Formal Methods Module II: Formal Verification Ch. 09: Timed and Hybrid Systems

Roberto Sebastiani
DISI, Università di Trento, Italy - roberto.sebastiani@unitn.it
URL: https://disi.unitn.it/rseba/DIDATTICA/fm2023/
Teaching assistant: Giuseppe Spallitta - giuseppe.spallitta@unitn.it

M.S. in Computer Science, Mathematics, \& Artificial Intelligence Systems

Academic year 2022-2023

last update: Thursday $25^{\text {th }}$ May, 2023, 12:32

Outline

(4) Motivations
(2) Timed systems: Modeling and Semantics

- Timed automata
- Semantics
- Combination
(3) Symbolic Reachability for Timed Systems
- Making the state space finite
- Region automata
- Zone automata

4. Hybrid Systems: Modeling and Semantics

- Hybrid automata
(5) Symbolic Reachability for Hybrid Systems
- Multi-Rate and Rectangular Hybrid Automata
- Linear Hybrid Automata
(6) Exercises

Outline

(1) Motivations

(2) Timed systems: Modeling and Semantics

- Timed automata
- Semantics
- Combination
(3) Symbolic Reachability for Timed Systems
- Making the state space finite
- Region automata
- Zone automata

4 Hybrid Systems: Modeling and Semantics

- Hybrid automata
(5) Symbolic Reachability for Hybrid Systems
- Multi-Rate and Rectangular Hybrid Automata
- Linear Hybrid Automata
(6) Exercises

Acknowledgments

Thanks for providing material to:

- Rajeev Alur \& colleagues (Penn University)
- Paritosh Pandya (IIT Bombay)
- Andrea Mattioli, Yusi Ramadian (Univ. Trento)
- Marco Di Natale (Scuola Superiore S.Anna, Italy)

Disclaimer

- very introductory
- very-partial coverage
- mostly computer-science centric

Acknowledgments

Thanks for providing material to:

- Rajeev Alur \& colleagues (Penn University)
- Paritosh Pandya (IIT Bombay)
- Andrea Mattioli, Yusi Ramadian (Univ. Trento)
- Marco Di Natale (Scuola Superiore S.Anna, Italy)

Disclaimer

- very introductory
- very-partial coverage
- mostly computer-science centric

Hybrid Modeling

Hybrid machines $=$ State machines + Dynamic Systems

Hybrid Modeling: Examples

- Automotive Applications
- Vehicle Coordination Protocols
- Interacting Autonomous Robots
- Bio-molecular Regulatory Networks

Hybrid Modeling: Examples

- Automotive Applications
- Vehicle Coordination Protocols
- Interacting Autonomous Robots
- Bio-molecular Regulatory Networks

Hybrid Modeling: Examples

- Automotive Applications
- Vehicle Coordination Protocols
- Interacting Autonomous Robots
- Bio-molecular Regulatory Networks

Hybrid Modeling: Examples

- Automotive Applications
- Vehicle Coordination Protocols
- Interacting Autonomous Robots
- Bio-molecular Regulatory Networks

Outline

（1）Motivations
（2）Timed systems：Modeling and Semantics
－Timed automata
－Semantics
－Combination
（3）Symbolic Reachability for Timed Systems
－Making the state space finite
－Region automata
－Zone automata
（4）Hybrid Systems：Modeling and Semantics
－Hybrid automata
（5）Symbolic Reachability for Hybrid Systems
－Multi－Rate and Rectangular Hybrid Automata
－Linear Hybrid Automata
（6）Exercises

Outline

（1）Motivations
（2）Timed systems：Modeling and Semantics
－Timed automata
－Semantics
－Combination
B Symbolic Reachability for Timed Systems
－Making the state space finite
－Region automata
－Zone automata
（4）Hybrid Systems：Modeling and Semantics
－Hybrid automata
（5）Symbolic Reachability for Hybrid Systems
－Multi－Rate and Rectangular Hybrid Automata
－Linear Hybrid Automata
（6）Exercises

Timed Automata

Example: Simple light control

Requirement:

- if Off and press is issued once, then the light switches on;
- if Off and press is issued twice quickly, then the light gets brighter;
- if Light/Bright and press is issued once, then the light switches off;
\Longrightarrow Cannot be achieved with standard automata

Example: Simple light control

Solution: add real-valued clock x

- x reset at first press
- if next press before x reaches 3 time units, then the light will get brighter;
- otherwise the light is turned off

Modeling: timing constraints

Finite graph + finite set of (real-valued) clocks

- Vertexes are locations
- Time can elapse there
- Constraints (invariants)

