Course "Automated Reasoning" TEST

Roberto Sebastiani DISI, Università di Trento, Italy

June $10^{th},\,2022$

857976918

[COPY WITH SOLUTIONS]

Let φ be a generic Boolean formula, and let $\varphi_1 \stackrel{\text{def}}{=} CNF(\varphi)$, s.c. CNF() is the "classic" CNF conversion. Let $|\varphi|$ and $|\varphi_1|$ denote the size of φ and φ_1 respectively.

For each of the following sentences, say if it is true or false.

- (a) If a DAG representation of formulas is used, then $|\varphi_1|$ is in worst-case polynomial in size wrt. $|\varphi|$. [Solution: False. $|\varphi_1|$ may grow exponentially wrt. $|\varphi|$, regardless the usage of DAG representations.]
- (b) If φ contains no \leftrightarrow 's, then $|\varphi_1|$ is in worst-case polynomial in size wrt. $|\varphi|$. [Solution: False. $|\varphi_1|$ may grow exponentially wrt. $|\varphi|$, regardless the absence of \leftrightarrow 's.]
- (c) If φ is valid, then φ_1 is valid. [Solution: True.]
- (d) If φ_1 is valid, then φ is valid. [Solution: True]

$\mathbf{2}$

Consider the following Kripke Model M:

For each of the following facts, say if it is true or false in LTL.

- (a) $M \models \mathbf{F}p$ [Solution: false] (b) $M \models \mathbf{G} \neg p$
- [Solution: false]
- (c) $M \models \mathbf{GF} \neg p$ [Solution: false]
- (d) $M \models \mathbf{G}(p \lor q)$ [Solution: true]

Consider the following Kripke Model M:

For each of the following facts, say if it is true or false in CTL.

- (a) $M \models \mathbf{EG}q$ [Solution: true]
- (b) $M \models \mathbf{AF}p$ [Solution: false]
- (c) $M \models \mathbf{AF} \neg q$ [Solution: false]
- $\begin{array}{c} (d) \ M \models (\mathbf{AGAF} \neg q) \\ [\ \mathbf{Solution:} \ false \] \end{array}$

$\mathbf{4}$

For each of the following fact regarding Buchi automata, say if it true or false.

(a) The following BA represents $\mathbf{FG}q$:

(b) The following BA represents $\mathbf{FG}q$:

[Solution: False. It accepts every execution.]

(c) The following BA represents $p\mathbf{U}q$:

(d) The following BA represents $p\mathbf{U}q$:

$\mathbf{5}$

Consider the following two \mathcal{DL} formulas: $\varphi_1 \stackrel{\text{def}}{=} (x_2 - x_1 \leq -6) \land (x_3 - x_2 \leq 5) \land (x_5 - x_4 \leq -4) \land (x_6 - x_5 \leq -7) \land (x_8 - x_7 \leq 4)$ $\varphi_2 \stackrel{\text{def}}{=} (x_4 - x_3 \leq 3) \land (x_7 - x_6 \leq -1) \land (x_1 - x_8 \leq 5)$

For each of the following facts, say if it is true or false

- (a) The following is a \mathcal{DL} interpolant of $\langle \varphi_1, \varphi_2 \rangle$ $(x_3 - x_1 \leq -1) \wedge (x_6 - x_4 \leq -11)$ [Solution: false]
- (b) The following is a \mathcal{LRA} interpolant of $\langle \varphi_1, \varphi_2 \rangle$: $(x_3 - x_1 + x_6 - x_4 + x_8 - x_7 \leq -8)$ [Solution: true]
- (c) The following is a \mathcal{DL} interpolant of $\langle \varphi_1, \varphi_2 \rangle$: $(x_3 - x_1 \leq -1) \wedge (x_6 - x_4 \leq -11) \wedge (x_8 - x_7 \leq 4)$ [Solution: true]
- (d) The following is a \mathcal{DL} interpolant of $\langle \varphi_1, \varphi_2 \rangle$ $(x_2 - x_1 \leq -6) \land (x_3 - x_2 \leq 5) \land (x_5 - x_4 \leq -4) \land (x_6 - x_5 \leq -7) \land$ $(x_4 - x_3 \leq 3) \land (x_7 - x_6 \leq -1) \land (x_1 - x_8 \leq 5) \land (x_8 - x_7 \leq 4)$ [Solution: false]

[Solution:

Consider the following Boolean formula φ :

$$\neg(((A_9 \rightarrow A_8) \land (\neg A_7 \rightarrow \neg A_4)) \lor ((\neg A_5 \rightarrow \neg A_6) \land (\neg A_7 \rightarrow A_8)))$$

1. Compute the Negative Normal Form of φ , called φ' . [Solution:

$$\begin{array}{l} & \varphi \\ \Rightarrow & \neg(((A_9 \to A_8) \land (\neg A_7 \to \neg A_4)) \lor ((\neg A_5 \to \neg A_6) \land (\neg A_7 \to A_8))) \\ \Rightarrow & (\neg((A_9 \to A_8) \land (\neg A_7 \to \neg A_4)) \land \neg((\neg A_5 \to \neg A_6) \land (\neg A_7 \to A_8))) \\ \Rightarrow & ((\neg(A_9 \to A_8) \lor \neg(\neg A_7 \to \neg A_4)) \land (\neg(\neg A_5 \to \neg A_6) \lor \neg(\neg A_7 \to A_8))) \\ \Rightarrow & (((A_9 \land \neg A_8) \lor (\neg A_7 \land A_4)) \land ((\neg A_5 \land A_6) \lor (\neg A_7 \land \neg A_8))) \\ = & \varphi' \end{array}$$

