Course "Formal Methods" TEST

Roberto Sebastiani
DISI, Università di Trento, Italy

$$
\text { June } 17^{\text {th }}, 2021
$$

[COPY WITH SOLUTIONS]

1
Given the following OBDD, with the ordering $\left\{A_{5}, A_{1}, A_{3}, A_{2}, A_{4}\right\}$,

for each of the following Boolean formulas, say whether the OBDD represents it or not.
(a) $\left(\neg A_{5} \rightarrow\left(\neg A_{1} \rightarrow\left(\neg A_{3} \rightarrow\left(\neg A_{2} \rightarrow A_{4}\right)\right)\right)\right)$
[Solution: true]
(b) $\left(A_{2} \vee A_{1} \vee A_{5} \vee A_{3} \vee A_{4}\right)$ [Solution: true]
(c) $\left(A_{3} \wedge A_{5} \wedge A_{4} \wedge A_{1} \wedge A_{2}\right)$ [Solution: false]
(d) $\left(A_{5} \rightarrow\left(A_{1} \rightarrow\left(A_{3} \rightarrow\left(A_{2} \rightarrow \neg A_{4}\right)\right)\right)\right)$
[Solution: false]

2

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in LTL.
(a) $M \models \mathbf{G F} p$
[Solution: false]
(b) $M \models \mathbf{F G} \neg p$
[Solution: false]
(c) $M \models p \mathbf{U} q$
[Solution: false]
(d) $M \models(\mathbf{G F} \neg p \wedge \mathbf{G F} \neg q) \rightarrow p$
[Solution: true]

3

Consider the following fair Kripke Model M :

For each of the following facts, say if it is true or false in LTL.
(a) $M \models \mathbf{G F} p$
[Solution: true]
(b) $M \models \mathbf{F G} \neg p$
[Solution: false]
(c) $M \models p \mathbf{U} q$
[Solution: true]
(d) $M \models(\mathbf{G F} \neg p \wedge \mathbf{G F} \neg q) \rightarrow p$
[Solution: true]

For each of the following fact regarding Buchi automata, say if it true or false.
(a) The following BA represents $\mathbf{F G} q$:

[Solution: Yes.]
(b) The following BA represents $\mathbf{F G} q$:

[Solution: No, it accepts every execution.]
(c) The following BA represents $p \mathbf{U} q$:

(d) The following BA represents $p \mathbf{U} q$:

5

Consider the following pair of ground and abstract machines M and M^{\prime} :

```
M:
MODULE main
MODULE main
VAR
    v1 : boolean;
    v2 : boolean;
    v3 : boolean;
ASSIGN
    init(v1) := FALSE;
    init(v2) := TRUE;
    init(v3) := FALSE;
TRANS
    (next(v1) <-> v2) &
    (next(v2) <-> v3) &
    (next(v3) <-> v1)
```

For each of the following facts, say which is true and which is false.
(a) M^{\prime} simulates M.
[Solution: True]
(b) M simulates M^{\prime}.
[Solution: False. E.g.: M can execute the path $(01[1]) \longmapsto(11[1]) \longmapsto \ldots$, which cannot be simulated by M^{\prime}.]
(c) For every Boolean property φ on v1, v2, if $M^{\prime} \models \mathbf{G} \varphi$, then $M \models \mathbf{G} \varphi$, [Solution: True]
(d) For every Boolean property φ on v1, v2, if $M \models \mathbf{G} \varphi$, then $M^{\prime} \models \mathbf{G} \varphi$, [Solution: False. E.g., G (!v1 | !v2) (see example above).]

6

Consider the following piece of a much bigger formula, which has been fed to a CDCL SAT solver:

$$
\begin{aligned}
& c_{1}: \neg A_{9} \vee A_{12} \vee \neg A_{1} \\
& c_{2}: A_{9} \vee \neg A_{7} \vee \neg A_{3} \\
& c_{3}: \neg A_{11} \vee A_{5} \vee A_{2} \\
& c_{4}: \neg A_{10} \vee \neg A_{12} \vee A_{11} \\
& c_{5}: \neg A_{11} \vee A_{6} \vee A_{4} \\
& c_{6}: \neg A_{9} \vee A_{10} \vee \neg A_{1} \\
& c_{7}: A_{9} \vee A_{8} \vee \neg A_{3} \\
& c_{8}: \neg A_{5} \vee \neg A_{6} \\
& c_{9}: A_{7} \vee \neg A_{8} \vee A_{13}
\end{aligned}
$$

Suppose the solver has decided, in order, the following literals (possibly interleaved by others not occurring in the above clauses):
$\left\{\ldots, \quad A_{1}, \ldots \neg A_{2}, \ldots \neg A_{4}, \ldots \quad A_{3}, \ldots \neg A_{13}, \ldots, \quad A_{9}\right\}$
(a) List the sequence of unit-propagations following after the last decision, each literal tagged (in square brackets) by its antecedent clause
[Solution:

A_{12}	$\left[c_{1}\right]$
A_{10}	$\left[c_{6}\right]$
A_{11}	$\left[c_{4}\right]$
A_{5}	$\left[c_{3}\right]$
A_{6}	$\left[c_{5}\right]$
conflict on c_{8}	

]
(b) Derive the conflict clause via conflict analysis by means of the 1st-UIP technique [Solution:

$$
\frac{\neg A_{11} \vee A_{5} \vee A_{2} \frac{\neg A_{11} \vee A_{6} \vee A_{4} \overbrace{\neg A_{5} \vee \neg A_{6}}^{\text {Conflicting cl. }}}{\neg A_{11} \vee \neg A_{5} \vee A_{4}}\left(A_{5}\right)}{\underbrace{\neg A_{11}}_{\text {1st UIP }} \vee A_{2} \vee A_{4}}\left(A_{6}\right)
$$

]
(c) Using the 1st-UIP backjumping strategy, update the list of literals above after the backjumping step and the unit-propagation of the UIP
[Solution: $\quad\left\{\ldots, \quad A_{1}, \ldots \neg A_{2}, \ldots \neg A_{4}, \neg A_{11}\right\}$]

7

Given the following generalized Büchi automaton $A \xlongequal{\text { def }}\langle Q, \Sigma, \delta, I, F T\rangle,\{a, b\}$ being labels, with two sets of accepting states $F T \stackrel{\text { def }}{=}\{F 1, F 2\}$ s.t. $F 1 \stackrel{\text { def }}{=}\{s 2\}, F 2 \xlongequal{\text { def }}\{s 1\}$:

convert it into an equivalent plain Büchi automaton.
[Solution: The result is:

8

Consider the following LTL formula:

$$
\varphi \stackrel{\text { def }}{=}(\mathbf{F} r) \rightarrow(p \mathbf{U} q)
$$

and the following three states of the construction of the tableau T_{φ} of φ :

$$
\begin{aligned}
& S_{1}:\langle q, \quad p, \neg \mathbf{X}(p \mathbf{U} q), \quad r, \quad \mathbf{X F} r\rangle \\
& S_{2}:\langle\neg q, \quad p, \quad \mathbf{X}(p \mathbf{U} q), \quad r, \neg \mathbf{X F} r\rangle \\
& S_{3}:\langle q, \neg p, \neg \mathbf{X}(p \mathbf{U} q), \neg r, \neg \mathbf{X F} r\rangle
\end{aligned}
$$

For each of the following statements, say if it is true or false.
[Solution: recall that

- $\operatorname{sat}(p \mathbf{U} q) \stackrel{\text { def }}{=} \operatorname{sat}(q) \cup(\operatorname{sat}(p) \cap \operatorname{sat}(\mathbf{X}(p \mathbf{U} q)))$
- $\operatorname{sat}(\mathbf{F} r) \stackrel{\text { def }}{=} \operatorname{sat}(r) \cup \operatorname{sat}(\mathbf{X F} r)$

Thus
$S_{1} \in \operatorname{sat}(p \mathbf{U} q), S_{1} \in \operatorname{sat}(\mathbf{F} r)$, $S_{2} \in \operatorname{sat}(p \mathbf{U} q), S_{2} \in \operatorname{sat}(\mathbf{F} r)$, $S_{3} \in \operatorname{sat}(p \mathbf{U} q), S_{3} \notin \operatorname{sat}(\mathbf{F} r)$.]
(a) S_{2} is a successor of S_{1} in T_{φ}.
[Solution: No. In fact, every successor of S_{1} should not belong to $\operatorname{sat}(p \mathbf{U} q)$.]
(b) S_{3} is a successor of S_{2} in T_{φ}.
[Solution: Yes. In fact, every successor of S_{2} should belong to $\operatorname{sat}(p \mathbf{U} q)$ and should not belong to $\operatorname{sat}(\mathbf{F} r)$ as defined above, which is the case of S_{3}.]
(c) S_{3} is an initial state of T_{φ}.
[Solution: Yes. In fact, every initial state T_{φ} should belong to $(S \backslash \operatorname{sat}(\mathbf{F} r)) \cup \operatorname{sat}(p \mathbf{U} q)$ as defined above, which is the case of S_{3}.]
(d) S_{2} is an accepting state of T_{φ}.
[Solution: No. Since there is only one (relevant) positive \mathbf{U}-subformula in φ, we have only one group of accepting states, these which belong to $\operatorname{sat}(\neg(p \mathbf{U} q)) \cup \operatorname{sat}(q)$. S_{2} does not belong to it, because it belongs to $\operatorname{sat}(p \mathbf{U} q)$ and not to $\operatorname{sat}(q)$.]

