
Formal Methods:
Module I: Automated Reasoning

Ch. 02: Reasoning in First-Order Logic

Roberto Sebastiani

DISI, Università di Trento, Italy – roberto.sebastiani@unitn.it
URL: http://disi.unitn.it/rseba/DIDATTICA/fm2021/

Teaching assistant: Giuseppe Spallitta – giuseppe.spallitta@unitn.it

M.S. in Computer Science, Mathematics, & Artificial Intelligence Systems
Academic year 2020-2021

last update: Tuesday 13th April, 2021, 13:55

Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti,
M. Di Natale, P. Pandya, M. Pistore, M. Roveri, C. Tinelli, and S.Tonetta, who detain its copyright. Some exampes

displayed in these slides are taken from [Clarke, Grunberg & Peled, “Model Checking”, MIT Press], and their copyright is
detained by the authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this

material is strictly forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be
displayed in public without containing this copyright notice.

1 / 81

roberto.sebastiani@unitn.it
http://disi.unitn.it/rseba/DIDATTICA/fm2021/
giuseppe.spallitta@unitn.it

Outline

1 First-Order Logic
Generalities
Syntax
Semantics
Satisfiability, Validity, Entailment

2 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

3 Resolution-based First-Order Reasoning
CNF-Ization
Resolution
Dealing with Equalities
A Complete Example

2 / 81

Outline

1 First-Order Logic
Generalities
Syntax
Semantics
Satisfiability, Validity, Entailment

2 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

3 Resolution-based First-Order Reasoning
CNF-Ization
Resolution
Dealing with Equalities
A Complete Example

3 / 81

Outline

1 First-Order Logic
Generalities
Syntax
Semantics
Satisfiability, Validity, Entailment

2 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

3 Resolution-based First-Order Reasoning
CNF-Ization
Resolution
Dealing with Equalities
A Complete Example

4 / 81

A Brief History of Logical Reasoning

When Who What
322 B.C. Aristotle “Syllogisms” (inference rules), quantifiers
1867 Boole Propositional Logic
1879 Frege First-Order Logic
1922 Wittgenstein proof by truth tables
1930 Gödel ∃ complete algorithm for FOL
1930 Herbrand complete algorithm for FOL
1931 Gödel ¬∃ complete algorithm for arithmetic
1960 Davis/Putnam “practical” algorithm for PL (DP/DPLL)
1965 Robinson “practical” algorithm for FOL (resolution)

5 / 81

Logics

A logic is a triple 〈L,S,R〉 where
L, the logic’s language: a class of sentences described by a
formal grammar
S, the logic’s semantics: a formal specification of how to assign
meaning in the “real world” to the elements of L
R, the logic’s inference system: is a set of formal derivation rules
over L

There are several logics:
propositional logic (PL)
first-order logic (FOL)
modal logics (MLs)
temporal logics (TLs)
...

6 / 81

Limits of Propositional Logic

Limits of Propositional Logic

Is “Atomic”: based on atomic events which cannot be
decomposed
Has very limited expressive power

assumes the world contains facts in the world that are either true
or false, nothing else

ex: Man_Socrates, Man_Plato, Man_Aristotle, ... distinct atoms

=⇒ cannot concisely describe an environment with many objects

7 / 81

First-Order Logic (FOL)

Is structured: a world/state includes objects, each of which may
have attributes of its own as well as relationships to other objects
Assumes the world contains:

Objects: e.g., people, houses, numbers, theories, Jim Morrison,
colors, basketball games, wars, centuries, ...
Relations: e.g., red, round, bogus, prime, tall ...,
brother of, bigger than, inside, part of, has color, occurred after,
owns, comes between, ...
Functions: e.g., father of, best friend, one more than, end of, ...

Allows to quantify on objects
ex: “All man are equal”, “some persons are left-handed”, ...

8 / 81

Outline

1 First-Order Logic
Generalities
Syntax
Semantics
Satisfiability, Validity, Entailment

2 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

3 Resolution-based First-Order Reasoning
CNF-Ization
Resolution
Dealing with Equalities
A Complete Example

9 / 81

Syntax of FOL: Basic Elements

Constant symbols: KingJohn, 2, UniversityofTrento,...
Predicate symbols: Man(.), Brother(.,.), (. > .), AllDifferent(...),...

may have different arities (1,2,3,...)
may be prefix (e.g. Brother(.,.)) or infix (e.g. (. > .))

Function symbols: Sqrt, LeftLeg, MotherOf
may have different arities (1,2,3,...)
may be prefix (e.g. Sqrt(.)) or infix (e.g. (.+ .))

Variable symbols: x, y, a, b, ...
Propositional Connectives: ¬,∧,∨,→,←,↔,⊕
Equality: “=” (also “ 6=” s.t. “a 6= b” shortcut for “¬(a = b)”)
Quantifiers: “∀” (“forall”), “∃” (“exists”, aka “for some”)
Punctuation Symbols: “,”, “(”, “)”

Constants symbols are 0-ary function symbols
Propositions are 0-ary predicates =⇒ PL subcase of FOL
Signature: the set of predicate, function & constant symbols

10 / 81

FOL: Syntax

Terms:
constant or variable or function(term1, ..., termn)
ex: KingJohn, x, LeftLeg(Richard), (z*log(2))
denote objects in the real world (aka domain)

Atomic sentences (aka atomic formulas):
>, ⊥
proposition or predicate(term1, ..., termn) or term1 = term2
(Length(LeftLeg(Richard)) > Length(LeftLeg(KingJohn)))
denote facts

Non-atomic sentences/formulas:
¬α, α ∧ β, α ∨ β, α→ β, α↔ β, α⊕ β,
∀x .α, ∃x .α s.t. x (typically) occurs in α
Ex: ∀y .(Italian(y)→ President(Mattarella, y))
∃x∀y .President(x , y)→ ∀y∃x .President(x , y)
∀x .(P(x) ∧Q(x))↔ ((∀x .P(x)) ∧ (∀x .Q(x)))
∀x .(((x ≥ 0) ∧ (x ≤ π))→ (sin(x) ≥ 0))
denote (complex) facts

11 / 81

FOL: Ground and Closed Formulas

A term/formula is ground iff no variable occurs in it (ex: 2 ≥ 1)
A formula is closed iff all variables occurring in it are quantified
(ex: ∀x∃y .(x > y))

12 / 81

FOL: Syntax (BNF)

〈Sentence〉 ::= 〈AtomicSentence〉 | 〈ComplexSentence〉
〈AtomicSentence〉 ::= > | ⊥ |

〈PredicateSymbol〉(〈Term〉, . . .) |
〈Term〉 = 〈Term〉

〈ComplexSentence〉 ::= ¬〈Sentence〉 |
〈Sentence〉 〈Connective〉 〈Sentence〉 |
〈Quantifier〉 〈Sentence〉

〈Term〉 ::= 〈ConstantSymbol〉 | 〈Variable〉 |
〈FunctionSymbol〉(〈Term〉, . . .)

〈Connective〉 ::= ∧ | ∨ | → | ← | ↔ | ⊕
〈Quantifier〉 ::= ∀ 〈Variable〉. | ∃ 〈Variable〉.
〈Variable〉 ::= a | b | · · · | x | y | · · ·
〈ConstantSymbol〉 ::= A | B | · · · | John | 0 | 1 | · · · | π | . . .
〈FunctionSymbol〉 ::= F | G | · · · | Cos | FatherOf | + | . . .
〈PredicateSymbol〉 ::= P | Q | · · · | Red | Brother | > | · · ·

13 / 81

POLARITY of subformulas

Polarity: the number of nested negations modulo 2.
Positive/negative occurrences

ϕ occurs positively in ϕ;
if ¬ϕ1 occurs positively [negatively] in ϕ,
then ϕ1 occurs negatively [positively] in ϕ
if ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2 occur positively [negatively] in ϕ,
then ϕ1 and ϕ2 occur positively [negatively] in ϕ;
if ϕ1 → ϕ2 occurs positively [negatively] in ϕ,
then ϕ1 occurs negatively [positively] in ϕ and ϕ2 occurs positively
[negatively] in ϕ;
if ϕ1 ↔ ϕ2 or ϕ1 ⊕ ϕ2 occurs in ϕ,
then ϕ1 and ϕ2 occur positively and negatively in ϕ;
if ∀x .ϕ1 or ∃x .ϕ1 occurs positively [negatively] in ϕ,
then ϕ1 occurs positively [negatively] in ϕ

14 / 81

Outline

1 First-Order Logic
Generalities
Syntax
Semantics
Satisfiability, Validity, Entailment

2 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

3 Resolution-based First-Order Reasoning
CNF-Ization
Resolution
Dealing with Equalities
A Complete Example

15 / 81

Truth in FOL: Intuitions

Sentences are true with respect to a model
containing a domain and an interpretation

The domain contains ≥ 1 objects (domain elements) and
relations and functions over them
An interpretation specifies referents for

variables→ objects
constant symbols→ objects
predicate symbols→ relations
function symbols→ functional relations

An atomic sentence P(t1, ..., tn) is true in an interpretation iff the
objects referred to by t1, ..., tn are in the relation referred to by P

16 / 81

FOL: Semantics
FOL Models (aka possible worlds)

A modelM is a pair 〈D, I〉 (〈domain, interpretation〉)
Domain D: a non-empty set of objects (aka domain elements)
Interpretation I: a (non-injective) map on elements of the
signature

constant symbols 7−→ domain elements:
a constant symbol C is mapped into a particular object [[C]]I in D
predicate symbols 7−→ domain relations:
a k -ary predicate P(...) is mapped into a subset [[P]]I of Dk

(i.e., the set of object tuples satisfying the predicate in this world)
functions symbols 7−→ domain functions:
a k -ary function f is mapped into a domain function
[[f]]I : Dk 7−→ D ([[f]]I must be total)

(we denote by [[.]]I the result of the interpretation I)

An Interpretation I is extended to assign domain values to variables,
domain values to terms and truth values to formulas.

17 / 81

FOL: Semantics [cont.]

Interpretation of terms
I maps terms into domain elements

Variables are assigned domain values
variables 7−→ domain elements:
a variable x is mapped into a particular object [[x]]I in D

A term f (t1, ..., tk) is mapped by I into the value [[f (t1, ..., tk)]]I

returned by applying the domain function [[f]]I , into which f is
mapped, to the values [[t1]]I , ..., [[tk]]I obtained by applying
recursively I to the terms t1, ..., tk :

[[f (t1, ..., tk)]]I = [[f]]I([[t1]]I , ..., [[tk]]I)
Ex: if “Me, Mother, Father” are interpreted as usual, then
“Mother(Father(Me))” is interpreted as my (paternal) grandmother
Ex: if “+,−, ·,0,1,2,3,4” are interpreted as usual, then
“(3− 1) · (0 + 2)” is interpreted as 4

18 / 81

FOL: Semantics [cont.]
Interpretation of formulas
I maps formulas into truth values

An atomic formula P(t1, ..., tk) is true in I iff the objects into
which the terms t1,...tk are mapped by I comply to the relation
into which P is mapped

[[P(t1, ..., tk)]]I is true iff 〈[[t1]]I , ..., [[tk]]I〉 ∈ [[P]]I

Ex: if “Me, Mother, Father, Married” are interpreted as traditon,
then “Married(Mother(Me),Father(Me))” is interpreted as true
Ex: if “+,−, >,0,1,2,3,4” are interpreted as usual, then
“(4− 0) > (1 + 2)” is interpreted as true

An atomic formula t1 = t2 is true in I iff the terms t1, t2 are
mapped by I into the same domain element

[[t1 = t2]]I is true iff [[t1]]I same as [[t2]]I

Ex: if “Mother” is interpreted as usual, Richard, John are brothers,
then “Mother(Richard)=Mother(John))” is interpreted as true
Ex: if “+,−,0,1,2,3,4” are interpreted as usual, then
“(4− 1) = (1 + 2)” is interpreted as true

¬,∧,∨,→,←,↔,⊕ interpreted by I as in PL
19 / 81

Models for FOL: Example

Richard Lionhearth and John Lackland
D: domain at right
I: s.t.

[[Richard]]I : Richard the
Lionhearth
[[John]]I : evil King John
[[Brother]]I :
brotherhood

[[Brother(Richard , John)]]I

is true
[[LeftLeg]]I maps any
individual to his left leg
...

(© S. Russell & P. Norwig, AIMA)

20 / 81

Models for FOL: Remark

[[f]]I total: must provide an output for every input
e.g.: [[LeftLeg(crown)]]I?
possible solution: assume “null” object ([[LeftLeg(crown) = null]]I

21 / 81

Universal Quantification

∀x .α(x , ...) (x variable, typically occurs in x)
ex: ∀x .(King(x)→ Person(x)) (“all kings are persons”)

∀x .α(x , ...) true inM iff
α is true inM for every possible domain value x is mapped to
Roughly speaking, can be seen as a conjunction over all
(typically infinite) possible instantiations of x in α

(King(John) → Person(John))∧
(King(Richard) → Person(Richard))∧
(King(crown) → Person(crown))∧
(King(LeftLeg(John)) → Person(LeftLeg(John)))∧
(King(LeftLeg(LeftLeg(John))) → Person(LeftLeg(LeftLeg(John))))∧
... ...

22 / 81

Universal Quantification [cont.]

One may want to restrict the domain of universal quantification to
elements of some kind P

ex “forall kings ...”, “forall integer numbers...”