- 2. For each of the following sentences, only one is true. Say which one.
 - (a) φ and φ' are equivalent. [Solution: True]
 - (b) φ and φ' are not necessarily equivalent. φ' has a model if and only φ has a model. [Solution: False]
 - (c) There is no relation between the satisfiablity of φ and that of φ' . [Solution: False]

Let

$$\varphi \stackrel{\text{def}}{=} \left(\begin{array}{ccc} A_{3} \lor & A_{6} \lor & A_{8} \right) \land \\ \left(A_{5} \lor & A_{7} \lor & A_{8} \right) \land \\ \left(\neg A_{4} \lor \neg A_{6} \lor \neg A_{8} \right) \land \\ \left(\neg A_{6} \lor & A_{7} \lor \neg A_{8} \right) \land \\ \left(\neg A_{3} \lor & A_{6} \lor & A_{9} \right) \land \\ \left(\neg A_{3} \lor & A_{6} \lor \neg A_{9} \right) \land \\ \left(A_{3} \lor & A_{4} \lor \neg A_{5} \right) \land \\ \left(A_{5} \lor & A_{8} \lor \neg A_{9} \right) \land \\ \left(A_{6} \lor & A_{4} \lor \neg A_{7} \right) \land \\ \left(A_{6} \lor & A_{4} \lor \neg A_{7} \right) \land \\ \left(A_{5} \lor & A_{8} \lor \neg A_{1} \right) \land \\ \left(\neg A_{4} \lor \neg A_{7} \lor \neg A_{9} \right) \end{array} \right)$$

Using the variable ordering:

" A_1 , A_3 , A_4 , A_5 , A_6 , A_7 , A_8 , A_9 ",

draw the OBDD corresponding to the formula φ' defined as:

$$\varphi' \stackrel{\text{def}}{=} \exists A_2.\varphi.$$

[Solution: Trivial, because φ is in the form "($A_2 \leftrightarrow \psi$)", Thus:

$$\varphi' \stackrel{\text{def}}{=} \exists A_2.(A_2 \leftrightarrow \psi) \\ = ((A_2 \leftrightarrow \psi)[A_2 := \top]) \lor ((A_2 \leftrightarrow \psi)[A_2 := \bot]) \\ = \psi \\ = \top \lor \neg \psi$$

which corresponds to the following OBDD:

]

Consider the following implication graph:

 A_{12} being the most recent decision literal. Write the conflict clauses generated by

- (a) the decision conflict analysis criterion
- (b) the last UIP conflict analysis criterion
- (c) the 1st UIP conflict analysis criterion

[Solution:

- (a) Decision clause: $\neg A_{12} \lor A_2 \lor A_4 \lor \neg A_3 \lor \neg A_5$
- (b) Last UIP clause: $\neg A_{12} \lor \neg A_{11} \lor A_4 \lor \neg A_3 \lor \neg A_5$
- (c) 1st UIP clause: $\neg A_{13} \lor \neg A_3 \lor \neg A_5$

Consider the following pair of $SMT(\mathcal{LRA})$ sets of literals:

$$A \stackrel{\text{def}}{=} \{ (0 \le -3x_1 - 5x_2 + 1), (0 \le x_1 + x_2) \}$$

$$B \stackrel{\text{def}}{=} \{ (0 \le 3x_3 - 2x_1 - 3), (0 \le x_1 - 2x_3 + 1) \}.$$

(a) Write a proof P of \mathcal{LRA} -unsatisfiablity of $A \wedge B$

[Solution: A proof of unsatisfiability P for $A \wedge B$ is the following:

$$\frac{(0 \le -3x_1 - 5x_2 + 1) \quad (0 \le x_1 + x_2)}{\text{COMB} \quad (0 \le 2x_1 + 1) \text{ with } c. \ 1 \text{ and } 5} \quad \frac{(0 \le 3x_3 - 2x_1 - 3) \quad (0 \le x_1 - 2x_3 + 1)}{\text{COMB} \quad (0 \le -x_1 - 3) \text{ with } c. \ 2 \text{ and } 3}$$

(b) From such a proof, compute a \mathcal{LRA} -interpolant for $\langle A, B \rangle$ using McMillan's technique.

[Solution: An interpolant $\langle A, B \rangle$ is the following:

$$\frac{(0 \le -3x_1 - 5x_2 + 1) \quad (0 \le x_1 + x_2)}{\text{COMB} \quad (0 \le 2x_1 + 1) \text{ with } c. \ 1 \text{ and } 5} \quad \frac{(0 \le 0) \quad (0 \le 0)}{\text{COMB} \quad (0 \le 0) \text{ with } c. \ 2 \text{ and } 3}$$

Thus, the interpolant obtained is $(0 \le 2x_1 + 1)$.

Consider the LTL formula $\varphi \stackrel{\text{\tiny def}}{=} p \lor q$, where p, q are atomic propositions. (Notice: <u>LTL</u> formula!) Compute the corresponding Generalized Büchi Automaton.

[Solution:

 φ is already in DNF, the two disjuncts corresponding to two initial states:

 $S_1 \stackrel{\text{\tiny def}}{=} \langle \{p\}, \{\top\}, \{p \lor q, p\} \rangle$

 $S_2 \stackrel{\text{def}}{=} \langle \{q\}, \{\top\}, \{p \lor q, q\} \rangle.$ Then the expansion of their next part gives the "true state":

 $s_3 \stackrel{\text{\tiny def}}{=} \langle \{\top\}, \{\top\}, \{\top\}. \rangle$

Since there is no until formula, there is only one group of accepting states including all states. Thus, the resulting Büchi Automaton is the following:

