Course "Formal Methods" TEST

Roberto Sebastiani DISI, Università di Trento, Italy

June 17^{th} , 2021

769857918

[COPY WITH SOLUTIONS]

Given the following OBDD, with the ordering $\{A_5, A_1, A_3, A_2, A_4\},\$

for each of the following Boolean formulas, say whether the OBDD represents it or not.

- (a) $(\neg A_5 \rightarrow (\neg A_1 \rightarrow (\neg A_3 \rightarrow (\neg A_2 \rightarrow A_4))))$ [Solution: true]
- (b) $(A_2 \lor A_1 \lor A_5 \lor A_3 \lor A_4)$ [Solution: true]
- (c) $(A_3 \land A_5 \land A_4 \land A_1 \land A_2)$ [Solution: false]
- (d) $(A_5 \rightarrow (A_1 \rightarrow (A_3 \rightarrow (A_2 \rightarrow \neg A_4))))$ [Solution: false]

Consider the following Kripke Model M:

For each of the following facts, say if it is true or false in LTL.

- (a) $M \models \mathbf{GF}p$ [Solution: false]
- (b) $M \models \mathbf{FG} \neg p$ [Solution: false]
- $\begin{array}{l} (c) \ M \models p \mathbf{U}q \\ [\text{ Solution: false }] \end{array}$
- (d) $M \models (\mathbf{GF} \neg p \land \mathbf{GF} \neg q) \rightarrow p$ [Solution: true]

Consider the following <u>fair</u> Kripke Model M:

For each of the following facts, say if it is true or false in LTL.

- (a) $M \models \mathbf{GF}p$ [Solution: true]
- (b) $M \models \mathbf{FG} \neg p$ [Solution: false]
- (c) $M \models p\mathbf{U}q$ [Solution: true]
- (d) $M \models (\mathbf{GF} \neg p \land \mathbf{GF} \neg q) \rightarrow p$ [Solution: true]

$\mathbf{4}$

For each of the following fact regarding Buchi automata, say if it true or false.

(a) The following BA represents $\mathbf{FG}q$:

(b) The following BA represents $\mathbf{FG}q$:

[Solution: No, it accepts every execution.]

(c) The following BA represents $p\mathbf{U}q$:

(d) The following BA represents $p\mathbf{U}q$:

$\mathbf{5}$

Consider the following pair of ground and abstract machines M and M':

```
M:
                                            M':
MODULE main
                                           MODULE main
VAR
                                            VAR
  v1 : boolean;
                                              v1 : boolean;
  v2 : boolean;
                                              v2 : boolean;
  v3 : boolean;
                                              v3 : boolean;
ASSIGN
                                            ASSIGN
  init(v1) := FALSE;
                                              init(v1) := FALSE;
  init(v2) := TRUE;
                                              init(v2) := TRUE;
  init(v3) := FALSE;
TRANS
                                            TRANS
  (next(v1) <-> v2) &
                                              (next(v1) <-> v2) &
  (next(v2) <-> v3) &
                                              (next(v2) <-> v3)
  (next(v3) <-> v1)
```

For each of the following facts, say which is true and which is false.

(a) M' simulates M.

[Solution: True]

(b) M simulates M'.

[Solution: False. E.g.: M can execute the path $(01[1]) \mapsto (11[1]) \mapsto \dots$, which cannot be simulated by M'.]

- (c) For every Boolean property φ on v1,v2, if $M' \models \mathbf{G}\varphi$, then $M \models \mathbf{G}\varphi$, [Solution: True]
- (d) For every Boolean property φ on v1,v2, if $M \models \mathbf{G}\varphi$, then $M' \models \mathbf{G}\varphi$, [Solution: False. E.g., G (!v1 | !v2) (see example above).]