- Edges are switches
- Subject to constraints
- Reset clocks

Timed Automata

- Locations I_{1}, I_{2}, \ldots (like in standard automata)
- discrete part of the state
- may be implemented by discrete variables
- Switches (discrete transitions like in standard aut.)
- Labels, aka events, actions,... (like in standard aut.)
- used for synchronization
- Clocks: $x, y, \ldots \in \mathbb{Q}^{-1}$
- value: time elapsed since the last time it was reset

Guards: $(x \bowtie C)$ s.t. $\bowtie \in\{<.<.>.>\}, C \in \mathbb{N}$

- set of clock comparisons against positive integer bounds
- constrain the execution of the switch
- Resets $(x:=0)$
- set of clock assignments to 0
- Invariants: $(x \bowtie C)$ s.t. $\bowtie \in\{\leq,<, \geq,>\}, C \in \mathbb{N}$
- set of clock comparisons against positive inteaer bo unds
- ensure progress

Timed Automata

- Locations I_{1}, I_{2}, \ldots (like in standard automata)
- discrete part of the state
- may be implemented by discrete variables
- Switches (discrete transitions like in standard aut.)
- Labels, aka events, actions,... (like in standard aut.)
- used for synchronization
- Clocks: $x, y, \ldots \in \mathbb{Q}^{+}$
- value: time elapsed since the last time it was reset
- Guards: $(x \bowtie C)$ s.t. $\bowtie \in\{\leq,<, \geq,>\}, C \in \mathbb{N}$
- set of clock comparisons against positive integer bounds
- constrain the execution of the switch
- Resets ($x:=0$)
- set of clock assignments to 0
- Invariants: $(x \bowtie C)$ s.t. $\bowtie \in\{\leq,<, \geq,>\}, C \in \mathbb{N}$
- set of clock comparisons against positive integer bounds
- ensure progress

Timed Automata

- Locations I_{1}, I_{2}, \ldots (like in standard automata)
- discrete part of the state
- may be implemented by discrete variables
- Switches (discrete transitions like in standard aut.)
- Labels, aka events, actions,... (like in standard aut.)
- used for synchronization
- Clocks: $x, y, \ldots \in \mathbb{Q}^{+}$
- value: time elapsed since the last time it was reset
- Guards: $(x \bowtie C)$ s.t. $\bowtie \in\{\leq,<, \geq,>\}, C \in \mathbb{N}$
- set of clock comparisons against positive integer bounds
- constrain the execution of the switch
- Resets ($x:=0$)
- set of clock assignments to 0
- Invariants: $(x \bowtie C)$ s.t. $\bowtie \in\{\leq,<, \geq,>\}, C \in \mathbb{N}$
- set of clock comparisons against positive integer bounds
- ensure progress

Timed Automata: Example

- State: $\left\langle l_{i}, x, y\right\rangle$

Timed Automata: Example

- State: $\left\langle l_{i}, x, y\right\rangle$
- $\left\langle 1_{1}, 4,7\right\rangle$:

Timed Automata: Example

- State: $\left\langle l_{i}, x, y\right\rangle$
- $\left\langle h_{1}, 4,7\right\rangle$: OK!

Timed Automata: Example

- State: $\left\langle l_{i}, x, y\right\rangle$
- $\left\langle 1_{1}, 4,7\right\rangle$: OK!
- $\left\langle l_{2}, 2,4\right\rangle$:

Timed Automata: Example

- State: $\left\langle l_{i}, x, y\right\rangle$
- $\left\langle h_{1}, 4,7\right\rangle$: OK!
- $\left\langle l_{2}, 2,4\right\rangle$: not OK! (violates invariant in l_{2})

Timed Automata: Example

- State: $\left\langle\iota_{i}, x, y\right\rangle$
- $\left\langle h_{1}, 4,7\right\rangle$: OK!
- $\left\langle l_{2}, 2,4\right\rangle$: not OK! (violates invariant in l_{2})
- Switch: $\left\langle I_{i}, x, y\right\rangle \xrightarrow{a}\left\langle I_{j}, x^{\prime}, y^{\prime}\right\rangle$

Timed Automata: Example

- State: $\left\langle l_{i}, x, y\right\rangle$
- $\left\langle h_{1}, 4,7\right\rangle$: OK!
- $\left\langle l_{2}, 2,4\right\rangle$: not OK! (violates invariant in l_{2})
- Switch: $\left\langle I_{i}, x, y\right\rangle \xrightarrow{a}\left\langle I_{j}, x^{\prime}, y^{\prime}\right\rangle$
- $\left\langle 1_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 4.5,0\right\rangle:$

Timed Automata: Example

- State: $\left\langle l_{i}, x, y\right\rangle$
- $\left\langle h_{1}, 4,7\right\rangle$: OK!
- $\left\langle l_{2}, 2,4\right\rangle$: not OK! (violates invariant in l_{2})
- Switch: $\left\langle l_{i}, x, y\right\rangle \xrightarrow{a}\left\langle l_{j}, x^{\prime}, y^{\prime}\right\rangle$
- $\left\langle I_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 4.5,0\right\rangle:$ OK!

