exists x \cdot P(x)) \vee(\exists x \cdot Q(x))$
- "Somebody is a king or is a knight" same as "Somebody is a king or somebody is a knight"
- "Somebody is a king and is evil" much stronger than "Somebody is a king and somebody is evil"

Existential Quantification [cont.]

- One may want to restrict the domain of existential quantification to elements of some kind P
- ex "exists a king s.t. ...", "for some integer numbers..."
- Idea: use a conjunction with restrictive predicate: $\exists x .(P(x) \wedge \alpha(x, \ldots))$
- ex " $\exists x$. $(\operatorname{King}(x) \wedge \ldots)$ ", " $\exists x$. $(\operatorname{Integer}(x) \wedge \ldots)$..,
- Beware of typical mistake: do not use " \rightarrow " instead of " \wedge "
- ex: " $\exists x$. $(\operatorname{King}(x) \rightarrow \operatorname{Evil}(x))$ " means "Someone is not a king or is evil"
- " \exists " distributes with " \vee ", but not with " \wedge "
- $\exists x \cdot(P(x) \vee Q(x))$ equivalent to $(\exists x \cdot P(x)) \vee(\exists x \cdot Q(x))$
- "Somebody is a king or is a knight" same as "Somebody is a king or somebody is a knight"
- $\exists x .(P(x) \wedge Q(x))$ not equivalent to $(\exists x . P(x)) \wedge(\exists x . Q(x))$
- "Somebody is a king and is evil" much stronger than "Somebody is a king and somebody is evil"

Examples

- Brothers are siblings
- $\forall x, y$. (Brothers $(x, y) \rightarrow \operatorname{Siblings}(x, y))$
- "Siblings" is symmetric
- $\forall x, y$. (Siblings $(x, y) \leftrightarrow$ Siblings (y, x))
- One's mother is one's female parent
- $\forall x, y$. (Mother $(x, y) \leftrightarrow(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y)))$
- A first cousin is a child of a parent's sibling

$\exists p_{1}, p_{2}$. (Siblings $\left.\left.\left(p_{1}, p_{2}\right) \wedge \operatorname{Parent}\left(p_{1}, x_{1}\right) \wedge \operatorname{Parent}\left(p_{2}, x_{2}\right)\right)\right)$

- Dogs are mammals
- $\forall x .(\operatorname{Dog}(x) \rightarrow$ Mammal $(x))$

Examples

- Brothers are siblings
- $\forall x, y$. (Brothers $(x, y) \rightarrow$ Siblings $(x, y))$
- "Siblings" is symmetric
- $\forall x, y$. (Siblings $(x, y) \leftrightarrow \operatorname{Siblings}(y, x)$)
- One's mother is one's female parent
- A first cousin is a child of a parent's sibling
- $\forall x_{1}, x_{2}$. (FirstCousin $\left(x_{1}, x_{2}\right)$
- Dogs are mammals
- $\forall x .(\operatorname{Dog}(x) \rightarrow$ Mammal $(x))$

Examples

- Brothers are siblings
- $\forall x, y$. (Brothers $(x, y) \rightarrow \operatorname{Siblings}(x, y))$
- "Siblings" is symmetric
- $\forall x, y$. (Siblings $(x, y) \leftrightarrow \operatorname{Siblings}(y, x)$)
- One's mother is one's female parent
- $\forall x, y$. $(\operatorname{Mother}(x, y) \leftrightarrow(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y)))$
- A first cousin is a child of a parent's sibling
- Dogs are mammals

Examples

- Brothers are siblings
- $\forall x, y$. $(\operatorname{Brothers}(x, y) \rightarrow \operatorname{Siblings}(x, y))$
- "Siblings" is symmetric
- $\forall x, y$. (Siblings $(x, y) \leftrightarrow \operatorname{Siblings}(y, x)$)
- One's mother is one's female parent
- $\forall x, y$. $(\operatorname{Mother}(x, y) \leftrightarrow(\operatorname{Female}(x) \wedge \operatorname{Parent}(x, y)))$
- A first cousin is a child of a parent's sibling
- $\forall x_{1}, x_{2}$. (FirstCousin $\left(x_{1}, x_{2}\right) \leftrightarrow$
$\left.\exists p_{1}, p_{2} .\left(\operatorname{Siblings}\left(p_{1}, p_{2}\right) \wedge \operatorname{Parent}\left(p_{1}, x_{1}\right) \wedge \operatorname{Parent}\left(p_{2}, x_{2}\right)\right)\right)$
- Dogs are mammals

Examples

- Brothers are siblings
- $\forall x, y$. $(\operatorname{Brothers}(x, y) \rightarrow \operatorname{Siblings}(x, y))$
- "Siblings" is symmetric
- $\forall x, y$. (Siblings $(x, y) \leftrightarrow \operatorname{Siblings}(y, x)$)
- One's mother is one's female parent
- $\forall x, y$. $(\operatorname{Mother}(x, y) \leftrightarrow(F e m a l e(x) \wedge \operatorname{Parent}(x, y)))$
- A first cousin is a child of a parent's sibling
- $\forall x_{1}, x_{2}$. (FirstCousin $\left(x_{1}, x_{2}\right) \leftrightarrow$

$$
\left.\exists p_{1}, p_{2} .\left(\operatorname{Siblings}\left(p_{1}, p_{2}\right) \wedge \operatorname{Parent}\left(p_{1}, x_{1}\right) \wedge \operatorname{Parent}\left(p_{2}, x_{2}\right)\right)\right)
$$

- Dogs are mammals
- $\forall x .(\operatorname{Dog}(x) \rightarrow \operatorname{Mammal}(x))$

Equality

- Equality is a special predicate: $t_{1}=t_{2}$ is true under a given interpretation if and only if t_{1} and t_{2} refer to the same object
- Ex: $1=2$ and $x * x=x$ are satisfiable (!)
- Ex: $2=2$ is valid
- Ex: definition of Sibling in terms of Parent

Equality

- Equality is a special predicate: $t_{1}=t_{2}$ is true under a given interpretation if and only if t_{1} and t_{2} refer to the same object
- Ex: $1=2$ and $x * x=x$ are satisfiable (!)
- Ex: $2=2$ is valid
- Ex: definition of Sibling in terms of Parent $\forall x, y$. $($ Siblings $(x, y) \leftrightarrow[\neg(x=y) \wedge \exists m, f . \quad(\neg(m=f) \wedge$ $\operatorname{Parent}(m, x) \wedge \operatorname{Parent}(f, x) \wedge \operatorname{Parent}(m, y) \wedge \operatorname{Parent}(f, y)]))$

Example

- No one is his/her own sibling
- Sisters are female, brothers are male
- Every married person has a spouse
- Married people have spouses
- Only married people have spouses
- People cannot be married to their siblings

Example

- No one is his/her own sibling
- $\forall x$. $\neg \operatorname{Siblings}(x, x)$
- Sisters are female, brothers are male
- Every married person has a spouse
- Married people have spouses
- Only married people have spouses
- People cannot be married to their siblings

Example

- No one is his/her own sibling
- $\forall x$. $\neg \operatorname{Siblings}(x, x)$
- Sisters are female, brothers are male
- Every married person has a spouse
- Married people have spouses
- Only married people have spouses
- People cannot be married to their siblings

Example

- No one is his/her own sibling
- $\forall x$. $\neg \operatorname{Siblings}(x, x)$
- Sisters are female, brothers are male
- $\forall x, y .((\operatorname{Sisters}(x, y) \rightarrow(\operatorname{Female}(x) \wedge$ Female $(y))) \wedge$ $(\operatorname{Brothers}(x, y) \rightarrow($ Male $(x) \wedge \operatorname{Male}(y))))$
- Every married person has a spouse
- Married people have spouses
- Only married people have spouses
- People cannot be married to their siblings

Example

- No one is his/her own sibling
- $\forall x$. $\neg \operatorname{Siblings}(x, x)$
- Sisters are female, brothers are male
- $\forall x, y .((\operatorname{Sisters}(x, y) \rightarrow(\operatorname{Female}(x) \wedge \operatorname{Female}(y))) \wedge$ $(\operatorname{Brothers}(x, y) \rightarrow(\operatorname{Male}(x) \wedge \operatorname{Male}(y))))$
- Every married person has a spouse
- Married people have spouses
- Only married people have spouses
- People cannot be married to their siblings

Example

- No one is his/her own sibling
- $\forall x$. $\neg \operatorname{Siblings}(x, x)$
- Sisters are female, brothers are male
- $\forall x, y .((\operatorname{Sisters}(x, y) \rightarrow($ Female $(x) \wedge$ Female $(y))) \wedge$ $(\operatorname{Brothers}(x, y) \rightarrow(\operatorname{Male}(x) \wedge \operatorname{Male}(y))))$
- Every married person has a spouse
- $\forall x$. $((\operatorname{Person}(x) \wedge \operatorname{Married}(x)) \rightarrow \exists y$. Spouse $(x, y))$
- Married people have spouses
- Only married people have spouses
- People cannot be married to their siblings

Example

- No one is his/her own sibling
- $\forall x$. $\neg \operatorname{Siblings}(x, x)$
- Sisters are female, brothers are male
- $\forall x, y .((\operatorname{Sisters}(x, y) \rightarrow(\operatorname{Female}(x) \wedge \operatorname{Female}(y))) \wedge$ $($ Brothers $(x, y) \rightarrow(\operatorname{Male}(x) \wedge \operatorname{Male}(y))))$
- Every married person has a spouse
- $\forall x$. $((\operatorname{Person}(x) \wedge \operatorname{Married}(x)) \rightarrow \exists y$. Spouse $(x, y))$
- Married people have spouses
- Only married people have spouses
- People cannot be married to their siblings

Example

- No one is his/her own sibling
- $\forall x$. $\neg \operatorname{Siblings}(x, x)$
- Sisters are female, brothers are male
- $\forall x, y .((\operatorname{Sisters}(x, y) \rightarrow(\operatorname{Female}(x) \wedge \operatorname{Female}(y))) \wedge$ $($ Brothers $(x, y) \rightarrow(\operatorname{Male}(x) \wedge \operatorname{Male}(y))))$
- Every married person has a spouse
- $\forall x$. $((\operatorname{Person}(x) \wedge \operatorname{Married}(x)) \rightarrow \exists y$. Spouse $(x, y))$
- Married people have spouses
- $\forall x$. $((\operatorname{Person}(x) \wedge \operatorname{Married}(x)) \rightarrow \exists y$. Spouse $(x, y))$
- Only married people have spouses
- People cannot be married to their siblings

Example

- No one is his/her own sibling
- $\forall x$. $\neg \operatorname{Siblings}(x, x)$
- Sisters are female, brothers are male
- $\forall x, y .((\operatorname{Sisters}(x, y) \rightarrow(\operatorname{Female}(x) \wedge \operatorname{Female}(y))) \wedge$ $(\operatorname{Brothers}(x, y) \rightarrow(\operatorname{Male}(x) \wedge \operatorname{Male}(y))))$
- Every married person has a spouse
- $\forall x$. $((\operatorname{Person}(x) \wedge \operatorname{Married}(x)) \rightarrow \exists y$. Spouse $(x, y))$
- Married people have spouses
- $\forall x$. $((\operatorname{Person}(x) \wedge \operatorname{Married}(x)) \rightarrow \exists y$. Spouse $(x, y))$
- Only married people have spouses
- People cannot be married to their siblings

Example

- No one is his/her own sibling
- $\forall x$. $\neg \operatorname{Siblings}(x, x)$
- Sisters are female, brothers are male
- $\forall x, y .((\operatorname{Sisters}(x, y) \rightarrow(\operatorname{Female}(x) \wedge \operatorname{Female}(y))) \wedge$ $(\operatorname{Brothers}(x, y) \rightarrow(\operatorname{Male}(x) \wedge \operatorname{Male}(y))))$
- Every married person has a spouse
- $\forall x$. $((\operatorname{Person}(x) \wedge \operatorname{Married}(x)) \rightarrow \exists y$. Spouse $(x, y))$
- Married people have spouses
- $\forall x$. $((\operatorname{Person}(x) \wedge \operatorname{Married}(x)) \rightarrow \exists y$. Spouse $(x, y))$
- Only married people have spouses
- $\forall x, y$. $\quad((\operatorname{Person}(x) \wedge \operatorname{Person}(y) \wedge \operatorname{Spouse}(x, y)) \rightarrow$ $(\operatorname{Married}(x) \wedge \operatorname{Married}(y)))$
- People cannot be married to their siblings

Example

- No one is his/her own sibling
- $\forall x$. $\neg \operatorname{Siblings}(x, x)$
- Sisters are female, brothers are male
- $\forall x, y$. $((\operatorname{Sisters}(x, y) \rightarrow(\operatorname{Female}(x) \wedge \operatorname{Female}(y))) \wedge$ $(\operatorname{Brothers}(x, y) \rightarrow(\operatorname{Male}(x) \wedge \operatorname{Male}(y))))$
- Every married person has a spouse
- $\forall x$. $((\operatorname{Person}(x) \wedge \operatorname{Married}(x)) \rightarrow \exists y$. Spouse $(x, y))$
- Married people have spouses
- $\forall x$. $((\operatorname{Person}(x) \wedge \operatorname{Married}(x)) \rightarrow \exists y$. Spouse $(x, y))$
- Only married people have spouses
- $\forall x, y$. $((\operatorname{Person}(x) \wedge \operatorname{Person}(y) \wedge \operatorname{Spouse}(x, y)) \rightarrow$ $(\operatorname{Married}(x) \wedge \operatorname{Married}(y)))$
- People cannot be married to their siblings

Example

- No one is his/her own sibling
- $\forall x$. $\neg \operatorname{Siblings}(x, x)$
- Sisters are female, brothers are male
- $\forall x, y . \quad((\operatorname{Sisters}(x, y) \rightarrow($ Female $(x) \wedge \operatorname{Female}(y))) \wedge$ $(\operatorname{Brothers}(x, y) \rightarrow(\operatorname{Male}(x) \wedge \operatorname{Male}(y))))$
- Every married person has a spouse
- $\forall x$. $((\operatorname{Person}(x) \wedge \operatorname{Married}(x)) \rightarrow \exists y$. Spouse $(x, y))$
- Married people have spouses
- $\forall x$. $((\operatorname{Person}(x) \wedge \operatorname{Married}(x)) \rightarrow \exists y$. Spouse $(x, y))$
- Only married people have spouses
- $\forall x, y$. $\quad((\operatorname{Person}(x) \wedge \operatorname{Person}(y) \wedge \operatorname{Spouse}(x, y)) \rightarrow$ $(\operatorname{Married}(x) \wedge \operatorname{Married}(y)))$
- People cannot be married to their siblings
- $\forall x, y$. (Spouse $(x, y) \rightarrow \neg \operatorname{Siblings}(x, y))$

Example (cont.)

- Not everybody has a spouse

- Everybody has a mother and only one

Example (cont.)

- Not everybody has a spouse
- $\neg \forall x$. $(\operatorname{Person}(x) \rightarrow \exists y$. $\operatorname{Spouse}(x, y))$ or
- Everybody has a mother
- Everybody has a mother and only one

Example (cont.)

- Not everybody has a spouse
- $\neg \forall x$. $(\operatorname{Person}(x) \rightarrow \exists y$. Spouse $(x, y))$ or
- $\exists x$. $(\operatorname{Person}(x) \wedge \neg \exists y$. Spouse $(x, y))$
- Everybody has a mother
- Everybody has a mother and only one

Example (cont.)

- Not everybody has a spouse
- $\neg \forall x$. $(\operatorname{Person}(x) \rightarrow \exists y$. Spouse $(x, y))$ or
- $\exists x$. $(\operatorname{Person}(x) \wedge \neg \exists y$. Spouse $(x, y))$
- Everybody has a mother
- Everybody has a mother and only one

Example (cont.)

- Not everybody has a spouse
- $\neg \forall x$. $(\operatorname{Person}(x) \rightarrow \exists y$. Spouse $(x, y))$ or
- $\exists x$. $(\operatorname{Person}(x) \wedge \neg \exists y$. Spouse $(x, y))$
- Everybody has a mother
- $\forall x$. $(\operatorname{Person}(x) \rightarrow \exists y$. Mother $(y, x))$
- Everybody has a mother and only one

Example (cont.)

- Not everybody has a spouse
- $\neg \forall x$. $(\operatorname{Person}(x) \rightarrow \exists y$. Spouse $(x, y))$ or
- $\exists x$. $(\operatorname{Person}(x) \wedge \neg \exists y$. Spouse $(x, y))$
- Everybody has a mother
- $\forall x$. $(\operatorname{Person}(x) \rightarrow \exists y$. Mother $(y, x))$
- Everybody has a mother and only one

Example (cont.)

- Not everybody has a spouse
- $\neg \forall x$. $(\operatorname{Person}(x) \rightarrow \exists y$. $\operatorname{Spouse}(x, y))$ or
- $\exists x$. $(\operatorname{Person}(x) \wedge \neg \exists y$. Spouse $(x, y))$
- Everybody has a mother
- $\forall x$. $(\operatorname{Person}(x) \rightarrow \exists y$. Mother $(y, x))$
- Everybody has a mother and only one

$$
\text { - } \begin{aligned}
\forall x . \operatorname{Person}(x) \rightarrow & (\exists y . \operatorname{Mother}(y, x) \wedge \\
& \neg \exists z . \quad(\neg(y=z) \wedge \operatorname{Mother}(z, x)))
\end{aligned}
$$

Properties of Quantifiers

Notation variants: $\forall x(\forall y . \alpha) \Longleftrightarrow \forall x \forall y . \alpha \Longleftrightarrow \forall x, y . \alpha \Longleftrightarrow \forall x y . \alpha$ (same with \exists)

- if x does not occur in $\varphi, \forall x . \varphi$ equivalent to $\exists x . \varphi$ equivalent to φ - $\forall x y . P(x, y)$ equivalent to $\forall y x . P(x, y)$
- $\exists x y . P(x, y)$ equivalent to $\exists y x . P(x, y)$
- ex: $\exists x y$. Twins (x, y) same as $\exists y x$. Twins (x, y)
- $\exists x \forall y . P(x, y)$ not equivalent to $\forall y \exists x . P(x, y)$
- ex: $\forall y \exists x$.Father (x, y) much weaker than $\exists x \forall y$.Father (x, y) "everybody has a father" vs. "exists a father of everybody"

Properties of Quantifiers

Notation variants: $\forall x(\forall y . \alpha) \Longleftrightarrow \forall x \forall y . \alpha \Longleftrightarrow \forall x, y . \alpha \Longleftrightarrow \forall x y . \alpha$ (same with \exists)

- if x does not occur in $\varphi, \forall x . \varphi$ equivalent to $\exists x . \varphi$ equivalent to φ

"everybody has a father" vs. "exists a father of everybody"

Properties of Quantifiers

Notation variants: $\forall x(\forall y . \alpha) \Longleftrightarrow \forall x \forall y . \alpha \Longleftrightarrow \forall x, y . \alpha \Longleftrightarrow \forall x y . \alpha$ (same with \exists)

- if x does not occur in $\varphi, \forall x . \varphi$ equivalent to $\exists x . \varphi$ equivalent to φ
- $\forall x y . P(x, y)$ equivalent to $\forall y x . P(x, y)$
- ex: $\forall x y .(x<y)$ same as $\forall y x .(x<y)$

Properties of Quantifiers

Notation variants: $\forall x(\forall y . \alpha) \Longleftrightarrow \forall x \forall y . \alpha \Longleftrightarrow \forall x, y . \alpha \Longleftrightarrow \forall x y . \alpha$ (same with \exists)

- if x does not occur in $\varphi, \forall x . \varphi$ equivalent to $\exists x . \varphi$ equivalent to φ
- $\forall x y . P(x, y)$ equivalent to $\forall y x . P(x, y)$
- ex: $\forall x y .(x<y)$ same as $\forall y x .(x<y)$
- $\exists x y . P(x, y)$ equivalent to $\exists y x . P(x, y)$
- ex: $\exists x y$.Twins (x, y) same as $\exists y x$.Twins (x, y)

Properties of Quantifiers

Notation variants: $\forall x(\forall y . \alpha) \Longleftrightarrow \forall x \forall y . \alpha \Longleftrightarrow \forall x, y . \alpha \Longleftrightarrow \forall x y . \alpha$ (same with \exists)

- if x does not occur in $\varphi, \forall x . \varphi$ equivalent to $\exists x . \varphi$ equivalent to φ
- $\forall x y . P(x, y)$ equivalent to $\forall y x . P(x, y)$
- ex: $\forall x y .(x<y)$ same as $\forall y x .(x<y)$
- $\exists x y . P(x, y)$ equivalent to $\exists y x . P(x, y)$
- ex: $\exists x y$.Twins (x, y) same as $\exists y x$.Twins (x, y)
- $\exists x \forall y . P(x, y)$ not equivalent to $\forall y \exists x . P(x, y)$
- ex: $\forall y \exists x$.Father (x, y) much weaker than $\exists x \forall y$.Father (x, y) "everybody has a father" vs. "exists a father of everybody"

Duality of Universal and Existential Quantification

- \forall and \exists are dual
- $\forall x . \alpha \Longleftrightarrow \neg \exists x . \neg \alpha$
- $\neg \forall x . \alpha \Longleftrightarrow \exists x . \neg \alpha$
- $\exists x . \alpha \Longleftrightarrow \neg \forall x . \neg \alpha$
- $\neg \exists x . \alpha \Longleftrightarrow \forall x . \neg \alpha$
- Examples
- $\forall x . \operatorname{Likes}(x$, Icecream) equivalent to $\neg \exists x$. $\neg \operatorname{Likes}(x$, Icecream)
- $\exists x$.Likes $(x$, Broccoli) equivalent to $\neg \forall x$. $\neg \operatorname{Likes}(x$, Broccoli)
- Negated restricted quantifiers switch " \rightarrow " with " \wedge "
- $\forall x \cdot(P(x) \rightarrow \alpha) \Longleftrightarrow \neg \exists x .(P(x) \wedge \neg \alpha)$
- $\neg \forall x .(P(x) \rightarrow \alpha) \Longleftrightarrow \exists x .(P(x) \wedge \neg \alpha)$
- Ex: "not all kings are evil" same as "some king is not evil" $-\neg \forall x .(\operatorname{King}(x) \rightarrow \operatorname{Evil}(x)) \Longleftrightarrow \exists x .(\operatorname{King}(x) \wedge \neg E v i l(x))$
- Unsurprising, since $\langle\forall, \exists\rangle$ are $\langle\wedge, \vee\rangle$ over infinite instantiations

Duality of Universal and Existential Quantification

- \forall and \exists are dual
- $\forall x . \alpha \Longleftrightarrow \neg \exists x . \neg \alpha$
- $\neg \forall x . \alpha \Longleftrightarrow \exists x . \neg \alpha$
- $\exists x . \alpha \Longleftrightarrow \neg \forall x . \neg \alpha$
- $\neg \exists x . \alpha \Longleftrightarrow \forall x . \neg \alpha$
- Examples
- $\forall x$. Likes $(x$, Icecream) equivalent to $\neg \exists x . \neg \operatorname{Likes(~} x$, Icecream)
- $\exists x$.Likes(x, Broccoli) equivalent to $\neg \forall x$. \neg Likes(x, Broccoli)
- Negated restricted quantifiers switch

- Ex: "not all kings are evil" same as "some king is not evil" - $\neg \forall x$. $(\operatorname{King}(x) \rightarrow \operatorname{Evil}(x)) \Longleftrightarrow \exists x$. $(\operatorname{King}(x) \wedge \neg \operatorname{Evil}(x))$

Duality of Universal and Existential Quantification

- \forall and \exists are dual
- $\forall x . \alpha \Longleftrightarrow \neg \exists x . \neg \alpha$
- $\neg \forall x . \alpha \Longleftrightarrow \exists x . \neg \alpha$
- $\exists x . \alpha \Longleftrightarrow \neg \forall x . \neg \alpha$
- $\neg \exists x . \alpha \Longleftrightarrow \forall x . \neg \alpha$
- Examples
- $\forall x$. Likes $(x$, Icecream) equivalent to $\neg \exists x . \neg$ Likes(x, Icecream)
- $\exists x$.Likes(x, Broccoli) equivalent to $\neg \forall x$. \neg Likes(x, Broccoli)
- Negated restricted quantifiers switch " \rightarrow " with " \wedge "
- $\forall x .(P(x) \rightarrow \alpha) \Longleftrightarrow \neg \exists x .(P(x) \wedge \neg \alpha)$
- $\neg \forall x .(P(x) \rightarrow \alpha) \Longleftrightarrow \exists x .(P(x) \wedge \neg \alpha)$
- ...
- Ex: "not all kings are evil" same as "some king is not evil"

Duality of Universal and Existential Quantification

- \forall and \exists are dual
- $\forall x . \alpha \Longleftrightarrow \neg \exists x . \neg \alpha$
- $\neg \forall x . \alpha \Longleftrightarrow \exists x . \neg \alpha$
- $\exists x . \alpha \Longleftrightarrow \neg \forall x . \neg \alpha$
- $\neg \exists x . \alpha \Longleftrightarrow \forall x . \neg \alpha$
- Examples
- $\forall x$. Likes $(x$, Icecream) equivalent to $\neg \exists x . \neg$ Likes(x, Icecream)
- $\exists x$.Likes(x, Broccoli) equivalent to $\neg \forall x$. \neg Likes(x, Broccoli)
- Negated restricted quantifiers switch " \rightarrow " with " \wedge "
- $\forall x .(P(x) \rightarrow \alpha) \Longleftrightarrow \neg \exists x .(P(x) \wedge \neg \alpha)$
- $\neg \forall x .(P(x) \rightarrow \alpha) \Longleftrightarrow \exists x .(P(x) \wedge \neg \alpha)$
- ...
- Ex: "not all kings are evil" same as "some king is not evil"
$\bullet \neg \forall x$. $(\operatorname{King}(x) \rightarrow \operatorname{Evil}(x)) \Longleftrightarrow \exists x$. $(\operatorname{King}(x) \wedge \neg \operatorname{Evil}(x))$

Duality of Universal and Existential Quantification

- \forall and \exists are dual
- $\forall x . \alpha \Longleftrightarrow \neg \exists x . \neg \alpha$
- $\neg \forall x . \alpha \Longleftrightarrow \exists x . \neg \alpha$
- $\exists x . \alpha \Longleftrightarrow \neg \forall x . \neg \alpha$
- $\neg \exists x . \alpha \Longleftrightarrow \forall x . \neg \alpha$
- Examples
- $\forall x$. Likes $(x$, Icecream) equivalent to $\neg \exists x . \neg$ Likes(x, Icecream)
- $\exists x$.Likes(x, Broccoli) equivalent to $\neg \forall x$. \neg Likes(x, Broccoli)
- Negated restricted quantifiers switch " \rightarrow " with " \wedge "
- $\forall x .(P(x) \rightarrow \alpha) \Longleftrightarrow \neg \exists x .(P(x) \wedge \neg \alpha)$
- $\neg \forall x .(P(x) \rightarrow \alpha) \Longleftrightarrow \exists x .(P(x) \wedge \neg \alpha)$
- ...
- Ex: "not all kings are evil" same as "some king is not evil"
$\bullet \neg \forall x$. $(\operatorname{King}(x) \rightarrow \operatorname{Evil}(x)) \Longleftrightarrow \exists x$. $(\operatorname{King}(x) \wedge \neg \operatorname{Evil}(x))$
- Unsurprising, since $\langle\forall, \exists\rangle$ are $\langle\wedge, \vee\rangle$ over infinite instantiations

Outline

(1) First-Order Logic

- Generalities
- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(2) Basic First-Order Reasoning
- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(3) Resolution-based First-Order Reasoning
- CNF-Ization
- Resolution
- Dealing with Equalities
- A Complete Example

Satisfiability, Validity, Entailment

- A model $\mathcal{M} \stackrel{\text { def }}{=}\langle\mathcal{D}, \mathcal{I}\rangle$ satisfies $\varphi(\mathcal{M} \models \varphi)$ iff $\llbracket \varphi \rrbracket^{\mathcal{I}}$ is true
- $M(\varphi) \stackrel{\text { def }}{=}\{\mathcal{M} \mid \mathcal{M} \models \varphi\}$ (the set of models of φ)
φ is satisfiable iff $\mathcal{M}=\varphi$ for some \mathcal{M} (i.e. $M(\varphi) \neq \emptyset$)
(i.e., $M(\alpha) \subseteq M(\beta)$)
- φ is valid $(\models \varphi)$ iff $\mathcal{M} \vDash \varphi$ forall \mathcal{M} s (i.e., $\mathcal{M} \in M(\varphi)$ forall $\mathcal{M} s$)
- α, β are equivalent iff $\alpha=\beta$ and $\beta=\alpha$ (i.e. $M(\alpha)=M(\beta)$)

Sets of formulas as conjunctions Let $\Gamma \stackrel{\text { def }}{=}\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$. Then:
$\bullet \Gamma$ satisfiable iff $\bigwedge_{i=1}^{n} \varphi_{i}$ satisfiable

- 「 $\models \phi$ iff $\bigwedge_{i=1}^{n} \varphi_{i} \models \phi$- 「 valid iff $\bigwedge_{i=1}^{n} \varphi_{i}$ valid

Satisfiability, Validity, Entailment

- A model $\mathcal{M} \stackrel{\text { def }}{=}\langle\mathcal{D}, \mathcal{I}\rangle$ satisfies $\varphi(\mathcal{M} \models \varphi)$ iff $\llbracket \varphi \rrbracket^{\mathcal{I}}$ is true
- $M(\varphi) \stackrel{\text { def }}{=}\{\mathcal{M} \mid \mathcal{M} \models \varphi\}$ (the set of models of φ)
- φ is satisfiable iff $\mathcal{M} \models \varphi$ for some \mathcal{M} (i.e. $M(\varphi) \neq \emptyset$)
(i.e., $M(\alpha) \subseteq M(\beta)$)

Satisfiability，Validity，Entailment

－A model $\mathcal{M} \stackrel{\text { def }}{=}\langle\mathcal{D}, \mathcal{I}\rangle$ satisfies $\varphi(\mathcal{M} \models \varphi)$ iff $\llbracket \varphi \rrbracket^{\mathcal{I}}$ is true
－$M(\varphi) \stackrel{\text { def }}{=}\{\mathcal{M} \mid \mathcal{M} \models \varphi\}$（the set of models of φ ）
－φ is satisfiable iff $\mathcal{M} \models \varphi$ for some \mathcal{M}（i．e．$M(\varphi) \neq \emptyset$ ）
－α entails $\beta(\alpha \models \beta)$ iff，for all $\mathcal{M}, \mathcal{M} \models \alpha \Longrightarrow \mathcal{M} \vDash \beta$ （i．e．，$M(\alpha) \subseteq M(\beta)$ ）

- 「 satisfiable iff $\bigwedge_{i=1}^{n} \varphi_{i}$ satisfiable
- 「 $\models \phi$ iff $\bigwedge_{i-1}^{n} \varphi_{i} \models \phi$
- 「 valid iff $\bigwedge_{i=1}^{n} \varphi_{i}$ valid

Satisfiability, Validity, Entailment

- A model $\mathcal{M} \stackrel{\text { def }}{=}\langle\mathcal{D}, \mathcal{I}\rangle$ satisfies $\varphi(\mathcal{M} \models \varphi)$ iff $\llbracket \varphi \rrbracket^{\mathcal{I}}$ is true
- $M(\varphi) \stackrel{\text { def }}{=}\{\mathcal{M} \mid \mathcal{M} \models \varphi\}$ (the set of models of φ)
- φ is satisfiable iff $\mathcal{M} \models \varphi$ for some \mathcal{M} (i.e. $M(\varphi) \neq \emptyset$)
- α entails $\beta(\alpha \models \beta)$ iff, for all $\mathcal{M}, \mathcal{M} \models \alpha \Longrightarrow \mathcal{M} \vDash \beta$
(i.e., $M(\alpha) \subseteq M(\beta)$)
- φ is valid $(\models \varphi)$ iff $\mathcal{M} \models \varphi$ forall \mathcal{M} s (i.e., $\mathcal{M} \in M(\varphi)$ forall \mathcal{M} s)

Satisfiability, Validity, Entailment

- A model $\mathcal{M} \stackrel{\text { def }}{=}\langle\mathcal{D}, \mathcal{I}\rangle$ satisfies $\varphi(\mathcal{M} \models \varphi)$ iff $\llbracket \varphi \rrbracket^{\mathcal{I}}$ is true
- $M(\varphi) \stackrel{\text { def }}{=}\{\mathcal{M} \mid \mathcal{M} \models \varphi\}$ (the set of models of φ)
- φ is satisfiable iff $\mathcal{M} \models \varphi$ for some \mathcal{M} (i.e. $M(\varphi) \neq \emptyset$)
- α entails $\beta(\alpha \models \beta)$ iff, for all $\mathcal{M}, \mathcal{M} \models \alpha \Longrightarrow \mathcal{M} \vDash \beta$ (i.e., $M(\alpha) \subseteq M(\beta)$)
- φ is valid $(\models \varphi)$ iff $\mathcal{M} \models \varphi$ forall \mathcal{M} (i.e., $\mathcal{M} \in M(\varphi)$ forall \mathcal{M} s)
- α, β are equivalent iff $\alpha \models \beta$ and $\beta \models \alpha$ (i.e. $M(\alpha)=M(\beta)$)

Satisfiability，Validity，Entailment

－A model $\mathcal{M} \stackrel{\text { def }}{=}\langle\mathcal{D}, \mathcal{I}\rangle$ satisfies $\varphi(\mathcal{M} \models \varphi)$ iff $\llbracket \varphi \rrbracket^{\mathcal{I}}$ is true
－$M(\varphi) \stackrel{\text { def }}{=}\{\mathcal{M} \mid \mathcal{M} \models \varphi\}$（the set of models of φ ）
－φ is satisfiable iff $\mathcal{M} \models \varphi$ for some \mathcal{M}（i．e．$M(\varphi) \neq \emptyset$ ）
－α entails $\beta(\alpha \models \beta)$ iff，for all $\mathcal{M}, \mathcal{M} \models \alpha \Longrightarrow \mathcal{M} \vDash \beta$ （i．e．，$M(\alpha) \subseteq M(\beta)$ ）
－φ is valid $(\models \varphi)$ iff $\mathcal{M} \vDash \varphi$ forall \mathcal{M}（i．e．， $\mathcal{M} \in M(\varphi)$ forall \mathcal{M} s）
－α, β are equivalent iff $\alpha \models \beta$ and $\beta \models \alpha$（i．e．$M(\alpha)=M(\beta)$ ）

Sets of formulas as conjunctions

Let $\Gamma \stackrel{\text { det }}{=}\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ ．Then：

- 「 satisfiable iff $\bigwedge_{i=1}^{n} \varphi_{i}$ satisfiable
- 「 $\models \phi$ iff $\bigwedge_{i=1}^{n} \varphi_{i} \models \phi$
- 「 valid iff $\bigwedge_{i=1}^{n} \varphi_{i}$ valid

Properties \& Results

Property

φ is valid iff $\neg \varphi$ is unsatisfiable

Deduction Theorem

\square

Corollary
$\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ is unsatisfiable

Validity and entailment checking can be straightforwardly reduced to (un)satisfiability checking!

Properties \& Results

Property

φ is valid iff $\neg \varphi$ is unsatisfiable

Deduction Theorem

$\alpha \models \beta$ iff $\alpha \rightarrow \beta$ is valid $(\models \alpha \rightarrow \beta)$

Corollary
$\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ is unsatisfiable

Validity and entailment checking can be straightforwardly reduced to (un)satisfiability checking!

Properties \& Results

Property

φ is valid iff $\neg \varphi$ is unsatisfiable

Deduction Theorem

$\alpha \models \beta$ iff $\alpha \rightarrow \beta$ is valid $(\models \alpha \rightarrow \beta)$
Corollary
$\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ is unsatisfiable

Validity and entailment checking can be straightforwardly reduced to (un)satisfiability checking!

Properties \& Results

Property
 φ is valid iff $\neg \varphi$ is unsatisfiable

Deduction Theorem
$\alpha \models \beta$ iff $\alpha \rightarrow \beta$ is valid $(=\alpha \rightarrow \beta)$
Corollary
$\alpha \models \beta$ iff $\alpha \wedge \neg \beta$ is unsatisfiable

Validity and entailment checking can be straightforwardly reduced to (un)satisfiability checking!