9

Given the following LTL Model Checking problem $M \models \varphi$ expressed in NuXMV input language:

```
MODULE main
VAR x : boolean; y : boolean;
INIT (!x & !y)
TRANS (next(x) <-> !x) & (next(y) <-> (x<->y))
LTLSPEC G (x<->y)
```

1. Write a Boolean formula corresponding to the Bounded Model Checking problem with $k=2$. [Solution: We have $I(x, y) \stackrel{\text { def }}{=}(\neg x \wedge \neg y), R\left(x, y, x^{\prime}, y^{\prime}\right) \stackrel{\text { def }}{=}\left(x^{\prime} \leftrightarrow \neg x\right) \wedge\left(y^{\prime} \leftrightarrow(x \leftrightarrow y)\right)$, and $\neg \varphi \stackrel{\text { def }}{=} \mathbf{F} \neg(x \leftrightarrow y)$. Thus the resulting formula is:

$$
\begin{array}{lll}
\left(\neg x_{0} \wedge \neg y_{0}\right) & \wedge & / / I\left(x_{0}, y_{0}\right) \wedge \\
\left(x_{1} \leftrightarrow \neg x_{0}\right) \wedge\left(y_{1} \leftrightarrow\left(x_{0} \leftrightarrow y_{0}\right)\right) & \wedge & / / R\left(x_{0}, y_{0}, x_{1}, y_{1}\right) \wedge \\
\left(x_{2} \leftrightarrow \neg x_{1}\right) \wedge\left(y_{2} \leftrightarrow\left(x_{1} \leftrightarrow y_{1}\right)\right) & \wedge & / / R\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \wedge \\
\left(\neg\left(x_{0} \leftrightarrow y_{0}\right)\right. & \vee & / /\left(f\left(x_{0}, y_{0}, z_{0}\right) \vee\right. \\
\neg\left(x_{1} \leftrightarrow y_{1}\right) & \vee & / / f\left(x_{1}, y_{1}, z_{1}\right) \vee \\
\left.\neg\left(x_{2} \leftrightarrow y_{2}\right)\right) & & \left./ / f\left(x_{2}, y_{2}, z_{2}\right)\right)
\end{array}
$$

]
2. Is there a solution? If yes, find the corresponding execution.
[Solution: Yes. $\left\{x_{0}=y_{0}=\perp, x_{1}=y_{1}=\top, x_{2}=\perp, y_{2}=\top\right\}$ satisfies the formula. This corrsponds to the execution: $(0,0) \longrightarrow(1,1) \longrightarrow(0,1)$. (States are resapresented as $\left(x_{i}, y_{i}\right)$.)]
3. From the answers of questions 1) and 2) we can deduce
(a) that $M \models \varphi$. [Solution: No]
(b) that $M \not \vDash \varphi$. [Solution: Yes, because a counter-model of length 2 is produced.]
(c) nothing. [Solution: No]

10

Consider the following switch e in a timed automaton:

and consider the zone $Z 1 \stackrel{\text { def }}{=}\left\langle L_{1}, \varphi\right\rangle$ s.t

$$
\varphi \stackrel{\text { def }}{=}(x \geq 0) \wedge(x \leq 2) \wedge(y \geq 1) \wedge(y \leq 3) \wedge(y-x \leq 2) .
$$

Compute $\operatorname{succ}(\varphi, e)$, displaying the process in a cartesian graph.
[Solution: The behaviour of $\operatorname{succ}(\varphi, e)$ is displayed in the following diagram:

from which the solution is $\operatorname{succ}(\varphi, e)=(x \geq 2) \wedge(x \leq 6) \wedge(y=0)$.]

