Course "Automated Reasoning" TEST

Roberto Sebastiani
DISI, Università di Trento, Italy

$$
\text { June } 10^{t h}, 2022
$$

1

Let φ be a generic Boolean formula, and let $\varphi_{1} \stackrel{\text { def }}{=} C N F(\varphi)$, s.c. $C N F()$ is the "classic" CNF conversion. Let $|\varphi|$ and $\left|\varphi_{1}\right|$ denote the size of φ and φ_{1} respectively.

For each of the following sentences, say if it is true or false.
(a) If a DAG representation of formulas is used, then $\left|\varphi_{1}\right|$ is in worst-case polynomial in size wrt. $|\varphi|$. [Solution: False. $\left|\varphi_{1}\right|$ may grow exponentially wrt. $|\varphi|$, regardless the usage of DAG representations.]
(b) If φ contains no \leftrightarrow 's, then $\left|\varphi_{1}\right|$ is in worst-case polynomial in size wrt. $|\varphi|$.
[Solution: False. $\left|\varphi_{1}\right|$ may grow exponentially wrt. $|\varphi|$, regardless the absence of \leftrightarrow 's.]
(c) If φ is valid, then φ_{1} is valid.
[Solution: True.]
(d) If φ_{1} is valid, then φ is valid. [Solution: True]

2

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in LTL.
(a) $M \models \mathbf{F} p$
[Solution: false]
(b) $M \models \mathbf{G} \neg p$
[Solution: false]
(c) $M \models \mathbf{G F} \neg p$
[Solution: false]
(d) $M \models \mathbf{G}(p \vee q)$
[Solution: true]

3

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in CTL.
(a) $M \models \mathbf{E G} q$
[Solution: true]
(b) $M \models \mathbf{A F} p$
[Solution: false]
(c) $M \models \mathbf{A F} \neg q$
[Solution: false]
(d) $M \models(\mathbf{A G A F} \neg q)$
[Solution: false]

For each of the following fact regarding Buchi automata, say if it true or false.
(a) The following BA represents $\mathbf{F G} q$:

[Solution: True.]
(b) The following BA represents $\mathbf{F G} q$:

[Solution: False. It accepts every execution.]
(c) The following BA represents $p \mathbf{U} q$:

(d) The following BA represents $p \mathbf{U} q$:

5

Consider the following two $\mathcal{D} \mathcal{L}$ formulas:
$\varphi_{1} \stackrel{\text { def }}{=}\left(x_{2}-x_{1} \leq-6\right) \wedge\left(x_{3}-x_{2} \leq 5\right) \wedge\left(x_{5}-x_{4} \leq-4\right) \wedge\left(x_{6}-x_{5} \leq-7\right) \wedge\left(x_{8}-x_{7} \leq 4\right)$ $\varphi_{2} \stackrel{\text { def }}{=}\left(x_{4}-x_{3} \leq 3\right) \wedge\left(x_{7}-x_{6} \leq-1\right) \wedge\left(x_{1}-x_{8} \leq 5\right)$

For each of the following facts, say if it is true or false
(a) The following is a $\mathcal{D} \mathcal{L}$ interpolant of $\left\langle\varphi_{1}, \varphi_{2}\right\rangle$
$\left(x_{3}-x_{1} \leq-1\right) \wedge\left(x_{6}-x_{4} \leq-11\right)$
[Solution: false]
(b) The following is a $\mathcal{L R} \mathcal{A}$ interpolant of $\left\langle\varphi_{1}, \varphi_{2}\right\rangle$:
$\left(x_{3}-x_{1}+x_{6}-x_{4}+x_{8}-x_{7} \leq-8\right)$
[Solution: true]
(c) The following is a $\mathcal{D} \mathcal{L}$ interpolant of $\left\langle\varphi_{1}, \varphi_{2}\right\rangle$:
$\left(x_{3}-x_{1} \leq-1\right) \wedge\left(x_{6}-x_{4} \leq-11\right) \wedge\left(x_{8}-x_{7} \leq 4\right)$
[Solution: true]
(d) The following is a $\mathcal{D} \mathcal{L}$ interpolant of $\left\langle\varphi_{1}, \varphi_{2}\right\rangle$
$\left(x_{2}-x_{1} \leq-6\right) \wedge\left(x_{3}-x_{2} \leq 5\right) \wedge\left(x_{5}-x_{4} \leq-4\right) \wedge\left(x_{6}-x_{5} \leq-7\right) \wedge$
$\left(x_{4}-x_{3} \leq 3\right) \wedge\left(x_{7}-x_{6} \leq-1\right) \wedge\left(x_{1}-x_{8} \leq 5\right) \wedge\left(x_{8}-x_{7} \leq 4\right)$
[Solution: false]
[Solution:

6

Consider the following Boolean formula φ :

$$
\neg\left(\left(\left(A_{9} \rightarrow A_{8}\right) \wedge\left(\neg A_{7} \rightarrow \neg A_{4}\right)\right) \vee \quad\left(\left(\neg A_{5} \rightarrow \neg A_{6}\right) \wedge\left(\neg A_{7} \rightarrow A_{8}\right)\right)\right)
$$

1. Compute the Negative Normal Form of φ, called φ^{\prime}.
[Solution:

$$
\begin{array}{rlllll}
& \varphi & \varphi\left(\left(\left(A_{9} \rightarrow A_{8}\right)\right.\right. & \left.\wedge\left(\neg A_{7} \rightarrow \neg A_{4}\right)\right) & \vee\left(\left(\neg A_{5} \rightarrow \neg A_{6}\right)\right. & \left.\left.\wedge\left(\neg A_{7} \rightarrow A_{8}\right)\right)\right) \\
\Longrightarrow & \left(\neg\left(\left(A_{9} \rightarrow A_{8}\right) \wedge\left(\neg A_{7} \rightarrow \neg A_{4}\right)\right)\right. & \wedge & \left.\wedge\left(\left(\neg A_{5} \rightarrow \neg A_{6}\right) \wedge\left(\neg A_{7} \rightarrow A_{8}\right)\right)\right) \\
\Longrightarrow & \left(\left(\neg\left(A_{9} \rightarrow A_{8}\right)\right.\right. & \left.\vee \neg\left(\neg A_{7} \rightarrow \neg A_{4}\right)\right) & \left.\wedge\left(\neg\left(\neg A_{5} \rightarrow \neg A_{6}\right) \vee \neg\left(\neg A_{7} \rightarrow A_{8}\right)\right)\right) \\
\Longrightarrow & \left(\left(\left(A_{9} \wedge \neg A_{8}\right)\right.\right. & \left.\vee\left(\neg A_{7} \wedge A_{4}\right)\right) & \wedge\left(\left(\neg A_{5} \wedge A_{6}\right)\right. & \left.\left.\vee\left(\neg A_{7} \wedge \neg A_{8}\right)\right)\right) \\
= & \varphi^{\prime}
\end{array}
$$

2. For each of the following sentences, only one is true. Say which one.
(a) φ and φ^{\prime} are equivalent. [Solution: True]
(b) φ and φ^{\prime} are not necessarily equivalent. φ^{\prime} has a model if and only φ has a model. [Solution: False]
(c) There is no relation between the satisfiablity of φ and that of φ^{\prime}. [Solution: False]

7

Let

$$
\varphi \stackrel{\text { def }}{=}\left(A_{2} \leftrightarrow\left(\begin{array}{ccc}
\left(\begin{array}{ccc}
A_{3} \vee & A_{6} \vee & A_{8}
\end{array}\right) & \wedge \\
\left(A_{5} \vee\right. & A_{7} \vee & \left.A_{8}\right)
\end{array}\right)\right.
$$

Using the variable ordering:

$$
" A_{1}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}, A_{8}, A_{9} "
$$

draw the OBDD corresponding to the formula φ^{\prime} defined as:

$$
\varphi^{\prime} \stackrel{\text { def }}{=} \exists A_{2} . \varphi
$$

[Solution: Trivial, because φ is in the form " $\left(A_{2} \leftrightarrow \psi\right)$ ", Thus:

$$
\begin{array}{rll}
\varphi^{\prime} & \stackrel{\text { def }}{=} \exists A_{2} \cdot\left(A_{2} \leftrightarrow \psi\right) & \\
& =\left(\left(A_{2} \leftrightarrow \psi\right)\left[A_{2}:=\top\right]\right) & \vee\left(\left(A_{2} \leftrightarrow \psi\right)\left[A_{2}:=\perp\right]\right) \\
& =\psi & \vee \neg \psi \\
& =\top &
\end{array}
$$

which corresponds to the following OBDD:

8

Consider the following implication graph:

A_{12} being the most recent decision literal. Write the conflict clauses generated by
(a) the decision conflict analysis criterion
(b) the last UIP conflict analysis criterion
(c) the 1st UIP conflict analysis criterion
[Solution:

(a) Decision clause: $\neg A_{12} \vee A_{2} \vee A_{4} \vee \neg A_{3} \vee \neg A_{5}$
(b) Last UIP clause: $\neg A_{12} \vee \neg A_{11} \vee A_{4} \vee \neg A_{3} \vee \neg A_{5}$
(c) 1st UIP clause: $\neg A_{13} \vee \neg A_{3} \vee \neg A_{5}$

9

Consider the following pair of $\operatorname{SMT}(\mathcal{L R} \mathcal{A})$ sets of literals:

$$
\begin{aligned}
A & \stackrel{\text { def }}{=}\left\{\left(0 \leq-3 x_{1}-5 x_{2}+1\right),\left(0 \leq x_{1}+x_{2}\right)\right\} \\
B & \stackrel{\text { def }}{=}\left\{\left(0 \leq 3 x_{3}-2 x_{1}-3\right),\left(0 \leq x_{1}-2 x_{3}+1\right)\right\} .
\end{aligned}
$$

(a) Write a proof P of $\mathcal{L} \mathcal{R} \mathcal{A}$-unsatisfiablity of $A \wedge B$
[Solution: A proof of unsatisfiability P for $A \wedge B$ is the following:

$$
\frac{\frac{\left(0 \leq-3 x_{1}-5 x_{2}+1\right) \quad\left(0 \leq x_{1}+x_{2}\right)}{\text { ComB }\left(0 \leq 2 x_{1}+1\right) \text { with c. } 1 \text { and } 5} \quad \frac{\left(0 \leq 3 x_{3}-2 x_{1}-3\right) \quad\left(0 \leq x_{1}-2 x_{3}+1\right)}{\text { ComB }\left(0 \leq-x_{1}-3\right) \text { with c. 2 and 3 }}}{\text { ComB }(0 \leq-5) \text { with c. } 1 \text { and 2 }}
$$

]
(b) From such a proof, compute a $\mathcal{L R} \mathcal{A}$-interpolant for $\langle A, B\rangle$ using McMillan's technique.
[Solution: An interpolant $\langle A, B\rangle$ is the following:

$$
\frac{\left(0 \leq-3 x_{1}-5 x_{2}+1\right) \quad\left(0 \leq x_{1}+x_{2}\right)}{\text { ComB }\left(0 \leq 2 x_{1}+1\right) \text { with c. } 1 \text { and } 5} \quad \frac{(0 \leq 0) \quad(0 \leq 0)}{\text { ComB }\left(0 \leq 2 x_{1}+1\right) \text { with c. } 1 \text { and } 2}
$$

Thus, the interpolant obtained is $\left(0 \leq 2 x_{1}+1\right)$.]

10

Consider the LTL formula $\varphi \stackrel{\text { def }}{=} p \vee q$, where p, q are atomic propositions. (Notice: LTL formula!) Compute the corresponding Generalized Büchi Automaton.
[Solution:
φ is already in DNF, the two disjuncts corresponding to two initial states:
$S_{1} \stackrel{\text { def }}{=}\langle\{p\},\{\top\},\{p \vee q, p\}\rangle$
$S_{2} \xlongequal{\text { def }}\langle\{q\},\{\top\},\{p \vee q, q\}\rangle$.
Then the expansion of their next part gives the "true state":
$s_{3} \xlongequal{\text { def }}\langle\{T\},\{T\},\{T\}$.
Since there is no until formula, there is only one group of accepting states including all states.
Thus, the resulting Büchi Automaton is the following:

