Course "Formal Methods" TEST

Roberto Sebastiani
DISI, Università di Trento, Italy

June $10^{\text {th }}, 2022$
[COPY WITH SOLUTIONS]

1
Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in LTL.
(a) $M \models \mathbf{F} p$
[Solution: false]
(b) $M \models \mathbf{G} \neg p$
[Solution: false]
(c) $M \models \mathbf{G F} \neg p$
[Solution: false]
(d) $M \models \mathbf{G}(p \vee q)$
[Solution: true]

2

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in CTL.
(a) $M \models \mathbf{E G} q$
[Solution: true]
(b) $M \models \mathbf{A F} p$
[Solution: false]
(c) $M \models \mathbf{A F} \neg q$
[Solution: false]
(d) $M \models(\mathbf{A G A F} \neg q)$
[Solution: false]

3

Consider the following fair Kripke Model M :

where the fairness properties are expressed by the following LTL formulas: GF $\neg q, \mathbf{G F} \neg p$.
For each of the following facts, say if it is true or false in CTL.
cacchio: $p \neg p q \neg q$
(a) $M \models \mathbf{E G} q$
[Solution: false]
(b) $M \models \mathbf{A F} p$
[Solution: true]
(c) $M \models \mathbf{A F} \neg q$
[Solution: true]
(d) $M \models(\mathbf{A G A F} \neg q)$
[Solution: true]
[Solution: In fact, the graphical representation of M is:

so that the paths in the form $\ldots\left[s_{0}\right]^{\omega}$ and $\ldots\left[s_{2}\right]^{\omega}$ are not fair paths (that is, no infinite loops in s_{0} or in s_{2}).]

For each of the following fact regarding Buchi automata, say if it true or false.
(a) The following BA represents $\mathbf{F G} q$:

[Solution: True.]
(b) The following BA represents $\mathbf{F G} q$:

[Solution: False. It accepts every execution.]
(c) The following BA represents $p \mathbf{U} q$:

(d) The following BA represents $p \mathbf{U} q$:

5

Consider the following timed automaton A, x_{1} and x_{2} being clocks:

Considere the correponding Region automaton $R(A)$. For each of the following pairs of states of A, say if the two states belong to the same region. (States are represented as (Location, x_{1}, x_{2}).)
(a) $s_{0}=\left(L_{1}, 2.5,3.2\right), s_{1}=\left(L_{1}, 2.5,3.7\right)$
[Solution: true]
(b) $s_{0}=\left(L_{1}, 4.5,3.2\right), s_{1}=\left(L_{1}, 4.5,3.7\right)$
[Solution: true]
(c) $s_{0}=\left(L_{2}, 3.5,1.4\right), s_{1}=\left(L_{2}, 3.5,1.0\right)$
[Solution: false]
(d) $s_{0}=\left(L_{2}, 1.7,0.7\right), s_{1}=\left(L_{2}, 1.5,0.1\right)$
[Solution: false]
[Solution: The regions of $R(A)$ are partitioned as follows:

6

Let

$$
\varphi \stackrel{\text { def }}{=}\left(A_{2} \leftrightarrow\left(\begin{array}{ccc}
\left(\begin{array}{ccc}
A_{3} \vee & A_{6} \vee & A_{8}
\end{array}\right) & \wedge \\
\left(A_{5} \vee\right. & A_{7} \vee & \left.A_{8}\right)
\end{array}\right)\right.
$$

Using the variable ordering:

$$
" A_{1}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}, A_{8}, A_{9} "
$$

draw the OBDD corresponding to the formula φ^{\prime} defined as:

$$
\varphi^{\prime} \stackrel{\text { def }}{=} \exists A_{2} . \varphi .
$$

[Solution: Trivial, because φ is in the form " $\left(A_{2} \leftrightarrow \psi\right)$ ", Thus:

$$
\begin{aligned}
\varphi^{\prime} & \stackrel{\text { def }}{=} \exists A_{2} \cdot\left(A_{2} \leftrightarrow \psi\right) \\
& =\left(\left(A_{2} \leftrightarrow \psi\right)\left[A_{2}:=\top\right]\right) \vee \\
& =\psi \\
& =\top
\end{aligned}
$$

which corresponds to the following OBDD:

7

Consider the following pair of $\operatorname{SMT}(\mathcal{L R} \mathcal{A})$ sets of literals:

$$
\begin{aligned}
& A \stackrel{\text { def }}{=}\left\{\left(0 \leq-3 x_{1}-5 x_{2}+1\right),\left(0 \leq x_{1}+x_{2}\right)\right\} \\
& B
\end{aligned} \stackrel{\text { def }}{=}\left\{\left(0 \leq 3 x_{3}-2 x_{1}-3\right),\left(0 \leq x_{1}-2 x_{3}+1\right)\right\} . ~ \$
$$