Consider the following piece of a much bigger formula, which has been fed to a CDCL SAT solver:

 $\begin{array}{cccc} c_{1}:\neg A_{9} \lor & A_{12} \lor \neg A_{1} \\ c_{2}: & A_{9} \lor \neg A_{7} \lor \neg A_{3} \\ c_{3}:\neg A_{11} \lor & A_{5} \lor & A_{2} \\ c_{4}:\neg A_{10} \lor \neg A_{12} \lor & A_{11} \\ c_{5}:\neg A_{11} \lor & A_{6} \lor & A_{4} \\ c_{6}:\neg A_{9} \lor & A_{10} \lor \neg A_{1} \\ c_{7}: & A_{9} \lor & A_{8} \lor \neg A_{3} \\ c_{8}:\neg A_{5} \lor \neg A_{6} \\ c_{9}: & A_{7} \lor \neg A_{8} \lor & A_{13} \\ \ldots \end{array}$

Suppose the solver has decided, in order, the following literals (possibly interleaved by others not occurring in the above clauses):

 $\{\dots, A_1, \dots \neg A_2, \dots \neg A_4, \dots A_3, \dots \neg A_{13}, \dots, A_9\}$

(a) List the sequence of unit-propagations following after the last decision, each literal tagged (in square brackets) by its antecedent clause

[Solution:

A_{12}	$[c_1]$
A_{10}	$[c_6]$
A_{11}	$[c_4]$
A_5	$[c_3]$
A_6	$[c_5]$
conflict on c_8	

(b) Derive the conflict clause via conflict analysis by means of the 1st-UIP technique [Solution:

$$\xrightarrow{\neg A_{11} \lor A_5 \lor A_2} \xrightarrow{\neg A_{11} \lor A_6 \lor A_4} \xrightarrow{\neg A_5 \lor \neg A_6} (A_6)$$

(c) Using the 1st-UIP backjumping strategy, update the list of literals above after the backjumping step and the unit-propagation of the UIP

[Solution: {..., $A_1, ... \neg A_2, ... \neg A_4, \neg A_{11}$ }]

Given the following generalized Büchi automaton $A \stackrel{\text{def}}{=} \langle Q, \Sigma, \delta, I, FT \rangle$, $\{a, b\}$ being labels, with two sets of accepting states $FT \stackrel{\text{def}}{=} \{F1, F2\}$ s.t. $F1 \stackrel{\text{def}}{=} \{s2\}, F2 \stackrel{\text{def}}{=} \{s1\}$:

convert it into an equivalent plain Büchi automaton.

[Solution: The result is:

Consider the following LTL formula:

$$\varphi \stackrel{\text{\tiny def}}{=} (\mathbf{F}r) \to (p\mathbf{U}q)$$

and the following three states of the construction of the tableau T_{φ} of φ :

$$S_{1} : \langle q, p, \neg \mathbf{X}(p\mathbf{U}q), r, \mathbf{XF}r \rangle$$

$$S_{2} : \langle \neg q, p, \mathbf{X}(p\mathbf{U}q), r, \neg \mathbf{XF}r \rangle$$

$$S_{3} : \langle q, \neg p, \neg \mathbf{X}(p\mathbf{U}q), \neg r, \neg \mathbf{XF}r \rangle$$

For each of the following statements, say if it is true or false. [Solution: recall that

• $sat(p\mathbf{U}q) \stackrel{\text{def}}{=} sat(q) \cup (sat(p) \cap sat(\mathbf{X}(p\mathbf{U}q)))$

•
$$sat(\mathbf{F}r) \stackrel{\text{def}}{=} sat(r) \cup sat(\mathbf{XF}r)$$

Thus

 $S_{1} \in sat(p\mathbf{U}q), S_{1} \in sat(\mathbf{F}r), \\ S_{2} \in sat(p\mathbf{U}q), S_{2} \in sat(\mathbf{F}r), \\ S_{3} \in sat(p\mathbf{U}q), S_{3} \notin sat(\mathbf{F}r).]$

(a) S_2 is a successor of S_1 in T_{φ} .

[Solution: No. In fact, every successor of S_1 should <u>not</u> belong to $sat(p\mathbf{U}q)$.]

- (b) S_3 is a successor of S_2 in T_{φ} . [Solution: Yes. In fact, every successor of S_2 should belong to $sat(p\mathbf{U}q)$ and should <u>not</u> belong to $sat(\mathbf{F}r)$ as defined above, which is the case of S_3 .]
- (c) S_3 is an initial state of T_{φ} .

[Solution: Yes. In fact, every initial state T_{φ} should belong to $(S \setminus sat(\mathbf{F}r)) \cup sat(p\mathbf{U}q)$ as defined above, which is the case of S_3 .]

(d) S_2 is an accepting state of T_{φ} .

[Solution: No. Since there is only one (relevant) positive U-subformula in φ , we have only one group of accepting states, these which belong to $sat(\neg(p\mathbf{U}q)) \cup sat(q)$. S_2 does not belong to it, because it belongs to $sat(p\mathbf{U}q)$ and not to sat(q).]

Given the following LTL Model Checking problem $M \models \varphi$ expressed in NuXMV input language:

```
MODULE main
VAR x : boolean; y : boolean;
INIT (!x & !y)
TRANS (next(x) <-> !x) & (next(y) <-> (x<->y))
```

```
LTLSPEC G (x<->y)
```

1. Write a Boolean formula corresponding to the Bounded Model Checking problem with k = 2. [Solution: We have $I(x, y) \stackrel{\text{def}}{=} (\neg x \land \neg y), R(x, y, x', y') \stackrel{\text{def}}{=} (x' \leftrightarrow \neg x) \land (y' \leftrightarrow (x \leftrightarrow y)), \text{ and}$ $\neg \varphi \stackrel{\text{def}}{=} \mathbf{F} \neg (x \leftrightarrow y).$ Thus the resulting formula is:

$(\neg x_0 \land \neg y_0)$	\wedge	$// I(x_0, y_0) \land$
$(x_1 \leftrightarrow \neg x_0) \land (y_1 \leftrightarrow (x_0 \leftrightarrow y_0))$	\wedge	$// R(x_0, y_0, x_1, y_1) \land$
$(x_2 \leftrightarrow \neg x_1) \land (y_2 \leftrightarrow (x_1 \leftrightarrow y_1))$	\wedge	$// R(x_1, y_1, x_2, y_2) \land$
$(\neg(x_0 \leftrightarrow y_0)$	\vee	$// (f(x_0, y_0, z_0) \lor$
$\neg(x_1 \leftrightarrow y_1)$	\vee	$// f(x_1, y_1, z_1) \lor$
$\neg(x_2 \leftrightarrow y_2))$		$// f(x_2,y_2,z_2))$

]

2. Is there a solution? If yes, find the corresponding execution.

[Solution: Yes. $\{x_0 = y_0 = \bot, x_1 = y_1 = \top, x_2 = \bot, y_2 = \top\}$ satisfies the formula. This corresponds to the execution: $(0,0) \longrightarrow (1,1) \longrightarrow (0,1)$. (States are resapresented as (x_i, y_i) .)

- 3. From the answers of questions 1) and 2) we can deduce
 - (a) that $M \models \varphi$. [Solution: No]
 - (b) that $M \not\models \varphi$. [Solution: Yes, because a counter-model of length 2 is produced.]
 - (c) nothing. [Solution: No]

Consider the following switch e in a timed automaton:

and consider the zone $Z1 \stackrel{\text{\tiny def}}{=} \langle L_1, \varphi \rangle$ s.t

$$\varphi \stackrel{\text{\tiny def}}{=} (x \ge 0) \land (x \le 2) \land (y \ge 1) \land (y \le 3) \land (y - x \le 2).$$

Compute $succ(\varphi, e)$, displaying the process in a cartesian graph.

[Solution: The behaviour of $succ(\varphi, e)$ is displayed in the following diagram:

from which the solution is $succ(\varphi, e) = (x \ge 2) \land (x \le 6) \land (y = 0).$]