Course "Automated Reasoning" TEST

Roberto Sebastiani DISI, Università di Trento, Italy

June 10^{th} , 2022

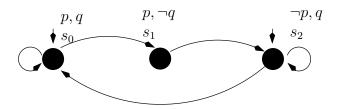
857976918

Name (please print):

Surname (please print):

1

Let φ be a generic Boolean formula, and let $\varphi_1 \stackrel{\text{def}}{=} CNF(\varphi)$, s.c. CNF() is the "classic" CNF conversion. Let $|\varphi|$ and $|\varphi_1|$ denote the size of φ and φ_1 respectively.

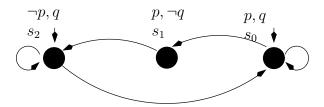

For each of the following sentences, say if it is true or false.

- (a) If a DAG representation of formulas is used, then $|\varphi_1|$ is in worst-case polynomial in size wrt. $|\varphi|$.
- (b) If φ contains no \Leftrightarrow 's, then $|\varphi_1|$ is in worst-case polynomial in size wrt. $|\varphi|$.
- (c) If φ is valid, then φ_1 is valid.
- (d) If φ_1 is valid, then φ is valid.

- +25pts for each correct answer
- -25pts for each incorrect answer
- Opts for each unanswered question

2

Consider the following Kripke Model M:


For each of the following facts, say if it is true or false in LTL.

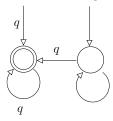
- (a) $M \models \mathbf{F}p$
- (b) $M \models \mathbf{G} \neg p$
- (c) $M \models \mathbf{GF} \neg p$
- (d) $M \models \mathbf{G}(p \lor q)$

- \bullet +25pts for each correct answer
- $\bullet\,$ -25pts for each incorrect answer
- Opts for each unanswered question

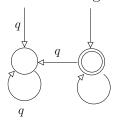
3

Consider the following Kripke Model M:

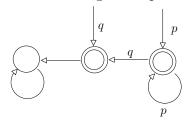
For each of the following facts, say if it is true or false in CTL.

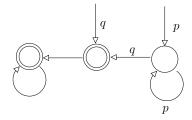

- (a) $M \models \mathbf{EG}q$
- (b) $M \models \mathbf{AF}p$
- (c) $M \models \mathbf{AF} \neg q$
- (d) $M \models (\mathbf{AGAF} \neg q)$

- \bullet +25pts for each correct answer
- $\bullet\,$ -25pts for each incorrect answer
- 0pts for each unanswered question


4

For each of the following fact regarding Buchi automata, say if it true or false.


(a) The following BA represents $\mathbf{FG}q$:


(b) The following BA represents $\mathbf{FG}q$:

(c) The following BA represents $p\mathbf{U}q$:

(d) The following BA represents $p\mathbf{U}q$:

- ullet +25pts for each correct answer
- \bullet -25pts for each incorrect answer
- 0pts for each unanswered question

5

Consider the following two \mathcal{DL} formulas:

$$\varphi_1 \stackrel{\text{def}}{=} (x_2 - x_1 \le -6) \land (x_3 - x_2 \le 5) \land (x_5 - x_4 \le -4) \land (x_6 - x_5 \le -7) \land (x_8 - x_7 \le 4)$$

$$\varphi_2 \stackrel{\text{def}}{=} (x_4 - x_3 \le 3) \land (x_7 - x_6 \le -1) \land (x_1 - x_8 \le 5)$$

For each of the following facts, say if it is true or false

- (a) The following is a \mathcal{DL} interpolant of $\langle \varphi_1, \varphi_2 \rangle$ $(x_3 - x_1 \leq -1) \wedge (x_6 - x_4 \leq -11)$
- (b) The following is a \mathcal{LRA} interpolant of $\langle \varphi_1, \varphi_2 \rangle$: $(x_3 x_1 + x_6 x_4 + x_8 x_7 \le -8)$
- (c) The following is a \mathcal{DL} interpolant of $\langle \varphi_1, \varphi_2 \rangle$: $(x_3 - x_1 \le -1) \wedge (x_6 - x_4 \le -11) \wedge (x_8 - x_7 \le 4)$
- (d) The following is a \mathcal{DL} interpolant of $\langle \varphi_1, \varphi_2 \rangle$ $(x_2 - x_1 \le -6) \wedge (x_3 - x_2 \le 5) \wedge (x_5 - x_4 \le -4) \wedge (x_6 - x_5 \le -7) \wedge (x_4 - x_3 \le 3) \wedge (x_7 - x_6 \le -1) \wedge (x_1 - x_8 \le 5) \wedge (x_8 - x_7 \le 4)$