(a) Write a proof P of $\mathcal{L} \mathcal{R} \mathcal{A}$-unsatisfiablity of $A \wedge B$
[Solution: A proof of unsatisfiability P for $A \wedge B$ is the following:

$$
\frac{\frac{\left(0 \leq-3 x_{1}-5 x_{2}+1\right) \quad\left(0 \leq x_{1}+x_{2}\right)}{\text { ComB }\left(0 \leq 2 x_{1}+1\right) \text { with c. } 1 \text { and } 5} \quad \frac{\left(0 \leq 3 x_{3}-2 x_{1}-3\right) \quad\left(0 \leq x_{1}-2 x_{3}+1\right)}{\text { ComB }\left(0 \leq-x_{1}-3\right) \text { with c. 2 and 3 }}}{\text { ComB }(0 \leq-5) \text { with c. } 1 \text { and 2 }}
$$

]
(b) From such a proof, compute a $\mathcal{L} \mathcal{R} \mathcal{A}$-interpolant for $\langle A, B\rangle$ using McMillan's technique.
[Solution: An interpolant $\langle A, B\rangle$ is the following:

$$
\frac{\left(0 \leq-3 x_{1}-5 x_{2}+1\right) \quad\left(0 \leq x_{1}+x_{2}\right)}{\text { ComB }\left(0 \leq 2 x_{1}+1\right) \text { with c. } 1 \text { and } 5} \quad \frac{(0 \leq 0) \quad(0 \leq 0)}{\text { ComB }\left(0 \leq 2 x_{1}+1\right) \text { with c. } 1 \text { and } 2}
$$

Thus, the interpolant obtained is $\left(0 \leq 2 x_{1}+1\right)$.]

8
Given the function

OBDD Preimage(OBDD X)

which computes symbolically the preimage of a set of states X wrt. the transition relation of the Kripke model, write the pseudo-code of the function:

OBDD CheckEU(OBDD $\left.X_{1}, X_{2}\right)$
computing symbolically the (OBDD representing) the denotation of $\mathbf{E}\left[\varphi_{1} \mathbf{U} \varphi_{2}\right], X_{1}, X_{2}$ being the OBDDs representing the denotation of φ_{1} and φ_{2}.
[Solution:

OBDD CheckEU(OBDD $\left.X_{1}, X_{2}\right)$
$Y^{\prime}:=X_{2} ;$
repeat
$Y:=Y^{\prime} ;$
$Y^{\prime}:=X_{2} \vee\left(X_{1} \wedge \operatorname{Preimage}(Y)\right) ;$
until $\left(Y \leftrightarrow Y^{\prime}\right)$;
return Y;
\}
]

9

Given the following finite state machine expressed in NuSMV input language:
MODULE main
VAR
v1 : boolean; v2 : boolean; v3 : boolean;
ASSIGN
TRANS
(next (v1) <-> v2) \& (next (v2) <-> v3) \& (next (v3) <-> v1)
Write:
(a) the Boolean formulas $I\left(v_{1}, v_{2}, v_{3}\right)$ and $T\left(v_{1}, v_{2}, v_{3}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right)$ representing respectively the initial states and the transition relation of M.
[Solution: $I\left(v_{1}, v_{2}, v_{3}\right)$ is $\left(v_{1} \wedge \neg v_{2}\right), T\left(v_{1}, v_{2}, v_{3}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right)$ is $\left(v_{1}^{\prime} \leftrightarrow v_{2}\right) \wedge\left(v_{2}^{\prime} \leftrightarrow v_{3}\right) \wedge\left(v_{3}^{\prime} \leftrightarrow v_{1}\right)$]
(b) the Boolean formula representing symbolically the set of states which are reached after exactly one step. [The formula must be computed symbolically, not simply inferred from the graph of the next question!]
[Solution: The formula is the forward image of the initial states. [For better readability, here we represent it in terms of current variables v_{i} and next variables v_{i}^{\prime} rather than of step-indexed variables $v_{i}^{(0)}$ and $\left.v_{i}^{(1)}\right]$

