Course "Introduction to SAT & SMT" TEST

Roberto Sebastiani DISI, Università di Trento, Italy

June $11^{th},\,2020$

769857918

[COPY WITH SOLUTIONS]

Let φ be a generic Boolean formula, and let $\varphi_{nnf}^{tree} \stackrel{\text{def}}{=} NNF^{tree}(\varphi)$ and $\varphi_{nnf}^{dag} \stackrel{\text{def}}{=} NNF^{dag}(\varphi)$, s.c. $NNF()^{tree}$ and $NNF()^{dag}$ are the conversion into negative normal form using a tree and a DAG representation of the formulas respectively.

Let $|\varphi|$, $|\varphi_{nnf}^{tree}|$ and $|\varphi_{nnf}^{dag}|$ denote the size of φ , φ_{nnf}^{tree} and φ_{nnf}^{dag} respectively.

For each of the following sentences, say if it is true or false.

- (a) $|\varphi_{nnf}^{tree}|$ is in worst-case polynomial in size wrt. $|\varphi|$. [Solution: False.]
- (b) $|\varphi_{nnf}^{dag}|$ is in worst-case polynomial in size wrt. $|\varphi|$. [Solution: True.]
- (c) φ_{nnf}^{dag} has the same number of distinct Boolean variables as φ has. [Solution: True.]
- (d) A model for φ_{nnf}^{dag} (if any) is also a model for φ , and vice versa. [Solution: True.]

$\mathbf{2}$

]

Using the variable ordering " A_1 , A_2 , A_3 , A_4 ", draw the OBDD corresponding to the following formulas:

$$A_1 \wedge (\neg A_1 \lor \neg A_2) \land (A_2 \lor A_3) \land (\neg A_3 \lor A_4)$$

[Solution:

SOLUTION: The formula is represented by the following OBDD:

Using the semantic tableaux algorithm, decide whether the following formula is satisfiable or not. (Write the search tree.)

				$(\neg A_1)$ /	\
		$(A_1$	\vee	$\neg A_2)$ /	\
$(A_1$	\vee	A_2	\vee	$A_3)$ /	١
(A_4)	\vee	$\neg A_3$	\vee	$A_6)$ /	\
(A_4)	\vee	$\neg A_3$	\vee	$\neg A_6)$ /	\
$(\neg A_3)$	\vee	$\neg A_4$	\vee	$A_{7})$ /	١
$(\neg A_3)$	\vee	$\neg A_4$	\vee	$\neg A_7)$	

(Literal-selection criteria to your choice.)

[Solution:

]

 \implies the formula is inconsistent.

Consider the following piece of a much bigger formula, which has been fed to a CDCL SAT solver:

 $\begin{array}{cccc} c_{1}: \neg A_{7} \lor & A_{2} \\ c_{2}: & A_{4} \lor & A_{1} \lor & A_{11} \\ c_{3}: & A_{8} \lor \neg A_{6} \lor \neg A_{4} \\ c_{4}: \neg A_{5} \lor \neg A_{1} \\ c_{5}: & A_{7} \lor \neg A_{8} \\ c_{6}: & A_{7} \lor & A_{6} \lor & A_{9} \\ c_{7}: \neg A_{7} \lor & A_{3} \lor \neg A_{12} \\ c_{8}: & A_{4} \lor & A_{5} \lor & A_{10} \\ \end{array}$

Suppose the solver has decided, in order, the following literals (possibly interleaved by others not occurring in the above clauses):

 $\{..., \neg A_9, ... \neg A_{10}, ... \neg A_{11}, ... A_{12}, ... A_{13}, ..., \neg A_7\}$

(a) List the sequence of unit-propagations following after the last decision, each literal tagged (in square brackets) by its antecedent clause

[Solution:

