# Formal Methods Module II: Formal Verification Ch. 05: Explicit-State CTL Model Checking 

Roberto Sebastiani

DISI, Università di Trento, Italy - roberto.sebastiani@unitn.it<br>URL: https://disi.unitn.it/rseba/DIDATTICA/fm2024/<br>Teaching assistant: Giuseppe Spallitta - giuseppe.spallitta@unitn.it

M.S. in Computer Science, Mathematics, \& Artificial Intelligence Systems

Academic year 2023-2024

last update: Thursday $18^{\text {th }}$ April, 2024, 08:32

## Outline

(1) CTL Model Checking: general ideas
(2) Some theoretical issues
(3) CTL Model Checking: algorithms
(4) CTL Model Checking: some examples
(5) A relevant subcase: invariants
(6) Exercises

## Outline

(1) CTL Model Checking: general ideas
(2) Some theoretical issues
(3) CTL Model Checking: algorithms
(4) CTL Model Checking: some examples
(5) A relevant subcase: invariants
(6) Exercises

## CTL Model Checking

CTL Model Checking is a formal verification technique where...

- ...the system is represented as a Finite State Machine M:
- ...the property is expressed a CTL formula $\varphi$ :
$A G(p \rightarrow A F q)$
- ...the model checking algorithm checks whether in all initial states of M all the executions of the model satisfy the formula ( $M$


## CTL Model Checking

CTL Model Checking is a formal verification technique where...

- ...the system is represented as a Finite State Machine M:

- ...the property is expressed a CTL formula $\varphi$

$$
\mathbf{A G}(p \rightarrow \mathbf{A F} q)
$$

- ...the model checking algorithm checks whether in all initial states of M all the executions of the model satisfy the formula ( $M$


## CTL Model Checking

CTL Model Checking is a formal verification technique where...

- ...the system is represented as a Finite State Machine M:

- ...the property is expressed a CTL formula $\varphi$ :

$$
\mathbf{A G}(p \rightarrow \mathbf{A F} q)
$$

- ...the model checking algorithm checks whether in all initial states of $M$ all the executions of the model satisfy the formula ( $M$


## CTL Model Checking

CTL Model Checking is a formal verification technique where...

- ...the system is represented as a Finite State Machine M:

- ...the property is expressed a CTL formula $\varphi$ :

$$
\mathbf{A G}(p \rightarrow \mathbf{A F} q)
$$

- ...the model checking algorithm checks whether in all initial states of $M$ all the executions of the model satisfy the formula ( $M \models \varphi$ ).


## CTL Model Checking: General Idea

Two macro-steps:
1 construct the set of states where the formula holds:
( $[\varphi]$ is called the denotation of $\varphi$ )
2 then compare with the set of initial states:
$I \subseteq[\varphi]$ ?

The lion's share of the effort in this process is on step 1: compute [ $\varphi$ ].

## CTL Model Checking: General Idea

Two macro-steps:
1 construct the set of states where the formula holds:

$$
[\varphi]:=\{s \in S: M, s \models \varphi\}
$$

([ $\varphi$ ] is called the denotation of $\varphi$ )
2 then compare with the set of initial states:

The lion's share of the effort in this process is on step 1: compute [ $\varphi$ ].

## CTL Model Checking: General Idea

Two macro-steps:
1 construct the set of states where the formula holds:

$$
[\varphi]:=\{s \in S: M, s \models \varphi\}
$$

([ $\varphi$ ] is called the denotation of $\varphi$ )
2 then compare with the set of initial states:
$I \subseteq[\varphi]$ ?

The lion's share of the effort in this process is on step 1: compute [ $\varphi$ ].

## CTL Model Checking: General Idea

Two macro-steps:
1 construct the set of states where the formula holds:

$$
[\varphi]:=\{s \in S: M, s \models \varphi\}
$$

([ $\varphi$ ] is called the denotation of $\varphi$ )
2 then compare with the set of initial states:
$I \subseteq[\varphi]$ ?

The lion's share of the effort in this process is on step 1: compute $[\varphi]$.

## CTL Model Checking: General Idea [cont.]

In order to compute [ $\varphi$ ]:

- proceed "bottom-up" on the structure of the formula, computing $\left[\varphi_{i}\right]$ for each subformula $\varphi_{i}$ of $\mathbf{A G}(p \rightarrow \mathbf{A F q})$ :


## CTL Model Checking: General Idea [cont.]

```
In order to compute [\varphi]:
```

- proceed "bottom-up" on the structure of the formula, computing [ $\varphi_{i}$ ] for each subformula $\varphi_{i}$ of $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$ :
- 
- [p $\rightarrow \mathrm{AF} q]$,
- $[\mathrm{AG}(p \rightarrow \mathbf{A F} q$ )


## CTL Model Checking: General Idea [cont.]

```
In order to compute [\varphi]:
```

- proceed "bottom-up" on the structure of the formula, computing [ $\varphi_{i}$ ] for each subformula $\varphi_{i}$ of $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$ :
- [q],
$-[A F$
$-[p]$,
- $[p \rightarrow \mathrm{AF} q]$,
- $[\mathrm{AG}(p \rightarrow \mathrm{AF} c)]$


## CTL Model Checking: General Idea [cont.]

```
In order to compute [\varphi]:
```

- proceed "bottom-up" on the structure of the formula, computing [ $\varphi_{i}$ ] for each subformula $\varphi_{i}$ of $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$ :
- [q],
- [AFq],
- $[p \rightarrow \mathrm{AFq}]$,
- $[\mathrm{AG}(p \rightarrow \mathrm{AF} q)]$


## CTL Model Checking: General Idea [cont.]

```
In order to compute [\varphi]:
```

- proceed "bottom-up" on the structure of the formula, computing [ $\varphi_{i}$ ] for each subformula $\varphi_{i}$ of $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$ :
- [q],
- [AFq],
- [p],
$-[p \rightarrow \mathrm{AFq]}$,
$-[\mathrm{AG}(p \rightarrow \mathrm{AFq})]$


## CTL Model Checking: General Idea [cont.]

```
In order to compute [\varphi]:
```

- proceed "bottom-up" on the structure of the formula, computing [ $\varphi_{i}$ ] for each subformula $\varphi_{i}$ of $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$ :
- [q],
- [ $\mathrm{AF} q]$,
- [p],
- $[p \rightarrow \mathbf{A F} q]$,


## CTL Model Checking: General Idea [cont.]

```
In order to compute [\varphi]:
```

- proceed "bottom-up" on the structure of the formula, computing [ $\varphi_{i}$ ] for each subformula $\varphi_{i}$ of $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$ :
- [q],
- [AFq],
- [p],
- $[p \rightarrow \mathbf{A F} q]$,
- $[\mathbf{A G}(p \rightarrow \mathbf{A F} q)]$


## CTL Model Checking: General Idea [cont.]

In order to compute each [ $\varphi_{i}$ ]:

- assign Propositional atoms by labeling function
- handle Boolean operators by standard set operations
- handle temporal operators AX. EX by computing pre-images
- handle temporal operators AG, EG, AF, EF, AU, EU, by (implicitly) applying tableaux rules, until a fixpoint is reached


## CTL Model Checking: General Idea [cont.]

In order to compute each [ $\varphi_{i}$ ]:

- assign Propositional atoms by labeling function
- handle Boolean operators by standard set operations
- handle temporal operators AX, EX by computing pre-images
- handle temporal operators AG, EG, AF, EF, AU, EU, by (implicily) applying tableaux rules, until a fixpoint is reached


## CTL Model Checking: General Idea [cont.]

```
In order to compute each [ \(\varphi_{i}\) ]:
```

- assign Propositional atoms by labeling function
- handle Boolean operators by standard set operations
- handle temporal operators AX, EX by computing pre-images
- handle temporal operators AG, EG, AF, EF, AU, EU, by (implicitly) applying tableaux rules, until a fixpoint is reached


## CTL Model Checking: General Idea [cont.]

In order to compute each [ $\varphi_{i}$ ]:

- assign Propositional atoms by labeling function
- handle Boolean operators by standard set operations
- handle temporal operators AX, EX by computing pre-images
- handle temporal operators AG, EG, AF, EF, AU, EU, by (implicitly) applying tableaux rules, until a fixpoint is reached


## CTL Model Checking: General Idea [cont.]

In order to compute each [ $\varphi_{i}$ ]:

- assign Propositional atoms by labeling function
- handle Boolean operators by standard set operations
- handle temporal operators $\mathbf{A X}, \mathbf{E X}$ by computing pre-images
- handle temporal operators AG, EG, AF, EF, AU, EU, by (implicitly) applying tableaux rules, until a fixpoint is reached

Tableaux Rules: a Quote

"After all... tomorrow is another day."
[Scarlett O'Hara, "Gone with the Wind"]

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$


- Recall the AF tableau rule: AFq $\leftrightarrow(q \vee \mathbf{A X A F} q)$
- Iteration: $[\mathbf{A F} a]^{(1)}=[a]_{;}^{\left.[\mathbf{A F} a]^{(i+1)}=[a] \cup \mathbf{A X}[\mathbf{A F} q]^{(i)}\right) .}$


## CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$



- Recall the AF tableau rule: $\mathbf{A F} q \leftrightarrow(q \vee \mathbf{A X A F} q)$

[^0]
## CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$



- Recall the AF tableau rule: $\mathbf{A F} q \leftrightarrow(q \vee \mathbf{A X A F} q)$
- Iteration: $[\mathbf{A F} q]^{(1)}=[q] ; \quad[\mathbf{A F} q]^{(i+1)}=[q] \cup \mathbf{A X}[\mathbf{A F} q]^{(i)}$



## CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$



- Recall the AF tableau rule: $\mathbf{A F} q \leftrightarrow(q \vee \mathbf{A X A F} q)$
- Iteration: $[\mathbf{A F} q]^{(1)}=[q] ; \quad[\mathbf{A F} q]^{(i+1)}=[q] \cup \mathbf{A X}[\mathbf{A F} q]^{(i)}$
- $[\mathbf{A F} q]^{(1)}=[q]=\{2\}$
$\begin{aligned} \cdot[\mathrm{AF} q]^{(2)} & =[q \vee \mathrm{AX} q]=\{2\} \cup\{1\}=\{1,2\} \\ \cdot[\mathrm{AF} q]^{(3)} & =[q \vee \mathbf{A X}(q \vee \mathbf{A X} q)]=\{2\} \cup\{1\}=\{1,2\}\end{aligned}$


## CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$



- Recall the AF tableau rule: AF $q \leftrightarrow(q \vee \mathbf{A X A F} q)$
- Iteration: $[\mathbf{A F} q]^{(1)}=[q] ; \quad[\mathbf{A F} q]^{(i+1)}=[q] \cup \mathbf{A X}[\mathbf{A F} q]^{(i)}$
- $[\mathbf{A F} q]^{(1)}=[q]=\{2\}$
- $[\mathbf{A F} q]^{(2)}=[q \vee \mathbf{A X} q]=\{2\} \cup\{1\}=\{1,2\}$
- $[\mathbf{A F q}]^{(3)}=[q \vee \mathbf{A X}(q \vee \mathbf{A X q})]=\{2\} \cup\{1\}=\{1,2\}$