Timed Automata: Example

- State: $\left\langle l_{i}, x, y\right\rangle$
- $\left\langle h_{1}, 4,7\right\rangle$: OK!
- $\left\langle l_{2}, 2,4\right\rangle$: not OK! (violates invariant in l_{2})
- Switch: $\left\langle l_{i}, x, y\right\rangle \xrightarrow{a}\left\langle l_{j}, x^{\prime}, y^{\prime}\right\rangle$
- $\left\langle 1_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle 1_{2}, 4.5,0\right\rangle:$ OK!
- $\left\langle h_{1}, 6,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 6,0\right\rangle$:

Timed Automata: Example

- State: $\left\langle l_{i}, x, y\right\rangle$
- $\left\langle h_{1}, 4,7\right\rangle$: OK!
- $\left\langle l_{2}, 2,4\right\rangle$: not OK! (violates invariant in l_{2})
- Switch: $\left\langle l_{i}, x, y\right\rangle \xrightarrow{a}\left\langle l_{j}, x^{\prime}, y^{\prime}\right\rangle$
- $\left\langle 1_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle 1_{2}, 4.5,0\right\rangle$: OK!
- $\left\langle l_{1}, 6,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 6,0\right\rangle$: not OK! (violates invar. in I_{1})

Timed Automata: Example

- State: $\left\langle l_{i}, x, y\right\rangle$
- $\left\langle h_{1}, 4,7\right\rangle$: OK!
- $\left\langle l_{2}, 2,4\right\rangle$: not OK! (violates invariant in l_{2})
- Switch: $\left\langle l_{i}, x, y\right\rangle \xrightarrow{a}\left\langle l_{j}, x^{\prime}, y^{\prime}\right\rangle$
- $\left\langle 1_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle l_{2}, 4.5,0\right\rangle$: OK!
- $\left\langle l_{1}, 6,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 6,0\right\rangle$: not OK! (violates invar. in I_{1})

Timed Automata: Example

- State: $\left\langle l_{i}, x, y\right\rangle$
- $\left\langle h_{1}, 4,7\right\rangle$: OK!
- $\left\langle l_{2}, 2,4\right\rangle$: not OK! (violates invariant in l_{2})
- Switch: $\left\langle l_{i}, x, y\right\rangle \xrightarrow{a}\left\langle l_{j}, x^{\prime}, y^{\prime}\right\rangle$
- $\left\langle l_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 4.5,0\right\rangle:$ OK!
- $\left\langle l_{1}, 6,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 6,0\right\rangle$: not OK! (violates invar. in I_{1})

Timed Automata: Example

- State: $\left\langle l_{i}, x, y\right\rangle$
- $\left\langle h_{1}, 4,7\right\rangle$: OK!
- $\left\langle l_{2}, 2,4\right\rangle$: not OK! (violates invariant in l_{2})
- Switch: $\left\langle l_{i}, x, y\right\rangle \xrightarrow{a}\left\langle l_{j}, x^{\prime}, y^{\prime}\right\rangle$
- $\left\langle l_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 4.5,0\right\rangle:$ OK!
- $\left\langle l_{1}, 6,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 6,0\right\rangle$: not OK! (violates invar. in I_{1})

Timed Automata: Example

- State: $\left\langle l_{i}, x, y\right\rangle$
- $\left\langle h_{1}, 4,7\right\rangle$: OK!
- $\left\langle l_{2}, 2,4\right\rangle$: not OK! (violates invariant in l_{2})
- Switch: $\left\langle l_{i}, x, y\right\rangle \xrightarrow{a}\left\langle l_{j}, x^{\prime}, y^{\prime}\right\rangle$
- $\left\langle l_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 4.5,0\right\rangle:$ OK!
- $\left\langle l_{1}, 6,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 6,0\right\rangle$: not OK! (violates invar. in I_{1})

- $\left\langle l_{1}, 3,2\right\rangle \xrightarrow{a}\left\langle l_{2}, 3,0\right\rangle$: not OK! (violates guard \& invar. in I_{2})
- $\left\langle l_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle l_{2}, 4.5,2\right\rangle$: not OK! (violates reset)

Timed Automata: Example

- State: $\left\langle l_{i}, x, y\right\rangle$
- $\left\langle h_{1}, 4,7\right\rangle$: OK!
- $\left\langle l_{2}, 2,4\right\rangle$: not OK! (violates invariant in l_{2})
- Switch: $\left\langle l_{i}, x, y\right\rangle \xrightarrow{a}\left\langle l_{j}, x^{\prime}, y^{\prime}\right\rangle$
- $\left\langle l_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 4.5,0\right\rangle:$ OK!
- $\left\langle l_{1}, 6,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 6,0\right\rangle$: not OK! (violates invar. in I_{1})
- $\left\langle l_{1}, 3,2\right\rangle \xrightarrow{a}\left\langle l_{2}, 3,0\right\rangle$: not OK! (violates guard \& invar. in I_{2})
- $\left\langle 1_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle l_{2}, 4.5,2\right\rangle$: not OK! (violates reset)
- $\left\langle I_{1}, 4,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 4,0\right\rangle$:

Timed Automata: Example

- State: $\left\langle l_{i}, x, y\right\rangle$
- $\left\langle h_{1}, 4,7\right\rangle$: OK!
- $\left\langle l_{2}, 2,4\right\rangle$: not OK! (violates invariant in l_{2})
- Switch: $\left\langle I_{i}, x, y\right\rangle \xrightarrow{a}\left\langle I_{j}, x^{\prime}, y^{\prime}\right\rangle$
- $\left\langle l_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 4.5,0\right\rangle:$ OK!
- $\left\langle l_{1}, 6,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 6,0\right\rangle$: not OK! (violates invar. in I_{1})

- $\left\langle l_{1}, 3,2\right\rangle \xrightarrow{a}\left\langle l_{2}, 3,0\right\rangle$: not OK! (violates guard \& invar. in I_{2})
- $\left\langle 1_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle l_{2}, 4.5,2\right\rangle$: not OK! (violates reset)
- $\left\langle l_{1}, 4,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 4,0\right\rangle$: not OK! (violates invar. in I_{2})

Timed Automata: Example

- State: $\left\langle l_{i}, x, y\right\rangle$
- $\left\langle h_{1}, 4,7\right\rangle$: OK!
- $\left\langle l_{2}, 2,4\right\rangle$: not OK! (violates invariant in l_{2})
- Switch: $\left\langle l_{i}, x, y\right\rangle \xrightarrow{a}\left\langle l_{j}, x^{\prime}, y^{\prime}\right\rangle$
- $\left\langle l_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 4.5,0\right\rangle:$ OK!
- $\left\langle l_{1}, 6,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 6,0\right\rangle$: not OK! (violates invar. in I_{1})

- $\left\langle l_{1}, 3,2\right\rangle \xrightarrow{a}\left\langle l_{2}, 3,0\right\rangle$: not OK! (violates guard \& invar. in l_{2})
- $\left\langle l_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle l_{2}, 4.5,2\right\rangle$: not OK! (violates reset)
- $\left\langle l_{1}, 4,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 4,0\right\rangle$: not OK! (violates invar. in I_{2})
- Wait (time elapse): $\left\langle\iota_{i}, x, y\right\rangle \xrightarrow{\delta}\left\langle\iota_{i}, x+\delta, y+\delta\right\rangle$

Timed Automata: Example

- State: $\left\langle l_{i}, x, y\right\rangle$
- $\left\langle h_{1}, 4,7\right\rangle$: OK!
- $\left\langle l_{2}, 2,4\right\rangle$: not OK! (violates invariant in l_{2})
- Switch: $\left\langle I_{i}, x, y\right\rangle \xrightarrow{a}\left\langle I_{j}, x^{\prime}, y^{\prime}\right\rangle$
- $\left\langle l_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle 1_{2}, 4.5,0\right\rangle:$ OK!
- $\left\langle l_{1}, 6,2\right\rangle \xrightarrow{a}\left\langle l_{2}, 6,0\right\rangle$: not OK! (violates invar. in l_{1})

- $\left\langle l_{1}, 3,2\right\rangle \xrightarrow{a}\left\langle l_{2}, 3,0\right\rangle$: not OK! (violates guard \& invar. in l_{2})
- $\left\langle l_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle l_{2}, 4.5,2\right\rangle$: not OK! (violates reset)
- $\left\langle l_{1}, 4,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 4,0\right\rangle$: not OK! (violates invar. in I_{2})
- Wait (time elapse): $\left\langle\iota_{i}, x, y\right\rangle \xrightarrow{\delta}\left\langle l_{i}, x+\delta, y+\delta\right\rangle$
- $\left\langle 1_{1}, 3,0\right\rangle \xrightarrow{2}\left\langle 1_{1}, 5,2\right\rangle$:

Timed Automata: Example

- State: $\left\langle l_{i}, x, y\right\rangle$
- $\left\langle h_{1}, 4,7\right\rangle$: OK!
- $\left\langle l_{2}, 2,4\right\rangle$: not OK! (violates invariant in l_{2})
- Switch: $\left\langle l_{i}, x, y\right\rangle \xrightarrow{a}\left\langle I_{j}, x^{\prime}, y^{\prime}\right\rangle$
- $\left\langle l_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle 1_{2}, 4.5,0\right\rangle:$ OK!
- $\left\langle l_{1}, 6,2\right\rangle \xrightarrow{a}\left\langle l_{2}, 6,0\right\rangle$: not OK! (violates invar. in l_{1})
- $\left\langle l_{1}, 3,2\right\rangle \xrightarrow{a}\left\langle l_{2}, 3,0\right\rangle$: not OK! (violates guard \& invar. in l_{2})
- $\left\langle l_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle l_{2}, 4.5,2\right\rangle$: not OK! (violates reset)
- $\left\langle l_{1}, 4,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 4,0\right\rangle$: not OK! (violates invar. in I_{2})
- Wait (time elapse): $\left\langle\iota_{i}, x, y\right\rangle \xrightarrow{\delta}\left\langle\iota_{i}, x+\delta, y+\delta\right\rangle$
- $\left\langle L_{1}, 3,0\right\rangle \xrightarrow{2}\left\langle I_{1}, 5,2\right\rangle:$ OK!

Timed Automata: Example

- State: $\left\langle l_{i}, x, y\right\rangle$
- $\left\langle h_{1}, 4,7\right\rangle$: OK!
- $\left\langle l_{2}, 2,4\right\rangle$: not OK! (violates invariant in l_{2})
- Switch: $\left\langle l_{i}, x, y\right\rangle \xrightarrow{a}\left\langle I_{j}, x^{\prime}, y^{\prime}\right\rangle$
- $\left\langle l_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 4.5,0\right\rangle:$ OK!
- $\left\langle l_{1}, 6,2\right\rangle \xrightarrow{a}\left\langle l_{2}, 6,0\right\rangle$: not OK! (violates invar. in l_{1})

- $\left\langle l_{1}, 3,2\right\rangle \xrightarrow{a}\left\langle l_{2}, 3,0\right\rangle$: not OK! (violates guard \& invar. in l_{2})
- $\left\langle 1_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle l_{2}, 4.5,2\right\rangle$: not OK! (violates reset)
- $\left\langle l_{1}, 4,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 4,0\right\rangle$: not OK! (violates invar. in I_{2})
- Wait (time elapse): $\left\langle\iota_{i}, x, y\right\rangle \xrightarrow{\delta}\left\langle\iota_{i}, x+\delta, y+\delta\right\rangle$
- $\left\langle L_{1}, 3,0\right\rangle \xrightarrow{2}\left\langle h_{1}, 5,2\right\rangle:$ OK!
- $\left\langle h_{1}, 3,0\right\rangle \xrightarrow{3}\left\langle h_{1}, 6,3\right\rangle$:

Timed Automata: Example

- State: $\left\langle l_{i}, x, y\right\rangle$
- $\left\langle h_{1}, 4,7\right\rangle$: OK!

- $\left\langle l_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 4.5,0\right\rangle:$ OK!
- $\left\langle l_{1}, 6,2\right\rangle \xrightarrow{a}\left\langle l_{2}, 6,0\right\rangle$: not OK! (violates invar. in l_{1})
- $\left\langle l_{1}, 3,2\right\rangle \xrightarrow{a}\left\langle l_{2}, 3,0\right\rangle$: not OK! (violates guard \& invar. in I_{2})
- $\left\langle l_{1}, 4.5,2\right\rangle \xrightarrow{a}\left\langle l_{2}, 4.5,2\right\rangle$: not OK! (violates reset)
- $\left\langle l_{1}, 4,2\right\rangle \xrightarrow{a}\left\langle I_{2}, 4,0\right\rangle$: not OK! (violates invar. in I_{2})
- Wait (time elapse): $\left\langle\iota_{i}, x, y\right\rangle \xrightarrow{\delta}\left\langle\iota_{i}, x+\delta, y+\delta\right\rangle$
- $\left\langle L_{1}, 3,0\right\rangle \xrightarrow{2}\left\langle h_{1}, 5,2\right\rangle$: OK!
- $\left\langle\Lambda_{1}, 3,0\right\rangle \xrightarrow{3}\left\langle\Lambda_{1}, 6,3\right\rangle$: not OK! (violates invar. in I_{1})

Timed Automata: Formal Syntax

Timed Automaton $\left\langle L, L^{0}, \Sigma, X, \Phi(X), E\right\rangle$

- L: Set of locations
- $L^{0} \subseteq L$: Set of initial locations
- Σ : Set of labels
- X: Set of clocks
- $\Phi(X)$: Set of invariants
- $E \subseteq L \times \Sigma \times \Phi(X) \times 2^{X} \times L$: Set of switches A switch $\left\langle I, a, \varphi, \lambda, I^{\prime}\right\rangle$ s.t.