$\neg A_8$	$[c_5]$
A_6	$[c_6]$
$\neg A_4$	$[c_3]$
A_5	$[c_8]$
A_1	$[c_2]$

(b) Derive the conflict clause via conflict analysis by means of the 1st-UIP technique [Solution:

$$\underbrace{\begin{array}{c} A_{4} \lor A_{5} \lor A_{10} \\ A_{4} \lor A_{5} \lor A_{10} \\ A_{4} \lor A_{10} \lor A_{11} \\ A_{4} \lor A_{5} \lor A_{11} \\ A_{4} \lor A_{5} \lor A_{11} \\ A_{5} \cr A_{10} \lor A_{11} \\ A_{10} \lor A_{11} \end{array} }_{1st \ UIP} \left(\begin{array}{c} A_{1} \cr A_{1} \cr A_{1} \lor A_{1} \cr A_{1} \lor A_{1} \cr A_{1} \cr A_{1} \lor A_{1} \cr A_{1} \cr A_{1} \cr A_{1} \lor A_{1} \lor A_{1} \lor A_{1} \cr A_{1} \lor A_{1$$

(c) Using the 1st-UIP backjumping strategy, update the list of literals above after the backjumping step and the unit-propagation of the UIP

[Solution: $\{..., \neg A_9, ... \neg A_{10}, ... \neg A_{11}, A_4\}$]

$\mathbf{5}$

Consider the following CNF formula:

$(A_7$					$) \land$
(A_8)	\vee	$\neg A_7$			$) \land$
$(\neg A_4)$	\vee	$\neg A_7$	\vee	$\neg A_5$	$) \land$
$(\neg A_8)$	\vee	$\neg A_6$	\vee	A_1	$) \land$
$(A_2$	\vee	$\neg A_7$	\vee	$\neg A_6$	$) \land$
$(\neg A_8)$	\vee	A_6	\vee	$\neg A_2$	$) \land$
$(\neg A_1$	\vee	$\neg A_5$	\vee	$\neg A_2$	$) \land$
$(A_2$	\vee	$\neg A_6$	\vee	$\neg A_8$	$) \land$
$(\neg A_1$	\vee	$\neg A_5$	\vee	A_8	$) \land$
$(A_2$	\vee	A_7	\vee	$\neg A_6$	$) \land$
$(\neg A_6$	\vee	A_4	\vee	$\neg A_6$	$) \land$
(A_3)	\vee	A_8	\vee	$\neg A_7$)

Decide $\underline{quickly}$ if it is satisfiable or not, and briefly explain why.

[Solution: After unit-propagating A_7 , A_8 :

$$\begin{pmatrix} A_{7} & & & \\ A_{8} & & & \\ (\neg A_{4} \lor & \neg A_{5} \end{matrix}) \land \\ \begin{pmatrix} \neg A_{4} \lor & \neg A_{6} \lor A_{1} \end{matrix}) \land \\ \begin{pmatrix} A_{2} \lor & \neg A_{6} \lor A_{1} \end{pmatrix} \land \\ \begin{pmatrix} A_{2} \lor & \neg A_{6} \lor A_{1} \end{pmatrix} \land \\ \begin{pmatrix} A_{2} \lor & \neg A_{6} \lor A_{2} \end{pmatrix} \land \\ \begin{pmatrix} \neg A_{1} \lor & \neg A_{5} \lor & \neg A_{2} \end{pmatrix} \land \\ \begin{pmatrix} \neg A_{1} \lor & \neg A_{5} \lor & A_{8} \end{pmatrix} \land \\ \begin{pmatrix} A_{2} \lor & A_{7} \lor & \neg A_{6} \end{pmatrix} \land \\ \begin{pmatrix} \neg A_{6} \lor & A_{4} \lor & \neg A_{6} \end{pmatrix} \land \\ \begin{pmatrix} A_{3} \lor & A_{8} \end{pmatrix}$$

the result is a Horn formula with no positive unit clauses. Therefore, the assignment $\{\neg A_i\}_{i=1}^8$ is a model.

Consider the following Boolean formulas:

$$\begin{array}{rcl} \varphi_1 \stackrel{\mathrm{\tiny det}}{=} & (\neg A_7 \lor \neg A_3) & \land \\ & & (A_7 \lor \neg A_3) & \land \\ & & (A_2) & \land \\ & & (\neg A_2 \lor \neg A_4) \end{array}$$
$$\varphi_2 \stackrel{\mathrm{def}}{=} & (A_3 \lor A_5) & \land \\ & & (A_4 \lor \neg A_1) & \land \\ & & (\neg A_5 \lor A_1) \end{array}$$

which are such that $\varphi_1 \wedge \varphi_2 \models \bot$. For each of the following formulas, say if it is a Craig interpolant for (φ_1, φ_2) or not.