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$


- Recall the AF tableau rule: $\mathbf{A F} q \leftrightarrow(q \vee \mathbf{A X A F} q)$
- Iteration: $[\mathbf{A F} q]^{(1)}=[q] ; \quad[\mathbf{A F} q]^{(i+1)}=[q] \cup \mathbf{A X}[\mathbf{A F} q]^{(i)}$
- $[\mathbf{A F} q]^{(1)}=[q]=\{2\}$
- $[\mathbf{A F} q]^{(2)}=[q \vee \mathbf{A X} q]=\{2\} \cup\{1\}=\{1,2\}$
- $[\mathbf{A F} q]^{(3)}=[q \vee \mathbf{A X}(q \vee \mathbf{A X} q)]=\{2\} \cup\{1\}=\{1,2\}$


## CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$



- Recall the AF tableau rule: AF $q \leftrightarrow(q \vee$ AXAF $q)$
- Iteration: $[\mathbf{A F} q]^{(1)}=[q] ; \quad[\mathbf{A F} q]^{(i+1)}=[q] \cup \mathbf{A X}[\mathbf{A F} q]^{(i)}$
- $[\mathbf{A F} q]^{(1)}=[q]=\{2\}$
- $[\mathbf{A F} q]^{(2)}=[q \vee \mathbf{A X} q]=\{2\} \cup\{1\}=\{1,2\}$
- $[\mathbf{A F} q]^{(3)}=[q \vee \mathbf{A X}(q \vee \mathbf{A X} q)]=\{2\} \cup\{1\}=\{1,2\}$
$\Longrightarrow$ (fix point reached)


## CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$ [cont.]



CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$ [cont.]


- Recall the AG tableau rule: $\mathbf{A G} \varphi \leftrightarrow(\varphi \wedge \mathbf{A X A G} \varphi)$
- Iteration: $\left[\mathbf{A} \mathbf{G}_{\llcorner }{ }^{(1)}\right]=\left[\varphi \rho ; \quad\left[\mathbf{A} \mathbf{G}(\rho]^{(i+1)}=[\varphi] \cap \mathbf{A X}[\mathbf{A G} \varphi]^{(i)}\right.\right.$

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$ [cont.]


- Recall the AG tableau rule: AG $\varphi \leftrightarrow(\varphi \wedge$ AXAG $\varphi)$
- Iteration: $\left[\mathbf{A G} \varphi^{(1)}\right]=[\varphi] ; \quad[\mathbf{A G} \varphi]^{(i+1)}=[\varphi] \cap \mathbf{A X}[\mathbf{A G} \varphi]^{(i)}$

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$ [cont.]


- Recall the AG tableau rule: $\mathbf{A G} \varphi \leftrightarrow(\varphi \wedge$ AXAG $\varphi)$
- Iteration: $\left[\mathbf{A G} \varphi^{(1)}\right]=[\varphi] ; \quad[\mathbf{A G} \varphi]^{(i+1)}=[\varphi] \cap \mathbf{A X}[\mathbf{A G} \varphi]^{(i)}$


CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$ [cont.]


- Recall the AG tableau rule: $\mathbf{A G} \varphi \leftrightarrow(\varphi \wedge$ AXAG $\varphi)$
- Iteration: $\left[\mathbf{A G} \varphi^{(1)}\right]=[\varphi] ; \quad[\mathbf{A G} \varphi]^{(i+1)}=[\varphi] \cap \mathbf{A X}[\mathbf{A G} \varphi]^{(i)}$
(1) $[\mathbf{A G} \varphi]^{(1)}=[\varphi]=\{1,2,4\}$
$[\text { AG } \varphi]^{(2)}=[\varphi] \cap \operatorname{AX}[A G \varphi]^{(1)}=\{1,2,4\} \cap\{1,3\}=\{1\}$
$[A G \varphi]^{(3)}=[\varphi] \cap \operatorname{AX}[A G \varphi]^{(2)}=\{1,2,4\} \cap\{ \}=\{ \}$

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$ [cont.]


- Recall the AG tableau rule: AG $\varphi \leftrightarrow(\varphi \wedge$ AXAG $\varphi$ )
- Iteration: $\left[\mathbf{A G} \varphi^{(1)}\right]=[\varphi] ; \quad[\mathbf{A G} \varphi]^{(i+1)}=[\varphi] \cap \mathbf{A X}[\mathbf{A G} \varphi]^{(i)}$
(1) $[\mathbf{A G} \varphi]^{(1)}=[\varphi]=\{1,2,4\}$
(2) $[\mathbf{A} \mathbf{G} \varphi]^{(2)}=[\varphi] \cap \mathbf{A X}[\mathbf{A} \mathbf{G} \varphi]^{(1)}=\{1,2,4\} \cap\{1,3\}=\{1\}$

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$ [cont.]


- Recall the AG tableau rule: AG $\varphi \leftrightarrow(\varphi \wedge$ AXAG $\varphi$ )
- Iteration: $\left[\mathbf{A G} \varphi^{(1)}\right]=[\varphi] ; \quad[\mathbf{A G} \varphi]^{(i+1)}=[\varphi] \cap \mathbf{A X}[\mathbf{A G} \varphi]^{(i)}$
(1) $[\mathbf{A G} \varphi]^{(1)}=[\varphi]=\{1,2,4\}$
(2) $[\mathbf{A} \mathbf{G} \varphi]^{(2)}=[\varphi] \cap \mathbf{A X}[\mathbf{A} \mathbf{G} \varphi]^{(1)}=\{1,2,4\} \cap\{1,3\}=\{1\}$
(3) $[\mathbf{A} \mathbf{G} \varphi]^{(3)}=[\varphi] \cap \mathbf{A X}[\mathbf{A G} \varphi]^{(2)}=\{1,2,4\} \cap\{ \}=\{ \}$

CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$ [cont.]


- Recall the AG tableau rule: AG $\varphi \leftrightarrow(\varphi \wedge$ AXAG $\varphi)$
- Iteration: $\left[\mathbf{A G} \varphi^{(1)}\right]=[\varphi] ; \quad[\mathbf{A G} \varphi]^{(i+1)}=[\varphi] \cap \mathbf{A X}[\mathbf{A G} \varphi]^{(i)}$
(1) $[\mathbf{A G} \varphi]^{(1)}=[\varphi]=\{1,2,4\}$
(2) $[\mathbf{A} \mathbf{G} \varphi]^{(2)}=[\varphi] \cap \mathbf{A X}[\mathbf{A} \mathbf{G} \varphi]^{(1)}=\{1,2,4\} \cap\{1,3\}=\{1\}$
(3) $[\mathbf{A G} \varphi]^{(3)}=[\varphi] \cap \mathbf{A X}[\mathbf{A G} \varphi]^{(2)}=\{1,2,4\} \cap\{ \}=\{ \}$
$\Longrightarrow$ (fix point reached)


## CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$ [cont.]

- The set of states where the formula holds is empty
$\Longrightarrow$ the initial state does not satisfy the property
$\Longrightarrow M \mid \neq \mathrm{AG}(p \rightarrow \mathrm{AF} q)$
- Counterexamnle a lazo-shaped path: 1.2. $\{3.4\}^{\omega}$ (satisfying $E F(p \wedge E G-q)$ )

```
Note
Counter-example reconstruction in general is not trivial, based on intermediate sets.
```


## CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$ [cont.]

- The set of states where the formula holds is empty $\Longrightarrow$ the initial state does not satisfy the property
- Counterexample: a lazo-shaped path: $1,2,\{3,4\}^{\omega}$ (satisfying $E F(p \wedge E G \neg q)$ )


## CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$ [cont.]

- The set of states where the formula holds is empty
$\Longrightarrow$ the initial state does not satisfy the property
$\Longrightarrow M \not \vDash \mathbf{A G}(p \rightarrow \mathbf{A F} q)$
- Counterexample: a lazo-shaped path: 1,2,\{3,4\} ${ }^{\omega}$ (satisfying $E F(p \wedge E G \neg q)$ )


## CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$ [cont.]

- The set of states where the formula holds is empty
$\Longrightarrow$ the initial state does not satisfy the property
$\Longrightarrow M \not \vDash \mathbf{A G}(p \rightarrow \mathbf{A F} q)$
- Counterexample: a lazo-shaped path: $1,2,\{3,4\}^{\omega}$ (satisfying $\left.\operatorname{EF}(p \wedge \mathbf{E G} \neg q)\right)$


## CTL Model Checking: Example: $\mathbf{A G}(p \rightarrow \mathbf{A F} q)$ [cont.]

- The set of states where the formula holds is empty $\Longrightarrow$ the initial state does not satisfy the property $\Longrightarrow M \not \vDash \mathbf{A G}(p \rightarrow \mathbf{A F} q)$
- Counterexample: a lazo-shaped path: $1,2,\{3,4\}^{\omega}$ (satisfying $\left.\operatorname{EF}(p \wedge \mathbf{E G} \neg q)\right)$


## Note

Counter-example reconstruction in general is not trivial, based on intermediate sets.

## Outline

(1) CTL Model Checking: general ideas
(2) Some theoretical issues
(3) CTL Model Checking: algorithms

4 CTL Model Checking: some examples
(5) A relevant subcase: invariants
(6) Exercises

## The fixed-point theory of lattice of sets

## Definition

Let $2^{S}$ denote the power set of $S$, i.e., the set of all subsets of $S$.

- For any finite set $S$, the structure $\left\langle 2^{S}, \subseteq\right\rangle$ forms a complete lattice with $\cup$ as join and $\cap$ as meet operations.
- A function $F: 2^{S} \longmapsto 2^{S}$ is monotonic provided $S_{1} \subseteq S_{2} \Rightarrow F\left(S_{1}\right) \subseteq F\left(S_{2}\right)$.


## The fixed-point theory of lattice of sets

## Definition

Let $2^{S}$ denote the power set of $S$, i.e., the set of all subsets of $S$.

- For any finite set $S$, the structure $\left\langle 2^{S}, \subseteq\right\rangle$ forms a complete lattice with $\cup$ as join and $\cap$ as meet operations.
- A function $F: 2^{S} \longmapsto 2^{S}$ is monotonic provided $S_{1} \subseteq S_{2} \Rightarrow F\left(S_{1}\right) \subseteq F\left(S_{2}\right)$.


## Fixed Points

## Definition

Let $\left\langle 2^{S}, \subseteq\right\rangle$ be a complete lattice, $S$ finite.

- Given a function $F: 2^{S} \longmapsto 2^{S}$, $a \subseteq S$ is a fixed point of $F$ iff
- a is a least fixed point (LFP) of $F$, written $\mu x . F(x)$, iff, for every other fixed point $a^{\prime}$ of $F$, $a \subseteq a^{\prime}$
- a is a greatest fixed point (GFP) of $F$, written $\nu x . F(x)$, iff, for every other fixed point $a^{\prime}$ of $F$, $a^{\prime} \subseteq a$


## Fixed Points

## Definition

Let $\left\langle 2^{S}, \subseteq\right\rangle$ be a complete lattice, $S$ finite.