Timed Automata: Formal Syntax

Timed Automaton $\left\langle L, L^{0}, \Sigma, X, \Phi(X), E\right\rangle$

- L : Set of locations
- $L^{0} \subseteq L$: Set of initial locations
- Σ : Set of labels
- X : Set of clocks
- $\Phi(X)$: Set of invariants
- $E \subseteq L \times \Sigma \times \Phi(X) \times 2^{X} \times L$: Set of switches A switch $\left\langle I, a, \varphi, \lambda, I^{\prime}\right\rangle$ s.t.

Timed Automata: Formal Syntax

Timed Automaton $\left\langle L, L^{0}, \Sigma, X, \Phi(X), E\right\rangle$

- L : Set of locations
- $L^{0} \subseteq L$: Set of initial locations
- Σ : Set of labels
- X: Set of clocks
- $\Phi(X)$: Set of invariants
- $E \subseteq L \times \Sigma \times \Phi(X) \times 2^{X} \times L$: Set of switches A switch $\left\langle I, a, \varphi, \lambda, I^{\prime}\right\rangle$ s.t.

Timed Automata: Formal Syntax

Timed Automaton $\left\langle L, L^{0}, \Sigma, X, \Phi(X), E\right\rangle$

- L : Set of locations
- $L^{0} \subseteq L$: Set of initial locations
- Σ : Set of labels
- X : Set of clocks
- $\Phi(X)$: Set of invariants
- $E \subseteq L \times \Sigma \times \Phi(X) \times 2^{X} \times L$: Set of switches A switch $\left\langle I, a, \varphi, \lambda, I^{\prime}\right\rangle$ s.t.

Timed Automata: Formal Syntax

Timed Automaton $\left\langle L, L^{0}, \Sigma, X, \Phi(X), E\right\rangle$

- L : Set of locations
- $L^{0} \subseteq L$: Set of initial locations
- Σ : Set of labels
- X : Set of clocks
- $\Phi(X)$: Set of invariants
- $E \subseteq L \times \Sigma \times \Phi(X) \times 2^{X} \times L$: Set of switches A switch $\left\langle I, a, \varphi, \lambda, I^{\prime}\right\rangle$ s.t.

Timed Automata: Formal Syntax

Timed Automaton $\left\langle L, L^{0}, \Sigma, X, \Phi(X), E\right\rangle$

- L : Set of locations
- $L^{0} \subseteq L$: Set of initial locations
- Σ : Set of labels
- X : Set of clocks
- $\Phi(X)$: Set of invariants

Timed Automata: Formal Syntax

Timed Automaton $\left\langle L, L^{0}, \Sigma, X, \Phi(X), E\right\rangle$

- L: Set of locations
- $L^{0} \subseteq L$: Set of initial locations
- Σ : Set of labels
- X : Set of clocks
- $\Phi(X)$: Set of invariants

Timed Automata: Formal Syntax

Timed Automaton $\left\langle L, L^{0}, \Sigma, X, \Phi(X), E\right\rangle$

- L: Set of locations
- $L^{0} \subseteq L$: Set of initial locations
- Σ : Set of labels
- X : Set of clocks
- $\Phi(X)$: Set of invariants

Timed Automata: Formal Syntax

Timed Automaton $\left\langle L, L^{0}, \Sigma, X, \Phi(X), E\right\rangle$

- L : Set of locations
- $L^{0} \subseteq L$: Set of initial locations
- Σ : Set of labels
- X : Set of clocks
- $\Phi(X)$: Set of invariants
- $E \subseteq L \times \Sigma \times \Phi(X) \times 2^{X} \times L$: Set of switches A switch $\left\langle I, a, \varphi, \lambda, I^{\prime}\right\rangle$ s.t.
- I: source location
- a: label
- φ : clock constraints
- $\lambda \subset X$: clocks to be reset
- $I^{\prime}:$ target location

Timed Automata: Formal Syntax

Timed Automaton $\left\langle L, L^{0}, \Sigma, X, \Phi(X), E\right\rangle$

- L : Set of locations
- $L^{0} \subseteq L$: Set of initial locations
- Σ : Set of labels
- X : Set of clocks
- $\Phi(X)$: Set of invariants
- $E \subseteq L \times \Sigma \times \Phi(X) \times 2^{X} \times L$: Set of switches A switch $\left\langle I, a, \varphi, \lambda, I^{\prime}\right\rangle$ s.t.
- I: source location
- a: label
- φ : clock constraints
- $\lambda \subseteq X$: clocks to be reset

Timed Automata: Formal Syntax

Timed Automaton $\left\langle L, L^{0}, \Sigma, X, \Phi(X), E\right\rangle$

- L : Set of locations
- $L^{0} \subseteq L$: Set of initial locations
- Σ : Set of labels
- X : Set of clocks
- $\Phi(X)$: Set of invariants
- $E \subseteq L \times \Sigma \times \Phi(X) \times 2^{X} \times L$: Set of switches A switch $\left\langle I, a, \varphi, \lambda, I^{\prime}\right\rangle$ s.t.
- I: source location
- a: label
- φ : clock constraints
- $\lambda \subseteq X$: clocks to be reset
- I^{\prime} : target location

