Course "Introduction to SAT \& SMT" TEST

Roberto Sebastiani
DISI, Università di Trento, Italy

June $11^{\text {th }}, 2020$

1

Let φ be a generic Boolean formula, and let $\varphi_{n n f}^{\text {tree }} \stackrel{\text { def }}{=} N N F^{t r e e}(\varphi)$ and $\varphi_{n n f}^{\text {dag }} \stackrel{\text { def }}{=} N N F^{\text {dag }}(\varphi)$, s.c. $N N F()^{\text {tree }}$ and $N N F()^{d a g}$ are the conversion into negative normal form using a tree and a DAG representation of the formulas respectively.

Let $|\varphi|,\left|\varphi_{n n f}^{\text {tree }}\right|$ and $\left|\varphi_{n n f}^{d a g}\right|$ denote the size of $\varphi, \varphi_{n n f}^{\text {tree }}$ and $\varphi_{n n f}^{d a g}$ respectively.
For each of the following sentences, say if it is true or false.
(a) $\left|\varphi_{n n f}^{\text {tree }}\right|$ is in worst-case polynomial in size wrt. $|\varphi|$. [Solution: False.]
(b) $\left|\varphi_{n n f}^{d a g}\right|$ is in worst-case polynomial in size wrt. $|\varphi|$. [Solution: True.]
(c) $\varphi_{n n f}^{d a g}$ has the same number of distinct Boolean variables as φ has. [Solution: True.]
(d) A model for $\varphi_{n n f}^{d a g}$ (if any) is also a model for φ, and vice versa. [Solution: True.]

2

Using the variable ordering " $A_{1}, A_{2}, A_{3}, A_{4}$ ", draw the OBDD corresponding to the following formulas:

$$
A_{1} \wedge\left(\neg A_{1} \vee \neg A_{2}\right) \wedge\left(A_{2} \vee \quad A_{3}\right) \wedge\left(\neg A_{3} \vee \quad A_{4}\right)
$$

[Solution:
SOLUTION: The formula is represented by the following OBDD:

3

Using the semantic tableaux algorithm, decide whether the following formula is satisfiable or not. (Write the search tree.)

$$
\begin{aligned}
& \left(\neg A_{1}\right) \wedge \\
& \left(A_{1} \vee \neg A_{2}\right) \wedge \\
& \left(\begin{array}{c}
\left.A_{1} \vee \quad A_{2} \vee \quad A_{3}\right) \wedge
\end{array}\right. \\
& \left(\begin{array}{c}
\left.A_{4} \vee \neg A_{3} \vee \quad A_{6}\right) \wedge
\end{array}\right. \\
& \left(A_{4} \vee \neg A_{3} \vee \neg A_{6}\right) \wedge \\
& \left(\neg A_{3} \vee \neg A_{4} \vee \quad A_{7}\right) \wedge \\
& \left(\neg A_{3} \vee \quad \neg A_{4} \vee \neg A_{7}\right)
\end{aligned}
$$

(Literal-selection criteria to your choice.)
[Solution:

\Longrightarrow the formula is inconsistent.

Consider the following piece of a much bigger formula, which has been fed to a CDCL SAT solver:

$$
\begin{aligned}
& c_{1}: \neg A_{7} \vee A_{2} \\
& c_{2}: A_{4} \vee A_{1} \vee A_{11} \\
& c_{3}: A_{8} \vee \neg A_{6} \vee \neg A_{4} \\
& c_{4}: \neg A_{5} \vee \neg A_{1} \\
& c_{5}: A_{7} \vee \neg A_{8} \\
& c_{6}: A_{7} \vee A_{6} \vee A_{9} \\
& c_{7}: \neg A_{7} \vee A_{3} \vee \neg A_{12} \\
& c_{8}: \\
& A_{4} \vee \\
& A_{5} \vee \\
& A_{10}
\end{aligned}
$$

Suppose the solver has decided, in order, the following literals (possibly interleaved by others not occurring in the above clauses):
$\left\{\ldots, \neg A_{9}, \ldots \neg A_{10}, \ldots \neg A_{11}, \ldots \quad A_{12}, \ldots \quad A_{13}, \ldots, \neg A_{7}\right\}$
(a) List the sequence of unit-propagations following after the last decision, each literal tagged (in square brackets) by its antecedent clause
[Solution:

$$
\begin{aligned}
\neg A_{8} & {\left[c_{5}\right] } \\
A_{6} & {\left[c_{6}\right] } \\
\neg A_{4} & {\left[c_{3}\right] } \\
A_{5} & {\left[c_{8}\right] } \\
A_{1} & {\left[c_{2}\right] }
\end{aligned}
$$

]
(b) Derive the conflict clause via conflict analysis by means of the 1st-UIP technique
[Solution:

$$
\frac{A_{4} \vee A_{5} \vee A_{10} \frac{A_{4} \vee A_{1} \vee A_{11}}{A_{4} \vee \neg A_{5} \vee A_{11}\left(A_{5}\right)} \underbrace{\text { Conflicting cl. }}_{\text {1st UIP }^{A_{4}} \vee A_{10} \vee A_{11}}}{\left.\left(A_{1}\right)\right)}
$$

]
(c) Using the 1st-UIP backjumping strategy, update the list of literals above after the backjumping step and the unit-propagation of the UIP
[Solution: $\quad\left\{\ldots, \neg A_{9}, \ldots \neg A_{10}, \ldots \neg A_{11}, \quad A_{4}\right\}$]

5

Consider the following CNF formula:

$$
\begin{aligned}
& \left(A_{7}\right) \wedge \\
& \left(A_{8} \vee \neg A_{7}\right) \wedge \\
& \left(\neg A_{4} \vee \neg A_{7} \vee \neg A_{5}\right) \wedge \\
& \left(\neg A_{8} \vee \neg A_{6} \vee \quad A_{1}\right) \wedge \\
& \left(A_{2} \vee \neg A_{7} \vee \neg A_{6}\right) \wedge \\
& \left(\neg A_{8} \vee \quad A_{6} \vee \neg A_{2}\right) \wedge \\
& \left(\neg A_{1} \vee \neg A_{5} \vee \neg A_{2}\right) \wedge \\
& \left(A_{2} \vee \neg A_{6} \vee \neg A_{8}\right) \wedge \\
& \left(\neg A_{1} \vee \neg A_{5} \vee A_{8}\right) \wedge \\
& \left(A_{2} \vee A_{7} \vee \neg A_{6}\right) \wedge \\
& \left(\neg A_{6} \vee A_{4} \vee \neg A_{6}\right) \wedge \\
& \left(\begin{array}{ccccc}
A_{3} & \vee & \left.A_{8} \vee \neg A_{7}\right)
\end{array}\right.
\end{aligned}
$$

Decide quickly if it is satisfiable or not, and briefly explain why.
[Solution: After unit-propagating A_{7}, A_{8} :

$$
\begin{aligned}
& \begin{array}{ll}
\left(\begin{array}{ll}
A_{7} &) \\
A_{8} &
\end{array}\right) \wedge
\end{array} \\
& \left(\neg A_{4} \vee \quad \neg A_{5}\right) \wedge \\
& \left(\quad \neg A_{6} \vee \quad A_{1}\right) \wedge \\
& \left(\begin{array}{llll}
A_{2} \vee & \neg A_{6}
\end{array}\right) \wedge \\
& \left(\neg A_{1} \vee \neg A_{5} \vee \neg A_{2}\right) \wedge \\
& \left(A_{2} \vee \neg A_{6}\right) \wedge \\
& \left(\neg A_{1} \vee \neg A_{5} \vee A_{8}\right) \wedge \\
& \left(\begin{array}{c}
A_{2} \\
\vee
\end{array} A_{7} \vee \neg A_{6}\right) \wedge \\
& \left(\neg A_{6} \vee A_{4} \vee \neg A_{6}\right) \wedge
\end{aligned}
$$

the result is a Horn formula with no positive unit clauses.
Therefore, the assignment $\left\{\neg A_{i}\right\}_{i=1}^{8}$ is a model.]

6

Consider the following Boolean formulas:

$$
\begin{aligned}
\varphi_{1} \stackrel{\text { def }}{=} & \left(\neg A_{7} \vee \neg A_{3}\right) \wedge \\
& \left(A_{7} \vee \neg A_{3}\right) \wedge \\
& \left(A_{2}\right) \wedge \\
& \left(\neg A_{2} \vee \neg A_{4}\right) \\
\varphi_{2} \stackrel{\text { def }}{=} & \left(A_{3} \vee A_{5}\right) \wedge \\
& \left(A_{4} \vee \neg A_{1}\right) \wedge \\
& \left(\neg A_{5} \vee A_{1}\right)
\end{aligned}
$$

which are such that $\varphi_{1} \wedge \varphi_{2} \vDash \perp$. For each of the following formulas, say if it is a Craig interpolant for $\left(\varphi_{1}, \varphi_{2}\right)$ or not.
[Solution: Recall that a Craig interpolant for $\left(\varphi_{1}, \varphi_{2}\right)$ s.t. $\varphi_{1} \wedge \varphi_{2} \models \perp$ is a formula ψ s.t.