- Given a function $F: 2^{S} \longmapsto 2^{S}, a \subseteq S$ is a fixed point of $F$ iff

$$
F(a)=a
$$

- a is a least fixed point (LFP) of $F$, written $\mu x . F(x)$, iff, for every other fixed point $a^{\prime}$ of $F$, $a \subseteq a^{\prime}$
- a is a greatest fixed point (GFP) of $F$, written $\nu \times . F(x)$, iff, for every other fixed point $a^{\prime}$ of $F$, $a^{\prime} \subseteq a$


## Fixed Points

## Definition

Let $\left\langle 2^{S}, \subseteq\right\rangle$ be a complete lattice, $S$ finite.

- Given a function $F: 2^{S} \longmapsto 2^{S}, a \subseteq S$ is a fixed point of $F$ iff

$$
F(a)=a
$$

- a is a least fixed point (LFP) of $F$, written $\mu x . F(x)$, iff, for every other fixed point $a^{\prime}$ of $F$, $a \subseteq a^{\prime}$
- a is a greatest fixed point (GFP) of $F$, written $\nu x . F(x)$, iff, for every other fixed point $a^{\prime}$ of $F$,


## Fixed Points

## Definition

Let $\left\langle 2^{S}, \subseteq\right\rangle$ be a complete lattice, $S$ finite.

- Given a function $F: 2^{S} \longmapsto 2^{S}, a \subseteq S$ is a fixed point of $F$ iff

$$
F(a)=a
$$

- a is a least fixed point (LFP) of $F$, written $\mu x . F(x)$, iff, for every other fixed point $a^{\prime}$ of $F$, $a \subseteq a^{\prime}$
- a is a greatest fixed point (GFP) of $F$, written $\nu x . F(x)$, iff, for every other fixed point $a^{\prime}$ of $F$, $a^{\prime} \subseteq a$


## Iteratively computing fixed points

## Tarski's Theorem

A monotonic function over a complete finite lattice has a least and a greatest fixed point.

[^1]
## Iteratively computing fixed points

## Tarski's Theorem

A monotonic function over a complete finite lattice has a least and a greatest fixed point.
(A corollary of) Kleene's Theorem
A monotonic function $F$ over a complete finite lattice has a least and a greatest fixed point, which can be computed as follows:

- the least fixed point of $F$ is the limit of the chain $\emptyset$
- the greatest fixed point of $F$ is the limit of chain $S$

Since $2^{S}$ is finite, convergence is obtained in a finite number of steps.

## Iteratively computing fixed points

## Tarski's Theorem

A monotonic function over a complete finite lattice has a least and a greatest fixed point.

## (A corollary of) Kleene's Theorem

A monotonic function $F$ over a complete finite lattice has a least and a greatest fixed point, which can be computed as follows:

- the least fixed point of $F$ is the limit of the chain $\emptyset \subseteq F(\emptyset) \subseteq F(F(\emptyset)) \ldots$,
- the greatest fixed point of $F$ is the limit of chain $S$

Since $2^{S}$ is finite, convergence is obtained in a finite number of steps.

## Iteratively computing fixed points

## Tarski's Theorem

A monotonic function over a complete finite lattice has a least and a greatest fixed point.

## (A corollary of) Kleene's Theorem

A monotonic function $F$ over a complete finite lattice has a least and a greatest fixed point, which can be computed as follows:

- the least fixed point of $F$ is the limit of the chain $\emptyset \subseteq F(\emptyset) \subseteq F(F(\emptyset)) \ldots$,
- the greatest fixed point of $F$ is the limit of chain $S \supseteq F(S) \supseteq F(F(S)) \ldots$


## Iteratively computing fixed points

## Tarski's Theorem

A monotonic function over a complete finite lattice has a least and a greatest fixed point.

## (A corollary of) Kleene's Theorem

A monotonic function $F$ over a complete finite lattice has a least and a greatest fixed point, which can be computed as follows:

- the least fixed point of $F$ is the limit of the chain $\emptyset \subseteq F(\emptyset) \subseteq F(F(\emptyset)) \ldots$,
- the greatest fixed point of $F$ is the limit of chain $S \supseteq F(S) \supseteq F(F(S)) \ldots$

Since $2^{S}$ is finite, convergence is obtained in a finite number of steps.

## CTL Model Checking and Lattices

- If $M=\langle S, I, R, L, A P\rangle$ is a Kripke structure, then $\left\langle 2^{S}, \subseteq\right\rangle$ is a complete lattice
- We identify $\varphi$ with its denotation $[\varphi]$
we can see logical operators as functions $F: 2^{S} \longmapsto 2^{S}$ on the complete lattice $\left\langle 2^{S}, \subseteq\right.$


## CTL Model Checking and Lattices

- If $M=\langle S, I, R, L, A P\rangle$ is a Kripke structure, then $\left\langle 2^{S}, \subseteq\right\rangle$ is a complete lattice
- We identify $\varphi$ with its denotation [ $\varphi$ ]
we can see logical operators as functions $F: 2^{S} \longmapsto 2^{S}$ on the complete lattice $\left\langle 2^{S}\right.$


## CTL Model Checking and Lattices

- If $M=\langle S, I, R, L, A P\rangle$ is a Kripke structure, then $\left\langle 2^{S}, \subseteq\right\rangle$ is a complete lattice
- We identify $\varphi$ with its denotation [ $\varphi$ ]
$\Longrightarrow$ we can see logical operators as functions $F: 2^{S} \longmapsto 2^{S}$ on the complete lattice $\left\langle 2^{S}, \subseteq\right\rangle$


## Denotation of a CTL formula $\varphi:[\varphi]$

```
Definition of [\varphi]
[\varphi]:={s\inS :M,s\models\varphi}
```


## Recursive definition of $[\varphi]$



## Denotation of a CTL formula $\varphi:[\varphi]$

## Definition of $[\varphi$ ]

$[\varphi]:=\{s \in S: M, s \models \varphi\}$
Recursive definition of $[\varphi$ ]

$$
\begin{array}{ll}
{[\top]} & =S \\
{[\perp]} & =\{ \} \\
{[p]} & =\{s \mid p \in L(s)\} \\
{\left[\neg \varphi_{1}\right]} & =S /\left[\varphi_{1}\right] \\
{\left[\varphi_{1} \wedge \varphi_{2}\right]} & =\left[\varphi_{1}\right] \cap\left[\varphi_{2}\right] \\
{[\mathbf{E X} \varphi]} & =\left\{s \mid \exists s^{\prime} \in[\varphi] \text { s.t. }\left\langle s, s^{\prime}\right\rangle \in R\right\} \\
{[\mathbf{E G} \beta]} & =\nu Z .([\beta] \cap[\mathbf{E X Z}]) \\
{\left[\mathbf{E}\left(\beta_{1} \mathbf{U} \beta_{2}\right)\right]} & =\mu Z .\left(\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap[\mathbf{E X Z}]\right)\right)
\end{array}
$$

## Case EX

## Consider EX $\varphi$ :



- $[\operatorname{EX} \varphi]=\left\{s \mid \exists s^{\prime} \in[\varphi]\right.$ s.t. $\left.\left\langle s, s^{\prime}\right\rangle \in R\right\}$
- $\left[\mathrm{EX}_{\varphi}\right]$ is said to be the Pre-image of $[\varphi]$ (Preimage $([\varphi])$ )
- Key step of every CTL M.C. operation

Note
Preimage () is monotonic: $X \subseteq X^{\prime} \Longrightarrow \operatorname{Preimage}(X) \subseteq \operatorname{Preimage}\left(X^{\prime}\right)$

## Case EX

## Consider EX $\varphi$ :



- $\left[\mathrm{EX}_{\varphi}\right]=\left\{s \mid \exists s^{\prime} \in[\varphi]\right.$ s.t. $\left.\left\langle s, s^{\prime}\right\rangle \in R\right\}$
- $[\mathbf{E X} \varphi]$ is said to be the Pre-image of $[\varphi]$ (Preimage([ $\varphi])$ )
- Key step of every CTL M.C. operation

Note
Preimage () is monotonic: $X \subseteq X^{\prime} \Longrightarrow \operatorname{Preimage}(X) \subseteq \operatorname{Preimage}\left(X^{\prime}\right)$

## Case EX

## Consider EX $\varphi$ :



- $\left[\operatorname{EXX}_{\varphi}\right]=\left\{s \mid \exists s^{\prime} \in[\varphi]\right.$ s.t. $\left.\left\langle s, s^{\prime}\right\rangle \in R\right\}$
- $[\mathbf{E X} \varphi$ ] is said to be the Pre-image of $[\varphi]$ (Preimage $([\varphi])$ )
- Key step of every CTL M.C. operation

[^2]Preimage() is monotonic:

## Case EX

## Consider EX $\varphi$ :



- $\left[\operatorname{EXX}_{\varphi}\right]=\left\{s \mid \exists s^{\prime} \in[\varphi]\right.$ s.t. $\left.\left\langle s, s^{\prime}\right\rangle \in R\right\}$
- $[\mathbf{E X} \varphi$ ] is said to be the Pre-image of $[\varphi]$ (Preimage $([\varphi])$ )
- Key step of every CTL M.C. operation

Note
Preimage () is monotonic: $X \subseteq X^{\prime} \Longrightarrow \operatorname{Preimage}(X) \subseteq \operatorname{Preimage}\left(X^{\prime}\right)$

## Case EG

## Consider EG $\beta$ :

- $\nu Z$. ( $[\beta] \cap[E X Z])$ : greatest fixed point of the function $F_{\beta}: 2^{S} \longmapsto 2^{S}$, s.t.
$F_{\beta}([\varphi])=([\beta] \cap$ Preimage $([\varphi])$

$$
=\left([\beta] \cap\left\{s \mid \exists s^{\prime} \in[\varphi] \text { s.t. }\left\langle s, s^{\prime}\right\rangle \in R\right\}\right)
$$

- $F_{\beta}$ Monotonic:


## Theorem (Clarke \& Emerson)

[EG $\beta$

## Case EG

## Consider EG $\beta$ :

- $\nu Z$. ( $[\beta] \cap[E X Z])$ : greatest fixed point of the function $F_{\beta}: 2^{S} \longmapsto 2^{S}$, s.t.
$F_{\beta}([\varphi])=([\beta] \cap$ Preimage $([\varphi])$

$$
=\left([\beta] \cap\left\{s \mid \exists s^{\prime} \in[\varphi] \text { s.t. }\left\langle s, s^{\prime}\right\rangle \in R\right\}\right)
$$

- $F_{\beta}$ Monotonic: $a \subseteq a^{\prime} \Longrightarrow F_{\beta}(a) \subseteq F_{\beta}\left(a^{\prime}\right)$
- (Tarski's theorem): $\nu x . F_{\beta}(x)$ always exists
- (Kleene's theorem): $\nu x . F_{\beta}(x)$ can be computed as the limit
in a finite number of steps.