Idea: use an implication, with restrictive predicate as implicant:
∀x .(P(x)→ α(x , ...))

ex “∀x .(King(x)→ ...)”, “∀x .(Integer(x)→ ...)”,
Beware of typical mistake: do not use “∧” instead of “→”

ex: “∀x .(King(x) ∧ Person(x))” means
“everything/one is a King and is a Person”

“∀” distributes with “∧”, but not with “∨”
∀x .(P(x) ∧Q(x)) equivalent to (∀x .P(x)) ∧ (∀x .Q(x))
“Everybody is a king and is a person” same as
“Everybody is a king and everybody is a person”
∀x .(P(x) ∨Q(x)) not equivalent to (∀x .P(x)) ∨ (∀x .Q(x))
“Everybody is a king or is a peasant” much weaker than
“Everybody is a king or everybody is a peasant”

23 / 81

Existential Quantification

∃x .α(x , ...) (x variable, typically occurs in x)
ex: ∃x .(King(x) ∧ Evil(x)) (“there is an evil king”)
pronounced “exists x s.t. ...” or “for some x ...”

∃x .α(x , ...) true inM iff
α is true inM for some possible domain value x is mapped to
Roughly speaking, can be seen as a disjunction over all (typically
infinite) possible instantiations of x in α

(King(Richard) ∧Evil(Richard))∨
(King(John) ∧Evil(John))∨
(King(crown) ∧Evil(crown))∨
(King(LeftLeg(John)) ∧Evil(LeftLeg(John)))∨
(King(LeftLeg(LeftLeg(John))) ∧Evil(LeftLeg(LeftLeg(John))))∨
... ...

24 / 81

Existential Quantification [cont.]

One may want to restrict the domain of existential quantification
to elements of some kind P

ex “exists a king s.t. ...”, “for some integer numbers...”

Idea: use a conjunction with restrictive predicate:
∃x .(P(x) ∧ α(x , ...))

ex “∃x .(King(x) ∧ ...)”, “∃x .(Integer(x) ∧ ...)”,
Beware of typical mistake: do not use “→” instead of “∧”

ex: “∃x .(King(x)→ Evil(x))” means
“Someone is not a king or is evil”

“∃” distributes with “∨”, but not with “∧”
∃x .(P(x) ∨Q(x)) equivalent to (∃x .P(x)) ∨ (∃x .Q(x))
“Somebody is a king or is a knight” same as
“Somebody is a king or somebody is a knight”
∃x .(P(x) ∧Q(x)) not equivalent to (∃x .P(x)) ∧ (∃x .Q(x))
“Somebody is a king and is evil” much stronger than
“Somebody is a king and somebody is evil”

25 / 81

Examples

Brothers are siblings
∀ x , y . (Brothers(x , y)→ Siblings(x , y))

“Siblings” is symmetric
∀ x , y . (Siblings(x , y) ↔ Siblings(y , x))

One’s mother is one’s female parent
∀ x , y . (Mother(x , y) ↔ (Female(x) ∧ Parent(x , y)))

A first cousin is a child of a parent’s sibling
∀ x1, x2. (FirstCousin(x1, x2) ↔

∃p1,p2. (Siblings(p1,p2) ∧ Parent(p1, x1) ∧ Parent(p2, x2)))

Dogs are mammals
∀ x . (Dog(x)→ Mammal(x))

26 / 81

Equality

Equality is a special predicate: t1 = t2 is true under a given
interpretation if and only if t1 and t2 refer to the same object

Ex: 1 = 2 and x ∗ x = x are satisfiable (!)
Ex: 2 = 2 is valid

Ex: definition of Sibling in terms of Parent
∀ x , y . (Siblings(x , y) ↔ [¬(x = y) ∧ ∃m, f . (¬(m = f) ∧
Parent(m, x) ∧ Parent(f , x) ∧ Parent(m, y) ∧ Parent(f , y)]))

27 / 81

Example

No one is his/her own sibling
∀ x . ¬Siblings(x , x)

Sisters are female, brothers are male
∀ x , y . ((Sisters(x , y)→ (Female(x) ∧ Female(y))) ∧

(Brothers(x , y)→ (Male(x) ∧Male(y))))

Every married person has a spouse
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Married people have spouses
∀ x . ((Person(x) ∧Married(x))→ ∃ y . Spouse(x , y))

Only married people have spouses
∀ x , y . ((Person(x) ∧ Person(y) ∧ Spouse(x , y))→
(Married(x) ∧Married(y)))

People cannot be married to their siblings
∀ x , y . (Spouse(x , y)→ ¬Siblings(x , y))

28 / 81

Example (cont.)

Not everybody has a spouse
¬∀ x . (Person(x)→ ∃ y . Spouse(x , y)) or
∃ x . (Person(x) ∧ ¬∃ y . Spouse(x , y))

Everybody has a mother
∀ x . (Person(x)→ ∃ y . Mother(y , x))

Everybody has a mother and only one
∀ x . Person(x)→ (∃ y . Mother(y , x) ∧

¬∃ z. (¬(y = z) ∧Mother(z, x)))

29 / 81

Properties of Quantifiers

Notation variants: ∀x(∀y .α)⇐⇒ ∀x∀y .α⇐⇒ ∀x , y .α⇐⇒ ∀xy .α
(same with ∃)

if x does not occur in ϕ, ∀x .ϕ equivalent to ∃x .ϕ equivalent to ϕ
∀xy .P(x , y) equivalent to ∀yx .P(x , y)

ex: ∀xy .(x < y) same as ∀yx .(x < y)

∃xy .P(x , y) equivalent to ∃yx .P(x , y)

ex: ∃xy .Twins(x , y) same as ∃yx .Twins(x , y)

∃x∀y .P(x , y) not equivalent to ∀y∃x .P(x , y)

ex: ∀y∃x .Father(x , y) much weaker than ∃x∀y .Father(x , y)
“everybody has a father” vs. “exists a father of everybody”

30 / 81

Duality of Universal and Existential Quantification

∀ and ∃ are dual
∀x .α⇐⇒ ¬∃x .¬α
¬∀x .α⇐⇒ ∃x .¬α
∃x .α⇐⇒ ¬∀x .¬α
¬∃x .α⇐⇒ ∀x .¬α

Examples
∀x .Likes(x , Icecream) equivalent to ¬∃x .¬Likes(x , Icecream)
∃x .Likes(x ,Broccoli) equivalent to ¬∀x .¬Likes(x ,Broccoli)

Negated restricted quantifiers switch “→” with “∧”
∀x .(P(x)→ α)⇐⇒ ¬∃x .(P(x) ∧ ¬α)
¬∀x .(P(x)→ α)⇐⇒ ∃x .(P(x) ∧ ¬α)
...

Ex: “not all kings are evil” same as “some king is not evil”
¬∀x .(King(x)→ Evil(x)) ⇐⇒ ∃x .(King(x) ∧ ¬Evil(x))

Unsurprising, since 〈∀,∃〉 are 〈∧,∨〉 over infinite instantiations

31 / 81

Outline

1 First-Order Logic
Generalities
Syntax
Semantics
Satisfiability, Validity, Entailment

2 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

3 Resolution-based First-Order Reasoning
CNF-Ization
Resolution
Dealing with Equalities
A Complete Example

32 / 81

Satisfiability, Validity, Entailment

A modelM def
= 〈D, I〉 satisfies ϕ (M |= ϕ) iff [[ϕ]]I is true

M(ϕ)
def
= {M | M |= ϕ} (the set of models of ϕ)

ϕ is satisfiable iffM |= ϕ for someM (i.e. M(ϕ) 6= ∅)
α entails β (α |= β) iff, for allM,M |= α =⇒M |= β
(i.e., M(α) ⊆ M(β))
ϕ is valid (|= ϕ) iffM |= ϕ forallMs (i.e.,M∈ M(ϕ) forallMs)
α, β are equivalent iff α |= β and β |= α (i.e. M(α) = M(β))

Sets of formulas as conjunctions

Let Γ
def
= {ϕ1, ..., ϕn}. Then:

Γ satisfiable iff
∧n

i=1 ϕi satisfiable
Γ |= φ iff

∧n
i=1 ϕi |= φ

Γ valid iff
∧n

i=1 ϕi valid

33 / 81

Properties & Results

Property
ϕ is valid iff ¬ϕ is unsatisfiable

Deduction Theorem
α |= β iff α→ β is valid (|= α→ β)

Corollary

α |= β iff α ∧ ¬β is unsatisfiable

Validity and entailment checking can be straightforwardly reduced to
(un)satisfiability checking!

34 / 81

Basic Definitions and Properties: Examples

P(x), ∀x .(x ≥ y), {∀x .(x ≥ 0), ∀x .(x + 1 > x)} satisfiable
P(x)∧¬P(x), ¬(x = x), ∀x , y .(Q(x , y))→¬Q(a,b)) unsatisfiable
∀x .P(x)→ ∃x .P(x) valid
∀x .P(x) |= ∃x .P(x)

¬(∀x .P(x))→ ∃x .P(x)) unsatisfiable
∀x .P(x) ∧ ¬∃x .P(x)) unsatisfiable

(1 > 2) is satisfiable. Why?

35 / 81

Exercises

Is ∀x .P(x) equivalent to ∀y .P(y)?
Is ∀xy .P(x , y) equivalent to ∀yx .P(y , x)?
∀x .∃x .P(x) is equivalent to:

∃x .P(x)
∀x .P(x)
neither

∃x .∀x .P(x) is equivalent to:
∃x .P(x)
∀x .P(x)
neither

36 / 81

Enumeration of Models?

We can enumerate the models for a given FOL sentence:
For each number of universe elements n from 1 to∞

For each k -ary predicate Pk in the sentence
For each possible k -ary relation on n objects

For each constant symbol C in the sentence
For each one of n objects C is mapped to
. . .

=⇒ Enumerating models is not going to be easy!

37 / 81

Semi-decidability of FOL
Theorem
Entailment (validity, unsatisfiability) in FOL is only semi-decidable:

if Γ |= α, this can be checked in finite time
if Γ 6|= α, no algorithm is guaranteed to check it in finite time

©Munch Museum, Oslo 38 / 81

Outline

1 First-Order Logic
Generalities
Syntax
Semantics
Satisfiability, Validity, Entailment

2 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

3 Resolution-based First-Order Reasoning
CNF-Ization
Resolution
Dealing with Equalities
A Complete Example

39 / 81

Outline

1 First-Order Logic
Generalities
Syntax
Semantics
Satisfiability, Validity, Entailment

2 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

3 Resolution-based First-Order Reasoning
CNF-Ization
Resolution
Dealing with Equalities
A Complete Example

40 / 81

Term/Subformula Substitutions

Notation
Substitution: “Subst({e1/e2},e)” or “e{e1/e2}”:
the expression (term or formula) obtained by substituting every
occurrence of e1 with e2 in e

e1,e2 either both terms (term substitution)
or both subformulas (subformula substitution)
e is either a term or a formula (only term for term substitution)

Examples:
(t. sub.): (y + 1 = 1 + y){y/S(x)} =⇒ (S(x) + 1 = 1 + S(x))
(s.f. sub.): (Even(x) ∨Odd(x)){Even(x)/Odd(S(x))} =⇒
((Odd(S(x)) ∨Odd(x))

Multiple substitution: e{e1/e2,e3/e4}
def
= (e{e1/e2}){e3/e4}

ex: (P(x , y)→ Q(x , y)){x/1, y/2} =⇒ (P(1,2)→ Q(1,2))

If θ is a substitution list and e an expression (formula/term),
then we denote the result of a substitution as eθ

e∅ = e
e(θ1θ2) = (eθ1)θ2, denoted as eθ1θ2

41 / 81

Substitution with equivalent terms

Equal-term substitution rule

Γ ∧ (t1 = t2) ∧ α
Γ ∧ (t1 = t2) ∧ α ∧ α{t1/t2}

Ex: (S(x) = x + 1) ∧ (0 6= S(x)) =⇒
(S(x) = x + 1) ∧ (0 6= S(x)) ∧ (0 6= x + 1)

Preserves validity:
M(Γ ∧ (t1 = t2) ∧ α ∧ α{t1/t2}) = M(Γ ∧ (t1 = t2) ∧ α)

α can be safely dropped from the result

42 / 81

Substitution with equivalent terms

Equal-term substitution rule

Γ ∧ (t1 = t2) ∧ α
Γ ∧ (t1 = t2) ∧ α ∧ α{t1/t2}

Ex: (S(x) = x + 1) ∧ (0 6= S(x)) =⇒
(S(x) = x + 1) ∧ (0 6= S(x)) ∧ (0 6= x + 1)

Preserves validity:
M(Γ ∧ (t1 = t2) ∧ α ∧ α{t1/t2}) = M(Γ ∧ (t1 = t2) ∧ α)

α can be safely dropped from the result

42 / 81

Substitution with equivalent terms

Equal-term substitution rule

Γ ∧ (t1 = t2) ∧ α
Γ ∧ (t1 = t2) ∧ α ∧ α{t1/t2}

Ex: (S(x) = x + 1) ∧ (0 6= S(x)) =⇒
(S(x) = x + 1) ∧ (0 6= S(x)) ∧ (0 6= x + 1)

Preserves validity:
M(Γ ∧ (t1 = t2) ∧ α ∧ α{t1/t2}) = M(Γ ∧ (t1 = t2) ∧ α)

α can be safely dropped from the result

42 / 81

Substitution with equivalent terms

Equal-term substitution rule

Γ ∧ (t1 = t2) ∧ α
Γ ∧ (t1 = t2) ∧ α ∧ α{t1/t2}

Ex: (S(x) = x + 1) ∧ (0 6= S(x)) =⇒
(S(x) = x + 1) ∧ (0 6= S(x)) ∧ (0 6= x + 1)

Preserves validity:
M(Γ ∧ (t1 = t2) ∧ α ∧ α{t1/t2}) = M(Γ ∧ (t1 = t2) ∧ α)

α can be safely dropped from the result

42 / 81

Substitution with equivalent formulas

Equivalent-subformula substitution rule

Γ ∧ (β1 ↔ β2) ∧ α
Γ ∧ (β1 ↔ β2) ∧ α ∧ α{β1/β2}

Ex: (Even(x)↔ Odd(S(x)))∧(Even(x)∨Odd(x)) =⇒
(Even(x)↔ Odd(S(x)))∧(Even(x)∨Odd(x))∧(Odd(S(x))∨Odd(x))

Preserves validity:
M(Γ ∧ (β1 = β2) ∧ α ∧ α{β1/β2}) = M(Γ ∧ (β1 ↔ β2) ∧ α)

α can be safely dropped from the result

43 / 81

Substitution with equivalent formulas

Equivalent-subformula substitution rule

Γ ∧ (β1 ↔ β2) ∧ α
Γ ∧ (β1 ↔ β2) ∧ α ∧ α{β1/β2}

Ex: (Even(x)↔ Odd(S(x)))∧(Even(x)∨Odd(x)) =⇒
(Even(x)↔ Odd(S(x)))∧(Even(x)∨Odd(x))∧(Odd(S(x))∨Odd(x))

Preserves validity:
M(Γ ∧ (β1 = β2) ∧ α ∧ α{β1/β2}) = M(Γ ∧ (β1 ↔ β2) ∧ α)

α can be safely dropped from the result

43 / 81

Substitution with equivalent formulas

Equivalent-subformula substitution rule

Γ ∧ (β1 ↔ β2) ∧ α
Γ ∧ (β1 ↔ β2) ∧ α ∧ α{β1/β2}

Ex: (Even(x)↔ Odd(S(x)))∧(Even(x)∨Odd(x)) =⇒
(Even(x)↔ Odd(S(x)))∧(Even(x)∨Odd(x))∧(Odd(S(x))∨Odd(x))

Preserves validity:
M(Γ ∧ (β1 = β2) ∧ α ∧ α{β1/β2}) = M(Γ ∧ (β1 ↔ β2) ∧ α)

α can be safely dropped from the result

43 / 81

Substitution with equivalent formulas

Equivalent-subformula substitution rule

Γ ∧ (β1 ↔ β2) ∧ α
Γ ∧ (β1 ↔ β2) ∧ α ∧ α{β1/β2}

Ex: (Even(x)↔ Odd(S(x)))∧(Even(x)∨Odd(x)) =⇒
(Even(x)↔ Odd(S(x)))∧(Even(x)∨Odd(x))∧(Odd(S(x))∨Odd(x))

Preserves validity:
M(Γ ∧ (β1 = β2) ∧ α ∧ α{β1/β2}) = M(Γ ∧ (β1 ↔ β2) ∧ α)

α can be safely dropped from the result

43 / 81

Universal Instantiation (UI)

Every instantiation of a universally quantified-sentence is
entailed by it:

Γ ∧ ∀x .α
Γ ∧ ∀x .α ∧ α{x/t}

for every variable x and term t
Ex: ∀x .((King(x) ∧Greedy(x))→ Evil(x))

(King(John) ∧Greedy(John))→ Evil(John)
(King(Richard) ∧Greedy(Richard))→ Evil(Richard)
(King(Father(John)) ∧Greedy(Father(John)))→
Evil(Father(John))
(King(Father(Father(John)))∧Greedy(Father(Father(John))))→
Evil(Father(Father(John)))
...

Preserves validity:
M(Γ ∧ ∀x .α ∧ α{x/t}) = M(Γ ∧ ∀x .α)

44 / 81

Universal Instantiation (UI)

Every instantiation of a universally quantified-sentence is
entailed by it:

Γ ∧ ∀x .α
Γ ∧ ∀x .α ∧ α{x/t}

for every variable x and term t
Ex: ∀(x .(King(x) ∧Greedy(x))→ Evil(x))

(King(John) ∧Greedy(John))→ Evil(John)
(King(Richard) ∧Greedy(Richard))→ Evil(Richard)
(King(Father(John)) ∧Greedy(Father(John)))→
Evil(Father(John))
(King(Father(Father(John)))∧Greedy(Father(Father(John))))→
Evil(Father(Father(John)))
...

Preserves validity:
M(Γ ∧ ∀x .α ∧ α{x/t}) = M(Γ ∧ ∀x .α)

45 / 81

Existential Instantiation (EI)

An existentially quantified-sentence can be substituted by one of
its instantation with a fresh constant:

Γ ∧ ∃x .α
Γ ∧ α{x/C}

for every variable x and for a “fresh” constant C, i.e. a constant
which does not appear in Γ ∧ ∃x .α
C is a Skolem constant, EI subcase of Skolemization (see later)
Intuition: if there is an object satisfying some condition, then we
give a (new) name to such object
Ex: ∃x .(Crown(x) ∧OnHead(x , John))

(Crown(C) ∧OnHead(C, John))
given “There is a crown on John’s head”, I call “C” such crown

Preserves satisfiability (aka preserves inferential equivalence)
M(Γ ∧ α{x/C}) 6=∅ iff M(Γ ∧ ∃x .α) 6=∅
(i.e.. (Γ ∧ α{x/C}) |= β iff (Γ ∧ ∃x .α) |= β, for every β)

Ex from math: ∃x .(d(xy)
dy = xy), we call it “e” =⇒ (d(ey)

dy = ey)
46 / 81

Remarks

About Universal Instantiation:
UI can be applied several times to add new sentences;
the new Γ is logically equivalent to the old Γ

About Existential Instantiation:
EI can be applied once to replace the existential sentence;
the new Γ is not equivalent to the old,
but is (un)satisfiable iff the old Γ is (un)satisfiable

=⇒ the new Γ can infer β iff the old Γ can infer β

Before applying UI or EI, sentences must be rewritten s.t. negations
(even when implicit) must be pushed inside the quantifications:
¬∀x .α =⇒ ∃x .¬α
¬∃x .α =⇒ ∀x .¬α
ex: (∀x .P(x)→ ¬∃y .Q(y)
=⇒ (¬∀x .P(x) ∨ ¬∃y .Q(y)
=⇒ (∃x .¬P(x) ∨ ∀y .¬Q(y)

47 / 81

Outline

1 First-Order Logic
Generalities
Syntax
Semantics
Satisfiability, Validity, Entailment

2 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

3 Resolution-based First-Order Reasoning
CNF-Ization
Resolution
Dealing with Equalities
A Complete Example

48 / 81

Reduction to Propositional Inference

Idea: Convert (Γ ∧ ¬α) to PL (aka propositionalization)
=⇒ use a PL SAT solver to check PL (un)satisfiability
Trick:

replace variables with ground terms, creating all possible
instantiations of quantified sentences
convert atomic sentences into propositional symbols

e.g. “King(John)” =⇒ “King_John”,
e.g. “Brother(John,Richard)” =⇒ “Brother_John-Richard”,