[Solution: Recall that a Craig interpolant for (φ_1, φ_2) s.t. $\varphi_1 \wedge \varphi_2 \models \bot$ is a formula ψ s.t.

- 1. $\varphi_1 \models \psi$
- 2. $\psi \wedge \varphi_2 \models \bot$
- 3. all atoms in ψ occur in both φ_1 and φ_2 .
-]
- 1
- (a)

$$\begin{array}{ccc} (\neg A_7 \lor \neg A_3) & \land \\ (A_7 \lor \neg A_3) & \land \\ (\neg A_4) \end{array}$$

[Solution: No, it is not a solution because it does not verify condition 3.] (b)

 $(\neg A_4)$

[Solution: No, it is not a solution because it does not verify condition 2.] (c)

$$(\neg A_3 \land \neg A_4)$$

[Solution: Yes]

Consider the following formula in the theory \mathcal{EUF} of linear arithmetic on the Rationals.

$$\varphi = \begin{cases} (f(x) = f(f(y))) \lor A_2 \} \land \\ \{\neg(h(x, f(y)) = h(g(x), y)) \lor \neg(h(x, g(z) = h(f(x), y))) \lor \neg A_1 \} \land \\ \{A_1 \lor (h(x, y) = h(y, x))\} \land \\ \{A_1 \lor (h(x, y) = h(y, x))\} \land \\ \{\underline{(x = f(x))} \lor A_3 \lor \neg A_1 \} \land \\ \{\underline{(x = f(x))} \lor A_3 \lor \neg A_1 \} \land \\ \{\underline{\neg(w(x) = g(f(y)))} \lor A_1 \} \land \\ \{\underline{\neg A_2} \lor (w(g(x)) = w(f(x)))\} \land \\ \{A_1 \lor (y = g(z)) \lor A_2 \} \end{cases}$$

and consider the partial truth assignment μ given by the underlined literals above:

$$\{\neg(w(x) = g(f(y))), \neg A_2, \neg(h(x, g(z) = h(f(x), y))), (x = f(x)), (y = g(z))\}.$$

- 1. Does (the Boolean abstraction of) μ propositionally satisfy (the Boolean abstraction of) φ ? [Solution: No, since there are two clauses which are not satisfied.]
- 2. Is μ satisfiable in \mathcal{EUF} ?
 - (a) If no, find a minimal conflict set for μ and the corresponding conflict clause C.
 - (b) If yes, show one unassigned literal which can be deduced from μ , and show the corresponding deduction clause C.

[Solution:

No, because it contains the following \mathcal{EUF} conflict set:

$$\{\neg (h(x, g(z) = h(f(x), y))), (x = f(x)), (y = g(z))\},\$$

which corresponds to the following conflict clause:

$$(h(x,g(z)=h(f(x),y))) \vee \neg (x=f(x)), \neg (y=g(z))$$

]

Consider the following set of clauses φ in the theory of linear arithmetic on the Integers \mathcal{EUF} .

$$\left\{\begin{array}{l} (\neg(x=y) \lor (f(x)=f(y))), \\ (\neg(x=y) \lor \neg(f(x)=f(y))), \\ ((x=y) \lor (f(x)=f(y))), \\ ((x=y) \lor \neg(f(x)=f(y))) \end{array}\right\}$$

Say which of the following sets is a \mathcal{EUF} -unsatisfiable core of φ and which is not. For each one, explain why.

(a)

$$\left\{\begin{array}{l} (\neg(x=y) \lor \neg(f(x)=f(y))), \\ ((x=y) \lor (f(x)=f(y))), \\ ((x=y) \lor \neg(f(x)=f(y))) \end{array}\right\}$$

[Solution: yes, because it is a subset of φ and it is inconsistent in \mathcal{EUF} .] (b)

$$\left\{ \begin{array}{l} (\neg (x = y) \lor (f(x) = f(y))), \\ ((x = y) \lor (f(x) = f(y))), \\ ((x = y) \lor \neg (f(x) = f(y))) \end{array} \right\}$$

[Solution: no, because is not inconsistent in \mathcal{EUF} (e.g., { (x = y), (f(x) = f(y))} is \mathcal{EUF} -consistent solution).