Clock constraints and clock interpretations

- Grammar of clock constraints:

$$
\varphi::=x \leq C|x<C| x \geq C|x>C| \varphi \wedge \varphi
$$

s.t. C positive integer values.
\Longrightarrow allow only comparison of a clock with a constant

- clock interpretation:

- clock interpretation ν after δ time: $\nu+\delta$
- clock interpretation ν after reset $\lambda: \nu[\lambda]$

A state for a timed automaton is a pair
where $/$ is a location and ν is a clock inter pretation

Clock constraints and clock interpretations

- Grammar of clock constraints:

$$
\varphi::=x \leq C|x<C| x \geq C|x>C| \varphi \wedge \varphi
$$

s.t. C positive integer values.
\Longrightarrow allow only comparison of a clock with a constant

- clock interpretation: ν

$$
X=\langle x, y, z\rangle, \quad \nu=\langle 1.0,1.5,0\rangle
$$

- clock interpretation ν after δ time:
- clock interpretation ν after reset $\lambda: \nu[\lambda]$

A state for a timed automaton is a pair

where $/$ is a location and ν is a clock inter pretation

Clock constraints and clock interpretations

- Grammar of clock constraints:

$$
\varphi::=x \leq C|x<C| x \geq C|x>C| \varphi \wedge \varphi
$$

s.t. C positive integer values.
\Longrightarrow allow only comparison of a clock with a constant

- clock interpretation: ν

$$
X=\langle x, y, z\rangle, \quad \nu=\langle 1.0,1.5,0\rangle
$$

- clock interpretation ν after δ time: $\nu+\delta$

$$
\delta=0.2, \quad \nu+\delta=\langle 1.2,1.7,0.2\rangle
$$

- clock interpretation ν after reset $\lambda: \nu[\lambda]$

```
A state for a timed automaton is a pair
where I is a location and }\nu\mathrm{ is a clock inter pretation
```


Clock constraints and clock interpretations

- Grammar of clock constraints:

$$
\varphi::=x \leq C|x<C| x \geq C|x>C| \varphi \wedge \varphi
$$

s.t. C positive integer values.
\Longrightarrow allow only comparison of a clock with a constant

- clock interpretation: ν

$$
X=\langle x, y, z\rangle, \quad \nu=\langle 1.0,1.5,0\rangle
$$

- clock interpretation ν after δ time: $\nu+\delta$

$$
\delta=0.2, \quad \nu+\delta=\langle 1.2,1.7,0.2\rangle
$$

- clock interpretation ν after reset $\lambda: \nu[\lambda]$

$$
\lambda=\{y\}, \quad \nu[y:=0]=\langle 1.0,0,0\rangle
$$

A state for a timed automaton is a pair

where $/$ is a location and ν is a clock inter pretation

Clock constraints and clock interpretations

- Grammar of clock constraints:

$$
\varphi::=x \leq C|x<C| x \geq C|x>C| \varphi \wedge \varphi
$$

s.t. C positive integer values.
\Longrightarrow allow only comparison of a clock with a constant

- clock interpretation: ν

$$
X=\langle x, y, z\rangle, \quad \nu=\langle 1.0,1.5,0\rangle
$$

- clock interpretation ν after δ time: $\nu+\delta$

$$
\delta=0.2, \quad \nu+\delta=\langle 1.2,1.7,0.2\rangle
$$

- clock interpretation ν after reset $\lambda: \nu[\lambda]$

$$
\lambda=\{y\}, \quad \nu[y:=0]=\langle 1.0,0,0\rangle
$$

A state for a timed automaton is a pair $\langle I, \nu\rangle$, where $/$ is a location and ν is a clock interpretation

Remark: why integer constants in clock constraints?

The constant in clock constraints are assumed to be integer w.l.o.g.:

- if rationals, multiply them for their greatest common denominator, and change the time unit accordingly
- in practice, multiply by 10^{k} (resp 2^{k}), k being the number of precision digits (resp. bits), and change the time unit accordingly
Ex: $1.345,0.78,102.32$ seconds
$\Longrightarrow 1,345,780,102,320$ milliseconds

Example

- clocks $\{x, y\}$ can be set/reset independently
- x is reset to 0 from s_{0} to s_{1} on a
- switches b and c happen within 1 time-unit from a because of constraints in s_{1} and s_{2}
- delay between b and the following d is >2
- no explicit bounds on time difference between event $c-d$