Basic Definitions and Properties: Examples

- $P(x), \forall x \cdot(x \geq y),\{\forall x \cdot(x \geq 0), \forall x \cdot(x+1>x)\}$ satisfiable

Basic Definitions and Properties: Examples

- $P(x), \forall x \cdot(x \geq y),\{\forall x \cdot(x \geq 0), \forall x \cdot(x+1>x)\}$ satisfiable
- $P(x) \wedge \neg P(x), \neg(x=x), \forall x, y .(Q(x, y)) \rightarrow \neg Q(a, b))$ unsatisfiable

$(1>2)$ is satisfiable. Why?

Basic Definitions and Properties: Examples

- $P(x), \forall x .(x \geq y),\{\forall x .(x \geq 0), \forall x .(x+1>x)\}$ satisfiable
- $P(x) \wedge \neg P(x), \neg(x=x), \forall x, y .(Q(x, y)) \rightarrow \neg Q(a, b))$ unsatisfiable
- $\forall x . P(x) \rightarrow \exists x . P(x)$ valid

$(1>2)$ is satisfiable. Why?

Basic Definitions and Properties: Examples

- $P(x), \forall x \cdot(x \geq y),\{\forall x \cdot(x \geq 0), \forall x \cdot(x+1>x)\}$ satisfiable
- $P(x) \wedge \neg P(x), \neg(x=x), \forall x, y .(Q(x, y)) \rightarrow \neg Q(a, b))$ unsatisfiable
- $\forall x . P(x) \rightarrow \exists x . P(x)$ valid
- $\forall x . P(x) \models \exists x . P(x)$

- $\forall x . P(x) \wedge \neg \exists x . P(x))$ unsatisfiable

Basic Definitions and Properties: Examples

- $P(x), \forall x \cdot(x \geq y),\{\forall x \cdot(x \geq 0), \forall x \cdot(x+1>x)\}$ satisfiable
- $P(x) \wedge \neg P(x), \neg(x=x), \forall x, y .(Q(x, y)) \rightarrow \neg Q(a, b))$ unsatisfiable
- $\forall x . P(x) \rightarrow \exists x . P(x)$ valid
- $\forall x . P(x) \models \exists x . P(x)$
- $\neg(\forall x . P(x)) \rightarrow \exists x . P(x))$ unsatisfiable

$(1>2)$ is satisfiable. Why?

Basic Definitions and Properties: Examples

- $P(x), \forall x \cdot(x \geq y),\{\forall x \cdot(x \geq 0), \forall x \cdot(x+1>x)\}$ satisfiable
- $P(x) \wedge \neg P(x), \neg(x=x), \forall x, y(Q(x, y)) \rightarrow \neg Q(a, b))$ unsatisfiable
- $\forall x . P(x) \rightarrow \exists x . P(x)$ valid
- $\forall x . P(x) \models \exists x . P(x)$
- $\neg(\forall x . P(x)) \rightarrow \exists x . P(x))$ unsatisfiable
- $\forall x \cdot P(x) \wedge \neg \exists x \cdot P(x))$ unsatisfiable

Basic Definitions and Properties: Examples

- $P(x), \forall x \cdot(x \geq y),\{\forall x \cdot(x \geq 0), \forall x \cdot(x+1>x)\}$ satisfiable
- $P(x) \wedge \neg P(x), \neg(x=x), \forall x, y .(Q(x, y)) \rightarrow \neg Q(a, b))$ unsatisfiable
- $\forall x . P(x) \rightarrow \exists x . P(x)$ valid
- $\forall x . P(x) \models \exists x . P(x)$
- $\neg(\forall x . P(x)) \rightarrow \exists x . P(x))$ unsatisfiable
- $\forall x . P(x) \wedge \neg \exists x . P(x))$ unsatisfiable
$(1>2)$ is satisfiable. Why?

Exercises

- Is $\forall x . P(x)$ equivalent to $\forall y . P(y)$?
- Is $\forall x y . P(x, y)$ equivalent to $\forall y x . P(y, x)$?
- $\forall x . \exists x . P(x)$ is equivalent to:
- $\exists x . P(x)$
- $\forall x . P(x)$
- neither
- $\exists x . \forall x . P(x)$ is equivalent to:
- $\exists x . P(x)$
- $\forall x . P(x)$
- neither

Enumeration of Models?

- We can enumerate the models for a given FOL sentence:

For each number of universe elements n from 1 to ∞
For each k-ary predicate P_{k} in the sentence
For each possible k-ary relation on n objects
For each constant symbol C in the sentence For each one of n objects C is mapped to
$0 \Longrightarrow$ Enumerating models is not going to be easy!

Enumeration of Models?

- We can enumerate the models for a given FOL sentence:

For each number of universe elements n from 1 to ∞
For each k-ary predicate P_{k} in the sentence For each possible k-ary relation on n objects For each constant symbol C in the sentence For each one of n objects C is mapped to

- \Longrightarrow Enumerating models is not going to be easy!

Semi-decidability of FOL

Theorem

Entailment (validity, unsatisfiability) in FOL is only semi-decidable:

- if $\Gamma \models \alpha$, this can be checked in finite time
- if $\Gamma \not \vDash \alpha$, no algorithm is guaranteed to check it in finite time

Semi-decidability of FOL

Theorem

Entailment (validity, unsatisfiability) in FOL is only semi-decidable:

- if $\Gamma \models \alpha$, this can be checked in finite time
- if $\Gamma \not \vDash \alpha$, no algorithm is guaranteed to check it in finite time

Outline

(1) First-Order Logic

- Generalities
- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(2) Basic First-Order Reasoning
- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(3) Resolution-based First-Order Reasoning
- CNF-Ization
- Resolution
- Dealing with Equalities
- A Complete Example

Outline

(1) First-Order Logic

- Generalities
- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(2) Basic First-Order Reasoning
- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(3) Resolution-based First-Order Reasoning
- CNF-Ization
- Resolution
- Dealing with Equalities
- A Complete Example

Term/Subformula Substitutions

Notation

- Substitution: "Subst($\left.\left\{e_{1} / e_{2}\right\}, e\right)$ " or "e\{ $\left.e_{1} / e_{2}\right\}$ ": the expression (term or formula) obtained by substituting every occurrence of e_{1} with e_{2} in e
- e_{1}, e_{2} either both terms (term substitution) or both subformulas (subformula substitution)
- e is either a term or a formula (only term for term substitution)

- Examples:

- If θ is a substitution list and e an expression (formula/term), then we denote the result of a substitution as e θ

Term/Subformula Substitutions

Notation

- Substitution: "Subst($\left.\left\{e_{1} / e_{2}\right\}, e\right)$ " or "e\{ $\left.e_{1} / e_{2}\right\}$ ": the expression (term or formula) obtained by substituting every occurrence of e_{1} with e_{2} in e
- e_{1}, e_{2} either both terms (term substitution) or both subformulas (subformula substitution)
- e is either a term or a formula (only term for term substitution)
- Examples:
- (t. sub.): $(y+1=1+y)\{y / S(x)\} \Longrightarrow(S(x)+1=1+S(x))$
- (s.f. sub.): $(E v e n(x) \vee \operatorname{Odd}(x))\{\operatorname{Even}(x) / \operatorname{Odd}(S(x))\} \Longrightarrow$ $((\operatorname{Odd}(S(x)) \vee \operatorname{Odd}(x))$
- If θ is a substitution list and e an expression (formula/term), then we denote the result of a substitution as e θ

Term/Subformula Substitutions

Notation

- Substitution: "Subst($\left.\left\{e_{1} / e_{2}\right\}, e\right)$ " or "e\{ $\left.e_{1} / e_{2}\right\}$ ": the expression (term or formula) obtained by substituting every occurrence of e_{1} with e_{2} in e
- e_{1}, e_{2} either both terms (term substitution) or both subformulas (subformula substitution)
- e is either a term or a formula (only term for term substitution)
- Examples:
- (t. sub.): $(y+1=1+y)\{y / S(x)\} \Longrightarrow(S(x)+1=1+S(x))$
- (s.f. sub.): $(E v e n(x) \vee \operatorname{Odd}(x))\{\operatorname{Even}(x) / \operatorname{Odd}(S(x))\} \Longrightarrow$ $((\operatorname{Odd}(S(x)) \vee \operatorname{Odd}(x))$
- Multiple substitution: $e\left\{e_{1} / e_{2}, e_{3} / e_{4}\right\} \stackrel{\text { def }}{=}\left(e\left\{e_{1} / e_{2}\right\}\right)\left\{e_{3} / e_{4}\right\}$
- ex: $(P(x, y) \rightarrow Q(x, y))\{x / 1, y / 2\} \Longrightarrow(P(1,2) \rightarrow Q(1,2))$
- If θ is a substitution list and e an expression (formula/term), then we denote the result of a substitution as e θ

Term/Subformula Substitutions

Notation

- Substitution: "Subst($\left.\left\{e_{1} / e_{2}\right\}, e\right)$ " or "e\{ $\left.e_{1} / e_{2}\right\}$ ": the expression (term or formula) obtained by substituting every occurrence of e_{1} with e_{2} in e
- e_{1}, e_{2} either both terms (term substitution) or both subformulas (subformula substitution)
- e is either a term or a formula (only term for term substitution)
- Examples:
- (t. sub.): $(y+1=1+y)\{y / S(x)\} \Longrightarrow(S(x)+1=1+S(x))$
- (s.f. sub.): $(E v e n(x) \vee \operatorname{Odd}(x))\{\operatorname{Even}(x) / \operatorname{Odd}(S(x))\} \Longrightarrow$ $((\operatorname{Odd}(S(x)) \vee \operatorname{Odd}(x))$
- Multiple substitution: $e\left\{e_{1} / e_{2}, e_{3} / e_{4}\right\} \stackrel{\text { def }}{=}\left(e\left\{e_{1} / e_{2}\right\}\right)\left\{e_{3} / e_{4}\right\}$
- ex: $(P(x, y) \rightarrow Q(x, y))\{x / 1, y / 2\} \Longrightarrow(P(1,2) \rightarrow Q(1,2))$
- If θ is a substitution list and e an expression (formula/term), then we denote the result of a substitution as e θ
- $e \emptyset=e$
- $e\left(\theta_{1} \theta_{2}\right)=\left(e \theta_{1}\right) \theta_{2}$, denoted as $e \theta_{1} \theta_{2}$

Substitution with equivalent terms

Equal-term substitution rule

$$
\frac{\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha}{\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha \wedge \alpha\left\{t_{1} / t_{2}\right\}}
$$

- Ex: $(S(x)=x+1) \wedge(0 \neq S(x)) \Longrightarrow$ $(S(x)=x+1) \wedge(0 \neq S(x)) \wedge(0 \neq x+1)$
- Preserves validity:
$M\left(\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha \wedge \alpha\left\{t_{1} / t_{2}\right\}\right)=M\left(\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha\right)$
- α can be safely dropped from the result

Substitution with equivalent terms

Equal-term substitution rule

$$
\frac{\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha}{\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha \wedge \alpha\left\{t_{1} / t_{2}\right\}}
$$

- Ex: $(S(x)=x+1) \wedge(0 \neq S(x)) \Longrightarrow$ $(S(x)=x+1) \wedge(0 \neq S(x)) \wedge(0 \neq x+1)$
- α can be safely dropped from the result

Substitution with equivalent terms

Equal-term substitution rule

$$
\frac{\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha}{\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha \wedge \alpha\left\{t_{1} / t_{2}\right\}}
$$

- Ex: $(S(x)=x+1) \wedge(0 \neq S(x)) \Longrightarrow$ $(S(x)=x+1) \wedge(0 \neq S(x)) \wedge(0 \neq x+1)$
- Preserves validity:
$M\left(\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha \wedge \alpha\left\{t_{1} / t_{2}\right\}\right)=M\left(\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha\right)$
- α can be safely dropped from the result

Substitution with equivalent terms

Equal-term substitution rule

$$
\frac{\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha}{\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha\left\{t_{1} / t_{2}\right\}}
$$

- Ex: $(S(x)=x+1) \wedge(0 \neq S(x)) \Longrightarrow$ $(S(x)=x+1) \wedge(0 \neq S(x)) \wedge(0 \neq x+1)$
- Preserves validity:
$M\left(\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \wedge \alpha\left\{t_{1} / t_{2}\right\}\right)=M\left(\Gamma \wedge\left(t_{1}=t_{2}\right) \wedge \alpha\right)$
- α can be safely dropped from the result

Substitution with equivalent formulas

Equivalent-subformula substitution rule

$$
\frac{\Gamma \wedge\left(\beta_{1} \leftrightarrow \beta_{2}\right) \wedge \alpha}{\Gamma \wedge\left(\beta_{1} \leftrightarrow \beta_{2}\right) \wedge \alpha \wedge \alpha\left\{\beta_{1} / \beta_{2}\right\}}
$$

- Preserves validity:
$M\left(\Gamma \wedge\left(\beta_{1}=\beta_{2}\right) \wedge \alpha / \alpha\left\{\beta_{1} / \beta_{2}\right\}\right)=M\left(\Gamma \wedge\left(\beta_{1} \leftrightarrow \beta_{2}\right) \wedge \alpha\right)$
- α can be safely dropped from the result

Substitution with equivalent formulas

Equivalent-subformula substitution rule

$$
\frac{\Gamma \wedge\left(\beta_{1} \leftrightarrow \beta_{2}\right) \wedge \alpha}{\Gamma \wedge\left(\beta_{1} \leftrightarrow \beta_{2}\right) \wedge \alpha \wedge \alpha\left\{\beta_{1} / \beta_{2}\right\}}
$$

- Ex: $(E v e n(x) \leftrightarrow \operatorname{Odd}(S(x))) \wedge(E v e n(x) \vee \operatorname{Odd}(x)) \Longrightarrow$ $(\operatorname{Even}(x) \leftrightarrow \operatorname{Odd}(S(x))) \wedge(\operatorname{Even}(x) \vee \operatorname{Odd}(x)) \wedge(\operatorname{Odd}(S(x)) \vee \operatorname{Odd}(x))$
- α can be safely dropped from the result

Substitution with equivalent formulas

Equivalent-subformula substitution rule

$$
\frac{\Gamma \wedge\left(\beta_{1} \leftrightarrow \beta_{2}\right) \wedge \alpha}{\Gamma \wedge\left(\beta_{1} \leftrightarrow \beta_{2}\right) \wedge \alpha \wedge \alpha\left\{\beta_{1} / \beta_{2}\right\}}
$$

- Ex: $(E v e n(x) \leftrightarrow \operatorname{Odd}(S(x))) \wedge(E v e n(x) \vee \operatorname{Odd}(x)) \Longrightarrow$ $(\operatorname{Even}(x) \leftrightarrow \operatorname{Odd}(S(x))) \wedge(\operatorname{Even}(x) \vee \operatorname{Odd}(x)) \wedge(\operatorname{Odd}(S(x)) \vee \operatorname{Odd}(x))$
- Preserves validity:

$$
M\left(\Gamma \wedge\left(\beta_{1}=\beta_{2}\right) \wedge \alpha \wedge \alpha\left\{\beta_{1} / \beta_{2}\right\}\right)=M\left(\Gamma \wedge\left(\beta_{1} \leftrightarrow \beta_{2}\right) \wedge \alpha\right)
$$

- α can be safely dropped from the result

Substitution with equivalent formulas

Equivalent-subformula substitution rule

$$
\frac{\Gamma \wedge\left(\beta_{1} \leftrightarrow \beta_{2}\right) \wedge \alpha}{\Gamma \wedge\left(\beta_{1} \leftrightarrow \beta_{2}\right) \wedge \wedge\left\{\beta_{1} / \beta_{2}\right\}}
$$

- Ex: $(E v e n(x) \leftrightarrow \operatorname{Odd}(S(x))) \wedge(E v e n(x) \vee \operatorname{Odd}(x)) \Longrightarrow$ $(E v e n(x) \leftrightarrow \operatorname{Odd}(S(x))) \wedge(E v e n(x) \vee \operatorname{Odd}(x)) \wedge(\operatorname{Odd}(S(x)) \vee \operatorname{Odd}(x))$
- Preserves validity:

$$
M\left(\Gamma \wedge\left(\beta_{1}=\beta_{2}\right) \wedge \wedge \alpha\left\{\beta_{1} / \beta_{2}\right\}\right)=M\left(\Gamma \wedge\left(\beta_{1} \leftrightarrow \beta_{2}\right) \wedge \alpha\right)
$$

- α can be safely dropped from the result

Universal Instantiation (UI)

- Every instantiation of a universally quantified-sentence is entailed by it:

$$
\frac{\Gamma \wedge \forall x \cdot \alpha}{\Gamma \wedge \forall x \cdot \alpha \wedge \alpha\{x / t\}}
$$

for every variable x and term t

- Ex: $\forall x$. $((\operatorname{King}(x) \wedge \operatorname{Greedy}(x)) \rightarrow \operatorname{Evil}(x))$
- (King(John) \wedge Greedy (John)) \rightarrow Evil(John)
- (King (Richard) \wedge Greedy (Richard)) \rightarrow Evil(Richard)
- (King(Father(John)) \wedge Greedy (Father(John))) \rightarrow Evil(Father(John))
- (King (Father $($ Father $(J o h n))) \wedge$ Greedy $($ Father $($ Father $(J o h n)))) \rightarrow$ Evil(Father(Father(John)))
- Preserves validity:

Universal Instantiation (UI)

- Every instantiation of a universally quantified-sentence is entailed by it:

$$
\frac{\Gamma \wedge \forall x \cdot \alpha}{\Gamma \wedge \forall x \cdot \alpha \wedge \alpha\{x / t\}}
$$

for every variable x and term t

- Ex: $\forall x$. $((\operatorname{King}(x) \wedge \operatorname{Greed} y(x)) \rightarrow \operatorname{Evil}(x))$
- (King(John) \wedge Greedy (John)) \rightarrow Evil(John)
- $($ King $($ Richard $) \wedge$ Greedy (Richard) $) \rightarrow$ Evil(Richard)
- $($ King $($ Father $($ John $)) \wedge$ Greedy $($ Father $(J o h n))) \rightarrow$ Evil(Father(John))
- (King $($ Father (Father(John))) $) \wedge$ Greedy (Father (Father(John)))) \rightarrow Evil(Father(Father(John)))
- ...