1. $\varphi_{1} \models \psi$
2. $\psi \wedge \varphi_{2} \models \perp$
3. all atoms in ψ occur in both φ_{1} and φ_{2}.
]
(a)

$$
\begin{aligned}
& \left(\neg A_{7} \vee \neg A_{3}\right) \\
& \left(A_{7} \vee \neg A_{3}\right) \\
& (\neg \\
& \left(\neg A_{4}\right)
\end{aligned}
$$

[Solution: No, it is not a solution because it does not verify condition 3.]
(b)

$$
\left(\neg A_{4}\right)
$$

[Solution: No, it is not a solution because it does not verify condition 2.]
(c)

$$
\left(\neg A_{3} \wedge \neg A_{4}\right)
$$

[Solution: Yes]

7

Consider the following formula in the theory $\mathcal{E U \mathcal { F }}$ of linear arithmetic on the Rationals.

$$
\begin{aligned}
\varphi= & \left\{(f(x)=f(f(y))) \vee A_{2}\right\} \wedge \\
& \left\{\neg(h(x, f(y))=h(g(x), y)) \vee \neg(h(x, g(z)=h(f(x), y))) \vee \neg A_{1}\right\} \wedge \\
& \left\{A_{1} \vee(h(x, y)=h(y, x))\right\} \wedge \\
& \left\{(x=f(x)) \vee A_{3} \vee \neg A_{1}\right\} \wedge \\
& \left\{\neg(w(x)=g(f(y))) \vee A_{1}\right\} \wedge \\
& \left\{\overline{\left.\neg A_{2} \vee(w(g(x))=w(f(x)))\right\} \wedge}\right. \\
& \left\{A_{1} \vee(y=g(z)) \vee A_{2}\right\}
\end{aligned}
$$

and consider the partial truth assignment μ given by the underlined literals above:

$$
\left\{\neg(w(x)=g(f(y))), \neg A_{2}, \neg(h(x, g(z)=h(f(x), y))),(x=f(x)),(y=g(z))\right\}
$$

1. Does (the Boolean abstraction of) μ propositionally satisfy (the Boolean abstraction of) φ ? [Solution: No, since there are two clauses which are not satisfied.]
2. Is μ satisfiable in $\mathcal{E U F}$?
(a) If no, find a minimal conflict set for μ and the corresponding conflict clause C.
(b) If yes, show one unassigned literal which can be deduced from μ, and show the corresponding deduction clause C.
[Solution:
No, because it contains the following $\mathcal{E U F}$ conflict set:

$$
\{\neg(h(x, g(z)=h(f(x), y))),(x=f(x)),(y=g(z))\}
$$

which corresponds to the following conflict clause:

$$
(h(x, g(z)=h(f(x), y))) \vee \neg(x=f(x)), \neg(y=g(z))
$$

8

Consider the following set of clauses φ in the theory of linear arithmetic on the Integers $\mathcal{E U F}$.

$$
\left\{\begin{array}{l}
(\neg(x=y) \vee(f(x)=f(y))), \\
(\neg(x=y) \vee \neg(f(x)=f(y))), \\
(\quad(x=y) \vee(f(x)=f(y))), \\
(\quad(x=y) \vee \neg(f(x)=f(y)))
\end{array}\right\}
$$

Say which of the following sets is a $\mathcal{E U \mathcal { F }}$-unsatisfiable core of φ and which is not. For each one, explain why.
(a)
[Solution: yes, because it is a subset of φ and it is inconsistent in $\mathcal{E U F}$.]
(b)

$$
\left\{\begin{array}{l}
(\neg(x=y) \vee(f(x)=f(y))), \\
(\quad(x=y) \vee(f(x)=f(y))), \\
(\quad(x=y) \vee \neg(f(x)=f(y)))
\end{array}\right\}
$$

[Solution: no, because is not inconsistent in $\mathcal{E U \mathcal { F }}$ (e.g., $\{(x=y), \quad(f(x)=f(y))\}$ is $\mathcal{E U F}$ consistent solution).]
(c)

$$
\left\{\begin{array}{l}
(\neg(x=y) \vee \neg(f(x)=f(y))), \\
((x=y) \vee(f(x)=f(y))), \\
((x=y) \vee \neg(f(x)=f(y))), \\
((x=f(y)))
\end{array}\right\}
$$

[Solution: no, because it is not a subset of φ.]

9

Let $\mathcal{L R} \mathcal{A}$ be the logic of linear arithmetic over the rationals and $\mathcal{E U \mathcal { F }}$ be the logic of equality and uninterpreted functions. Consider the following pure formula φ in the combined logic $\mathcal{L R} \mathcal{A} \cup \mathcal{E} \mathcal{U} \mathcal{F}$:

$$
\begin{align*}
& (x=1.0) \wedge(h=1.0) \wedge(k=1.0) \wedge(y=2 h-k) \wedge(z<w) \tag{1}\\
& (z=f(x)) \wedge(w=f(y)) \tag{2}
\end{align*}
$$

Say which variables are interface variables, list the interface equalities for this formula (modulo symmetry), and decide whether this formulas is $\mathcal{L R} \mathcal{A} \cup \mathcal{E} \mathcal{U} \mathcal{F}$-satisfiable or not, using either NelsonOppen or Delayed Theory Combination.
[Solution: Only x, y, z, w occur both in $\mathcal{L R} \mathcal{A}$-atoms (2) and in $\mathcal{E U F}$-atoms (1). Thus x, y, z, w are the interface variables, and $x=y, x=z, x=w, y=z, y=w, z=w$ are the interface equalities.

Nelson-Oppen: From (2) in $\mathcal{L R} \mathcal{A}$ we infer the interface equality $(x=y)$. Adding the latter to (1), we infer the interface equality $(z=w)$ in $\mathcal{E U \mathcal { F }}$. Adding the latter to (2), we get a contradiction in $\mathcal{L R} \mathcal{A}$ against $(z<w)$.

Delayed Theory Combination: By unit-propagation, φ causes only one branch containing all its literals. Then the SAT solver assigns first a negative value to the interface equality ($\mathrm{x}=\mathrm{y}$), adding $\neg(x=y)$ to the assignment, which is found inconsistent in $\mathcal{L R} \mathcal{A}$:

$$
\begin{equation*}
(h=1.0) \wedge(k=1.0) \wedge(x=1.0) \wedge(y=2 h-k) \wedge \neg(x=y) . \tag{3}
\end{equation*}
$$

Then the SAT solver backtracks, adding $(x=y)$ to the assignment. Then the SAT solver assigns first a negative value to the interface equality ($\mathrm{z}=\mathrm{w}$) , adding $\neg(z=w)$ to the assignment, which is found inconsistent in $\mathcal{L R} \mathcal{A}$: :

$$
\begin{equation*}
(z=f(x)) \wedge(w=f(y)) \wedge(x=y) \wedge \neg(z=w) \tag{4}
\end{equation*}
$$

Thus, with either technique, we can conclude that φ is $\mathcal{L} \mathcal{R} \mathcal{A} \cup \mathcal{E} \mathcal{U} \mathcal{F}$-unsatisfiable.]

Consider the following formulas in difference logic ($\mathcal{D} \mathcal{L})$:

$$
\left.\begin{array}{rl}
\varphi_{1} \stackrel{\text { def }}{=} & \left(x_{2}-x_{3} \leq-4\right) \wedge \\
& \left(x_{3}-x_{4} \leq-6\right) \wedge \\
& \left(x_{5}-x_{6} \leq 4\right) \wedge \\
& \left(x_{6}-x_{1} \leq 2\right) \\
& \left(x_{6}-x_{7} \leq-2\right) \wedge \\
& \left(x_{7}-x_{8} \leq 1\right) \\
& \wedge \\
\varphi_{2} \stackrel{\text { def }}{=} & \left(x_{4}-x_{9} \leq 2\right) \\
& \left(x_{9}-x_{5} \leq 0\right) \\
& \left(x_{1}-x_{2} \leq 1\right)
\end{array}\right) \wedge
$$

which are such that $\varphi_{1} \wedge \varphi_{2} \models_{\mathcal{D L}} \perp$. For each of the following formulas, say if it is a Craig interpolant in $\mathcal{D} \mathcal{L}$ for $\left(\varphi_{1}, \varphi_{2}\right)$, and explain why.
[Solution: Recall that a Craig interpolant for $\left(\varphi_{1}, \varphi_{2}\right)$ s.t. $\varphi_{1} \wedge \varphi_{2} \models_{\mathcal{D} \mathcal{L}} \perp$ is a formula ψ s.t.

1. $\varphi_{1} \models_{\mathcal{D L}} \psi$
2. $\psi \wedge \varphi_{2} \models_{\mathcal{D L}} \perp$
3. all symbols in ψ occur in both φ_{1} and φ_{2}.
]
(a) $\quad\left(x_{2}-x_{3}+x_{6}-x_{1} \leq-2\right)$
[Solution: no, because, e.g., x_{3} is not a symbol occurring in φ_{2}.]
(b) $\quad\left(x_{2}-x_{4} \leq-10\right)$
[Solution: No, because it violates condition 2.]
(c) $\quad \begin{aligned} & \left(x_{2}-x_{4} \leq-10\right) \\ & \left(x_{5}-x_{1} \leq 6\right)\end{aligned}$
[Solution: yes, because it is a $\mathcal{D} \mathcal{L}$ formula and it verifies all conditions 1., 2., 3.]