Theorem (Clarke \& Emerson)
[EG

## Case EG

## Consider EG $\beta$ :

- $\nu Z$. ( $[\beta] \cap[E X Z])$ : greatest fixed point of the function $F_{\beta}: 2^{S} \longmapsto 2^{S}$, s.t.
$F_{\beta}([\varphi])=([\beta] \cap$ Preimage $([\varphi])$

$$
=\left([\beta] \cap\left\{s \mid \exists s^{\prime} \in[\varphi] \text { s.t. }\left\langle s, s^{\prime}\right\rangle \in R\right\}\right)
$$

- $F_{\beta}$ Monotonic: $a \subseteq a^{\prime} \Longrightarrow F_{\beta}(a) \subseteq F_{\beta}\left(a^{\prime}\right)$
- (Tarski's theorem): $\nu x . F_{\beta}(x)$ always exists
- (Kleene's theorem): $\nu x . F_{\beta}(x)$ can be computed as the limit
in a finite number of steps.


## Theorem (Clarke \& Emerson)

[EG

## Case EG

## Consider EG $\beta$ :

- $\nu Z$. ( $[\beta] \cap[E X Z])$ : greatest fixed point of the function $F_{\beta}: 2^{S} \longmapsto 2^{S}$, s.t.
$F_{\beta}([\varphi])=([\beta] \cap \operatorname{Preimage}([\varphi])$

$$
=\left([\beta] \cap\left\{s \mid \exists s^{\prime} \in[\varphi] \text { s.t. }\left\langle s, s^{\prime}\right\rangle \in R\right\}\right)
$$

- $F_{\beta}$ Monotonic: $a \subseteq a^{\prime} \Longrightarrow F_{\beta}(a) \subseteq F_{\beta}\left(a^{\prime}\right)$
- (Tarski's theorem): $\nu x . F_{\beta}(x)$ always exists
- (Kleene's theorem): $\nu x . F_{\beta}(x)$ can be computed as the limit $S \supseteq F_{\beta}(S) \supseteq F_{\beta}\left(F_{\beta}(S)\right) \supseteq \ldots$, in a finite number of steps.


## Case EG

## Consider EG $\beta$ :

- $\nu Z$. ( $[\beta] \cap[E X Z])$ : greatest fixed point of the function $F_{\beta}: 2^{S} \longmapsto 2^{S}$, s.t.
$F_{\beta}([\varphi])=([\beta] \cap \operatorname{Preimage}([\varphi])$

$$
=\left([\beta] \cap\left\{s \mid \exists s^{\prime} \in[\varphi] \text { s.t. }\left\langle s, s^{\prime}\right\rangle \in R\right\}\right)
$$

- $F_{\beta}$ Monotonic: $a \subseteq a^{\prime} \Longrightarrow F_{\beta}(a) \subseteq F_{\beta}\left(a^{\prime}\right)$
- (Tarski's theorem): $\nu x . F_{\beta}(x)$ always exists
- (Kleene's theorem): $\nu x . F_{\beta}(x)$ can be computed as the limit $S \supseteq F_{\beta}(S) \supseteq F_{\beta}\left(F_{\beta}(S)\right) \supseteq \ldots$, in a finite number of steps.

Theorem (Clarke \& Emerson)
$[\mathbf{E G} \beta]=\nu Z .([\beta] \cap[E X Z])$

## Case EG [cont.]

- We can compute $X:=[E G \beta]$ inductively as follows:

$$
\begin{array}{lll}
X_{0} & :=S & \\
X_{1} & :=F_{\beta}(S) & =[\beta] \\
X_{2} & :=F_{\beta}\left(F_{\beta}(S)\right) & =[\beta] \cap \operatorname{Preimage}\left(X_{1}\right) \\
\cdots & :=F_{\beta}^{j+1}(S)=[\beta] \cap \operatorname{Preimage}\left(X_{j}\right)
\end{array}
$$

- Noticing that $X_{1}=[\beta]$ and $X_{j+1} \subseteq X_{j}$ for every $j \geq 0$, and that
we can use instead the following inductive schema:
- 
- $X_{j-1}:=X_{j} \cap$ Preimage $\left(X_{j}\right)$


## Case EG [cont.]

- We can compute $X:=[E G \beta]$ inductively as follows:

$$
\begin{array}{ll}
X_{0} & :=S \\
X_{1} & :=F_{\beta}(S) \\
X_{2} & :=F_{\beta}\left(F_{\beta}(S)\right) \\
\cdots \\
\cdots & =[\beta] \cap \operatorname{Preimage}\left(X_{1}\right) \\
X_{j+1} & :=F_{\beta}^{j+1}(S)=[\beta] \cap \operatorname{Preimage}\left(X_{j}\right)
\end{array}
$$

- Noticing that $X_{1}=[\beta]$ and $X_{j+1} \subseteq X_{j}$ for every $j \geq 0$, and that $([\beta] \cap Y) \subseteq X_{j} \subseteq[\beta] \Longrightarrow([\beta] \cap Y)=\left(X_{j} \cap Y\right)$, we can use instead the following inductive schema:
- $X_{1} \quad:=[\beta]$
- $X_{j+1}:=X_{j} \cap \operatorname{Preimage}\left(X_{j}\right)$


## Case EU

## Consider $\mathbf{E}\left(\beta_{1} \mathbf{U} \beta_{2}\right)$ :

- $\mu Z$. ( $\left.\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap[E X Z]\right)\right)$ : least fixed point of the function $F_{\beta_{1}, \beta_{2}}: 2^{S} \longmapsto 2^{S}$, s.t.

$$
\begin{aligned}
F_{\beta_{1}, \beta_{2}}([\varphi]) & =\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap \operatorname{Preimage}([\varphi])\right) \\
& =\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap\left\{s \mid \exists s^{\prime} \in[\varphi] \text { s.t. }\left\langle s, s^{\prime}\right\rangle \in R\right\}\right)
\end{aligned}
$$

- $F_{\beta_{1}, \beta_{2}}$ Monotonic: a



## Case EU

## Consider $\mathbf{E}\left(\beta_{1} \mathbf{U} \beta_{2}\right)$ :

- $\mu Z$. ( $\left.\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap[E X Z]\right)\right)$ : least fixed point of the function $F_{\beta_{1}, \beta_{2}}: 2^{S} \longmapsto 2^{S}$, s.t.
$F_{\beta_{1}, \beta_{2}}([\varphi])=\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap \operatorname{Preimage}([\varphi])\right)$

$$
=\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap\left\{s \mid \exists s^{\prime} \in[\varphi] \text { s.t. }\left\langle s, s^{\prime}\right\rangle \in R\right\}\right)
$$

- $F_{\beta_{1}, \beta_{2}}$ Monotonic: $a \subseteq a^{\prime} \Longrightarrow F_{\beta_{1}, \beta_{2}}(a) \subseteq F_{\beta_{1}, \beta_{2}}\left(a^{\prime}\right)$
- (Tarski's theorem): $\mu x . F_{\beta_{1}, \beta_{2}}(x)$ always exists
- (Kleene's theorem): $\mu x . F_{\beta_{1}, \beta_{2}}(x)$ can be computed as the limit



## Case EU

## Consider $\mathbf{E}\left(\beta_{1} \mathbf{U} \beta_{2}\right)$ :

- $\mu Z$. ( $\left.\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap[E X Z]\right)\right)$ : least fixed point of the function $F_{\beta_{1}, \beta_{2}}: 2^{S} \longmapsto 2^{S}$, s.t. $F_{\beta_{1}, \beta_{2}}([\varphi])=\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap\right.$ Preimage $\left.([\varphi])\right)$

$$
=\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap\left\{s \mid \exists s^{\prime} \in[\varphi] \text { s.t. }\left\langle s, s^{\prime}\right\rangle \in R\right\}\right)
$$

- $F_{\beta_{1}, \beta_{2}}$ Monotonic: $a \subseteq a^{\prime} \Longrightarrow F_{\beta_{1}, \beta_{2}}(a) \subseteq F_{\beta_{1}, \beta_{2}}\left(a^{\prime}\right)$
- (Tarski's theorem): $\mu x . F_{\beta_{1}, \beta_{2}}(x)$ always exists
- (Kleene's theorem): $\mu x . F_{\beta_{1}, \beta_{2}}(x)$ can be computed as the limit
in a finite number of steps.



## Case EU

## Consider $\mathbf{E}\left(\beta_{1} \mathbf{U} \beta_{2}\right)$ :

- $\mu Z$. ( $\left.\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap[E X Z]\right)\right)$ : least fixed point of the function $F_{\beta_{1}, \beta_{2}}: 2^{S} \longmapsto 2^{S}$, s.t. $F_{\beta_{1}, \beta_{2}}([\varphi])=\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap\right.$ Preimage $\left.([\varphi])\right)$

$$
=\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap\left\{s \mid \exists s^{\prime} \in[\varphi] \text { s.t. }\left\langle s, s^{\prime}\right\rangle \in R\right\}\right)
$$

- $F_{\beta_{1}, \beta_{2}}$ Monotonic: $a \subseteq a^{\prime} \Longrightarrow F_{\beta_{1}, \beta_{2}}(a) \subseteq F_{\beta_{1}, \beta_{2}}\left(a^{\prime}\right)$
- (Tarski's theorem): $\mu x . F_{\beta_{1}, \beta_{2}}(x)$ always exists
- (Kleene's theorem): $\mu x . F_{\beta_{1}, \beta_{2}}(x)$ can be computed as the limit $\emptyset \subseteq F_{\beta_{1}, \beta_{2}}(\emptyset) \subseteq F_{\beta_{1}, \beta_{2}}\left(F_{\beta_{1}, \beta_{2}}(\emptyset)\right) \subseteq \ldots$, in a finite number of steps.



## Case EU

## Consider $\mathbf{E}\left(\beta_{1} \mathbf{U} \beta_{2}\right)$ :

- $\mu Z$. ( $\left.\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap[E X Z]\right)\right)$ : least fixed point of the function $F_{\beta_{1}, \beta_{2}}: 2^{S} \longmapsto 2^{S}$, s.t.

$$
\begin{aligned}
F_{\beta_{1}, \beta_{2}}[[\varphi]) & =\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap \text { Preimage }([\varphi])\right) \\
& =\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap\left\{s \mid \exists s^{\prime} \in[\varphi] \text { s.t. }\left\langle s, s^{\prime}\right\rangle \in R\right\}\right)
\end{aligned}
$$

- $F_{\beta_{1}, \beta_{2}}$ Monotonic: $a \subseteq a^{\prime} \Longrightarrow F_{\beta_{1}, \beta_{2}}(a) \subseteq F_{\beta_{1}, \beta_{2}}\left(a^{\prime}\right)$
- (Tarski's theorem): $\mu x . F_{\beta_{1}, \beta_{2}}(x)$ always exists
- (Kleene's theorem): $\mu x . F_{\beta_{1}, \beta_{2}}(x)$ can be computed as the limit $\emptyset \subseteq F_{\beta_{1}, \beta_{2}}(\emptyset) \subseteq F_{\beta_{1}, \beta_{2}}\left(F_{\beta_{1}, \beta_{2}}(\emptyset)\right) \subseteq \ldots$, in a finite number of steps.