Universal Instantiation (UI)

- Every instantiation of a universally quantified-sentence is entailed by it:

$$
\frac{\Gamma \wedge \forall x \cdot \alpha}{\Gamma \wedge \forall x \cdot \alpha \wedge \alpha\{x / t\}}
$$

for every variable x and term t

- Ex: $\forall x$. $((\operatorname{King}(x) \wedge \operatorname{Greed}(x)) \rightarrow \operatorname{Evil}(x))$
- (King(John) \wedge Greedy (John)) \rightarrow Evil(John)
- $($ King $($ Richard $) \wedge$ Greedy (Richard) $) \rightarrow$ Evil(Richard)
- $($ King $($ Father $($ John $)) \wedge$ Greedy $($ Father $(J o h n))) \rightarrow$ Evil(Father(John))
- $($ King $($ Father $($ Father $(J o h n))) \wedge$ Greedy $($ Father $($ Father $(J o h n)))) \rightarrow$ Evil(Father(Father(John)))
- ...
- Preserves validity:
$M(\Gamma \wedge \forall x . \alpha \wedge \alpha\{x / t\})=M(\Gamma \wedge \forall x . \alpha)$

Universal Instantiation (UI)

- Every instantiation of a universally quantified-sentence is entailed by it:

$$
\frac{\Gamma \wedge \forall x \cdot \alpha}{\Gamma \wedge \forall x \cdot \alpha \wedge \alpha\{x / t\}}
$$

for every variable x and term t

- Ex: $\forall(x .(\operatorname{King}(x) \wedge \operatorname{Greed}(x)) \rightarrow \operatorname{Evil}(x))$
- (King(John) \wedge Greedy (John)) \rightarrow Evil(John)
- (King (Richard) \wedge Greedy (Richard)) \rightarrow Evil(Richard)
- (King(Father(John)) \wedge Greedy (Father(John))) \rightarrow Evil(Father(John))
- (King (Father (Father (John))) \wedge Greedy $($ Father $($ Father $(J o h n)))) \rightarrow$ Evil(Father(Father(John)))
- Preserves validity:

Universal Instantiation (UI)

- Every instantiation of a universally quantified-sentence is entailed by it:

$$
\frac{\Gamma \wedge \forall x \cdot \alpha}{\Gamma \wedge \forall x \cdot \alpha \wedge \alpha\{x / t\}}
$$

for every variable x and term t

- Ex: $\forall(x .(\operatorname{King}(x) \wedge \operatorname{Greed} y(x)) \rightarrow \operatorname{Evil}(x))$
- (King(John) \wedge Greedy (John)) \rightarrow Evil(John)
- $($ King $($ Richard $) \wedge$ Greedy (Richard) $) \rightarrow$ Evil(Richard)
- $($ King $($ Father $($ John $)) \wedge$ Greedy $($ Father $(J o h n))) \rightarrow$ Evil(Father(John))
- $($ King $($ Father $($ Father $(J o h n))) \wedge$ Greedy $($ Father $($ Father $(J o h n)))) \rightarrow$ Evil(Father(Father(John)))
- ...

Universal Instantiation (UI)

- Every instantiation of a universally quantified-sentence is entailed by it:

$$
\frac{\Gamma \wedge \forall x \cdot \alpha}{\Gamma \wedge \forall x \cdot \alpha \wedge \alpha\{x / t\}}
$$

for every variable x and term t

- Ex: $\forall(x .(\operatorname{King}(x) \wedge \operatorname{Greed} y(x)) \rightarrow \operatorname{Evil}(x))$
- (King(John) \wedge Greedy (John)) \rightarrow Evil(John)
- $($ King $($ Richard $) \wedge$ Greedy (Richard) $) \rightarrow$ Evil(Richard)
- $($ King $($ Father $($ John $)) \wedge$ Greedy $($ Father $(J o h n))) \rightarrow$ Evil(Father(John))
- $($ King $($ Father $($ Father $(J o h n))) \wedge$ Greedy $($ Father $($ Father $(J o h n)))) \rightarrow$ Evil(Father(Father(John)))
- ...
- Preserves validity:

$$
M(\Gamma \wedge \forall x . \alpha \wedge \alpha\{x / t\})=M(\Gamma \wedge \forall x . \alpha)
$$

Existential Instantiation (EI)

- An existentially quantified-sentence can be substituted by one of its instantation with a fresh constant:

$$
\frac{\Gamma \wedge \exists x \cdot \alpha}{\Gamma \wedge \alpha\{x / C\}}
$$

for every variable x and for a "fresh" constant C, i.e. a constant which does not appear in $\Gamma \wedge \exists x . \alpha$

- C is a Skolem constant, El subcase of Skolemization (see later)
- Intuition: if there is an object satisfying some condition, then we give a (new) name to such object

- (Crown $(C) \wedge$ OnHead(C, John))
- given "There is a crown on John's head", I call "C" such crown
- Preserves satisfiability (aka preserves inferential equivalence) (i.e.. (Г \square for every β)

Existential Instantiation (EI)

- An existentially quantified-sentence can be substituted by one of its instantation with a fresh constant:

$$
\frac{\Gamma \wedge \exists x \cdot \alpha}{\Gamma \wedge \alpha\{x / C\}}
$$

for every variable x and for a "fresh" constant C, i.e. a constant which does not appear in $\lceil\wedge \exists x . \alpha$

- C is a Skolem constant, El subcase of Skolemization (see later)
- Intuition: if there is an object satisfying some condition, then we give a (new) name to such object

\square

Existential Instantiation (EI)

- An existentially quantified-sentence can be substituted by one of its instantation with a fresh constant:

$$
\frac{\Gamma \wedge \exists x \cdot \alpha}{\Gamma \wedge \alpha\{x / C\}}
$$

for every variable x and for a "fresh" constant C, i.e. a constant which does not appear in $\lceil\wedge \exists x . \alpha$

- C is a Skolem constant, El subcase of Skolemization (see later)
- Intuition: if there is an object satisfying some condition, then we give a (new) name to such object
- Ex: $\exists x .(\operatorname{Crown}(x) \wedge \operatorname{OnHead}(x$, John $))$
- $(\operatorname{Crown}(C) \wedge \operatorname{OnHead}(C$, John $))$
- given "There is a crown on John's head", I call "C" such crown
\square - Preserves satisfiability (aka preserves inferential equiv
$M(\Gamma \wedge \alpha\{x / C\}) \neq \emptyset$ iff $M(\Gamma \wedge \exists x . \alpha) \neq \emptyset$
$($ i.e.. $(\Gamma \wedge \alpha\{x / C\}) \mid=\beta$ iff $(\Gamma \wedge \exists x . \alpha)=\beta$, for every β)

Existential Instantiation (EI)

- An existentially quantified-sentence can be substituted by one of its instantation with a fresh constant:

$$
\frac{\Gamma \wedge \exists x \cdot \alpha}{\Gamma \wedge \alpha\{x / C\}}
$$

for every variable x and for a "fresh" constant C, i.e. a constant which does not appear in $\lceil\wedge \exists x . \alpha$

- C is a Skolem constant, El subcase of Skolemization (see later)
- Intuition: if there is an object satisfying some condition, then we give a (new) name to such object
- Ex: $\exists x .(\operatorname{Crown}(x) \wedge \operatorname{OnHead}(x$, John $))$
- $(\operatorname{Crown}(C) \wedge \operatorname{OnHead}(C$, John $))$
- given "There is a crown on John's head", I call "C" such crown
- Preserves satisfiability (aka preserves inferential equivalence) $M(\Gamma \wedge \alpha\{x / C\}) \neq \emptyset$ iff $M(\Gamma \wedge \exists x . \alpha) \neq \emptyset$
(i.e.. $(\Gamma \wedge \alpha\{x / C\}) \vDash \beta$ iff $(\Gamma \wedge \exists x . \alpha) \models \beta$, for every β)

Existential Instantiation (EI)

- An existentially quantified-sentence can be substituted by one of its instantation with a fresh constant:

$$
\frac{\Gamma \wedge \exists x \cdot \alpha}{\Gamma \wedge \alpha\{x / C\}}
$$

for every variable x and for a "fresh" constant C, i.e. a constant which does not appear in $\lceil\wedge \exists x . \alpha$

- C is a Skolem constant, El subcase of Skolemization (see later)
- Intuition: if there is an object satisfying some condition, then we give a (new) name to such object
- Ex: $\exists x .(\operatorname{Crown}(x) \wedge \operatorname{OnHead}(x$, John $))$
- $(\operatorname{Crown}(C) \wedge \operatorname{OnHead}(C$, John $))$
- given "There is a crown on John's head", I call "C" such crown
- Preserves satisfiability (aka preserves inferential equivalence) $M(\Gamma \wedge \alpha\{x / C\}) \neq \emptyset$ iff $M(\Gamma \wedge \exists x . \alpha) \neq \emptyset$
(i.e.. $(\Gamma \wedge \alpha\{x / C\}) \models \beta$ iff $(\Gamma \wedge \exists x . \alpha) \models \beta$, for every β)
- Ex from math: $\exists x$. $\left(\frac{d\left(x^{y}\right)}{d y}=x^{y}\right)$, we call it "e" $\Longrightarrow\left(\frac{d\left(e^{y}\right)}{d y}=e^{y}\right)$

Remarks

- About Universal Instantiation:
- Ul can be applied several times to add new sentences;
- the new Γ is logically equivalent to the old Γ
- El can be applied once to replace the existential sentence;
- the new Γ is not equivalent to the old,
- but is (un)satistiabie itt the oid T is (un)satistiabie the new Γ can infer β iff the old Γ can infer β

> Before applying UI or El, sentences must be rewritten s.t. negations (even when implicit) must be pushed inside the quantifications:

Remarks

- About Universal Instantiation:
- Ul can be applied several times to add new sentences;
- the new Γ is logically equivalent to the old Γ
- About Existential Instantiation:
- El can be applied once to replace the existential sentence;
- the new Γ is not equivalent to the old,
- but is (un)satisfiable iff the old Γ is (un)satisfiable
\Longrightarrow the new Γ can infer β iff the old Γ can infer β
Before applying UI or EI, sentences must be rewritten s.t. negations (even when implicit) must be pushed inside the quantifications:

Remarks

- About Universal Instantiation:
- UI can be applied several times to add new sentences;
- the new Γ is logically equivalent to the old Γ
- About Existential Instantiation:
- El can be applied once to replace the existential sentence;
- the new Γ is not equivalent to the old,
- but is (un)satisfiable iff the old Γ is (un)satisfiable
\Longrightarrow the new Γ can infer β iff the old Γ can infer β

Before applying UI or EI, sentences must be rewritten s.t. negations (even when implicit) must be pushed inside the quantifications:

- $\neg \forall x . \alpha \Longrightarrow \exists x . \neg \alpha$
- $\neg \exists x . \alpha \Longrightarrow \forall x . \neg \alpha$

Remarks

- About Universal Instantiation:
- UI can be applied several times to add new sentences;
- the new Γ is logically equivalent to the old Γ
- About Existential Instantiation:
- El can be applied once to replace the existential sentence;
- the new Γ is not equivalent to the old,
- but is (un)satisfiable iff the old Γ is (un)satisfiable
\Longrightarrow the new Γ can infer β iff the old Γ can infer β

Before applying UI or EI, sentences must be rewritten s.t. negations (even when implicit) must be pushed inside the quantifications:

- $\neg \forall x . \alpha \Longrightarrow \exists x . \neg \alpha$
- $\neg \exists x . \alpha \Longrightarrow \forall x . \neg \alpha$
- ex: $(\forall x \cdot P(x) \rightarrow \neg \exists y \cdot Q(y)$
$\Longrightarrow(\neg \forall x . P(x) \vee \neg \exists y \cdot Q(y)$
$\Longrightarrow(\exists x . \neg P(x) \vee \forall y, \neg Q(y)$

Outline

(1) First-Order Logic

- Generalities
- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(2) Basic First-Order Reasoning
- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting

Resolution-based First-Order Reasoning

- CNF-Ization
- Resolution
- Dealing with Equalities
- A Complete Example

Reduction to Propositional Inference

- Idea: Convert $(\Gamma \wedge \neg \alpha)$ to PL (aka propositionalization) \Longrightarrow use a PL SAT solver to check PL (un)satisfiability
- replace variables with ground terms, creating all possible instantiations of quantified sentences
- convert atomic sentences into propositional symbols e.g. "King(John)" \Longrightarrow "King_John", e.g. "Brother(John,Richard)" \Longrightarrow "Brother_John-Richard"
- Theorem: (Herbrand, 1930) then it is entailed by a finite subset of the propositional Γ
- The vice-versa does not hold \Longrightarrow works if α is entailed, loops if α is not entailed

Reduction to Propositional Inference

- Idea: Convert $(\Gamma \wedge \neg \alpha)$ to PL (aka propositionalization) \Longrightarrow use a PL SAT solver to check PL (un)satisfiability
- Trick:
- replace variables with ground terms, creating all possible instantiations of quantified sentences
- convert atomic sentences into propositional symbols
e.g. "King(John)" \Longrightarrow "King_John",
e.g. "Brother(John,Richard)" \Longrightarrow "Brother_John-Richard",
- Theorem: (Herbrand, 1930)
- The vice-versa does not hold

Reduction to Propositional Inference

- Idea: Convert $(\Gamma \wedge \neg \alpha)$ to PL (aka propositionalization) \Longrightarrow use a PL SAT solver to check PL (un)satisfiability
- Trick:
- replace variables with ground terms, creating all possible instantiations of quantified sentences
- convert atomic sentences into propositional symbols

```
e.g. "King(John)" \(\Longrightarrow\) "King_John",
e.g. "Brother(John,Richard)" \(\Longrightarrow\) "Brother_John-Richard",
```

- Theorem: (Herbrand, 1930)

If a ground sentence α is entailed by an FOL Γ, then it is entailed by a finite subset of the propositional Γ
$\Longrightarrow A$ ground sentence is entailed by the propositionalized Γ if it is entailed by original Γ
\Longrightarrow Every FOL Γ can be propositionalized s.t. to preserve entailment

- The vice-versa does not hold
\square

Reduction to Propositional Inference

- Idea: Convert $(\Gamma \wedge \neg \alpha)$ to PL (aka propositionalization) \Longrightarrow use a PL SAT solver to check PL (un)satisfiability
- Trick:
- replace variables with ground terms, creating all possible instantiations of quantified sentences
- convert atomic sentences into propositional symbols

```
e.g. "King(John)" \(\Longrightarrow\) "King_John",
e.g. "Brother(John,Richard)" \(\Longrightarrow\) "Brother_John-Richard",
```

- Theorem: (Herbrand, 1930)

If a ground sentence α is entailed by an FOL Γ,
then it is entailed by a finite subset of the propositional Γ
$\Longrightarrow A$ ground sentence is entailed by the propositionalized Γ if it is entailed by original Γ
\Longrightarrow Every FOL Γ can be propositionalized s.t. to preserve entailment

- The vice-versa does not hold
\Longrightarrow works if α is entailed, loops if α is not entailed

Reduction to Propositional Inference: Example

- Suppose 「 contains only:
$\forall x .((\operatorname{King}(x) \wedge \operatorname{Greedy}(x)) \rightarrow \operatorname{Evil}(x))$
King(John)
Greedy (John)
Brother(Richard, John)
- Instantiating the universal sentence in all possible ways:
(King(John) \wedge Greedy (John)) \rightarrow Evil(John)
(King $($ Richard $) \wedge$ Greedy $($ Richard $)) \rightarrow$ Evil(Richard)
King(John)
Greedy (John)
Brother(Richard, John)
- The new Г is propositionalize d:
(King_John ^ Greedy_John) \rightarrow Evil_John
(King_Richard \wedge Greedy_Richard) \rightarrow Evil_Richard
King_John
Greedy John
Brother_Richard-John

Reduction to Propositional Inference: Example

- Suppose 「 contains only:
$\forall x .((\operatorname{King}(x) \wedge \operatorname{Greedy}(x)) \rightarrow \operatorname{Evil}(x))$
King(John)
Greedy (John)
Brother(Richard, John)
- Instantiating the universal sentence in all possible ways:
(King(John) \wedge Greedy (John)) \rightarrow Evil(John)
(King (Richard) \wedge Greedy (Richard)) \rightarrow Evil(Richard)
King(John)
Greedy (John)
Brother(Richard, John)
- The new Г is propositionalized:
(King_John \wedge Greedy_John) \rightarrow Evil_John
(King_Richard \wedge Greedy_Richard) \rightarrow Evil_Richard
King_John
Greedy_John
Brother_Richard-John

Reduction to Propositional Inference: Example

- Suppose 「 contains only:
$\forall x .((\operatorname{King}(x) \wedge \operatorname{Greedy}(x)) \rightarrow \operatorname{Evil}(x))$
King(John)
Greedy (John)
Brother(Richard, John)
- Instantiating the universal sentence in all possible ways:
(King (John) \wedge Greedy (John)) \rightarrow Evil(John)
(King (Richard) \wedge Greedy (Richard)) \rightarrow Evil(Richard)
King(John)
Greedy (John)
Brother(Richard, John)
- The new Γ is propositionalized:
(King_John ^ Greedy_John) \rightarrow Evil_John
(King_Richard \wedge Greedy_Richard) \rightarrow Evil_Richard
King_John
Greedy_John
Brother_Richard-John

Reduction to Propositional Inference: Example

- Suppose 「 contains only:
$\forall x .((\operatorname{King}(x) \wedge \operatorname{Greedy}(x)) \rightarrow \operatorname{Evil}(x))$
King(John)
Greedy (John)
Brother(Richard, John)
- Instantiating the universal sentence in all possible ways:
(King (John) ^ Greedy (John)) \rightarrow Evil(John)
(King (Richard) \wedge Greedy(Richard)) \rightarrow Evil(Richard)
King(John)
Greedy (John)
Brother(Richard, John)
- The new Γ is propositionalized:
(King_John ^ Greedy_John) \rightarrow Evil_John
(King_Richard \wedge Greedy_Richard) \rightarrow Evil_Richard
King_John
Greedy_John
Brother_Richard-John
- Evil_John entailed by new Г (Evil(John) entailed by old Г)

Problems with Propositionalization

- Propositionalization generates lots of irrelevant sentences produces irrelevant atoms like Greedy(Richard)
$\forall x .((\operatorname{King}(x) \wedge \operatorname{Greed}(x)) \rightarrow \operatorname{Evil}(x))$
King(John)
$\forall y . \operatorname{Greedy}(y)$
Brother(Richard, John)
\Longrightarrow produces irrelevant atoms like Greedy(Richard)
- With p k-ary predicates and n constants, $p \cdot n^{k}$ instantiations
- What happens with function symbols?

Problems with Propositionalization

- Propositionalization generates lots of irrelevant sentences produces irrelevant atoms like Greedy(Richard)
$\forall x .((\operatorname{King}(x) \wedge \operatorname{Greed}(x)) \rightarrow \operatorname{Evil}(x))$
King(John)
$\forall y . \operatorname{Greedy}(y)$
Brother(Richard, John)
\Longrightarrow produces irrelevant atoms like Greedy(Richard)
- With p k-ary predicates and n constants, $p \cdot n^{k}$ instantiations
- What happens with function symbols?