$$
\begin{aligned}
\text { Image }(I) & =\exists v_{1}, v_{2}, v_{3} \cdot\left(T\left(v_{1}, v_{2}, v_{3}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right) \wedge I\left(v_{1}, v_{2}, v_{3}\right)\right) \\
& =\exists v_{1}, v_{2}, v_{3} .\left(\left(v_{1}^{\prime} \leftrightarrow v_{2}\right) \wedge\left(v_{2}^{\prime} \leftrightarrow v_{3}\right) \wedge\left(v_{3}^{\prime} \leftrightarrow v_{1}\right) \wedge\left(v_{1} \wedge \neg v_{2}\right)\right) \\
& =\exists v_{1}, v_{2}, v_{3} \cdot\left(\left(\neg v_{1}^{\prime}\right) \wedge\left(v_{2}^{\prime} \leftrightarrow v_{3}\right) \wedge\left(v_{3}^{\prime}\right) \wedge\left(v_{1} \wedge \neg v_{2}\right)\right) \\
& =\perp \vee \perp \vee \overbrace{\left(\neg v_{1}^{\prime} \wedge \neg v_{2}^{\prime} \wedge v_{2}^{\prime} \wedge v_{3}^{\prime}\right)}^{\left.v_{1}\right)} \vee \overbrace{\left(\neg v_{1}^{\prime} \wedge v_{2}^{\prime} \wedge v_{3}^{\prime}\right)}^{v_{1}=, v_{2}=\perp, v_{3}=\top} \\
& =\left(\neg v_{1}^{\prime} \wedge \neg v_{2}^{\prime} \wedge v_{3}^{\prime}\right) \vee\left(\neg v_{1}^{\prime} \wedge v_{2}^{\prime} \wedge v_{3}^{\prime}\right) \\
& =\left(\neg v_{1}^{\prime} \wedge v_{3}^{\prime}\right)
\end{aligned}
$$

.]
(c) the graph representing the FSM.
(Assume the notation " $v_{1} v_{2} v_{3}$ " for labeling the states: e.g. " 100 " means " $v_{1}=1, v_{2}=0, v_{3}=0$ ".)
[Solution:

10

Consider the following ground and abstract machines M and M^{\prime}, and the abstraction $\alpha: M \longmapsto M^{\prime}$:

```
M: M':
MODULE main
MODULE main
VAR
x:boolean; y:boolean; z:boolean; x:boolean; y:boolean; z:boolean;
INIT (x & y & z)
TRANS
((next (x)<->y)&(next (y)<->z)& (next (z)<->x))
((next (x)<->y)&(next (y)<->z))
LTLSPEC G (x | y ) ; LTLSPEC G (x | y ) ;
```

[Solution: Notice that the abstraction α makes the variable z invisible.]

1. Find a length-2 execution c_{0}, c_{1}, c_{2} of M^{\prime} violating the specification (notationally, represent a state as $(x, y,[z])$.)
[Solution: $(1,1,[0]) \Longrightarrow(1,0,[0]) \Longrightarrow(0,0,[0])]$
2. Use the SAT-based refinement technique to check whether the abstract counter-example you found is spurious or not.
[Solution: We generate the following formula and feed it to a SAT solver:

$$
\begin{array}{lll}
\left(x_{0} \wedge y_{0} \wedge z_{0}\right) & \wedge & / / I\left(x_{0}, y_{0}, z_{0}\right) \wedge \\
\left(\left(x_{1} \leftrightarrow y_{0}\right) \wedge\left(y_{1} \leftrightarrow z_{0}\right) \wedge\left(z_{1} \leftrightarrow x_{0}\right)\right) & \wedge & / / T\left(x_{0}, y_{0}, z_{0}, x_{1}, y_{1}, z_{1}\right) \wedge \\
\left(\left(x_{2} \leftrightarrow y_{1}\right) \wedge\left(y_{2} \leftrightarrow z_{1}\right) \wedge\left(z_{2} \leftrightarrow x_{1}\right)\right) & \wedge & / / T\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right) \wedge \\
\left(x_{0} \wedge y_{0}\right) & \wedge & / /\left(\text { visible }\left(s_{0}\right)=c_{0}\right) \wedge \\
\left(x_{1} \wedge \neg y_{1}\right) & \wedge & / /\left(\operatorname{visible}\left(s_{1}\right)=c_{1}\right) \wedge \\
\left(\neg x_{2} \wedge \neg y_{2}\right) & & / /\left(\text { visible }\left(s_{2}\right)=c_{2}\right)
\end{array}
$$

The formula is trivially unsatisfiable, since the first three rows force assigning all variables to true, which contradicts the last two rows.]
3. From the answers to questions 1. and 2. we can conclude that:
(a) M verifies the LTL property
(b) M does not verify the LTL property
(c) we can conclude nothing.
[Solution: (c). In fact we have found a spurious counter-example.
]