- +25pts for each correct answer
- -25pts for each incorrect answer
- Opts for each unanswered question

6

Consider the following Boolean formula φ :

$$\neg(((A_9 \rightarrow A_8) \land (\neg A_7 \rightarrow \neg A_4)) \lor ((\neg A_5 \rightarrow \neg A_6) \land (\neg A_7 \rightarrow A_8)))$$

- 1. Compute the Negative Normal Form of φ , called φ' .
- 2. For each of the following sentences, only one is true. Say which one.
 - (a) φ and φ' are equivalent.
 - (b) φ and φ' are not necessarily equivalent. φ' has a model if and only φ has a model.
 - (c) There is no relation between the satisfiablity of φ and that of φ' .

[SCORING: [0...100], 75pts for correct answer 1, 25pts for correct answer 2. No penalties for wrong answers..]

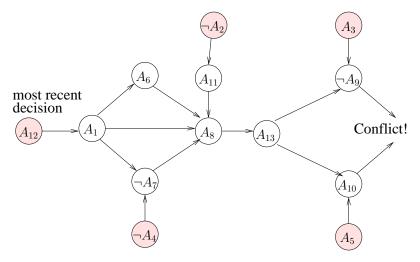
7

Let

$$\varphi \stackrel{\text{def}}{=} (A_{2} \leftrightarrow \begin{pmatrix} (A_{3} \lor A_{6} \lor A_{8}) \land \\ (A_{5} \lor A_{7} \lor A_{8}) \land \\ (\neg A_{4} \lor \neg A_{6} \lor \neg A_{8}) \land \\ (\neg A_{6} \lor A_{7} \lor \neg A_{8}) \land \\ (\neg A_{6} \lor A_{7} \lor \neg A_{8}) \land \\ (\neg A_{3} \lor A_{6} \lor A_{9}) \land \\ (\neg A_{6} \lor \neg A_{8} \lor \neg A_{9}) \land \\ (A_{3} \lor A_{4} \lor \neg A_{5}) \land \\ (A_{5} \lor A_{8} \lor \neg A_{4}) \land \\ (\neg A_{3} \lor \neg A_{8} \lor \neg A_{4}) \land \\ (A_{6} \lor A_{4} \lor \neg A_{7}) \land \\ (A_{5} \lor A_{8} \lor \neg A_{1}) \land \\ (\neg A_{4} \lor \neg A_{7} \lor \neg A_{9}) \end{pmatrix}$$

Using the variable ordering:

"
$$A_1$$
, A_3 , A_4 , A_5 , A_6 , A_7 , A_8 , A_9 ",


draw the OBDD corresponding to the formula φ' defined as:

$$\varphi' \stackrel{\text{def}}{=} \exists A_2.\varphi.$$

[SCORING: [0...100], 100 pts for a correct answer. No penalties for a wrong answer..]

8

Consider the following implication graph:

 A_{12} being the most recent decision literal. Write the conflict clauses generated by

- (a) the decision conflict analysis criterion
- (b) the last UIP conflict analysis criterion
- (c) the 1st UIP conflict analysis criterion

[SCORING: [0...100], 33 points each for each correct answer to questions (a), (b) and (c). No penalties for uncorrect answers..]

9

Consider the following pair of $\mathrm{SMT}(\mathcal{LRA})$ sets of literals:

$$A \stackrel{\text{def}}{=} \{ (0 \le -3x_1 - 5x_2 + 1), (0 \le x_1 + x_2) \}$$

$$B \stackrel{\text{def}}{=} \{ (0 \le 3x_3 - 2x_1 - 3), (0 \le x_1 - 2x_3 + 1) \}.$$

- (a) Write a proof P of \mathcal{LRA} -unsatisfiablity of $A \wedge B$
- (b) From such a proof, compute a \mathcal{LRA} -interpolant for $\langle A, B \rangle$ using McMillan's technique.

[SCORING: [0...100], 50 points each for questions a) and b). No penalties for wrong answers..]

10

Consider the LTL formula $\varphi \stackrel{\text{def}}{=} p \vee q$, where p,q are atomic propositions. (Notice: <u>LTL</u> formula!) Compute the corresponding Generalized Büchi Automaton.

[SCORING: [0...100], 100 pts for a correct answer..]