Problems with Propositionalization

- Propositionalization generates lots of irrelevant sentences produces irrelevant atoms like Greedy(Richard)
$\forall x .((\operatorname{King}(x) \wedge \operatorname{Greed}(x)) \rightarrow \operatorname{Evil}(x))$
King(John)
$\forall y . \operatorname{Greedy}(y)$
Brother(Richard, John)
\Longrightarrow produces irrelevant atoms like Greedy(Richard)
- With p k-ary predicates and n constants, $p \cdot n^{k}$ instantiations
- What happens with function symbols?

Problems with Propositionalization [cont.]

- Problem: nested function applications
- e.g. Father(John), Father(Father(John)), Father(Father(Father(John))), ...
\Longrightarrow infinite instantiations

```
- Actual Trick: for k=0 to \infty, use terms of function nesting
    - if }\Gamma\models\alpha\mathrm{ , then will find a contradiction for some finite }\textrm{k
    - if }\Gamma\not\vDash\alpha\mathrm{ , may find a loop forever
- Theorem: (Turing, 1936), (Church, 1936):
Entailment in FOL is semidecidable
```


Problems with Propositionalization [cont.]

- Problem: nested function applications
- e.g. Father(John), Father(Father(John)), Father(Father(Father(John))), ...
\Longrightarrow infinite instantiations
- Actual Trick: for $\mathrm{k}=0$ to ∞, use terms of function nesting depth k
- create propositionalized Γ by instantiating depth-k terms
- if $\Gamma \vDash \alpha$, then will find a contradiction for some finite k
- if $\Gamma \not \vDash \alpha$, may find a loop forever
- Theorem: (Turing, 1936), (Church, 1936): Entailment in FOL is semidecidable

Problems with Propositionalization [cont.]

- Problem: nested function applications
- e.g. Father(John), Father(Father(John)), Father(Father(Father(John))), ...
\Longrightarrow infinite instantiations
- Actual Trick: for $\mathrm{k}=0$ to ∞, use terms of function nesting depth k
- create propositionalized Γ by instantiating depth-k terms
- if $\Gamma \vDash \alpha$, then will find a contradiction for some finite k
- if $\Gamma \not \vDash \alpha$, may find a loop forever
- Theorem: (Turing, 1936), (Church, 1936): Entailment in FOL is semidecidable

Outline

(1) First-Order Logic

- Generalities
- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(2) Basic First-Order Reasoning
- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(3) Resolution-based First-Order Reasoning
- CNF-Ization
- Resolution
- Dealing with Equalities
- A Complete Example

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1$..k
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- Unify $(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:
- Different (implicitly-universally-quantified) formulas should use different variables
(Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1 . . k$
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- $\operatorname{Unify}(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:
- Different (implicitly-universally-quantified) formulas should use different variables
(Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1 . . k$
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- $\operatorname{Unify}(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify(Knows(John, x), Knows(John, Jane)) $=\{x /$ Jane $\}$ Unify $($ Knows $(J o h n, x), \operatorname{Knows}(y, O J))=\{x / O J, y / J o h n\}$ Unify $($ Knows $(J o h n, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=$ \{y/John, x/Mother(John)\} Unify(Knows(John, x), Knows(x, OJ)) = FAIL

- Different (implicitly-universally-quantified) formulas should use different variables
(Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1$.. k
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- $\operatorname{Unify}(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(J o h n, ~ J a n e))=$

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1$.. k
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- $\operatorname{Unify}(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify(Knows(John, x), Knows(John, Jane)) $=\{x /$ Jane $\}$
Unify $($ Knows $(J o h n, ~ x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=$ Unify (Knows(John, x), Knows(x, OJ)) $=$ FAIL

- Different (implicitly-universally-quantified) forrnulas should use different variables
(Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1 . . k$
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- $\operatorname{Unify}(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify(Knows(John, $x)$, Knows(John, Jane) $)=\{x /$ Jane $\}$ Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, O J))=$

Unify (Knows(John, x), Knows(x, OJ)) $=$ FAIL

- Different (implicitly-universally-quantified) forrnulas should use different variables
(Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1 . . k$
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- $\operatorname{Unify}(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify(Knows(John, $x)$, Knows(John, Jane)) $=\{x /$ Jane $\}$
Unify(Knows(John, x), Knows $(y, O J))=\{x / O J, y / J o h n\}$

Unify(Knows(John, x), Knows $(x, O J)$) $=$ FAIL:

- Different (implicitly-universally-quantified) formulas should use different variables
(Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1 . . k$
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- $\operatorname{Unify}(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify(Knows(John, $x)$, Knows(John, Jane)) $=\{x /$ Jane $\}$ Unify(Knows(John, x), Knows $(y, O J))=\{x / O J, y / J o h n\}$ Unify $(\operatorname{Knows}(\operatorname{John}, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=$

Unify (Knows(John, x), Knows $(x, O J))=$ FAIL :

- Different (implicitly-universally-quantified) formulas should use different variables
(Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1 . . k$
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- $\operatorname{Unify}(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify(Knows(John, $x)$, Knows(John, Jane)) $=\{x /$ Jane $\}$ Unify(Knows(John, x), Knows $(y, O J))=\{x / O J, y / J o h n\}$ Unify $(\operatorname{Knows}(\operatorname{John}, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=$
$\{y / J o h n, x / M o t h e r(J o h n)\}$

\Longrightarrow
 (Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1 . . k$
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- $\operatorname{Unify}(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify(Knows(John, $x)$, Knows(John, Jane)) $=\{x /$ Jane $\}$
Unify(Knows(John, x), Knows $(y, O J))=\{x / O J, y / J o h n\}$ Unify $(\operatorname{Knows}(\operatorname{John}, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=$
\{y/John, x/Mother(John) \}
$\operatorname{Unify}(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(x$, OJ $))=$
\qquad

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1 . . k$
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- $\operatorname{Unify}(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify(Knows(John, x), Knows(John, Jane)) $=\{x /$ Jane $\}$
Unify(Knows(John, x), Knows $(y, O J))=\{x / O J, y / J o h n\}$ Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=$
$\{y / J o h n, x /$ Mother (John) $\}$
$\operatorname{Unify}(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(x, O J))=$ FAIL : $x /$?

\Longrightarrow
 (Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1 . . k$
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- $\operatorname{Unify}(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify(Knows(John, x), Knows(John, Jane)) $=\{x /$ Jane $\}$
Unify(Knows(John, x), Knows $(y, O J))=\{x / O J, y / J o h n\}$ Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=$
\{y/John, x/Mother(John)\}
$\operatorname{Unify}(\operatorname{Knows}(J o h n, x)$, $\operatorname{Knows}(x, O J))=$ FAIL : $x /$?

- Different (implicitly-universally-quantified) formulas should use different variables

\qquad
 (Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1 . . k$
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- $\operatorname{Unify}(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify(Knows(John, x), Knows(John, Jane)) $=\{x /$ Jane $\}$
Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, O J))=\{x / O J, y / J o h n\}$ Unify $(\operatorname{Knows}(\operatorname{John}, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=$
$\{y / J o h n, x / M o t h e r(J o h n)\}$
$\operatorname{Unify}(\operatorname{Knows}(J o h n, x)$, $\operatorname{Knows}(x, O J))=$ FAIL : $x /$?

- Different (implicitly-universally-quantified) formulas should use different variables
\Longrightarrow (Standardizing apart): rename variables to avoid name clashes

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1 . . k$
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- $\operatorname{Unify}(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify(Knows(John, x), Knows(John, Jane)) $=\{x /$ Jane $\}$
Unify(Knows(John, x), Knows $(y, O J))=\{x / O J, y / J o h n\}$ Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=$
$\{y / J o h n, x / M o t h e r(J o h n)\}$
$\operatorname{Unify}(\operatorname{Knows}(J o h n, x)$, Knows $(x, O J))=$ FAIL : $x /$?

- Different (implicitly-universally-quantified) formulas should use different variables
\Longrightarrow (Standardizing apart): rename variables to avoid name clashes $\operatorname{Unify}\left(\operatorname{Knows}\left(\operatorname{John}, x_{1}\right), \operatorname{Knows}\left(x_{2}, O J\right)\right)=$

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1 . . k$
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- $\operatorname{Unify}(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify(Knows(John, x), Knows(John, Jane)) $=\{x /$ Jane $\}$
Unify(Knows(John, x), Knows $(y, O J))=\{x / O J, y / J o h n\}$ Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=$
$\{y / J o h n, x /$ Mother (John) $\}$
$\operatorname{Unify}(\operatorname{Knows}(J o h n, x)$, Knows $(x, O J))=$ FAIL : $x /$?

- Different (implicitly-universally-quantified) formulas should use different variables
\Longrightarrow (Standardizing apart): rename variables to avoid name clashes $\operatorname{Unify}\left(\operatorname{Knows}\left(\operatorname{John}, x_{1}\right), \operatorname{Knows}\left(x_{2}, O J\right)\right)=\left\{x_{1} / O B J, x_{2} / J o h n\right\}$

Unification

- Unification: Given $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$, find a variable substitution θ s.t. θ s.t. $\alpha_{i}^{\prime} \theta=\alpha_{i} \theta$, for all $i \in 1 . . k$
- θ is called a unifier for $\left\langle\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{k}^{\prime}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle$
- $\operatorname{Unify}(\alpha, \beta)=\theta$ iff $\alpha \theta=\beta \theta$
- Ex:

Unify(Knows(John, x), Knows(John, Jane)) $=\{x /$ Jane $\}$
Unify(Knows(John, x), Knows $(y, O J))=\{x / O J, y / J o h n\}$ Unify $(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, \operatorname{Mother}(y)))=$
$\{y / J o h n, x /$ Mother (John) $\}$
$\operatorname{Unify}(\operatorname{Knows}(J o h n, x)$, Knows $(x, O J))=$ FAIL : $x /$?

- Different (implicitly-universally-quantified) formulas should use different variables
\Longrightarrow (Standardizing apart): rename variables to avoid name clashes $\operatorname{Unify}\left(\operatorname{Knows}\left(J o h n, x_{1}\right), \operatorname{Knows}\left(x_{2}, O J\right)\right)=\left\{x_{1} / O B J, x_{2} / J o h n\right\}$
- $\{\forall x . \alpha, \forall x . \beta\} \Longleftrightarrow\left\{\forall x_{1} \cdot \alpha\left\{x / x_{1}\right\}, \forall x_{2} . \beta\left\{x / x_{2}\right\}\right\}$, s.t. x_{1}, x_{2} new

Most-General Unifier (MGU)

- Unifiers are not unique
- ex: Unify(Knows(John, x), Knows $(y, z))$ could return $\{y / J o h n, x / z\}$ or $\{y / J o h n, x / J o h n, z / J o h n\}$
- Given α, β, the unifier θ_{1} is more general than the unifier θ_{2} for α, β if exists θ_{3} s.t. $\theta_{2}=\theta_{1} \theta_{3}$
- ex: $\{y / J o h n, x / z\}$ more general than $\{y / J o h n, x / J o h n, z / J o h n\}$ \{y/John, x/John, z/John $=\{y /$ John, $x / z\}\{z /$ John $\}$
- Theorem: If exists an unifier for α, β, then exists a most general unifier (MGU)
- Ex: $\{y / J o h n, x / z\}$ MGU for Knows(John, x), Knows (y, z)
- Ex: an MGU is unique modulo variable renaming
- UNIFY() returns the MGU between two (lists of) formulas
- efficiency optimizations based on predicate/term indexing techniques (see AlMA if interested)

Most-General Unifier (MGU)

- Unifiers are not unique
- ex: Unify(Knows(John, x), Knows(y, z)) could return $\{y / J o h n, x / z\}$ or $\{y / J o h n, x / J o h n, z / J o h n\}$
- Given α, β, the unifier θ_{1} is more general than the unifier θ_{2} for α, β if exists θ_{3} s.t. $\theta_{2}=\theta_{1} \theta_{3}$
- ex: $\{y / J o h n, x / z\}$ more general than $\{y / J o h n, x / J o h n, z / J o h n\}:$ $\{y /$ John, $x /$ John, $z / J o h n\}=\{y / J o h n, x / z\}\{z / J o h n\}$
- Ex: $\{y / J o h n, x / z\}$ MGU for Knows(John, x), Knows (y, z)
- Ex: an MGU is unique modulo variable renaming
- UNIFY () returns the MGU between two (listis of formulas
- efficiency optimizations based on predicate/term indexing techniques (see AIMA if interested)

Most-General Unifier (MGU)

- Unifiers are not unique
- ex: Unify(Knows(John, x), Knows (y, z)) could return $\{y / J o h n, x / z\}$ or $\{y / J o h n, x / J o h n, z / J o h n\}$
- Given α, β, the unifier θ_{1} is more general than the unifier θ_{2} for α, β if exists θ_{3} s.t. $\theta_{2}=\theta_{1} \theta_{3}$
- ex: $\{y / J o h n, x / z\}$ more general than $\{y / J o h n, x / J o h n, z / J o h n\}:$ $\{y / J o h n, x /$ John, $z / J o h n\}=\{y / J o h n, x / z\}\{z / J o h n\}$
- Theorem: If exists an unifier for α, β, then exists a most general unifier (MGU) θ for α, β
- Ex: $\{y / J o h n, x / z\}$ MGU for Knows(John, $x), \operatorname{Knows}(y, z)$
- Ex: an MGU is unique modulo variable renaming
- UNIFY() returns the MGU between two (lists of) formulas
- efficiency optimizations based on predicate/term indexing techniques (see AIMA if interested)

Most-General Unifier (MGU)

- Unifiers are not unique
- ex: Unify(Knows(John, x), Knows (y, z)) could return $\{y / J o h n, x / z\}$ or $\{y / J o h n, x / J o h n, z / J o h n\}$
- Given α, β, the unifier θ_{1} is more general than the unifier θ_{2} for α, β if exists θ_{3} s.t. $\theta_{2}=\theta_{1} \theta_{3}$
- ex: $\{y / J o h n, x / z\}$ more general than $\{y / J o h n, x / J o h n, z / J o h n\}$: $\{y /$ John, $x /$ John, $z /$ John $\}=\{y / J o h n, x / z\}\{z /$ John $\}$
- Theorem: If exists an unifier for α, β, then exists a most general unifier (MGU) θ for α, β
- Ex: $\{y / J o h n, x / z\}$ MGU for Knows(John, x), $\operatorname{Knows(y,z)~}$
- Ex: an MGU is unique modulo variable renaming
- UNIFY() returns the MGU between two (lists of) formulas
- efficiency optimizations based on predicate/term indexing techniques (see AIMA if interested)

The Procedure Unify

```
function \(\operatorname{UNIFY}(x, y, \theta)\) returns a substitution to make \(x\) and \(y\) identical
    inputs: \(x\), a variable, constant, list, or compound expression
        \(y\), a variable, constant, list, or compound expression
    \(\theta\), the substitution built up so far (optional, defaults to empty)
    if \(\theta=\) failure then return failure
    else if \(x=y\) then return \(\theta\)
    else if \(\operatorname{VARIABLE} ?(x)\) then return \(\operatorname{Unify-VAR}(x, y, \theta)\)
    else if \(\operatorname{VARIABLE} ?(y)\) then return \(\operatorname{Unify}-\operatorname{Var}(y, x, \theta)\)
    else if Compound? \((x)\) and Compound? \((y)\) then
        return \(\operatorname{Unify}(x\).ARGS, \(y\).ARGS, \(\operatorname{Unify}(x . \mathrm{OP}, y . \mathrm{OP}, \theta))\)
    else if List? \((x)\) and List? \((y)\) then
        return \(\operatorname{UNIFY}(x\).REST, \(y\).RESt, \(\operatorname{UNIFY}(x\).FIRST, \(y\).FIRST, \(\theta)\) )
    else return failure
```

function UNIFY-VAR (var, x, θ) returns a substitution
if $\{$ var $/ v a l\} \in \theta$ then return $\operatorname{UNify}(v a l, x, \theta)$
else if $\{x /$ val $\} \in \theta$ then return UNify (var, val, θ)
else if OCCUR-CHECK? $(v a r, x)$ then return failure else return add $\{v a r / x\}$ to θ

Outline

(1) First-Order Logic

- Generalities
- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(2) Basic First-Order Reasoning
- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(3) Resolution-based First-Order Reasoning
- CNF-Ization
- Resolution
- Dealing with Equalities
- A Complete Example

Outline

(1) First-Order Logic

- Generalities
- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(2) Basic First-Order Reasoning
- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(3) Resolution-based First-Order Reasoning
- CNF-Ization
- Resolution
- Dealing with Equalities
- A Complete Example

Conjunctive Normal Form (CNF)

- A FOL formula φ is in Conjunctive normal form iff it is a conjunction of disjunctions of quantifier-free literal:

- the disjunctions of literals $\bigvee_{j_{i}=1}^{K_{i}} I_{j i}$ are called clauses
- every literal a quantifier-free atom or its negation
- free variables implicitly universally quantified
- Easier to handle: list of lists of literals.
\Longrightarrow no reasoning on the recursive structure of the formula
- Ex: $\neg \operatorname{Missile}(x) \vee \neg$ Owns(Nono, $x) \vee$ Sells(West, x, Nono)

FOL CNF Conversion $\operatorname{CNF}(\varphi)$

Convert into NNF
Every FOL formula φ can be reduced into CNF:
(1) Eliminate implications and biconditionals:

$$
\begin{array}{ll}
\alpha \rightarrow \beta & \Longrightarrow \quad \neg \alpha \vee \beta \\
\alpha \leftrightarrow \beta & \Longrightarrow \\
(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)
\end{array}
$$

(2) Push inwards negations recursively:

\Longrightarrow Negation normal form: negations only in front of atomic formulae \Longrightarrow quantified subformulas occur only with positive polarity

FOL CNF Conversion $\operatorname{CNF}(\varphi)$

Convert into NNF

Every FOL formula φ can be reduced into CNF:
(1) Eliminate implications and biconditionals:

$$
\begin{aligned}
& \alpha \rightarrow \beta \\
& \alpha \leftrightarrow \beta \Rightarrow \neg \alpha \vee \beta
\end{aligned} \Rightarrow(\neg \alpha \vee \beta) \wedge(\alpha \vee \neg \beta)
$$

(2) Push inwards negations recursively:

$$
\begin{array}{ll}
\neg(\alpha \wedge \beta) & \Longrightarrow \neg \neg \vee \neg \beta \\
\neg(\alpha \vee \beta) & \Longrightarrow \neg \alpha \wedge \neg \beta \\
\neg \neg \alpha & \Longrightarrow \neg \\
\neg \forall x \cdot \alpha & \Longrightarrow \exists \cdot \neg \cdot \neg \alpha \\
\neg \exists X \cdot \alpha & \Longrightarrow \exists x \cdot \neg \alpha
\end{array}
$$

\Longrightarrow Negation normal form: negations only in front of atomic formulae
\Longrightarrow quantified subformulas occur only with positive polarity

FOL CNF Conversion $\operatorname{CNF}(\varphi)$ [cont.]