Theorem: (Herbrand, 1930)
If a ground sentence α is entailed by an FOL Γ,
then it is entailed by a finite subset of the propositional Γ

=⇒ A ground sentence is entailed by the propositionalized Γ if it is
entailed by original Γ

=⇒ Every FOL Γ can be propositionalized s.t. to preserve entailment

The vice-versa does not hold
=⇒ works if α is entailed, loops if α is not entailed

49 / 81

Reduction to Propositional Inference: Example

Suppose Γ contains only:
∀x .((King(x) ∧Greedy(x))→ Evil(x))
King(John)
Greedy(John)
Brother(Richard , John)

Instantiating the universal sentence in all possible ways:
(King(John) ∧Greedy(John))→ Evil(John)
(King(Richard) ∧Greedy(Richard))→ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard , John)

The new Γ is propositionalized:
(King_John ∧Greedy_John)→ Evil_John
(King_Richard ∧Greedy_Richard)→ Evil_Richard
King_John
Greedy_John
Brother_Richard-John

Evil_John entailed by new Γ (Evil(John) entailed by old Γ)
50 / 81

Problems with Propositionalization

Propositionalization generates lots of irrelevant sentences
produces irrelevant atoms like Greedy(Richard)

∀x .((King(x) ∧Greedy(x))→ Evil(x))
King(John)
∀y .Greedy(y)
Brother(Richard , John)

=⇒ produces irrelevant atoms like Greedy(Richard)
With p k-ary predicates and n constants, p · nk instantiations
What happens with function symbols?

51 / 81

Problems with Propositionalization [cont.]

Problem: nested function applications
e.g. Father(John), Father(Father(John)),
Father(Father(Father(John))), ...

=⇒ infinite instantiations
Actual Trick: for k = 0 to∞, use terms of function nesting depth k

create propositionalized Γ by instantiating depth-k terms
if Γ |= α, then will find a contradiction for some finite k
if Γ 6|= α, may find a loop forever

Theorem: (Turing, 1936), (Church, 1936):
Entailment in FOL is semidecidable

52 / 81

Outline

1 First-Order Logic
Generalities
Syntax
Semantics
Satisfiability, Validity, Entailment

2 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

3 Resolution-based First-Order Reasoning
CNF-Ization
Resolution
Dealing with Equalities
A Complete Example

53 / 81

Unification

Unification: Given 〈α′
1, α

′
2, ..., α

′
k 〉 and 〈α1, α2, ..., αk 〉,

find a variable substitution θ s.t. θ s.t. α′
iθ = αiθ, for all i ∈ 1..k

θ is called a unifier for 〈α′1, α′2, ..., α′k 〉 and 〈α1, α2, ..., αk 〉
Unify(α, β) = θ iff αθ = βθ

Ex:
Unify(Knows(John, x),Knows(John, Jane)) = {x/Jane}
Unify(Knows(John, x),Knows(y ,OJ)) = {x/OJ, y/John}
Unify(Knows(John, x),Knows(y ,Mother(y))) =
{y/John, x/Mother(John)}

Unify(Knows(John, x),Knows(x ,OJ)) = FAIL : x/?

Different (implicitly-universally-quantified) formulas should use
different variables

=⇒ (Standardizing apart): rename variables to avoid name clashes
Unify(Knows(John, x1),Knows(x2,OJ)) = {x1/OBJ, x2/John}

{∀x .α,∀x .β} ⇐⇒ {∀x1.α{x/x1},∀x2.β{x/x2}}, s.t. x1, x2 new

54 / 81

Most-General Unifier (MGU)

Unifiers are not unique
ex: Unify(Knows(John, x),Knows(y , z))
could return {y/John, x/z} or {y/John, x/John, z/John}

Given α, β, the unifier θ1 is more general than the unifier θ2 for
α, β if exists θ3 s.t. θ2 = θ1θ3

ex: {y/John, x/z} more general than {y/John, x/John, z/John}:
{y/John, x/John, z/John} = {y/John, x/z}{z/John}

Theorem: If exists an unifier for α, β, then exists a most general
unifier (MGU) θ for α, β

Ex: {y/John, x/z} MGU for Knows(John, x),Knows(y , z)
Ex: an MGU is unique modulo variable renaming

UNIFY() returns the MGU between two (lists of) formulas
efficiency optimizations based on predicate/term indexing
techniques (see AIMA if interested)

55 / 81

The Procedure Unify

(© S. Russell & P. Norwig, AIMA) 56 / 81

Outline

1 First-Order Logic
Generalities
Syntax
Semantics
Satisfiability, Validity, Entailment

2 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

3 Resolution-based First-Order Reasoning
CNF-Ization
Resolution
Dealing with Equalities
A Complete Example

57 / 81

Outline

1 First-Order Logic
Generalities
Syntax
Semantics
Satisfiability, Validity, Entailment

2 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

3 Resolution-based First-Order Reasoning
CNF-Ization
Resolution
Dealing with Equalities
A Complete Example

58 / 81

Conjunctive Normal Form (CNF)

A FOL formula ϕ is in Conjunctive normal form iff it is a
conjunction of disjunctions of quantifier-free literal:

L∧
i=1

Ki∨
ji=1

lji

the disjunctions of literals
∨Ki

ji=1 lji are called clauses
every literal a quantifier-free atom or its negation
free variables implicitly universally quantified

Easier to handle: list of lists of literals.
=⇒ no reasoning on the recursive structure of the formula
Ex: ¬Missile(x) ∨ ¬Owns(Nono, x) ∨ Sells(West , x ,Nono)

59 / 81

FOL CNF Conversion CNF (ϕ)

Convert into NNF
Every FOL formula ϕ can be reduced into CNF:

1 Eliminate implications and biconditionals:
α→ β =⇒ ¬α ∨ β
α↔ β =⇒ (¬α ∨ β) ∧ (α ∨ ¬β)

2 Push inwards negations recursively:
¬(α ∧ β) =⇒ ¬α ∨ ¬β
¬(α ∨ β) =⇒ ¬α ∧ ¬β
¬¬α =⇒ α
¬∀x .α =⇒ ∃x .¬α
¬∃x .α =⇒ ∀x .¬α

=⇒ Negation normal form: negations only in front of atomic formulae
=⇒ quantified subformulas occur only with positive polarity

60 / 81

FOL CNF Conversion CNF (ϕ) [cont.]

Remove quantifiers
3 Standardize variables: each quantifier should use a different var

(∀x .∃y .α) ∧ ∃y .β ∧ ∀x .γ =⇒ (∀x .∃y .α) ∧ ∃y1.β{y/y1} ∧ ∀x1.γ{x/x1}
4 Skolemize (a generalization of EI):

Each existential variable is replaced by a fresh Skolem function
applied to the enclosing universally-quantified variables
∃y .α =⇒ α{y/c}
∀x .(...∃y .α...) =⇒ ∀x .(...α{y/F1(x)}...)
∀x1x2.(...∃y .α...) =⇒ ∀x1x2.(...α{y/F1(x1, x2)...)}
∃y1∀x1x2∃y2∀x3∃y3.α =⇒ ∀x1x2x3.

