Course "Formal Methods" TEST

Roberto Sebastiani DISI, Università di Trento, Italy

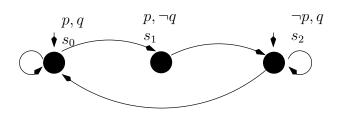
June $10^{th},\,2022$

Name (please print):

857976918

Surname (please print):

Consider the following Kripke Model M:



For each of the following facts, say if it is true or false in LTL.

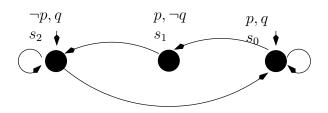
- (a) $M \models \mathbf{F}p$
- (b) $M \models \mathbf{G} \neg p$
- (c) $M \models \mathbf{GF} \neg p$
- (d) $M \models \mathbf{G}(p \lor q)$

[SCORING [0...100]:

- +25 pts for each correct answer
- -25pts for each incorrect answer
- 0pts for each unanswered question

$\mathbf{2}$

Consider the following Kripke Model M:



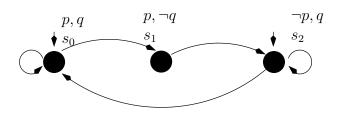
For each of the following facts, say if it is true or false in CTL.

- (a) $M \models \mathbf{EG}q$
- (b) $M \models \mathbf{AF}p$
- (c) $M \models \mathbf{AF} \neg q$
- (d) $M \models (\mathbf{AGAF} \neg q)$

[SCORING [0...100]:

- +25 pts for each correct answer
- -25pts for each incorrect answer
- Opts for each unanswered question

Consider the following fair Kripke Model M:



where the fairness properties are expressed by the following LTL formulas: $\mathbf{GF}\neg q$, $\mathbf{GF}\neg p$.

For each of the following facts, say if it is true or false in CTL. cacchio: $p \neg p \ q \neg q$

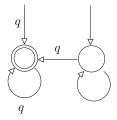
- (a) $M \models \mathbf{EG}q$
- (b) $M \models \mathbf{AF}p$
- (c) $M \models \mathbf{AF} \neg q$
- (d) $M \models (\mathbf{AGAF} \neg q)$

[SCORING [0...100]:

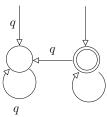
- +25 pts for each correct answer
- -25pts for each incorrect answer
- Opts for each unanswered question
-]

For each of the following fact regarding Buchi automata, say if it true or false.

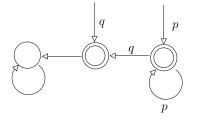
(a) The following BA represents $\mathbf{FG}q$:



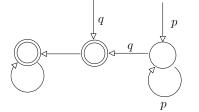
(b) The following BA represents $\mathbf{FG}q$:



(c) The following BA represents $p\mathbf{U}q$:



(d) The following BA represents $p\mathbf{U}q$:



[SCORING [0...100]:

]

- +25pts for each correct answer
- -25pts for each incorrect answer
- 0pts for each unanswered question

$\mathbf{5}$

Consider the following timed automaton A, x_1 and x_2 being clocks:

$$(x_{1} \leq 3)$$

$$(x_{1} \geq 4) \quad a \quad x_{2} := 0$$

$$(x_{2} \leq 3)$$

$$x_{1} := 0 \quad b \quad (x_{2} \geq 2)$$

Consider the corresponding Region automaton R(A). For each of the following pairs of states of A, say if the two states belong to the same region. (States are represented as (*Location*, x_1, x_2).)

- (a) $s_0 = (L_1, 2.5, 3.2), s_1 = (L_1, 2.5, 3.7)$
- (b) $s_0 = (L_1, 4.5, 3.2), s_1 = (L_1, 4.5, 3.7)$
- (c) $s_0 = (L_2, 3.5, 1.4), s_1 = (L_2, 3.5, 1.0)$
- (d) $s_0 = (L_2, 1.7, 0.7), s_1 = (L_2, 1.5, 0.1)$

[SCORING [0...100]:

]

- +25 pts for each correct answer
- -25pts for each incorrect answer
- Opts for each unanswered question