Remove quantifiers
(8) Standardize variables: each quantifier should use a different var $(\forall x \cdot \exists y \cdot \alpha) \wedge \exists y \cdot \beta \wedge \forall x \cdot \gamma \Longrightarrow(\forall x \cdot \exists y \cdot \alpha) \wedge \exists y_{1} \cdot \beta\left\{y / y_{1}\right\} \wedge \forall x_{1} \cdot \gamma\left\{x / x_{1}\right\}$
© Skolemize (a generalization of El):
Each existential variable is replaced by a fresh Skolem function applied to the enclosing universally-quantified variables

```
    \existsy.\alpha }\Longrightarrow\alpha{y/c
    \forallx.(\ldots\existsy.\alpha\ldots) \Longrightarrow }\Longrightarrow\quad\forall.(\ldots\alpha{y/F/F1(x)}\ldots
    \forall\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\cdot(\ldots\existsy.\alpha\ldots) = # ( 
    \existsy,\forall\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\exists\mp@subsup{y}{2}{}\forall\mp@subsup{x}{3}{}\exists\mp@subsup{y}{3}{}\cdot\alpha\quad\Longrightarrow\quad\forall\mp@subsup{x}{1}{}\mp@subsup{x}{2}{}\mp@subsup{x}{3}{}.
    \alpha{\mp@subsup{y}{1}{}/c,\mp@subsup{y}{2}{}/\mp@subsup{F}{1}{}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{}),\mp@subsup{y}{3}{}/\mp@subsup{F}{2}{}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\mp@subsup{x}{3}{})}
```

 Ex: \(\forall x \exists y\).Father \((x, y) \Longrightarrow \forall x\).Father \((x, s(x))\)
 \((s(x)\) implictly means "son of \(x\) " although \(s()\) is a fresh function)
 (5) mn universal nuantifiers: $\forall x_{1}, x_{1}, \alpha \Longrightarrow \alpha$ \Longrightarrow free variables implicitly universally quantified

FOL CNF Conversion $\operatorname{CNF}(\varphi)$ [cont.]

Remove quantifiers
(3) Standardize variables: each quantifier should use a different var

$$
(\forall x \cdot \exists y \cdot \alpha) \wedge \exists y \cdot \beta \wedge \forall x \cdot \gamma \Longrightarrow(\forall x \cdot \exists y \cdot \alpha) \wedge \exists y_{1} \cdot \beta\left\{y / y_{1}\right\} \wedge \forall x_{1} \cdot \gamma\left\{x / x_{1}\right\}
$$

© Skolemize (a generalization of EI):
Each existential variable is replaced by a fresh Skolem function applied to the enclosing universally-quantified variables
($s(x)$ implictly means "son of x " although $s()$ is a fresh function)

- Drop universal quantifiers:
\Longrightarrow free variables implicitly universally quantified

FOL CNF Conversion $\operatorname{CNF}(\varphi)$ [cont.]

Remove quantifiers

(3) Standardize variables: each quantifier should use a different var

$$
(\forall x \cdot \exists y \cdot \alpha) \wedge \exists y \cdot \beta \wedge \forall x \cdot \gamma \Longrightarrow(\forall x \cdot \exists y \cdot \alpha) \wedge \exists y_{1} \cdot \beta\left\{y / y_{1}\right\} \wedge \forall x_{1} \cdot \gamma\left\{x / x_{1}\right\}
$$

(9) Skolemize (a generalization of EI):

Each existential variable is replaced by a fresh Skolem function applied to the enclosing universally-quantified variables

$$
\begin{array}{ll}
\exists y . \alpha & \Longrightarrow \alpha\{y / c\} \\
\forall x \cdot(\ldots \exists y . \alpha \ldots) & \Longrightarrow \forall x \cdot\left(\ldots \alpha\left\{y / F_{1}(x)\right\} \ldots\right) \\
\forall x_{1} x_{2} \cdot(\ldots \exists y . \alpha \ldots) & \Longrightarrow \forall x_{1} x_{2} \cdot\left(\ldots \alpha\left\{y / F_{1}\left(x_{1}, x_{2}\right) \ldots\right)\right\} \\
\exists y_{1} \forall x_{1} x_{2} \exists y_{2} \forall x_{3} \exists y_{3} \cdot \alpha & \Longrightarrow \forall x_{1} x_{2} x_{3} . \\
& \\
& \alpha\left\{y_{1} / c, y_{2} / F_{1}\left(x_{1}, x_{2}\right), y_{3} / F_{2}\left(x_{1}, x_{2}, x_{3}\right)\right\}
\end{array}
$$

Ex: $\forall x \exists y$.Father $(x, y) \Longrightarrow \forall x$.Father $(x, s(x))$
$(s(x)$ implictly means "son of x " although $s()$ is a fresh function)

FOL CNF Conversion $\operatorname{CNF}(\varphi)$ [cont.]

Remove quantifiers

(3) Standardize variables: each quantifier should use a different var

$$
(\forall x \cdot \exists y \cdot \alpha) \wedge \exists y \cdot \beta \wedge \forall x \cdot \gamma \Longrightarrow(\forall x \cdot \exists y \cdot \alpha) \wedge \exists y_{1} \cdot \beta\left\{y / y_{1}\right\} \wedge \forall x_{1} \cdot \gamma\left\{x / x_{1}\right\}
$$

(9) Skolemize (a generalization of EI):

Each existential variable is replaced by a fresh Skolem function applied to the enclosing universally-quantified variables

$$
\begin{array}{ll}
\exists y . \alpha & \Longrightarrow \alpha\{y / c\} \\
\forall x .(\ldots y / . . . \ldots) \\
\forall x_{1} x_{2} .(\ldots \exists y . \alpha \ldots) & \Longrightarrow \forall x\left(\ldots \alpha\left\{y / F_{1}(x)\right\} \ldots\right) \\
\exists y_{1} \forall x_{1} x_{2} \exists y_{2} \forall x_{3} \exists y_{3} \cdot \alpha & \Longrightarrow \\
& \Longrightarrow \forall x_{1} x_{2} x_{2}\left(\ldots x_{1} .\right. \\
& \alpha\left\{y / y_{1} / c, y_{2} / F_{1}\left(x_{1}, x_{2}\right), y_{3} / F_{2}\left(x_{1}, x_{2}, x_{3}\right)\right\}
\end{array}
$$

Ex: $\forall x \exists y$. Father $(x, y) \Longrightarrow \forall x$.Father $(x, s(x))$
($s(x)$ implictly means "son of x " although $s()$ is a fresh function)
(6) Drop universal quantifiers: $\forall x_{1} \ldots x_{k} \cdot \alpha \Longrightarrow \alpha$
\Longrightarrow free variables implicitly universally quantified

FOL CNF Conversion $\operatorname{CNF}(\varphi)$ [cont.]

CNF-ize propositionally
© CNF-ize propositionally (see previous chapters): either apply recursively the DeMorgan's Rule:
or rename subformulas and add definitions:

Preserves satisfiability: $M(\varphi) \neq \emptyset$ iff $M(\operatorname{CNF}(\varphi)) \neq \emptyset$

FOL CNF Conversion $\operatorname{CNF}(\varphi)$ [cont.]

CNF-ize propositionally
(6) CNF-ize propositionally (see previous chapters): either apply recursively the DeMorgan's Rule:

$$
(\alpha \wedge \beta) \vee \gamma \Longrightarrow(\alpha \vee \gamma) \wedge(\beta \vee \gamma)
$$

or rename subformulas and add definitions:

$$
(\alpha \wedge \beta) \vee \gamma \Longrightarrow(B \vee \gamma) \wedge C N F(B \leftrightarrow(\alpha \wedge \beta))
$$

FOL CNF Conversion $\operatorname{CNF}(\varphi)$ [cont.]

CNF-ize propositionally
(0) CNF-ize propositionally (see previous chapters): either apply recursively the DeMorgan's Rule:

$$
(\alpha \wedge \beta) \vee \gamma \Longrightarrow(\alpha \vee \gamma) \wedge(\beta \vee \gamma)
$$

or rename subformulas and add definitions:

$$
(\alpha \wedge \beta) \vee \gamma \Longrightarrow(B \vee \gamma) \wedge C N F(B \leftrightarrow(\alpha \wedge \beta))
$$

Preserves satisfiability: $M(\varphi) \neq \emptyset$ iff $M(\operatorname{CNF}(\varphi)) \neq \emptyset$

Conversion to CNF: Example

Consider: "Everyone who loves all animals is loved by someone" $\forall x .([\forall y .(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y$.Loves $(y, x)])$

Eliminate implications and biconditionals:

Push inwards negations recursively

(3) Standardize variables:
$\forall x .([\exists y .($ Animal $(y) \wedge-\operatorname{Loves}(x, y))] \vee[\exists z . \operatorname{Loves}(z, x)])$
(4) Skolemize:
$(F(x)$: "an animal unloved by x "; $G(x)$: "someone who loves x ")Drop universal quantifiers::
$[$ Animal $(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)]$
\square CNF-ize propositionally:

Conversion to CNF: Example

Consider: "Everyone who loves all animals is loved by someone" $\forall x .([\forall y .(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y . \operatorname{Loves}(y, x)])$
(1) Eliminate implications and biconditionals:

$$
\forall x .(\neg[\forall y .(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])
$$

\square

(3) Standardize variables:

$$
\forall x \cdot([\exists y \cdot(\operatorname{Animal}(y) \wedge-\operatorname{Loves}(x, y))] \vee[\exists z . \operatorname{Loves}(z, x)])
$$

(4) Skolemize:

(5) Drop universal quantifiers::
$[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)]$
\square CNF-ize propositionally:

Conversion to CNF: Example

Consider: "Everyone who loves all animals is loved by someone" $\forall x .([\forall y$. $\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y$.Loves $(y, x)])$
(1) Eliminate implications and biconditionals:

$$
\forall x .(\neg[\forall y \cdot(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])
$$

(2) Push inwards negations recursively:

$$
\begin{aligned}
& \forall x .([\exists y . \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)]) \\
& \forall x \cdot([\exists y \cdot(\neg \neg \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y \cdot \operatorname{Loves}(y, x)]) \\
& \forall x \cdot([\exists y \cdot(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y \cdot \operatorname{Loves}(y, x)])
\end{aligned}
$$

(3) Standardize variables:
(4) Skolemize:

(5) Drop universal quantifiers::

Conversion to CNF: Example

Consider: "Everyone who loves all animals is loved by someone" $\forall x .([\forall y$. $\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y$.Loves $(y, x)])$
(1) Eliminate implications and biconditionals:

$$
\forall x .(\neg[\forall y \cdot(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y \cdot \operatorname{Loves}(y, x)])
$$

(2) Push inwards negations recursively:

$$
\begin{aligned}
& \forall x \cdot([\exists y . \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)]) \\
& \forall x \cdot([\exists y \cdot(\neg \neg \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y \cdot \operatorname{Loves}(y, x)]) \\
& \forall x \cdot([\exists y \cdot(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y \cdot \operatorname{Loves}(y, x)])
\end{aligned}
$$

(3) Standardize variables:

$$
\forall x .([\exists y .(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists z . \operatorname{Loves}(z, x)])
$$

(4) Skolemize:
$(F(x)$: "an animal unloved by x "; $G(x)$: "someone who loves x ")
(Drop universal quantifiers::
\square

Conversion to CNF: Example

Consider: "Everyone who loves all animals is loved by someone" $\forall x$. $(\forall y$. $(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y$.Loves $(y, x)])$
(1) Eliminate implications and biconditionals:

$$
\forall x .(\neg[\forall y \cdot(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])
$$

(2) Push inwards negations recursively:

$$
\begin{aligned}
& \forall x .([\exists y . \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)]) \\
& \forall x .([\exists y \cdot(\neg \neg \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)]) \\
& \forall x .([\exists y \cdot(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])
\end{aligned}
$$

(3) Standardize variables:

$$
\forall x .([\exists y .(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists z . \operatorname{Loves}(z, x)])
$$

(4) Skolemize:
$\forall x .([\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)])$
($\mathrm{F}(\mathrm{x})$: "an animal unloved by x "; $\mathrm{G}(\mathrm{x})$: "someone who loves x ")
\square

Conversion to CNF: Example

Consider: "Everyone who loves all animals is loved by someone" $\forall x .([\forall y$. $\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y$.Loves $(y, x)])$
(1) Eliminate implications and biconditionals:

$$
\forall x .(\neg[\forall y \cdot(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])
$$

(2) Push inwards negations recursively:

$$
\begin{aligned}
& \forall x .([\exists y . \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)]) \\
& \forall x .([\exists y \cdot(\neg \neg \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)]) \\
& \forall x .([\exists y \cdot(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])
\end{aligned}
$$

(3) Standardize variables:

$$
\forall x .([\exists y .(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists z . \operatorname{Loves}(z, x)])
$$

(4) Skolemize:
$\forall x .([\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)])$
($\mathrm{F}(\mathrm{x})$: "an animal unloved by x "; $\mathrm{G}(\mathrm{x})$: "someone who loves x ")
(5) Drop universal quantifiers::
$[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)]$

Conversion to CNF: Example

Consider: "Everyone who loves all animals is loved by someone" $\forall x .([\forall y .(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y . \operatorname{Loves}(y, x)])$
(1) Eliminate implications and biconditionals:

$$
\forall x .(\neg[\forall y \cdot(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])
$$

(2) Push inwards negations recursively:

$$
\begin{aligned}
& \forall x .([\exists y . \neg(\neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)]) \\
& \forall x .([\exists y .(\neg \neg \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)]) \\
& \forall x .([\exists y .(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)])
\end{aligned}
$$

(3) Standardize variables:

$$
\forall x .([\exists y .(\operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists z . \operatorname{Loves}(z, x)])
$$

(4) Skolemize:
$\forall x .([$ Animal $(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)])$
$(F(x)$: "an animal unloved by x "; $G(x)$: "someone who loves x ")
(5) Drop universal quantifiers::

$$
[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)]
$$

(6) CNF-ize propositionally:
$(\operatorname{Animal}(F(x)) \vee \operatorname{Loves}(G(x), x)) \wedge\left(\neg \operatorname{Loves}(x, F(x)) \vee \operatorname{Loves}(G(x), x)_{63 / 81}\right.$

Remark: Bad Skolemization

Common mistake to avoid

- Do not:
- apply Skolemization and/or
- drop universal quantifiers
before converting into NNF!
- Polarity of quantified subformulas affect Skolemization

NNF-ization may convert \exists 's into \forall 's, and vice versa

Remark: Bad Skolemization

Common mistake to avoid

- Do not:
- apply Skolemization and/or
- drop universal quantifiers
before converting into NNF!
- Polarity of quantified subformulas affect Skolemization NNF-ization may convert \exists 's into \forall 's, and vice versa

Bad Skolemization: Example

```
Wrong CNF-ization
\(\forall x .([\forall y .(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y . \operatorname{Loves}(y, x)])\)
( Too-early Skolemization \& universal-quantifier dropping: \(\forall x .([\forall y .(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\operatorname{Loves}(G(x), x)])\)
\(([(\) Animal \((y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\operatorname{Loves}(G(x), x)])\)
(2) NNF-ization and CNF-ization
\(([(\) Animal \((y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\operatorname{Loves}(G(x), x)])\)
\(((\) Animal \((y) \vee \operatorname{Loves}(G(x), x)) \wedge((\neg \operatorname{Loves}(x, y)) \vee \operatorname{Loves}(G(x), x)))\)
```

"y" should be a Skolem function $F(x)$ instead,
because " $\forall y$. (...)" occurred negatively
\Longrightarrow should become " $\exists y . \neg(\ldots)$ ", and hence y Skolemized into $F(x)$ (compare with previous slide)

Bad Skolemization: Example

$$
\begin{aligned}
& \text { Wrong CNF-ization } \\
& \forall x .([\forall y .(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y . \operatorname{Loves}(y, x)])
\end{aligned}
$$

(1) Too-early Skolemization \& universal-quantifier dropping: $\forall x .([\forall y .(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\operatorname{Loves}(G(x), x)])$ $([($ Animal $(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\operatorname{Loves}(G(x), x)])$
(2) NNF-ization and CNF-ization
because " $\forall y$.(...)" occurred negatively
\Longrightarrow should become " $\exists y . \neg(\ldots)$ ", and hence y Skolemized into $F(x)$
(compare with previous slide)

Bad Skolemization: Example

Wrong CNF-ization
 $\forall x .(\forall y$. $\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y$.Loves $(y, x)])$

(1) Too-early Skolemization \& universal-quantifier dropping: $\forall x .([\forall y .(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\operatorname{Loves}(G(x), x)])$ $([($ Animal $(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\operatorname{Loves}(G(x), x)])$
(2) NNF-ization and CNF-ization
$([($ Animal $(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\operatorname{Loves}(G(x), x)])$
$(($ Animal $(y) \vee \operatorname{Loves}(G(x), x)) \wedge((\neg \operatorname{Loves}(x, y)) \vee \operatorname{Loves}(G(x), x)))$
because " $\forall y$. (...)" occurred negatively
(compare with previous slide)

Bad Skolemization: Example

Wrong CNF-ization

$\forall x .([\forall y .(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y . \operatorname{Loves}(y, x)])$
(1) Too-early Skolemization \& universal-quantifier dropping: $\forall x .([\forall y .(\operatorname{Animal}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\operatorname{Loves}(G(x), x)])$ $([($ Animal $(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\operatorname{Loves}(G(x), x)])$
(2) NNF-ization and CNF-ization
$([($ Animal $(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\operatorname{Loves}(G(x), x)])$
$(($ Animal $(y) \vee \operatorname{Loves}(G(x), x)) \wedge((\neg \operatorname{Loves}(x, y)) \vee \operatorname{Loves}(G(x), x)))$
" y " should be a Skolem function $F(x)$ instead,
because " $\forall y$.(...)" occurred negatively
\Longrightarrow should become " $\exists y . \neg(\ldots)$ ", and hence y Skolemized into $F(x)$ (compare with previous slide)

Outline

(1) First-Order Logic

- Generalities
- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(2) Basic First-Order Reasoning
- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(3) Resolution-based First-Order Reasoning
- CNF-Ization
- Resolution
- Dealing with Equalities
- A Complete Example

Resolution

- FOL resolution rule let θ de $m g u\left(h_{1},-m_{j}\right)$, s.t. $h_{i} \theta=\square m_{j} \theta:$
$\frac{\left(I_{1} \vee \ldots \vee I_{k}\right)\left(m_{1} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i}+\ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}$

Man(Socrates) $(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))$

- Ex: Mortal(Socrates)
s.t. $\theta=\{x /$ Socrates $\}$
- To prove that $\Gamma=\alpha$ in FOL:
- Complete:
- If there is a substitution θ such that $\Gamma=\theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate
- Many strategies and tools available

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(l_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:

$$
\left(I_{1} \vee \ldots \vee I_{k}\right) \quad\left(m_{1} \vee \ldots \vee m_{n}\right)
$$

Man(Socrates) $(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))$

- Ex: Mortal(Socrates)
- To prove that $\Gamma=\alpha$ in FOL:
- Complete:
- If there is a substitution θ such that $\Gamma=\theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate
- Many strategies and tools available

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(l_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:
$\frac{\left(I_{1} \vee \ldots \vee I_{k}\right)\left(m_{1} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}$

Man(Socrates) ($\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))$

- Ex: Mortal(Socrates)
- To prove that $\Gamma \models \alpha$ in FOL:
- Complete:
- If there is a substitution θ such that $\Gamma=\theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate
- Many strategies and tools available

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(l_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:
$\frac{\left(I_{1} \vee \ldots \vee I_{k}\right)\left(m_{1} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}$
- Ex: $\frac{\operatorname{Man}(\text { Socrates })(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))}{\text { Mortal(Socrates) }}$ s.t. $\theta \stackrel{\text { def }}{=}\{x /$ Socrates $\}$
- Complete:
- If there is a substitution θ such that $\Gamma=\theta \alpha$, then it will return θ - If there is no such θ, then the procedure may not terminate

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(l_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:
$\frac{\left(I_{1} \vee \ldots \vee I_{k}\right)\left(m_{1} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}$
- Ex: $\frac{\operatorname{Man(Socrates)}(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))}{\text { Mortal(Socrates) }}$ s.t. $\theta \stackrel{\text { def }}{=}\{x /$ Socrates $\}$
- To prove that $\Gamma \models \alpha$ in FOL:
- convert $\Gamma \wedge \neg \alpha$ to CNF
- apply repeatedly resolution rule to $\operatorname{CNF}(\Gamma \wedge \neg \alpha)$ until either
- Hint: apply resolution first to unit clauses (unit resolution)
- unit resolution alone complete for definite clauses
- If there is a substitution θ such that $\Gamma \models \theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(l_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:
$\frac{\left(I_{1} \vee \ldots \vee I_{k}\right)\left(m_{1} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}$
- Ex: $\frac{\operatorname{Man(Socrates)}(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))}{\text { Mortal(Socrates) }}$ s.t. $\theta \stackrel{\text { def }}{=}\{x /$ Socrates $\}$
- To prove that $\Gamma \models \alpha$ in FOL:
- convert $\Gamma \wedge \neg \alpha$ to CNF
- apply repeatedly resolution rule to $\operatorname{CNF}(\ulcorner\wedge \neg \alpha)$ until either
- Hint: apply resolution first to unit clauses (unit resolution)
- unit resolution alone complete for definite clauses
- If there is a substitution θ such that $\Gamma \models \theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(l_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:
$\frac{\left(I_{1} \vee \ldots \vee I_{k}\right)\left(m_{1} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}$
- Ex: $\frac{\operatorname{Man}(\text { Socrates })(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))}{\text { Mortal(Socrates) }}$ s.t. $\theta \stackrel{\text { def }}{=}\{x /$ Socrates $\}$
- To prove that $\Gamma \models \alpha$ in FOL:
- convert $\Gamma \wedge \neg \alpha$ to CNF
- apply repeatedly resolution rule to $\operatorname{CNF}(\Gamma \wedge \neg \alpha)$ until either
- the empty clause is generate \Longrightarrow
- no more resolution step is applicable \Longrightarrow
- resource (time, memory) exhausted \Longrightarrow
- Hint: apply resolution first to unit clauses (unit resolution)
- unit resolution alone complete for definite clauses
- If there is a substitution θ such that $\Gamma ~=\theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(l_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:
$\frac{\left(I_{1} \vee \ldots \vee I_{k}\right)\left(m_{1} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}$
- Ex: $\frac{\operatorname{Man}(\text { Socrates })(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))}{\text { Mortal(Socrates) }}$ s.t. $\theta \stackrel{\text { def }}{=}\{x /$ Socrates $\}$
- To prove that $\Gamma \models \alpha$ in FOL:
- convert $\Gamma \wedge \neg \alpha$ to CNF
- apply repeatedly resolution rule to $\operatorname{CNF}(\Gamma \wedge \neg \alpha)$ until either
- the empty clause is generate $\Longrightarrow\ulcorner\models \alpha$
- no more resolution step is applicable \Longrightarrow
- resource (time, memory) exhausted \Longrightarrow

Hint: apply resolution first to unit clauses (unit resolution)

- unit resolution alone complete for definite clauses
- If there is a substitution θ such that $\Gamma \models \theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(l_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:
$\frac{\left(I_{1} \vee \ldots \vee I_{k}\right)\left(m_{1} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}$

Man(Socrates) $\quad(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))$

- Ex: Mortal(Socrates) s.t. $\theta \stackrel{\text { def }}{=}\{x /$ Socrates $\}$
- To prove that $\Gamma \models \alpha$ in FOL:
- convert $\Gamma \wedge \neg \alpha$ to CNF
- apply repeatedly resolution rule to $\operatorname{CNF}(\Gamma \wedge \neg \alpha)$ until either
- the empty clause is generate $\Longrightarrow\ulcorner\models \alpha$
- no more resolution step is applicable $\Longrightarrow \Gamma \not \vDash \alpha$
- resource (time, memory) exhausted \Longrightarrow ?
- Hint: apply resolution first to unit clauses (unit resolution)
- unit resolution alone complete for definite clauses
- If there is a substitution θ such that $\Gamma \models \theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(l_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:
$\frac{\left(I_{1} \vee \ldots \vee I_{k}\right)\left(m_{1} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}$

Man(Socrates) $\quad(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))$

- Ex: Mortal(Socrates) s.t. $\theta \stackrel{\text { def }}{=}\{x /$ Socrates $\}$
- To prove that $\Gamma \models \alpha$ in FOL:
- convert $\Gamma \wedge \neg \alpha$ to CNF
- apply repeatedly resolution rule to $\operatorname{CNF}(\Gamma \wedge \neg \alpha)$ until either
- the empty clause is generate $\Longrightarrow\ulcorner\models \alpha$
- no more resolution step is applicable $\Longrightarrow \Gamma \not \vDash \alpha$
- resource (time, memory) exhausted \Longrightarrow ??
- Hint: apply resolution first to unit clauses (unit resolution)
- unit resolution alone complete for definite clauses
- If there is a substitution θ such that $\Gamma ~=\theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(l_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:
$\frac{\left(I_{1} \vee \ldots \vee I_{k}\right)\left(m_{1} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}$

Man(Socrates) $\quad(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))$

- Ex: Mortal(Socrates) s.t. $\theta \stackrel{\text { def }}{=}\{x /$ Socrates $\}$
- To prove that $\Gamma \models \alpha$ in FOL:
- convert $\Gamma \wedge \neg \alpha$ to CNF
- apply repeatedly resolution rule to $\operatorname{CNF}(\Gamma \wedge \neg \alpha)$ until either
- the empty clause is generate $\Longrightarrow\ulcorner\models \alpha$
- no more resolution step is applicable $\Longrightarrow \Gamma \not \vDash \alpha$
- resource (time, memory) exhausted \Longrightarrow ??
- Hint: apply resolution first to unit clauses (unit resolution)
- unit resolution alone complete for definite clauses
- If there is a substitution θ such that $\Gamma \models \theta \alpha$, then it will return θ - If there is no such θ, then the procedure may not terminate

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(l_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:
$\frac{\left(I_{1} \vee \ldots \vee I_{k}\right)\left(m_{1} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}$

Man(Socrates) $\quad(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))$

- Ex: Mortal(Socrates) s.t. $\theta \stackrel{\text { def }}{=}\{x /$ Socrates $\}$
- To prove that $\Gamma \models \alpha$ in FOL:
- convert $\Gamma \wedge \neg \alpha$ to CNF
- apply repeatedly resolution rule to $\operatorname{CNF}(\Gamma \wedge \neg \alpha)$ until either
- the empty clause is generate $\Longrightarrow\ulcorner\models \alpha$
- no more resolution step is applicable $\Longrightarrow \Gamma \not \vDash \alpha$
- resource (time, memory) exhausted \Longrightarrow ??
- Hint: apply resolution first to unit clauses (unit resolution)
- unit resolution alone complete for definite clauses
- Complete:
- If there is a substitution θ such that $\Gamma \models \theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate

Resolution

- FOL resolution rule, let $\theta \stackrel{\text { def }}{=} m g u\left(l_{i}, \neg m_{j}\right)$, s.t. $l_{i} \theta=\neg m_{j} \theta$:
$\frac{\left(I_{1} \vee \ldots \vee I_{k}\right)\left(m_{1} \vee \ldots \vee m_{n}\right)}{\left(I_{1} \vee \ldots \vee I_{i-1} \vee I_{i+1} \vee \ldots \vee I_{k} \vee m_{1} \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_{n}\right) \theta}$

Man(Socrates) $\quad(\neg \operatorname{Man}(x) \vee \operatorname{Mortal}(x))$

- Ex: Mortal(Socrates) s.t. $\theta \stackrel{\text { def }}{=}\{x /$ Socrates $\}$
- To prove that $\Gamma \models \alpha$ in FOL:
- convert $\Gamma \wedge \neg \alpha$ to CNF
- apply repeatedly resolution rule to $\operatorname{CNF}(\Gamma \wedge \neg \alpha)$ until either
- the empty clause is generate $\Longrightarrow\ulcorner\models \alpha$
- no more resolution step is applicable $\Longrightarrow\ulcorner\not \vDash \alpha$
- resource (time, memory) exhausted \Longrightarrow ??
- Hint: apply resolution first to unit clauses (unit resolution)
- unit resolution alone complete for definite clauses
- Complete:
- If there is a substitution θ such that $\Gamma \models \theta \alpha$, then it will return θ
- If there is no such θ, then the procedure may not terminate
- Many strategies and tools available

Example: Resolution with Definite Clauses

KB: The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.
Goal: Prove that Col. West is a criminal.

Example: Resolution with Definite Clauses [cont.]

- it is a crime for an American to sell weapons to hostile nations: $\forall x, y, z$. ((American $(x) \wedge$ Weapon $(y) \wedge$ Hostile $(z) \wedge \operatorname{Sells}(x, y, z)) \rightarrow$ Criminal(x))
$\Longrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg$ Hostile $(z) \vee \neg$ Sells $(x, y, z) \vee$ Criminal (x)
- Nono ... has some missiles $\exists x \cdot($ Owns $($ Nono, $x) \wedge \operatorname{Missile}(x)) \Longrightarrow$ Owns $\left(\right.$ Nono, $\left.M_{1}\right) \wedge \operatorname{Missile(}\left(M_{1}\right)$
- All of its missiles were sold to it by Colonel West $\forall x$.((Missile $(x) \wedge$ Owns(Nono, $x)) \rightarrow$ Sells(West, x, Nono)) \neg Missile $(x) \vee \neg$ Owns(Nono, $x) \vee$ Sells(West, x, Nono)
- Missiles are weapons: $\forall x$. $($ Missile $(x) \rightarrow$ Weapon $(x)) \Longrightarrow \neg$ Missile $(x) \vee$ Weapon (x)
- An enemy of America counts as "hostile": $\forall x$.(Enemy $(x$, America $) \rightarrow \operatorname{Hostile}(x))$ Enemy (x, America) \vee Hostile(x)
- West, who is American ...: American(West)
- The country Nono, an enemy of America ...: Enemy(Nono, America)

Example: Resolution with Definite Clauses [cont.]

- it is a crime for an American to sell weapons to hostile nations: $\forall x, y, z$. ((American $(x) \wedge$ Weapon $(y) \wedge$ Hostile $(z) \wedge \operatorname{Sells}(x, y, z)) \rightarrow$ Criminal(x))
$\Longrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg$ Hostile $(z) \vee \neg$ Sells $(x, y, z) \vee$ Criminal (x)
- Nono ... has some missiles
$\exists x$. $($ Owns $($ Nono, $x) \wedge \operatorname{Missile~}(x)) \Longrightarrow \operatorname{Owns}\left(\right.$ Nono, $\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
- All of its missiles were sold to it by Colonel West

Sells(West, x, Nono)

- Missiles are weapons:
- An enemy of America counts as "hostile": $\forall x$. (Enemy $(x$, America $) \rightarrow$ Hostile $(x))$
Enemy (x, America) \vee Hostile (x)
- West, who is American ...: American(West)
- The country Nono, an enemy of America

Enemy(Nono, America)

Example: Resolution with Definite Clauses [cont.]

- it is a crime for an American to sell weapons to hostile nations: $\forall x, y, z$. ((American $(x) \wedge$ Weapon $(y) \wedge$ Hostile $(z) \wedge \operatorname{Sells}(x, y, z)) \rightarrow$ Criminal(x))
$\Longrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg$ Hostile $(z) \vee \neg$ Sells $(x, y, z) \vee$ Criminal (x)
- Nono ... has some missiles
$\exists x$. $($ Owns $($ Nono, $x) \wedge \operatorname{Missile~}(x)) \Longrightarrow \operatorname{Owns}\left(\right.$ Nono, $\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
- All of its missiles were sold to it by Colonel West $\forall x .((\operatorname{Missile}(x) \wedge$ Owns(Nono, $x)) \rightarrow$ Sells(West, x, Nono))
$\Longrightarrow \neg \operatorname{Missile}(x) \vee \neg$ Owns(Nono, $x) \vee$ Sells(West, x, Nono)
- Missiles are weapons:
$\forall x$. Missile $(x) \rightarrow$ Weapon $(x)) \Longrightarrow \neg$ Missile $(x) \vee$ Weapon (x)
- An enemy of America counts as "hostile":

Enemy (x, America)

- West, who is American: American(West)
- The country Nono, an enemy of America

Enemy(Nono, America)

Example: Resolution with Definite Clauses [cont.]

- it is a crime for an American to sell weapons to hostile nations: $\forall x, y, z$. ((American $(x) \wedge$ Weapon $(y) \wedge$ Hostile $(z) \wedge \operatorname{Sells}(x, y, z)) \rightarrow$ Criminal(x))
$\Longrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg$ Hostile $(z) \vee \neg$ Sells $(x, y, z) \vee$ Criminal (x)
- Nono ... has some missiles
$\exists x$. $($ Owns $($ Nono, $x) \wedge \operatorname{Missile~}(x)) \Longrightarrow \operatorname{Owns}\left(\right.$ Nono, $\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
- All of its missiles were sold to it by Colonel West $\forall x .((\operatorname{Missile}(x) \wedge$ Owns(Nono, $x)) \rightarrow$ Sells(West, x, Nono))
$\Longrightarrow \neg \operatorname{Missile}(x) \vee \neg$ Owns(Nono, $x) \vee$ Sells(West, x, Nono)
- Missiles are weapons:
$\forall x$. $(\operatorname{Missile}(x) \rightarrow$ Weapon $(x)) \Longrightarrow \neg \operatorname{Missile}(x) \vee \operatorname{Weapon}(x)$
\square
- The country Nono, an enemy of America
\square

Example: Resolution with Definite Clauses [cont.]

- it is a crime for an American to sell weapons to hostile nations: $\forall x, y, z$. ((American $(x) \wedge$ Weapon $(y) \wedge$ Hostile $(z) \wedge \operatorname{Sells}(x, y, z)) \rightarrow$ Criminal(x))
$\Longrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg$ Hostile $(z) \vee \neg$ Sells $(x, y, z) \vee$ Criminal (x)
- Nono ... has some missiles
$\exists x$. $($ Owns $($ Nono, $x) \wedge \operatorname{Missile~}(x)) \Longrightarrow \operatorname{Owns}\left(\right.$ Nono, $\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
- All of its missiles were sold to it by Colonel West $\forall x .((\operatorname{Missile}(x) \wedge$ Owns(Nono, $x)) \rightarrow$ Sells(West, x, Nono))
$\Longrightarrow \neg \operatorname{Missile}(x) \vee \neg$ Owns(Nono, $x) \vee$ Sells(West, x, Nono)
- Missiles are weapons:
$\forall x$. $(\operatorname{Missile}(x) \rightarrow$ Weapon $(x)) \Longrightarrow \neg \operatorname{Missile}(x) \vee$ Weapon (x)
- An enemy of America counts as "hostile":
$\forall x$.(Enemy (x, America) \rightarrow Hostile (x))
$\Longrightarrow \neg \operatorname{Enemy}(x$, America $) \vee \operatorname{Hostile}(x)$
- West, who is American
- The country Nono, an enemy of America

Enemy(Nono, America)

Example: Resolution with Definite Clauses [cont.]

- it is a crime for an American to sell weapons to hostile nations: $\forall x, y, z$. ((American $(x) \wedge$ Weapon $(y) \wedge$ Hostile $(z) \wedge \operatorname{Sells}(x, y, z)) \rightarrow$ Criminal(x))
$\Longrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg$ Hostile $(z) \vee \neg$ Sells $(x, y, z) \vee$ Criminal (x)
- Nono ... has some missiles
$\exists x$. $($ Owns $($ Nono, $x) \wedge \operatorname{Missile~}(x)) \Longrightarrow$ Owns $\left(\right.$ Nono, $\left.M_{1}\right) \wedge \operatorname{Missile(~}\left(M_{1}\right)$
- All of its missiles were sold to it by Colonel West $\forall x .((\operatorname{Missile}(x) \wedge$ Owns(Nono, $x)) \rightarrow$ Sells(West, x, Nono))
$\Longrightarrow \neg \operatorname{Missile}(x) \vee \neg$ Owns(Nono, $x) \vee$ Sells(West, x, Nono)
- Missiles are weapons:
$\forall x$. $(\operatorname{Missile}(x) \rightarrow$ Weapon $(x)) \Longrightarrow \neg \operatorname{Missile}(x) \vee$ Weapon (x)
- An enemy of America counts as "hostile":
$\forall x$.(Enemy (x, America) \rightarrow Hostile (x))
$\Longrightarrow \neg$ Enemy $(x$, America) \vee Hostile (x)
- West, who is American ...: American(West)

Example: Resolution with Definite Clauses [cont.]