## Theorem (Clarke \& Emerson)

$\left[\mathbf{E}\left(\beta_{1} \mathbf{U} \beta_{2}\right)\right]=\mu Z .\left(\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap[\mathbf{E X} Z]\right)\right)$

## Case EU [cont.]

- We can compute $X:=\left[\mathbf{E}\left(\beta_{1} \mathbf{U} \beta_{2}\right)\right]$ inductively as follows:

$$
\begin{array}{lll}
X_{0} & :=\emptyset \\
X_{1} & :=F_{\beta_{1}, \beta_{2}}(\emptyset) & =\left[\beta_{2}\right] \\
X_{2} & :=F_{\beta_{1}, \beta_{2}}\left(F_{\beta_{1}, \beta_{2}}(\emptyset)\right) & =\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap \operatorname{Preimage}\left(X_{1}\right)\right) \\
\ldots & \left.=F_{\beta_{1}, \beta_{2}}(\emptyset)\right) & =\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap \operatorname{Preimage}\left(X_{j}\right)\right)
\end{array}
$$

- Noticing that $X_{1}=\left[\beta_{2}\right]$ and $X_{j+1} \supseteq X_{j}$ for every $j \geq 0$, and that $\left(\left[\beta_{2}\right] \cup Y\right) \supseteq X_{j} \supseteq\left[\beta_{2}\right] \Longrightarrow\left(\left[\beta_{2}\right] \cup Y\right)=\left(X_{j} \cup Y\right)$,
we can use instead the following inductive schema:



## Case EU [cont.]

- We can compute $X:=\left[\mathbf{E}\left(\beta_{1} \mathbf{U} \beta_{2}\right)\right]$ inductively as follows:

$$
\begin{array}{ll}
X_{0} & :=\emptyset \\
X_{1} & :=F_{\beta_{1}, \beta_{2}}(\emptyset) \\
X_{2} & \left.:=F_{\beta_{1}, \beta_{2}} F_{\beta_{1}, \beta_{2}}(\emptyset)\right) \\
=\left[\beta_{2}\right] \\
\left.\dddot{\beta_{2}}\right] \cup\left(\left[\beta_{1}\right] \cap \operatorname{Preimage}\left(X_{1}\right)\right) \\
\left.\dddot{X}_{j+1}:=F_{\beta_{1}, \beta_{2}}^{j+1}(\emptyset)\right) & =\left[\beta_{2}\right] \cup\left(\left[\beta_{1}\right] \cap \text { Preimage }\left(X_{j}\right)\right)
\end{array}
$$

- Noticing that $X_{1}=\left[\beta_{2}\right]$ and $X_{j+1} \supseteq X_{j}$ for every $j \geq 0$, and that $\left(\left[\beta_{2}\right] \cup Y\right) \supseteq X_{j} \supseteq\left[\beta_{2}\right] \Longrightarrow\left(\left[\beta_{2}\right] \cup Y\right)=\left(X_{j} \cup Y\right)$, we can use instead the following inductive schema:
- $X_{1} \quad:=\left[\beta_{2}\right]$
- $X_{j+1}:=X_{j} \cup\left(\left[\beta_{1}\right] \cap \operatorname{Preimage}\left(X_{j}\right)\right)$


## A relevant subcase: EF

- $\mathbf{E F} \beta=\mathbf{E}(\mathrm{T} \mathbf{U} \beta)$
- $[\top]=S \Longrightarrow[\top] \cap \operatorname{Preimage}\left(X_{j}\right)=\operatorname{Preimage}\left(X_{j}\right)$
- We can compute $X:=[E F \beta]$ inductively as follows:
- $X_{1}$
- $X_{i+1}:=X_{j} \cup$ Preimage $\left(X_{j}\right)$


## A relevant subcase: EF

- $\mathbf{E F} \beta=\mathbf{E}(\mathrm{T} \mathbf{U} \beta)$
- $[\top]=S \Longrightarrow[\top] \cap \operatorname{Preimage}\left(X_{j}\right)=\operatorname{Preimage}\left(X_{j}\right)$
- We can compute $X:=[E F \beta]$ inductively as follows:
- $X_{1}$
- $X_{j+1}:=X \cup$ Preimage $\left(X_{j}\right)$


## A relevant subcase: EF

- $\mathbf{E F} \beta=\mathbf{E}(\mathrm{T} \mathbf{U} \beta)$
- $[\top]=S \Longrightarrow[\top] \cap \operatorname{Preimage}\left(X_{j}\right)=\operatorname{Preimage}\left(X_{j}\right)$
- We can compute $X:=[\mathbf{E F} \beta]$ inductively as follows:
- $X_{1} \quad:=[\beta]$
- $X_{j+1}:=X_{j} \cup \operatorname{Preimage}\left(X_{j}\right)$


## Outline

（1）CTL Model Checking：general ideas
（2）Some theoretical issues
（3）CTL Model Checking：algorithms
（4）CTL Model Checking：some examples
（5）A relevant subcase：invariants
（6）Exercises

## General Schema

- Assume $\varphi$ written in terms of $\neg, \wedge$, EX, EU, EG
- A general M.C. algorithm (fix-point):
- Subformulas $\operatorname{Sub}(\varphi)$ of $\varphi$ are checked bottom-up
- To compute each $\left[\varphi_{i}\right]$ : if the main operator of $\varphi_{i}$ is a


## General Schema

- Assume $\varphi$ written in terms of $\neg, \wedge$, EX, EU, EG
- A general M.C. algorithm (fix-point):

1. for every $\varphi_{i} \in \operatorname{Sub}(\varphi)$, find $\left[\varphi_{i}\right]$
2. Check if $I \subseteq[\varphi]$
a Subformulas $\operatorname{Sub}(\varphi)$ of $\varphi$ are checked bottom-up

- To compute each $\left[\varphi_{i}\right]$ : if the main operator of $\varphi_{i}$ is a


## General Schema

- Assume $\varphi$ written in terms of $\neg, \wedge$, EX, EU, EG
- A general M.C. algorithm (fix-point):

1. for every $\varphi_{i} \in \operatorname{Sub}(\varphi)$, find $\left[\varphi_{i}\right]$

- Subformulas $\operatorname{Sub}(\varphi)$ of $\varphi$ are checked bottom-up
- To compute each $\left[\varphi_{i}\right]$ : if the main operator of $\varphi_{i}$ is a


## General Schema

- Assume $\varphi$ written in terms of $\neg, \wedge$, EX, EU, EG
- A general M.C. algorithm (fix-point):

1. for every $\varphi_{i} \in \operatorname{Sub}(\varphi)$, find $\left[\varphi_{i}\right]$
2. Check if $I \subseteq[\varphi]$

- Subformulas Sub $(\varphi)$ of $\varphi$ are checked bottom-up
- To compute each $\left[\varphi_{i}\right]$ : if the main operator of $\varphi_{i}$ is a


## General Schema

- Assume $\varphi$ written in terms of $\neg, \wedge$, EX, EU, EG
- A general M.C. algorithm (fix-point):

1. for every $\varphi_{i} \in \operatorname{Sub}(\varphi)$, find $\left[\varphi_{i}\right]$
2. Check if $I \subseteq[\varphi]$

- Subformulas $\operatorname{Sub}(\varphi)$ of $\varphi$ are checked bottom-up
- To compute each $\left[\varphi_{i}\right]$ : if the main operator of $\varphi_{i}$ is a


## General Schema

- Assume $\varphi$ written in terms of $\neg, \wedge$, EX, EU, EG
- A general M.C. algorithm (fix-point):

1. for every $\varphi_{i} \in \operatorname{Sub}(\varphi)$, find $\left[\varphi_{i}\right]$
2. Check if $I \subseteq[\varphi]$

- Subformulas $\operatorname{Sub}(\varphi)$ of $\varphi$ are checked bottom-up
- To compute each $\left[\varphi_{i}\right]$ : if the main operator of $\varphi_{i}$ is a
- Propositional atoms: apply labeling function
- Boolean operator: apply standard set operations
- temporal operator: appy recursively the tableaux rules, until a fixpoint is reached


## General Schema

- Assume $\varphi$ written in terms of $\neg, \wedge$, EX, EU, EG
- A general M.C. algorithm (fix-point):

1. for every $\varphi_{i} \in \operatorname{Sub}(\varphi)$, find $\left[\varphi_{i}\right]$
2. Check if $I \subseteq[\varphi]$

- Subformulas $\operatorname{Sub}(\varphi)$ of $\varphi$ are checked bottom-up
- To compute each $\left[\varphi_{i}\right]$ : if the main operator of $\varphi_{i}$ is a
- Propositional atoms: apply labeling function
- Boolean operator: apply standard set operations
- temporal operator: appy recursively the tableaux rules, until a fixpoint is reached


## General Schema

- Assume $\varphi$ written in terms of $\neg, \wedge$, EX, EU, EG
- A general M.C. algorithm (fix-point):

1. for every $\varphi_{i} \in \operatorname{Sub}(\varphi)$, find $\left[\varphi_{i}\right]$
2. Check if $I \subseteq[\varphi]$

- Subformulas $\operatorname{Sub}(\varphi)$ of $\varphi$ are checked bottom-up
- To compute each $\left[\varphi_{i}\right]$ : if the main operator of $\varphi_{i}$ is a
- Propositional atoms: apply labeling function
- Boolean operator: apply standard set operations
- temporal operator: appy recursively the tableaux rules, until a fixpoint is reached


## General Schema

- Assume $\varphi$ written in terms of $\neg, \wedge$, EX, EU, EG
- A general M.C. algorithm (fix-point):

1. for every $\varphi_{i} \in \operatorname{Sub}(\varphi)$, find $\left[\varphi_{i}\right]$
2. Check if $I \subseteq[\varphi]$

- Subformulas $\operatorname{Sub}(\varphi)$ of $\varphi$ are checked bottom-up
- To compute each $\left[\varphi_{i}\right]$ : if the main operator of $\varphi_{i}$ is a
- Propositional atoms: apply labeling function
- Boolean operator: apply standard set operations
- temporal operator: appy recursively the tableaux rules, until a fixpoint is reached


## General M.C. Procedure

```
state_set Check(CTL_formula }\beta\mathrm{ ) {
    case }\beta\mathrm{ of
    T:
    \perp:
    p:
    \neg\mp@subsup{\beta}{1}{}:}\quad\mathrm{ return S / Check ( }\mp@subsup{\beta}{1}{}\mathrm{ );
    \beta
        return S;
        return {};
        return {s|p\inL(s)};
    EX }\mp@subsup{\beta}{1}{}\mathrm{ : return Prelmage(Check( }\mp@subsup{\beta}{1}{})\mathrm{ );
    EG }\mp@subsup{\beta}{1}{}\mathrm{ : return Check_EG(Check( }\mp@subsup{\beta}{1}{}))\mathrm{ ;
    E ( }\mp@subsup{\beta}{1}{}\mathbf{U}\mp@subsup{\beta}{2}{}):\quad\mathrm{ return Check_EU(Check( }\mp@subsup{\beta}{1}{}),\operatorname{Check}(\mp@subsup{\beta}{2}{}))
```