Let

$$\varphi \stackrel{\text{def}}{=} \left(\begin{array}{ccc} A_{3} \lor & A_{6} \lor & A_{8} \right) \land \\ \left(\begin{array}{c} A_{5} \lor & A_{7} \lor & A_{8} \right) \land \\ \left(\neg A_{4} \lor \neg A_{6} \lor \neg A_{8} \right) \land \\ \left(\neg A_{6} \lor & A_{7} \lor \neg A_{8} \right) \land \\ \left(\neg A_{3} \lor & A_{6} \lor & A_{9} \right) \land \\ \left(\neg A_{3} \lor & A_{6} \lor \neg A_{9} \right) \land \\ \left(\neg A_{3} \lor & A_{4} \lor \neg A_{5} \right) \land \\ \left(A_{3} \lor & A_{4} \lor \neg A_{5} \right) \land \\ \left(A_{5} \lor & A_{8} \lor \neg A_{9} \right) \land \\ \left(\neg A_{3} \lor \neg A_{8} \lor \neg A_{4} \right) \land \\ \left(A_{6} \lor & A_{4} \lor \neg A_{7} \right) \land \\ \left(A_{5} \lor & A_{8} \lor \neg A_{1} \right) \land \\ \left(\neg A_{4} \lor \neg A_{7} \lor \neg A_{9} \right) \end{array} \right)$$

Using the variable ordering:

" A_1 , A_3 , A_4 , A_5 , A_6 , A_7 , A_8 , A_9 ",

draw the OBDD corresponding to the formula φ' defined as:

$$\varphi' \stackrel{\text{\tiny def}}{=} \exists A_2.\varphi.$$

[SCORING: [0...100], 100 pts for a correct answer. No penalties for a wrong answer..]

Consider the following pair of $SMT(\mathcal{LRA})$ sets of literals:

$$A \stackrel{\text{def}}{=} \{ (0 \le -3x_1 - 5x_2 + 1), (0 \le x_1 + x_2) \}$$

$$B \stackrel{\text{def}}{=} \{ (0 \le 3x_3 - 2x_1 - 3), (0 \le x_1 - 2x_3 + 1) \}$$

- (a) Write a proof P of \mathcal{LRA} -unsatisfiablity of $A \wedge B$
- (b) From such a proof, compute a \mathcal{LRA} -interpolant for $\langle A, B \rangle$ using McMillan's technique.

[SCORING: [0...100], 50 points each for questions a) and b). No penalties for wrong answers..]

Given the function

OBDD *Preimage*(**OBDD** *X*)

which computes symbolically the preimage of a set of states X wrt. the transition relation of the Kripke model, write the pseudo-code of the function:

OBDD CheckEU(**OBDD** X_1, X_2)

computing symbolically the (OBDD representing) the denotation of $\mathbf{E}[\varphi_1 \mathbf{U}\varphi_2]$, X_1 , X_2 being the OBDDs representing the denotation of φ_1 and φ_2 .

[SCORING: [0...100], 100 pts for a correct answer. No penalties for a wrong answer..]

Given the following finite state machine expressed in NuSMV input language:

```
MODULE main
VAR
v1 : boolean; v2 : boolean; v3 : boolean;
ASSIGN
init(v1) := TRUE; init(v2) := FALSE;
TRANS
(next(v1) <-> v2) & (next(v2) <-> v3) & (next(v3) <-> v1)
```

Write:

- (a) the Boolean formulas $I(v_1, v_2, v_3)$ and $T(v_1, v_2, v_3, v'_1, v'_2, v'_3)$ representing respectively the initial states and the transition relation of M.
- (b) the Boolean formula representing symbolically the set of states which are reached after exactly one step. [The formula must be computed symbolically, not simply inferred from the graph of the next question!]
- (c) the graph representing the FSM. (Assume the notation " $v_1v_2v_3$ " for labeling the states: e.g. "100" means " $v_1 = 1, v_2 = 0, v_3 = 0$ ".)

[SCORING: [0...100], +25pts each question (a) (c), 50pts question (b), no penalties for wrong answers.]

Consider the following ground and abstract machines M and M', and the abstraction $\alpha : M \longmapsto M'$:

```
M':
M:
MODULE main
                                                   MODULE main
VAR
                                                   VAR
x:boolean; y:boolean; z:boolean;
                                                   x:boolean; y:boolean; z:boolean;
INIT (x & y & z)
                                                   INIT (x & y)
TRANS
                                                   TRANS
((next(x) < ->y)\&(next(y) < ->z)\&(next(z) < ->x))
                                                   ((next(x) < ->y)\&(next(y) < ->z))
LTLSPEC
          G (x | y );
                                                             G(x \mid y);
                                                   LTLSPEC
```

- 1. Find a length-2 execution c_0, c_1, c_2 of M' violating the specification (notationally, represent a state as (x, y, [z]).)
- 2. Use the SAT-based refinement technique to check whether the abstract counter-example you found is spurious or not.
- 3. From the answers to questions 1. and 2. we can conclude that:
 - (a) M verifies the LTL property
 - (b) M does not verify the LTL property
 - (c) we can conclude nothing.

[SCORING: [0...100], (1,3) + 25 pts each, (2) + 50 pts. No penalties for wrong answers.]