- it is a crime for an American to sell weapons to hostile nations: $\forall x, y, z$. ((American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Hostile}(z) \wedge \operatorname{Sells}(x, y, z)) \rightarrow$ Criminal(x))
$\Longrightarrow \neg$ American $(x) \vee \neg$ Weapon $(y) \vee \neg$ Hostile $(z) \vee \neg$ Sells $(x, y, z) \vee$ Criminal (x)
- Nono ... has some missiles
$\exists x$. $($ Owns $($ Nono, $x) \wedge \operatorname{Missile~}(x)) \Longrightarrow \operatorname{Owns}\left(\right.$ Nono, $\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
- All of its missiles were sold to it by Colonel West $\forall x .((\operatorname{Missile}(x) \wedge$ Owns(Nono, $x)) \rightarrow$ Sells(West, x, Nono))
$\Longrightarrow \neg \operatorname{Missile}(x) \vee \neg$ Owns(Nono, $x) \vee$ Sells(West, x, Nono)
- Missiles are weapons:
$\forall x$. $(\operatorname{Missile}(x) \rightarrow$ Weapon $(x)) \Longrightarrow \neg \operatorname{Missile}(x) \vee$ Weapon (x)
- An enemy of America counts as "hostile":
$\forall x$.(Enemy (x, America) \rightarrow Hostile (x))
$\Longrightarrow \neg \operatorname{Enemy}(x$, America) $\vee \operatorname{Hostile}(x)$
- West, who is American ...: American(West)
- The country Nono, an enemy of America ...:

Enemy(Nono, America)

Example: Resolution with Definite Clauses

(C) S. Russell \& P. Norwig, AIMA)

Example: Resolution with General Clauses

Everyone who loves all animals is loved by someone. Anyone who kills an animal is loved by no one. Jack loves all animals.
Either Jack or Curiosity killed the cat, who is named Tuna.
Did Curiosity kill the cat?
(See AIMA book for FOL formalization and CNF-ization, or do it by exercise)

(© S. Russell \& P. Norwig, AIMA)

Resolution Strategies

Saturation Calculus:

- Given N_{0} : set of (implicitly universally quantified) clauses.
- Derive $N_{0}, N_{1}, N_{2}, N_{3}, \ldots$ s.t. $N_{i+1}=N_{i} \cup\{C\}$,
- where C is the conclusion of a resolution step from premises in N_{i}
- (under reasonable restrictions) is refutationally complete
- The resolution rule is prolific.
- it generates many useless intermediate results
- it may generate the same clauses in many different ways
- This motivates the introduction of resolution restrictions.

Resolution Strategies

Saturation Calculus:

- Given N_{0} : set of (implicitly universally quantified) clauses.
- Derive $N_{0}, N_{1}, N_{2}, N_{3}, \ldots$ s.t. $N_{i+1}=N_{i} \cup\{C\}$,
- where C is the conclusion of a resolution step from premises in N_{i}
- The resolution rule is prolific.
- it generates many useless intermediate results
- it may generate the same clauses in many different ways
- This motivates the introduction of resolution restrictions.

Resolution Strategies

Saturation Calculus:

- Given N_{0} : set of (implicitly universally quantified) clauses.
- Derive $N_{0}, N_{1}, N_{2}, N_{3}, \ldots$ s.t. $N_{i+1}=N_{i} \cup\{C\}$,
- where C is the conclusion of a resolution step from premises in N_{i}
- (under reasonable restrictions) is refutationally complete :

$$
N_{0} \models \perp \Longrightarrow \perp \in N_{i} \text { for some i }
$$

- The resolution rule is prolific.
- it generates many useless intermediate results
o it may generate the same clauses in many different ways
- This motivates the introduction of resolution restrictions.

Resolution Strategies

Saturation Calculus:

- Given N_{0} : set of (implicitly universally quantified) clauses.
- Derive $N_{0}, N_{1}, N_{2}, N_{3}, \ldots$ s.t. $N_{i+1}=N_{i} \cup\{C\}$,
- where C is the conclusion of a resolution step from premises in N_{i}
- (under reasonable restrictions) is refutationally complete :

$$
N_{0} \models \perp \Longrightarrow \perp \in N_{i} \text { for some i }
$$

Problem

- The resolution rule is prolific.
- it generates many useless intermediate results
- it may generate the same clauses in many different ways
- This motivates the introduction of resolution restrictions.

Resolution Restrictions

Ordered resolution

- define stable atom ordering;
- resolve only maximal literals

Resolution Restrictions

Ordered resolution

- define stable atom ordering;
- resolve only maximal literals

Hyper-Resolution

- Clauses are divided into
- "nuclei": those with ≥ 1 negative literals
- "electrons" : those with positive literals only
- Resolution can occur only among one nucleus and one electron
- Multiple resolution steps are merged into one step

Globally, can produce only electrons

Resolution Restrictions

Ordered resolution

- define stable atom ordering;
- resolve only maximal literals

Hyper-Resolution

- Clauses are divided into
- "nuclei": those with ≥ 1 negative literals
- "electrons" : those with positive literals only
- Resolution can occur only among one nucleus and one electron
- Multiple resolution steps are merged into one step

Resolution Restrictions

Ordered resolution

- define stable atom ordering;
- resolve only maximal literals

Hyper-Resolution

- Clauses are divided into
- "nuclei": those with ≥ 1 negative literals
- "electrons" : those with positive literals only
- Resolution can occur only among one nucleus and one electron
- Multiple resolution steps are merged into one step

Resolution Restrictions

Ordered resolution

- define stable atom ordering;
- resolve only maximal literals

Hyper-Resolution

- Clauses are divided into
- "nuclei": those with ≥ 1 negative literals
- "electrons" : those with positive literals only
- Resolution can occur only among one nucleus and one electron
-

$$
E x: \quad \frac{\neg P(x) \vee \neg Q(x) \vee R(x) Q(A) \vee C}{\neg P(A) \vee R(A) \vee C} P(A) \vee D
$$

- Multiple resolution steps are merged into one step

Resolution Restrictions

Ordered resolution

- define stable atom ordering;
- resolve only maximal literals

Hyper-Resolution

- Clauses are divided into
- "nuclei": those with ≥ 1 negative literals
- "electrons" : those with positive literals only
- Resolution can occur only among one nucleus and one electron
\bullet

$$
E x: \quad \frac{\neg P(x) \vee \neg Q(x) \vee R(x) \vee Q(A) \vee C}{} \quad P(A) \vee D
$$

- Multiple resolution steps are merged into one step

Resolution Restrictions

Ordered resolution

- define stable atom ordering;
- resolve only maximal literals

Hyper-Resolution

- Clauses are divided into
- "nuclei": those with ≥ 1 negative literals
- "electrons" : those with positive literals only
- Resolution can occur only among one nucleus and one electron
\bullet

$$
\text { Ex : } \quad \frac{\neg P(x) \vee \neg Q(x) \vee R(x) \vee Q(A) \vee C}{\neg P(A) \vee R(A) \vee C} \quad P(A) \vee D
$$

- Multiple resolution steps are merged into one step

$$
E_{x}: \frac{\neg P(x) \vee \neg Q(x) \vee R(x) \quad Q(A) \vee C \quad P(A) \vee D}{R(A) \vee C \vee D}
$$

Resolution Restrictions

Ordered resolution

- define stable atom ordering;
- resolve only maximal literals

Hyper-Resolution

- Clauses are divided into
- "nuclei": those with ≥ 1 negative literals
- "electrons" : those with positive literals only
- Resolution can occur only among one nucleus and one electron
-

$$
E x: \quad \frac{\neg P(x) \vee \neg Q(x) \vee R(x) Q(A) \vee C}{} \quad \frac{\neg P(A) \vee R(A) \vee C}{R(A) \vee C \vee D} \quad P(A) \vee D
$$

- Multiple resolution steps are merged into one step

$$
\frac{\neg P(x) \vee \neg Q(x) \vee R(x) \quad Q(A) \vee C \quad P(A) \vee D}{R(A) \vee C \vee D}
$$

\Longrightarrow Globally, can produce only electrons

Exercise

- Solve the example of Colonel West using Hyper-Resolution strategy
- Solve the example of Curiosity \& Tuna using Hyper-Resolution Strategy

Exercise

- Solve the example of Colonel West using Hyper-Resolution strategy
- Solve the example of Curiosity \& Tuna using Hyper-Resolution Strategy

Outline

(1) First-Order Logic

- Generalities
- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(2) Basic First-Order Reasoning
- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(3) Resolution-based First-Order Reasoning
- CNF-Ization
- Resolution
- Dealing with Equalities
- A Complete Example

Dealing with Term Equalities [hints.]

To deal with equality formulas $\left(t_{1}=t_{2}\right)$

- Combine resolution with Equal-term substitution rule
- Ex:

- Very inefficient
- Ad-hoc rules rule for equality: Paramodulation

Dealing with Term Equalities [hints.]

To deal with equality formulas $\left(t_{1}=t_{2}\right)$

- Combine resolution with Equal-term substitution rule
- Ex:

- Very inefficient
- Ad-hoc rules rule for equality: Paramodulation

Dealing with Term Equalities [hints.]

To deal with equality formulas $\left(t_{1}=t_{2}\right)$

- Combine resolution with Equal-term substitution rule
- Ex:

$$
(4 \geq 3) \frac{\frac{(S(x)=x+1) \quad(\neg(y \geq z) \vee(S(y) \geq S(z)))}{(\neg(y \geq z) \vee(y+1 \geq z+1))}}{4+1 \geq 3+1}
$$

- Very inefficient
- Ad-hoc rules rule for equality: Paramodulation

Dealing with Term Equalities [hints.]

To deal with equality formulas $\left(t_{1}=t_{2}\right)$

- Combine resolution with Equal-term substitution rule
- Ex:

$$
(4 \geq 3) \frac{\frac{(S(x)=x+1) \quad(\neg(y \geq z) \vee(S(y) \geq S(z)))}{(\neg(y \geq z) \vee(y+1 \geq z+1))}}{4+1 \geq 3+1}
$$

- Very inefficient
- Ad-hoc rules rule for equality: Paramodulation

Dealing with Term Equalities [hints.]

To deal with equality formulas $\left(t_{1}=t_{2}\right)$

- Combine resolution with Equal-term substitution rule
- Ex:

$$
(4 \geq 3) \frac{\frac{(S(x)=x+1) \quad(\neg(y \geq z) \vee(S(y) \geq S(z)))}{(\neg(y \geq z) \vee(y+1 \geq z+1))}}{4+1 \geq 3+1}
$$

- Very inefficient
- Ad-hoc rules rule for equality: Paramodulation

Paramodulation

- Ground case:

$$
\frac{D \vee\left(t=t^{\prime}\right) \quad C \vee L}{D \vee C \vee L\left\{t / t^{\prime}\right\}} \text { literal }
$$

- Example:

- General case:
- Examples:

Paramodulation

- Ground case:

$$
\frac{D \vee\left(t=t^{\prime}\right) \quad C \vee L}{D \vee C \vee L\left\{t / t^{\prime}\right\}} \text { literal }
$$

- Example:

$$
\frac{R(b) \vee(a=b) \quad Q(c) \vee P(a)}{R(b) \vee Q(c) \vee P(b)}
$$

- General case:
- Examples:

Paramodulation

- Ground case:

$$
\frac{D \vee\left(t=t^{\prime}\right) \quad C \vee L}{D \vee C \vee L\left\{t / t^{\prime}\right\}} \text { literal }
$$

- Example:

$$
\frac{R(b) \vee(a=b) \quad Q(c) \vee P(a)}{R(b) \vee Q(c) \vee P(b)}
$$

- General case:

$$
\frac{D \vee\left(t=t^{\prime}\right) \quad C \vee L}{\left(D \vee C \vee L\left\{u / t^{\prime}\right\}\right) \theta} \quad \text { where } \theta \stackrel{\text { def }}{=} m g u(t, u)
$$

- Examples:
$R(b) \vee(a=b) \quad Q(c) \vee P(x)$

Paramodulation

- Ground case:

$$
\frac{D \vee\left(t=t^{\prime}\right) \quad C \vee L}{D \vee C \vee L\left\{t / t^{\prime}\right\}} \text { literal }
$$

- Example:

$$
\frac{R(b) \vee(a=b) \quad Q(c) \vee P(a)}{R(b) \vee Q(c) \vee P(b)}
$$

- General case:

$$
\frac{D \vee\left(t=t^{\prime}\right) \quad C \vee L}{\left(D \vee C \vee L\left\{u / t^{\prime}\right\}\right) \theta} \quad \text { where } \theta \stackrel{\text { def }}{=} \operatorname{mgu}(t, u)
$$

- Examples:

$$
\frac{R(b) \vee(a=b) \quad Q(c) \vee P(x)}{R(b) \vee Q(c) \vee P(b)} \quad \theta=\{x / a\}
$$

Paramodulation

- Ground case:

$$
\frac{D \vee\left(t=t^{\prime}\right) \quad C \vee L}{D \vee C \vee L\left\{t / t^{\prime}\right\}} \text { literal }
$$

- Example:

$$
\frac{R(b) \vee(a=b) \quad Q(c) \vee P(a)}{R(b) \vee Q(c) \vee P(b)}
$$

- General case:

$$
\frac{D \vee\left(t=t^{\prime}\right) \quad C \vee L}{\left(D \vee C \vee L\left\{u / t^{\prime}\right\}\right) \theta} \quad \text { where } \theta \stackrel{\text { def }}{=} m g u(t, u)
$$

- Examples:

$$
\begin{gathered}
\frac{R(b) \vee(a=b) \quad Q(c) \vee P(x)}{R(b) \vee Q(c) \vee P(b)} \quad \theta=\{x / a\} \\
\frac{R(g(c)) \vee(\overbrace{f(g(b))}^{t}=a) Q(x) \vee P(g(\overbrace{f(x)}^{u}))}{R(g(c)) \vee Q(g(b)) \vee P(g(a))} \quad \theta=\{x / g(b)\}
\end{gathered}
$$

Outline

(1) First-Order Logic

- Generalities
- Syntax
- Semantics
- Satisfiability, Validity, Entailment
(2) Basic First-Order Reasoning
- Substitutions \& Instantiations
- From Propositional to First-Order Reasoning
- Unification and Lifting
(3) Resolution-based First-Order Reasoning
- CNF-Ization
- Resolution
- Dealing with Equalities
- A Complete Example

Example

Problem

Consider the following FOL formula set Γ :
(1) $\forall x$. $\{[\forall y$. $(\operatorname{Child}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y . \operatorname{Loves}(y, x)]\}$
(2) $\forall x$. [Child $(x) \rightarrow$ Loves(Mark, $x)]$
(3) Beats(Mark, Paul) \vee Beats(John, Paul)
(4) Child(Paul)
(5) $\forall x .\{[\exists z .(\operatorname{Child}(z) \wedge \operatorname{Beats}(x, z))] \rightarrow[\forall y . \neg \operatorname{Loves}(y, x)]\}$
(a) Compute the CNF-ization of Γ, Skolemize \& standardize variables
(b) Write a FOL-resolution inference of the query Beats(John, Paul) from the CNF-ized KB

Example

CNF-ization

(a) Compute the CNF-ization of Γ, Skolemize \& standardize variables
(1) $\forall x .\{[\forall y .(\operatorname{Child}(y) \rightarrow \operatorname{Loves}(x, y))] \rightarrow[\exists y . \operatorname{Loves}(y, x)]\}$ $\forall x .\{[\neg \forall y$. $(\operatorname{Child}(y) \rightarrow \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)]\}$ $\forall x .\{[\exists y$. $(\operatorname{Child}(y) \wedge \neg \operatorname{Loves}(x, y))] \vee[\exists y . \operatorname{Loves}(y, x)]\}$ $\{[(\operatorname{Child}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x)))] \vee[\operatorname{Loves}(G(x), x)]\}$ 1. Child $(F(x)) \vee \operatorname{Loves}(G(x), x)$ 2. $\neg \operatorname{Loves}(y, F(y)) \vee \operatorname{Loves}(G(y), y)$
(2) \neg Child $(z) \vee$ Loves (Mark, z)
(3) Beats(Mark, Paul) \vee Beats(John, Paul)
(4) Child(Paul)
(6) $\forall x \cdot\{[\exists z .(\operatorname{Child}(z) \wedge \operatorname{Beats}(x, z))] \rightarrow[\forall y . \neg \operatorname{Loves}(y, x)]\}$ $\forall x .\{[\neg \exists z .(\operatorname{Child}(z) \wedge \operatorname{Beats}(x, z))] \vee[\forall y . \neg \operatorname{Loves}(y, x)]\}$ $\forall x .\{\forall z .(\neg \operatorname{Child}(z) \vee \neg \operatorname{Beats}(x, z))] \vee[\forall y . \neg \operatorname{Loves}(y, x)]\}$ $\neg \operatorname{Child}\left(z_{2}\right) \vee \neg \operatorname{Beats}\left(x_{2}, z_{2}\right) \vee \neg \operatorname{Loves}\left(y_{2}, x_{2}\right)$
where $F(), G()$ are Skolem unary functions.

Example

Resolution

(b) Write a FOL-resolution inference of the query Beats(John, Paul) from the CNF-ized KB:
(6) $[1.2,2.] \Longrightarrow \neg \operatorname{Child}(F($ Mark $)) \vee \operatorname{Loves}(G($ Mark $)$, Mark);
((1.1, 6.] $\Longrightarrow \operatorname{Loves(G(Mark),~Mark);~}$
(8) $[4,5.] \Longrightarrow \neg \operatorname{Beats}\left(x_{2}\right.$, Paul $) \vee \neg \operatorname{Loves}\left(y_{2}, x_{2}\right)$;
(9) $[7,8.] \Longrightarrow \neg$ Beats(Mark, Paul);
(10) $[3,9.] \Longrightarrow$ Beats(John, Paul);