α{y1/c, y2/F1(x1, x2), y3/F2(x1, x2, x3)}

Ex: ∀x∃y .Father(x , y) =⇒ ∀x .Father(x , s(x))
(s(x) implictly means "son of x" although s() is a fresh function)

5 Drop universal quantifiers: ∀x1...xk .α =⇒ α
=⇒ free variables implicitly universally quantified

61 / 81

FOL CNF Conversion CNF (ϕ) [cont.]

CNF-ize propositionally
6 CNF-ize propositionally (see previous chapters):

either apply recursively the DeMorgan’s Rule:
(α ∧ β) ∨ γ =⇒ (α ∨ γ) ∧ (β ∨ γ)

or rename subformulas and add definitions:
(α ∧ β) ∨ γ =⇒ (B ∨ γ) ∧ CNF (B ↔ (α ∧ β))

Preserves satisfiability: M(ϕ) 6= ∅ iff M(CNF (ϕ)) 6= ∅

62 / 81

Conversion to CNF: Example

Consider: “Everyone who loves all animals is loved by someone”
∀x .([∀y .(Animal(y)→ Loves(x , y))]→ [∃y .Loves(y , x)])

1 Eliminate implications and biconditionals:
∀x .(¬[∀y .(¬Animal(y) ∨ Loves(x , y))] ∨ [∃y .Loves(y , x)])

2 Push inwards negations recursively:
∀x .([∃y .¬(¬Animal(y) ∨ Loves(x , y))] ∨ [∃y .Loves(y , x)])
∀x .([∃y .(¬¬Animal(y) ∧ ¬Loves(x , y))] ∨ [∃y .Loves(y , x)])
∀x .([∃y .(Animal(y) ∧ ¬Loves(x , y))] ∨ [∃y .Loves(y , x)])

3 Standardize variables:
∀x .([∃y .(Animal(y) ∧ ¬Loves(x , y))] ∨ [∃z.Loves(z, x)])

4 Skolemize:
∀x .([Animal(F (x)) ∧ ¬Loves(x ,F (x))] ∨ [Loves(G(x), x)])
(F(x): “an animal unloved by x”; G(x): “someone who loves x”)

5 Drop universal quantifiers::
[Animal(F (x)) ∧ ¬Loves(x ,F (x))] ∨ [Loves(G(x), x)]

6 CNF-ize propositionally:
(Animal(F (x)) ∨ Loves(G(x), x))∧ (¬Loves(x ,F (x)) ∨ Loves(G(x), x))

63 / 81

Remark: Bad Skolemization

Common mistake to avoid
Do not:

apply Skolemization and/or
drop universal quantifiers

before converting into NNF!
Polarity of quantified subformulas affect Skolemization

=⇒ NNF-ization may convert ∃’s into ∀’s, and vice versa

64 / 81

Bad Skolemization: Example

Wrong CNF-ization

∀x .([∀y .(Animal(y)→ Loves(x , y))]→ [∃y .Loves(y , x)])

1 Too-early Skolemization & universal-quantifier dropping:
∀x .([∀y .(Animal(y)→ Loves(x , y))]→ [Loves(G(x), x)])
([(Animal(y)→ Loves(x , y))]→ [Loves(G(x), x)])

2 NNF-ization and CNF-ization
([(Animal(y) ∧ ¬Loves(x , y))] ∨ [Loves(G(x), x)])
((Animal(y)∨Loves(G(x), x))∧((¬Loves(x , y))∨Loves(G(x), x)))

“y” should be a Skolem function F(x) instead,
because “∀y .(...)” occurred negatively
=⇒ should become “∃y .¬(...)”, and hence y Skolemized into F (x)
(compare with previous slide)

65 / 81

Outline

1 First-Order Logic
Generalities
Syntax
Semantics
Satisfiability, Validity, Entailment

2 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

3 Resolution-based First-Order Reasoning
CNF-Ization
Resolution
Dealing with Equalities
A Complete Example

66 / 81

Resolution
FOL resolution rule, let θ def

= mgu(li ,¬mj), s.t. liθ = ¬mjθ:
(l1 ∨ ... ∨ lk) (m1 ∨ ... ∨mn)

(l1 ∨ ... ∨ li−1 ∨ li+1 ∨ ... ∨ lk ∨m1 ∨ ... ∨mj−1 ∨mj+1 ∨ ... ∨mn)θ

Ex:
Man(Socrates) (¬Man(x) ∨Mortal(x))

Mortal(Socrates) s.t. θ def
= {x/Socrates}

To prove that Γ |= α in FOL:
convert Γ ∧ ¬α to CNF
apply repeatedly resolution rule to CNF (Γ ∧ ¬α) until either

the empty clause is generate =⇒ Γ |= α
no more resolution step is applicable =⇒ Γ 6|= α
resource (time, memory) exhausted =⇒ ??

Hint: apply resolution first to unit clauses (unit resolution)
unit resolution alone complete for definite clauses

Complete:
If there is a substitution θ such that Γ |= θα , then it will return θ
If there is no such θ, then the procedure may not terminate

Many strategies and tools available
67 / 81

Example: Resolution with Definite Clauses

KB: The law says that it is a crime for an American to sell weapons to
hostile nations. The country Nono, an enemy of America, has some
missiles, and all of its missiles were sold to it by Colonel West, who is
American.
Goal: Prove that Col. West is a criminal.

68 / 81

Example: Resolution with Definite Clauses [cont.]

it is a crime for an American to sell weapons to hostile nations:
∀x , y , z.((American(x) ∧Weapon(y) ∧ Hostile(z) ∧ Sells(x , y , z))→
Criminal(x))

=⇒ ¬American(x)∨¬Weapon(y)∨¬Hostile(z)∨¬Sells(x , y , z)∨Criminal(x)

Nono ... has some missiles
∃x .(Owns(Nono, x) ∧Missile(x)) =⇒ Owns(Nono,M1) ∧Missile(M1)

All of its missiles were sold to it by Colonel West
∀x .((Missile(x) ∧Owns(Nono, x))→ Sells(West , x ,Nono))

=⇒ ¬Missile(x) ∨ ¬Owns(Nono, x) ∨ Sells(West , x ,Nono)

Missiles are weapons:
∀x .(Missile(x)→Weapon(x)) =⇒ ¬Missile(x) ∨Weapon(x)

An enemy of America counts as “hostile”:
∀x .(Enemy(x ,America)→ Hostile(x))

=⇒ ¬Enemy(x ,America) ∨ Hostile(x)

West, who is American ...: American(West)
The country Nono, an enemy of America ...:
Enemy(Nono,America)

69 / 81

Example: Resolution with Definite Clauses

(© S. Russell & P. Norwig, AIMA)

70 / 81

Example: Resolution with General Clauses

Everyone who loves all animals is loved by someone.
Anyone who kills an animal is loved by no one.
Jack loves all animals.
Either Jack or Curiosity killed the cat, who is named Tuna.
Did Curiosity kill the cat?
(See AIMA book for FOL formalization and CNF-ization, or do it by exercise)

(© S. Russell & P. Norwig, AIMA)

71 / 81

Resolution Strategies

Saturation Calculus:
Given N0 : set of (implicitly universally quantified) clauses.
Derive N0, N1, N2, N3, ... s.t. Ni+1 = Ni ∪ {C},

where C is the conclusion of a resolution step from premises in Ni

(under reasonable restrictions) is refutationally complete :

N0 |= ⊥ =⇒ ⊥ ∈ Ni for some i

Problem
The resolution rule is prolific.

it generates many useless intermediate results
it may generate the same clauses in many different ways

This motivates the introduction of resolution restrictions.

72 / 81

Resolution Restrictions
Ordered resolution

define stable atom ordering;
resolve only maximal literals

Hyper-Resolution
Clauses are divided into

“nuclei”: those with ≥ 1 negative literals
“electrons” : those with positive literals only

Resolution can occur only among one nucleus and one electron

Ex :

¬P(x) ∨ ¬Q(x) ∨ R(x) Q(A) ∨ C
¬P(A) ∨ R(A) ∨ C P(A) ∨ D

R(A) ∨ C ∨ D
Multiple resolution steps are merged into one step

Ex :

¬P(x) ∨ ¬Q(x) ∨ R(x) Q(A) ∨ C P(A) ∨ D
R(A) ∨ C ∨ D

=⇒ Globally, can produce only electrons
73 / 81

Exercise

Solve the example of Colonel West using Hyper-Resolution
strategy
Solve the example of Curiosity & Tuna using Hyper-Resolution
Strategy

74 / 81

Outline

1 First-Order Logic
Generalities
Syntax
Semantics
Satisfiability, Validity, Entailment

2 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

3 Resolution-based First-Order Reasoning
CNF-Ization
Resolution
Dealing with Equalities
A Complete Example

75 / 81

Dealing with Term Equalities [hints.]

To deal with equality formulas (t1 = t2)

Combine resolution with Equal-term substitution rule
Ex:

(4 ≥ 3)

(S(x)=x +1) (¬(y ≥ z) ∨ (S(y) ≥ S(z)))

(¬(y ≥ z) ∨ (y + 1 ≥ z + 1))

4 + 1 ≥ 3 + 1

Very inefficient
Ad-hoc rules rule for equality: Paramodulation

76 / 81

Paramodulation

Ground case:
D ∨ (t = t ′) C ∨ L

D ∨ C ∨ L{t/t ′} literal
Example:

R(b) ∨ (a = b) Q(c) ∨ P(a)

R(b) ∨Q(c) ∨ P(b)

General case:

D ∨ (t = t ′) C ∨ L
(D ∨ C ∨ L{u/t ′})θ where θ def

= mgu(t ,u)

Examples:
R(b) ∨ (a = b) Q(c) ∨ P(x)

R(b) ∨Q(c) ∨ P(b) θ = {x/a}

R(g(c)) ∨ (

t︷ ︸︸ ︷
f (g(b)) = a) Q(x) ∨ P(g(

u︷︸︸︷
f (x)))

R(g(c)) ∨Q(g(b)) ∨ P(g(a)) θ = {x/g(b)}
77 / 81

Outline

1 First-Order Logic
Generalities
Syntax
Semantics
Satisfiability, Validity, Entailment

2 Basic First-Order Reasoning
Substitutions & Instantiations
From Propositional to First-Order Reasoning
Unification and Lifting

3 Resolution-based First-Order Reasoning
CNF-Ization
Resolution
Dealing with Equalities
A Complete Example

78 / 81

Example

Problem
Consider the following FOL formula set Γ:

1 ∀x .{[∀y .(Child(y)→ Loves(x , y))]→ [∃y .Loves(y , x)]}
2 ∀x .[Child(x)→ Loves(Mark, x)]

3 Beats(Mark,Paul) ∨ Beats(John,Paul)
4 Child(Paul)
5 ∀x .{[∃z.(Child(z) ∧ Beats(x , z))]→ [∀y .¬Loves(y , x)]}

(a) Compute the CNF-ization of Γ, Skolemize & standardize variables
(b) Write a FOL-resolution inference of the query Beats(John,Paul)

from the CNF-ized KB

79 / 81

Example
CNF-ization
(a) Compute the CNF-ization of Γ, Skolemize & standardize variables

1 ∀x .{[∀y .(Child(y)→ Loves(x , y))]→ [∃y .Loves(y , x)]}
∀x .{[¬∀y .(Child(y)→ Loves(x , y))] ∨ [∃y .Loves(y , x)]}
∀x .{[∃y .(Child(y) ∧ ¬Loves(x , y))] ∨ [∃y .Loves(y , x)]}
{[(Child(F (x)) ∧ ¬Loves(x ,F (x)))] ∨ [Loves(G(x), x)]}
1. Child(F (x)) ∨ Loves(G(x), x)
2. ¬Loves(y ,F (y)) ∨ Loves(G(y), y)

2 ¬Child(z) ∨ Loves(Mark, z)

3 Beats(Mark,Paul) ∨ Beats(John,Paul)

4 Child(Paul)

5 ∀x .{[∃z.(Child(z) ∧ Beats(x , z))]→ [∀y .¬Loves(y , x)]}
∀x .{[¬∃z.(Child(z) ∧ Beats(x , z))] ∨ [∀y .¬Loves(y , x)]}
∀x .{[∀z.(¬Child(z) ∨ ¬Beats(x , z))] ∨ [∀y .¬Loves(y , x)]}
¬Child(z2) ∨ ¬Beats(x2, z2) ∨ ¬Loves(y2, x2)

where F (),G() are Skolem unary functions.
80 / 81

Example

Resolution
(b) Write a FOL-resolution inference of the query Beats(John,Paul)
from the CNF-ized KB:

6 [1.2, 2.] =⇒ ¬Child(F (Mark)) ∨ Loves(G(Mark),Mark);

7 [1.1, 6.] =⇒ Loves(G(Mark),Mark);

8 [4, 5.] =⇒ ¬Beats(x2,Paul) ∨ ¬Loves(y2, x2);

9 [7, 8.] =⇒ ¬Beats(Mark,Paul);

10 [3, 9.] =⇒ Beats(John,Paul);

81 / 81

	First-Order Logic
	Generalities
	Syntax
	Semantics
	Satisfiability, Validity, Entailment

	Basic First-Order Reasoning
	Substitutions & Instantiations
	From Propositional to First-Order Reasoning
	Unification and Lifting

	Resolution-based First-Order Reasoning
	CNF-Ization
	Resolution
	Dealing with Equalities
	A Complete Example