\}

## Prelmage

```
Compute [EX }\beta\mathrm{ ]
state_set Prelmage(state_set [\beta]) {
    X:= {};
    for each s\inS do
        for each s' s.t. s'\in[\beta] and }\langles,\mp@subsup{s}{}{\prime}\rangle\inR\mathrm{ do
        X:= X\cup{s};
return X;
}
```


## Check_EG

```
Compute [EG\beta]
state_set Check_EG(state_set [\beta]) {
    X':= [\beta];
    repeat
        X:= X';
        X':=X\capPreImage(X);
    until ( }\mp@subsup{X}{}{\prime}=X)
return X;
}
```


## Check_EU

```
Compute [ E ( }\mp@subsup{\beta}{1}{}\mathbf{U}\mp@subsup{\beta}{2}{})
state_set Check_EU(state_set [ }\mp@subsup{\beta}{1}{}],[\mp@subsup{\beta}{2}{}])
    X':= [ }\mp@subsup{\beta}{2}{\prime}]
    repeat
        X:= X';
        X':=X\cup([\mp@subsup{\beta}{1}{}]\cap\mathrm{ PreImage(X));}
    until ( }\mp@subsup{X}{}{\prime}=X)
return X;
}
```


## A relevant subcase: Check_EF

```
Compute [EF }\beta\mathrm{ ]
state_set Check_EF(state_set [\beta]) {
    X':= [\beta];
    repeat
        X:= X';
        X':= X Prelmage( }X\mathrm{ );
    until ( }\mp@subsup{X}{}{\prime}=X)
return X;
}
```


## Outline

(1) CTL Model Checking: general ideas
(2) Some theoretical issues
(3) CTL Model Checking: algorithms
(4) CTL Model Checking: some examples
(5) A relevant subcase: invariants
(6) Exercises

## Example 1: fairness



## Example 1: fairness



## Example 1: fairness

## $\left[E G \neg C_{1}\right]$, step $0:$



$$
M \models \mathrm{AGAF} C_{1} ? \Longrightarrow M \stackrel{\mathrm{~N}=\text { noncritical, } \mathrm{T}=\text { trying, } \mathrm{c}=\text { critical } \quad \text { User } 1 \quad \text { User 2 }}{=} \mathrm{EFEG} \neg C_{1} \text { ? }
$$

## Example 1: fairness

$\left[E G \neg C_{1}\right]$, step 1:

$\mathrm{N}=$ noncritical, $\mathrm{T}=$ trying, $\mathrm{C}=$ critical
User 1 User 2
$M \models \operatorname{AGAF} C_{1} ? \Longrightarrow M \models \neg E F E G \neg C_{1}$ ?

## Example 1: fairness

$\left[E G \neg C_{1}\right]$, step 2:


$$
\begin{aligned}
& \mathrm{N}=\text { noncritical, } \mathbf{T}=\text { trying, } \mathbf{c}=\text { critical } \quad \text { User } 1 \quad \text { User } 2 \\
& \text { AGAF } C_{1} ? \Longrightarrow M \models \neg \mathrm{EFEG} \neg C_{1} ?
\end{aligned}
$$

## Example 1: fairness

$\left[E G \neg C_{1}\right]$, step 3:


$$
\begin{aligned}
& \mathrm{N}=\text { noncritical, } \mathrm{T}=\text { trying, } \mathbf{c}=\text { critical } \quad \text { User } 1 \quad \text { User 2 } \\
& M
\end{aligned}
$$

## Example 1: fairness

$\left[E G \neg C_{1}\right]$, step 4:

$\mathrm{N}=$ noncritical, $\mathrm{T}=$ trying, $\mathrm{C}=$ critical
User 1 User 2
$M \models \operatorname{AGAF} C_{1} ? \Longrightarrow M \models \neg \operatorname{EFEG} \neg C_{1}$ ?

## Example 1: fairness

## [EG $C_{1}$ ], FIXPOINT!


$M \models \operatorname{AGAF} C_{1} ? \Longrightarrow M \models \neg E F E G \neg C_{1}$ ?

## Example 1: fairness

## [EFEG $\left.\neg C_{1}\right]$, STEP 0


$M \models \operatorname{AGAF} C_{1} ? \Longrightarrow M \models \neg \operatorname{EFEG} \neg C_{1}$ ?

## Example 1: fairness

## [EFEG $\left.\neg C_{1}\right]$, STEP 1



$$
\begin{aligned}
& N=\text { noncritical, } T=\text { trying, } c=\text { critical } \quad \text { User } 1 \quad \text { User } 2 \\
& M G A F C_{1} ?
\end{aligned}
$$

## Example 1: fairness

## [EFEG $\left.\neg C_{1}\right]$, STEP 2



$$
\begin{aligned}
& \mathrm{N}=\text { noncritical, } \mathbf{T}=\text { trying, } \mathbf{c}=\text { critical } \quad \text { User } 1 \quad \text { User } 2 \\
& \text { AGAF } C_{1} ? \Longrightarrow M \models \neg \mathrm{EFEG} \neg C_{1} ?
\end{aligned}
$$

## Example 1: fairness

## [EFEG $\neg C_{1}$ ], STEP 3



$$
M \models \mathrm{AGAF} C_{1} ? \Longrightarrow M \stackrel{\mathrm{~N}=\text { noncritical, } \mathrm{T}=\text { trying, } \mathrm{c}=\text { critical } \quad \text { User } 1 \quad \text { User 2 }}{ }=\neg \mathrm{EFEG} \neg C_{1} \text { ? }
$$

## Example 1: fairness

## [EFEG $\left.\neg C_{1}\right]$, STEP 4



$$
M \models \mathrm{AGAF} C_{1} ? \Longrightarrow M \models \neg \mathrm{~N}=\begin{aligned}
& \mathrm{n} \text { noncritical, } \mathrm{T}=\text { trying, } \mathrm{c}=\text { critical } \quad \text { User } 1 \quad \text { User } 2 \\
&
\end{aligned}
$$

## Example 1: fairness

## [EFEG $\left.\neg C_{1}\right]$, FIXPOINT!



$$
M \models \mathrm{AGAF} C_{1} ? \Longrightarrow M \models \neg \mathrm{~N}=\begin{aligned}
& \mathrm{N} \text { noncritical, } \mathrm{T}=\text { trying, } \mathrm{c}=\text { critical } \quad \text { User } 1 \quad \text { User } 2
\end{aligned}
$$

## Example 1: fairness



## Example 2：liveness


$\mathbf{N}=$ noncritical， $\mathbf{T}=$ trying， $\mathbf{C}=$ critical User 1 User 2

$$
M \models \mathbf{A G}\left(T_{1} \rightarrow \mathbf{A F} C_{1}\right) ? \Longrightarrow M \models \neg \mathbf{E F}\left(T_{1} \wedge \mathbf{E G} \neg C_{1}\right) ?
$$

## Example 2: liveness



## Example 2: liveness

[ $\mathrm{EG} \neg \mathrm{C}_{1}$ ], STEPS 0-4: (see previous example)


$$
\mathrm{N}=\text { noncritical, } \mathrm{T}=\text { trying, } \mathrm{C}=\text { critical User } 1 \text { User } 2
$$

$M \models \mathbf{A G}\left(T_{1} \rightarrow \mathbf{A F} C_{1}\right) ? \Longrightarrow M \models \neg \mathbf{E F}\left(T_{1} \wedge \mathbf{E G} \neg C_{1}\right) ?$

## Example 2: liveness



## Example 2: liveness



## Example 2: liveness

## $\left[\neg E F\left(T_{1} \wedge E G \neg C_{1}\right)\right]:$



$$
\mathrm{N}=\text { noncritical, } \mathbf{T}=\text { trying, } \mathbf{C}=\text { critical User } 1 \text { User } 2
$$

$M \models \mathbf{A G}\left(T_{1} \rightarrow \mathbf{A F} C_{1}\right) ? \Longrightarrow M \models \neg \mathbf{E F}\left(T_{1} \wedge \mathbf{E G} \neg C_{1}\right)$ ? YES!


The property verified is...

## Homework

Apply the same process to all the CTL examples of Chapter 3.

## Complexity of CTL Model Checking: $M \models \varphi$

- Step 1: compute [ $\varphi$ ]
- Compute $[\varphi]$ bottom-up on the $O(|\varphi|)$ sub-formulas of $\varphi$ : $O(|\varphi|)$ steps...
- ... each requiring at most exploring $O(|M|)$ states
$\Longrightarrow O(|M| \cdot|\varphi|)$ steps
- Step 2: check $I \subseteq[\varphi]: O(|M|)$


## Complexity of CTL Model Checking: $M \models \varphi$

- Step 1: compute [ $\varphi$ ]
- Compute $[\varphi]$ bottom-up on the $O(|\varphi|)$ sub-formulas of $\varphi$ : $O(|\varphi|)$ steps...
- ... each requiring at most exploring $O(|M|)$ states
$\Longrightarrow O(|M| \cdot|\varphi|)$ steps
- Step 2: check $I \subseteq[\varphi]: O(|M|)$


## Complexity of CTL Model Checking: $M \models \varphi$

- Step 1: compute [ $\varphi$ ]
- Compute $[\varphi]$ bottom-up on the $O(|\varphi|)$ sub-formulas of $\varphi$ : $O(|\varphi|)$ steps...
- ... each requiring at most exploring $O(|M|)$ states
$\Longrightarrow O(|M| \cdot|\varphi|)$ steps
- Step 2: check $I \subseteq[\varphi]: O(|M|)$


## Complexity of CTL Model Checking: $M \models \varphi$

- Step 1: compute [ $\varphi$ ]
- Compute $[\varphi]$ bottom-up on the $O(|\varphi|)$ sub-formulas of $\varphi$ : $O(|\varphi|)$ steps...
- ... each requiring at most exploring $O(|M|)$ states
$\Longrightarrow O(|M| \cdot|\varphi|)$ steps
- Step 2: check $I \subseteq[\varphi]: O(|M|)$
$\Longrightarrow O(|M| \cdot|\varphi|)$


## Outline

(1) CTL Model Checking: general ideas
(2) Some theoretical issues
(3) CTL Model Checking: algorithms
(4) CTL Model Checking: some examples
(5) A relevant subcase: invariants

6 Exercises

## Model Checking of Invariants

- Invariant properties have the form AG p, where p in Boolean (e.g., AG $\neg$ bad)
- Checking invariants is the negation of a reachability problem:
- Standard M.C. algorithm reasons backward from the bad by iteratively applying Prelmage: $Y^{\prime}:=Y \cup$ Prelmage $(Y)$
until a fixed point is reached.
Then the complement is computed and / is checked for inclusion in the resulting set.
- Better algorithm: reasons backward from the bad by iteratively applying Prelmage:
$Y^{\prime}:=Y \cup$ Prelmage $(Y)$
until (i) it intersect [/] or (ii) a fixed noint is reached


## Model Checking of Invariants

- Invariant properties have the form AG p, where p in Boolean (e.g., AG $\neg$ bad)
- Checking invariants is the negation of a reachability problem:
- is there a reachable state that is also a bad state? (AG $\neg$ bad $=\neg \mathbf{E F}$ bad)
- Standard M.C. algorithm reasons backward from the bad by iteratively applying Prelmage:
$Y^{\prime}:=Y \cup$ Prelmage $(Y)$
until a fixed point is reached.
Then the complement is computed and / is checked for inclusion in the resulting set.
- Better algorithm: reasons backward from the bad by iteratively applying Prelmage:
$Y^{\prime}:=Y \cup$ Prelmage $(Y)$
until (i) it intersect [/] or (ii) a fixed point is reached


## Model Checking of Invariants

- Invariant properties have the form AG p, where p in Boolean (e.g., AG $\neg$ bad)
- Checking invariants is the negation of a reachability problem:
- is there a reachable state that is also a bad state? ( $\mathbf{A G} \neg$ bad $=\neg$ EFbad)
- Standard M.C. algorithm reasons backward from the bad by iteratively applying Prelmage:

$$
Y^{\prime}:=Y \cup \operatorname{Prelmage}(Y)
$$

until a fixed point is reached.
Then the complement is computed and $I$ is checked for inclusion in the resulting set.