(c)

$$\left\{\begin{array}{l} (\neg(x=y) \lor \neg(f(x)=f(y))), \\ ((x=y) \lor (f(x)=f(y))), \\ ((x=y) \lor \neg(f(x)=f(y))), \\ ((x=f(y))) \end{array}\right\}$$

[Solution: no, because it is not a subset of φ .]

Let \mathcal{LRA} be the logic of linear arithmetic over the rationals and \mathcal{EUF} be the logic of equality and uninterpreted functions. Consider the following pure formula φ in the combined logic $\mathcal{LRA} \cup \mathcal{EUF}$:

$$(x = 1.0) \land (h = 1.0) \land (k = 1.0) \land (y = 2h - k) \land (z < w)$$
(1)

$$(z = f(x)) \land (w = f(y)) \tag{2}$$

Say which variables are interface variables, list the interface equalities for this formula (modulo symmetry), and decide whether this formulas is $\mathcal{LRA} \cup \mathcal{EUF}$ -satisfiable or not, using either Nelson-Oppen or Delayed Theory Combination.

[Solution: Only x, y, z, w occur both in \mathcal{LRA} -atoms (2) and in \mathcal{EUF} -atoms (1). Thus x, y, z, w are the interface variables, and x = y, x = z, x = w, y = z, y = w, z = w are the interface equalities.

- **Nelson-Oppen:** From (2) in \mathcal{LRA} we infer the interface equality (x = y). Adding the latter to (1), we infer the interface equality (z = w) in \mathcal{EUF} . Adding the latter to (2), we get a contradiction in \mathcal{LRA} against (z < w).
- **Delayed Theory Combination:** By unit-propagation, φ causes only one branch containing all its literals. Then the SAT solver assigns first a negative value to the interface equality (x=y), adding $\neg(x = y)$ to the assignment, which is found inconsistent in \mathcal{LRA} :

$$(h = 1.0) \land (k = 1.0) \land (x = 1.0) \land (y = 2h - k) \land \neg (x = y).$$
(3)

Then the SAT solver backtracks, adding (x = y) to the assignment. Then the SAT solver assigns first a negative value to the interface equality (z=w), adding $\neg(z=w)$ to the assignment, which is found inconsistent in \mathcal{LRA} :

$$(z = f(x)) \land (w = f(y)) \land (x = y) \land \neg (z = w).$$

$$(4)$$

Thus, with either technique, we can conclude that φ is $\mathcal{LRA} \cup \mathcal{EUF}$ -unsatisfiable.

Consider the following formulas in difference logic (\mathcal{DL}) :

$$\begin{array}{lll} \varphi_1 \stackrel{\mathrm{def}}{=} & (x_2 - x_3 \leq -4) & \wedge \\ & (x_3 - x_4 \leq -6) & \wedge \\ & (x_5 - x_6 \leq 4) & \wedge \\ & (x_6 - x_1 \leq 2) & \wedge \\ & (x_6 - x_7 \leq -2) & \wedge \\ & (x_7 - x_8 \leq 1) \end{array}$$
$$\varphi_2 \stackrel{\mathrm{def}}{=} & (x_4 - x_9 \leq 2) & \wedge \\ & (x_9 - x_5 \leq 0) & \wedge \\ & (x_1 - x_2 \leq 1) \end{array}$$

which are such that $\varphi_1 \wedge \varphi_2 \models_{\mathcal{DL}} \bot$. For each of the following formulas, say if it is a Craig interpolant in \mathcal{DL} for (φ_1, φ_2) , and explain why.

[Solution: Recall that a Craig interpolant for (φ_1, φ_2) s.t. $\varphi_1 \wedge \varphi_2 \models_{\mathcal{DL}} \bot$ is a formula ψ s.t.

1. $\varphi_1 \models_{\mathcal{DL}} \psi$

2. $\psi \wedge \varphi_2 \models_{\mathcal{DL}} \bot$

3. all symbols in ψ occur in both φ_1 and φ_2 .

]

(a)
$$(x_2 - x_3 + x_6 - x_1 \le -2)$$

[Solution: no, because, e.g., x_3 is not a symbol occurring in φ_2 .]

(b) $(x_2 - x_4 \le -10)$

[Solution: No, because it violates condition 2.]

(c)
$$(x_2 - x_4 \le -10) \land (x_5 - x_1 \le 6)$$

[Solution: yes, because it is a \mathcal{DL} formula and it verifies all conditions 1., 2., 3.]