- Better algorithm: reasons backward from the bad by iteratively applying Prelmage:
$Y^{\prime}:=Y \cup$ Prelmage $(Y)$
until (i) it intersect [/] or (ii) a fixed point is reached


## Model Checking of Invariants

- Invariant properties have the form AG p, where p in Boolean (e.g., AG $\neg$ bad)
- Checking invariants is the negation of a reachability problem:
- is there a reachable state that is also a bad state? ( $\mathbf{A G} \neg$ bad $=\neg$ EFbad)
- Standard M.C. algorithm reasons backward from the bad by iteratively applying Prelmage:

$$
Y^{\prime}:=Y \cup \operatorname{Prelmage}(Y)
$$

until a fixed point is reached.
Then the complement is computed and $I$ is checked for inclusion in the resulting set.

- Better algorithm: reasons backward from the bad by iteratively applying Prelmage:

$$
Y^{\prime}:=Y \cup \operatorname{Prelmage}(Y)
$$

until (i) it intersect [ 1 ] or (ii) a fixed point is reached

Model Checking of Invariants [cont.]


## Forward Model Checking of Invariants

Alternative algorithm (often more efficient): forward checking

- Compute the set of bad states [bad]
- Compute the set of initial states /
- Compute incrementally the set of reachable states from / until (i) it intersect [bad] or (ii) a fixed point is reached
- Basic step is the (Forward) Image:

Image $(Y) \stackrel{\text { dat }}{=}\left\{s^{\prime} \mid s \in Y\right.$ and $R\left(s, s^{\prime}\right)$ holds $\}$

- Simplest form: compute the set of reachable states.


## Forward Model Checking of Invariants

Alternative algorithm (often more efficient): forward checking

- Compute the set of bad states [bad]
- Compute the set of initial states I
- Compute incrementally the set of reachable states from / until (i) it intersect [bad] or (ii) a fixed point is reached
- Basic step is the (Forward) Image:

Image $(Y) \stackrel{\text { def }}{=}\left\{s^{\prime} \mid s \in Y\right.$ and $R\left(s, s^{\prime}\right)$ holds $\}$

- Simplest form: compute the set of reachable states.


## Forward Model Checking of Invariants

Alternative algorithm (often more efficient): forward checking

- Compute the set of bad states [bad]
- Compute the set of initial states I
- Compute incrementally the set of reachable states from / until (i) it intersect [bad] or (ii) a fixed point is reached
- Basic step is the (Forward) Image:

Image $(Y) \stackrel{\text { dot }}{=}\left\{s^{\prime} \mid s \in Y\right.$ and $R\left(s, s^{\prime}\right)$ holds $\}$

- Simplest form: compute the set of reachable states.


## Forward Model Checking of Invariants

Alternative algorithm (often more efficient): forward checking

- Compute the set of bad states [bad]
- Compute the set of initial states I
- Compute incrementally the set of reachable states from / until (i) it intersect [bad] or (ii) a fixed point is reached
- Basic step is the (Forward) Image:

Image $(Y) \stackrel{\text { def }}{=}\left\{s^{\prime} \mid s \in Y\right.$ and $R\left(s, s^{\prime}\right)$ holds $\}$

- Simplest form: compute the set of reachable states.


## Forward Model Checking of Invariants

Alternative algorithm (often more efficient): forward checking

- Compute the set of bad states [bad]
- Compute the set of initial states I
- Compute incrementally the set of reachable states from / until (i) it intersect [bad] or (ii) a fixed point is reached
- Basic step is the (Forward) Image:

$$
\operatorname{Image}(Y) \stackrel{\text { det }}{=}\left\{s^{\prime} \mid s \in Y \text { and } R\left(s, s^{\prime}\right) \text { holds }\right\}
$$

- Simplest form: compute the set of reachable states.


## Forward Model Checking of Invariants

Alternative algorithm (often more efficient): forward checking

- Compute the set of bad states [bad]
- Compute the set of initial states I
- Compute incrementally the set of reachable states from / until (i) it intersect [bad] or (ii) a fixed point is reached
- Basic step is the (Forward) Image:

$$
\operatorname{Image}(Y) \stackrel{\text { def }}{=}\left\{s^{\prime} \mid s \in Y \text { and } R\left(s, s^{\prime}\right) \text { holds }\right\}
$$

- Simplest form: compute the set of reachable states.


## Computing Reachable states: basic

```
State_Set Compute_reachable() {
    Y':=I; Y:=\emptyset;
    while ( }\mp@subsup{Y}{}{\prime}\not=Y
        Y:= Y';
        Y':= Y\cupImage(Y);
    }
return Y;
}
Y=reachable
```


## Computing Reachable states: advanced

```
State_Set Compute_reachable() {
    Y:=F:= I;
    while (F\not=\emptyset)
            F:= Image (F)\Y;
            Y:= Y\cupF;
    }
return Y;
}
Y=reachable;F=frontier (new)
```


## Computing Reachable states [cont.]


$\square \square$

## Checking of Invariant Properties: basic

```
bool Forward_Check_EF(State_Set BAD) {
    Y:= I; Y':=\emptyset;
    while (Y'\not=Y) and (Y'\capBAD)=\emptyset
            Y:= Y';
            Y':= Y Image(Y);
        }
        if (Y'\capBAD) \not=\emptyset // counter-example
            return true
        else
        return false
}
Y=reachable;
```


## Checking of Invariant Properties: advanced

```
bool Forward_Check_EF(State_Set BAD) {
    Y:= F:= I;
    while (F\not=\emptyset) and (F\capBAD)=\emptyset
            F:= Image(F)\Y;
            Y:=Y\cupF;
        }
        if (F\capBAD)\not=\emptyset // counter-example
            return true
        else // fixpoint reached
            return false
}
Y=reachable;F=frontier (new)
```


## Checking of Invariant Properties [cont.]



## Checking of Invariants: Counterexamples

- if layer $n$ intersects with the bad states, then the property is violated
- a counterexample can be reconstructed proceeding backwards
- iterate (i)-(iii) until the initial states are reached
- $t[0], t[1] \ldots . t[n]$ is our counterexamole


## Checking of Invariants: Counterexamples

- if layer $n$ intersects with the bad states, then the property is violated
- a counterexample can be reconstructed proceeding backwards
(i) select any state of $B A D \cap F[n]$ (we know it is satisfiable), call it $t[n]$
(ii) compute Preimage $(t[n])$, i.e. the states that can result in $t[n]$ in one step
(iii) compute Preimage $(t[n]) \cap F[n-1]$, and select one state $t[n-1]$
- iterate (i)-(iii) until the initial states are reached
- $t[0], t[1], \ldots, t[n]$ is our counterexample


## Checking of Invariants: Counterexamples

- if layer $n$ intersects with the bad states, then the property is violated
- a counterexample can be reconstructed proceeding backwards
(i) select any state of $B A D \cap F[n]$ (we know it is satisfiable), call it $t[n]$
(ii) compute Preimage $(t[n])$, i.e. the states that can result in $t[n]$ in one step
(iii) compute Preimage $(t[n]) \cap F[n-1]$, and select one state $t[n-1]$
- iterate (i)-(iii) until the initial states are reached
- $t[0], t[1], \ldots, t[n]$ is our counterexample


## Checking of Invariants: Counterexamples

- if layer $n$ intersects with the bad states, then the property is violated
- a counterexample can be reconstructed proceeding backwards
(i) select any state of $B A D \cap F[n]$ (we know it is satisfiable), call it $t[n]$
(ii) compute Preimage $(t[n])$, i.e. the states that can result in $t[n]$ in one step
(iii) compute Preimage $(t[n]) \cap F[n-1]$, and select one state $t[n-1]$
- iterate (i)-(iii) until the initial states are reached
- $t[0], t[1], \ldots, t[n]$ is our counterexample


## Checking of Invariants: Counterexamples

- if layer $n$ intersects with the bad states, then the property is violated
- a counterexample can be reconstructed proceeding backwards
(i) select any state of $B A D \cap F[n]$ (we know it is satisfiable), call it $t[n]$
(ii) compute Preimage $(t[n])$, i.e. the states that can result in $t[n]$ in one step
(iii) compute Preimage $(t[n]) \cap F[n-1]$, and select one state $t[n-1]$
- iterate (i)-(iii) until the initial states are reached
- $t[0], t[1], \ldots, t[n]$ is our counterexample


## Checking of Invariants: Counterexamples

- if layer $n$ intersects with the bad states, then the property is violated
- a counterexample can be reconstructed proceeding backwards
(i) select any state of $B A D \cap F[n]$ (we know it is satisfiable), call it $t[n]$
(ii) compute $\operatorname{Preimage}(t[n])$, i.e. the states that can result in $t[n]$ in one step
(iii) compute Preimage $(t[n]) \cap F[n-1]$, and select one state $t[n-1]$
- iterate (i)-(iii) until the initial states are reached
- $t[0], t[1], \ldots, t[n]$ is our counterexample


## Checking of Invariants: Counterexamples

- if layer $n$ intersects with the bad states, then the property is violated
- a counterexample can be reconstructed proceeding backwards
(i) select any state of $B A D \cap F[n]$ (we know it is satisfiable), call it $t[n]$
(ii) compute $\operatorname{Preimage}(t[n])$, i.e. the states that can result in $t[n]$ in one step
(iii) compute Preimage $(t[n]) \cap F[n-1]$, and select one state $t[n-1]$
- iterate (i)-(iii) until the initial states are reached
- $t[0], t[1], \ldots, t[n]$ is our counterexample

Checking of Invariants: Counterexamples [cont.]


## Outline

（1）CTL Model Checking：general ideas
（2）Some theoretical issues

3 CTL Model Checking：algorithms

4 CTL Model Checking：some examples
（5）A relevant subcase：invariants
（6）Exercises

## Ex: CTL Model Checking

Consider the Kripke Model $M$ below, and the CTL property $\varphi \stackrel{\text { def }}{=} \mathbf{A G}((p \wedge q) \rightarrow \mathbf{E G} q)$.

(a) Rewrite $\varphi$ into an equivalent formula $\varphi^{\prime}$ expressed in terms of EX, EG, EU/EF only.
(b) Compute bottom-up the denotations of all subformulas of $\varphi^{\prime}$. (Ex: $[p]=\left\{s_{1}, s_{2}\right\}$ )
(c) As a consequence of point (b), say whether $M \models \varphi$ or not.

## Ex：CTL Model Checking

Consider the Kripke Model $M$ below，and the CTL property $\varphi \stackrel{\text { def }}{=} \mathbf{A G}((p \wedge q) \rightarrow \mathbf{E G} q)$ ． $\neg p q$

（a）Rewrite $\varphi$ into an equivalent formula $\varphi^{\prime}$ expressed in terms of EX，EG，EU／EF only． ［ Solution：$\varphi^{\prime}=\neg E F \neg((\neg p \vee \neg q) \vee E G q)=\neg E F((p \wedge q) \wedge \neg E G q)$ ］
（b）Compute bottom－up the denotations of all subformulas of $\varphi^{\prime}$ ．（Ex：$[p]=\left\{s_{1}, s_{2}\right\}$ ）
（c）As a consequence of point（b），say whether $M \models \varphi$ or not．

## Ex: CTL Model Checking

Consider the Kripke Model $M$ below, and the CTL property $\varphi \stackrel{\text { def }}{=} \mathbf{A G}((p \wedge q) \rightarrow \mathbf{E G} q)$.

(a) Rewrite $\varphi$ into an equivalent formula $\varphi^{\prime}$ expressed in terms of EX, EG, EU/EF only.
[ Solution: $\varphi^{\prime}=\neg E F \neg((\neg p \vee \neg q) \vee E G q)=\neg E F((p \wedge q) \wedge \neg E G q)$ ]
(b) Compute bottom-up the denotations of all subformulas of $\varphi^{\prime}$. (Ex: $\left.[p]=\left\{s_{1}, s_{2}\right\}\right)$
$\begin{array}{llllll} & {[p]} & =\left\{s_{1}, s_{2}\right\} & {[\neg \mathrm{EG} q]} & =\left\{s_{2}\right\} \\ {[\text { Solution: }} & {[q]} & =\left\{s_{0}, s_{1}\right\} & {[((p \wedge q) \wedge \neg \mathbf{E G q})]} & =\{ \} \\ & {[(p \wedge q)]} & =\left\{s_{1}\right\} & {[\mathrm{EF}((p \wedge q) \wedge \neg \mathbf{E G} q)]} & =\{ \} \\ & {[\mathbf{E G} q]} & =\left\{s_{0}, s_{1}\right\} & {[\neg \mathbf{E F}((p \wedge q) \wedge \neg \mathbf{E G} q)]} & =\left\{s_{0}, s_{1}, s_{2}\right\}\end{array}$
(c) As a consequence of point (b), say whether $M \models \varphi$ or not.

## Ex: CTL Model Checking

Consider the Kripke Model $M$ below, and the CTL property $\varphi \stackrel{\text { def }}{=} \mathbf{A G}((p \wedge q) \rightarrow \mathbf{E G} q)$.

(a) Rewrite $\varphi$ into an equivalent formula $\varphi^{\prime}$ expressed in terms of EX, EG, EU/EF only.
[ Solution: $\varphi^{\prime}=\neg E F \neg((\neg p \vee \neg q) \vee E G q)=\neg E F((p \wedge q) \wedge \neg E G q)$ ]
(b) Compute bottom-up the denotations of all subformulas of $\varphi^{\prime}$. (Ex: $\left.[p]=\left\{s_{1}, s_{2}\right\}\right)$
$\begin{array}{llllll} & {[p]} & =\left\{s_{1}, s_{2}\right\} & {[\neg \mathrm{EG} q]} & =\left\{s_{2}\right\} \\ \text { [Solution: } & {[q]} & =\left\{s_{0}, s_{1}\right\} & {[((p \wedge q) \wedge \neg \mathbf{E G q})]} & =\{ \} \\ & {[(p \wedge q)]} & =\left\{s_{1}\right\} & {[\mathrm{EF}((p \wedge q) \wedge \neg \mathbf{E G} q)]} & =\{ \} \\ & {[\mathrm{EG} q]} & =\left\{s_{0}, s_{1}\right\} & {[\neg \mathbf{E F}((p \wedge q) \wedge \neg \mathbf{E G} q)]} & =\left\{s_{0}, s_{1}, s_{2}\right\}\end{array}$
(c) As a consequence of point (b), say whether $M \models \varphi$ or not.
[ Solution: Yes, $\left\{s_{1}, s_{2}\right\} \subseteq\left[\varphi^{\prime}\right]$.]

## Ex: CTL Model Checking

Consider the Kripke Model $M$ below, and the CTL property AG(AFp $\rightarrow \mathbf{A F q})$.

(a) Rewrite $\varphi$ into an equivalent formula $\varphi^{\prime}$ expressed in terms of EX, EG, EU/EF only.
(b) Compute bottom-up the denotations of all subformulas of $\varphi^{\prime}$. (Ex: $[p]=\left\{s_{1}, s_{2}\right\}$ )
(c) As a consequence of point (b), say whether $M \models \varphi$ or not.

## Ex: CTL Model Checking

Consider the Kripke Model $M$ below, and the CTL property AG(AFp $\rightarrow \mathbf{A F q})$.

(a) Rewrite $\varphi$ into an equivalent formula $\varphi^{\prime}$ expressed in terms of EX, EG, EU/EF only. [ Solution: $\varphi^{\prime}=\mathbf{A G}(\mathbf{A F} p \rightarrow \mathbf{A F q})=\neg \mathbf{E F} \neg(\neg \mathbf{E G} \neg p \rightarrow \neg \mathbf{E G} \neg q)=\neg \mathbf{E F}(\neg \mathbf{E G} \neg p \wedge \mathbf{E G} \neg q)$ ]
(b) Compute bottom-up the denotations of all subformulas of $\varphi^{\prime}$. (Ex: $[p]=\left\{s_{1}, s_{2}\right\}$ )
(c) As a consequence of point (b), say whether $M \models \varphi$ or not.

## Ex: CTL Model Checking

Consider the Kripke Model $M$ below, and the CTL property $\mathbf{A G}(\mathbf{A F} p \rightarrow \mathbf{A F} q)$.

(a) Rewrite $\varphi$ into an equivalent formula $\varphi^{\prime}$ expressed in terms of $\mathbf{E X}, \mathbf{E G}, \mathbf{E U} / \mathbf{E F}$ only.
[ Solution: $\varphi^{\prime}=\mathbf{A G}(\mathbf{A F} p \rightarrow \mathbf{A F q})=\neg \mathbf{E F} \neg(\neg \mathbf{E G} \neg p \rightarrow \neg \mathbf{E G} \neg q)=\neg \mathbf{E F}(\neg \mathbf{E G} \neg p \wedge \mathbf{E G} \neg q)$ ]
(b) Compute bottom-up the denotations of all subformulas of $\varphi^{\prime}$. (Ex: $[p]=\left\{s_{1}, s_{2}\right\}$ )
[ Solution:

| $[p]$ | $=\left\{s_{0}\right\}$ | $[\neg q]$ | $=\left\{s_{1}\right\}$ |
| :--- | :--- | :--- | :--- |
| $[\neg p]$ | $=\left\{s_{1}, s_{2}\right\}$ | $[E G \neg q]$ | $=\left\{s_{1}\right\}$ |
| $[E G \neg p]$ | $=\left\{s_{1}, s_{2}\right\}$ | $[\neg E G \neg p \wedge E G \neg q]$ | $=\{ \}$ |
| $[\neg E G \neg p]$ | $=\left\{s_{0}\right\}$ | $[E F(\neg E G \neg p \wedge E G \neg q)]$ | $=\{ \}$ |
| $[q]$ | $=\left\{s_{0}, s_{2}\right\}$ | $[\neg \mathbf{E F}(\neg E G \neg p \wedge E G \neg q)]$ | $=\left\{s_{0}, s_{1}, s_{2}\right\}$ |

(c) As a consequence of point (b), say whether $M \models \varphi$ or not.

## Ex: CTL Model Checking

Consider the Kripke Model $M$ below, and the CTL property $\mathbf{A G}(\mathbf{A F} p \rightarrow \mathbf{A F} q)$.

(a) Rewrite $\varphi$ into an equivalent formula $\varphi^{\prime}$ expressed in terms of $\mathbf{E X}, \mathbf{E G}, \mathbf{E U} / \mathbf{E F}$ only.
[ Solution: $\varphi^{\prime}=\mathbf{A G}(\mathbf{A F} p \rightarrow \mathbf{A F q})=\neg \mathbf{E F} \neg(\neg \mathbf{E G} \neg p \rightarrow \neg \mathbf{E G} \neg q)=\neg \mathbf{E F}(\neg \mathbf{E G} \neg p \wedge \mathbf{E G} \neg q)$ ]
(b) Compute bottom-up the denotations of all subformulas of $\varphi^{\prime}$. (Ex: $[p]=\left\{s_{1}, s_{2}\right\}$ )
[ Solution:

| $[p]$ | $=\left\{s_{0}\right\}$ | $[\neg q]$ | $=\left\{s_{1}\right\}$ |
| :--- | :--- | :--- | :--- |
| $[\neg p]$ | $=\left\{s_{1}, s_{2}\right\}$ | $[E G \neg q]$ | $=\left\{s_{1}\right\}$ |
| $[E G \neg p]$ | $=\left\{s_{1}, s_{2}\right\}$ | $[\neg E G \neg p \wedge E G \neg q]$ | $=\{ \}$ |
| $[\neg E G \neg p]$ | $=\left\{s_{0}\right\}$ | $[E F(\neg E G \neg p \wedge E G \neg q)]$ | $=\{ \}$ |
| $[q]$ | $=\left\{s_{0}, s_{2}\right\}$ | $[\neg \mathbf{E F}(\neg E G \neg p \wedge E G \neg q)]$ | $=\left\{s_{0}, s_{1}, s_{2}\right\}$ |

(c) As a consequence of point (b), say whether $M \models \varphi$ or not.
[ Solution: Yes, $\left\{s_{0}, s_{1}, s_{2}\right\} \subseteq\left[\varphi^{\prime}\right]$.]


[^0]:    - Iteration: $[\mathbf{A F} q]^{(1)}=[q] ; \quad[\mathbf{A F q}]^{(i+1)}=[q] \cup \mathbf{A X}[\mathbf{A F q}]$

[^1]:    (A corollary of) Kleene's Theorem
    A monotonic function F over a complete finite lattice has a least and a greatest fixed point, which can be computed as follows:

[^2]:    Note