Example

- clocks $\{x, y\}$ can be set/reset independently
- x is reset to 0 from s_{0} to s_{1} on a
- switches b and c happen within 1 time-unit from a because of constraints in s_{1} and s_{2}
- delay between b and the following d is >2
- no explicit bounds on time difference between event $c-d$

Example

- clocks $\{x, y\}$ can be set/reset independently
- x is reset to 0 from s_{0} to s_{1} on a
- switches b and c happen within 1 time-unit from a because of constraints in s_{1} and s_{2}
- delay between b and the following d is >2
- no explicit bounds on time difference between event $c-d$

Example

- clocks $\{x, y\}$ can be set/reset independently
- x is reset to 0 from s_{0} to s_{1} on a
- switches b and c happen within 1 time-unit from a because of constraints in s_{1} and s_{2}
- delay between b and the following d is >2
- no explicit bounds on time difference between event $c-d$

Example

- clocks $\{x, y\}$ can be set/reset independently
- x is reset to 0 from s_{0} to s_{1} on a
- switches b and c happen within 1 time-unit from a because of constraints in s_{1} and s_{2}
- delay between b and the following d is >2
- no explicit bounds on time difference between event $c-d$

Outline

(1) Motivations
(2) Timed systems: Modeling and Semantics

- Timed automata
- Semantics
- Combination
(3) Symbolic Reachability for Timed Systems
- Making the state space finite
- Region automata
- Zone automata
(4) Hybrid Systems: Modeling and Semantics
- Hybrid automata
(5) Symbolic Reachability for Hybrid Systems
- Multi-Rate and Rectangular Hybrid Automata
- Linear Hybrid Automata
(6) Exercises

Timed Automata: Semantics

Semantics of A defined in terms of a (infinite) transition system

$$
S_{A} \stackrel{\text { def }}{=}\left\langle Q, Q^{0}, \rightarrow, \Sigma\right\rangle
$$

- Q: $\{\langle I, \nu\rangle\}$ s.t. / location and ν clock evaluation
- $Q^{0}:\{\langle I, \nu\rangle\}$ s.t. $I \in L^{0}$ location and $\nu(X)=0$
- \rightarrow :
- state change due to location switch
- state change due to time elapse
- Σ : set of labels of $\Sigma \cup \mathbb{Q}^{+}$

State change in transition system

[^0]
State change in transition system

Time elapse

- $\langle q, 0\rangle \xrightarrow{1.2}\langle q, 1.2\rangle$
- state change due to elapse of time

State change in transition system

Time Elapse, Switch and their Concatenation

- $\langle q, 0\rangle \xrightarrow{1.2}\langle q, 1.2\rangle \xrightarrow{a}\left\langle q^{\prime}, 1.2\right\rangle$ "wait δ; switch;"

State change in transition system

Time Elapse, Switch and their Concatenation

- $\langle q, 0\rangle \xrightarrow{1.2}\langle q, 1.2\rangle \xrightarrow{a}\left\langle q^{\prime}, 1.2\right\rangle$ "wait δ; switch;"
$\Longrightarrow\langle q, 0\rangle \xrightarrow{1.2+a}\left\langle q^{\prime}, 1.2\right\rangle$ "wait δ and switch;"

Example

- Switch may be turned on whenever at least 2 time units has elapsed since last "turn off"
- Light automatically switches off after 9 time units.

Example

- Switch may be turned on whenever at least 2 time units has elapsed since last "turn off"
- Light automatically switches off after 9 time units.

Example execution

\langle off, 0, 0〉

Example

- Switch may be turned on whenever at least 2 time units has elapsed since last "turn off"
- Light automatically switches off after 9 time units.

Example execution

\langle off $, 0,0\rangle \xrightarrow{3.5}\langle$ off $, 3.5,3.5\rangle$

Example

- Switch may be turned on whenever at least 2 time units has elapsed since last "turn off"
- Light automatically switches off after 9 time units.

Example execution

\langle off $, 0,0\rangle \xrightarrow{3.5}\langle$ off, 3.5, 3.5 $\xrightarrow{\text { push }}\langle$ on, 0,0\rangle

Example

- Switch may be turned on whenever at least 2 time units has elapsed since last "turn off"
- Light automatically switches off after 9 time units.

Example execution

\langle off $, 0,0\rangle \xrightarrow{3.5}\langle$ off $, 3.5,3.5\rangle \xrightarrow{\text { push }}\langle o n, 0,0\rangle \xrightarrow{3.14}\langle o n, 3.14,3.14\rangle$

Example

- Switch may be turned on whenever at least 2 time units has elapsed since last "turn off"
- Light automatically switches off after 9 time units.

Example execution

\langle off $, 0,0\rangle \xrightarrow{3.5}\langle$ off $, 3.5,3.5\rangle \xrightarrow{\text { push }}\langle o n, 0,0\rangle \xrightarrow{3.14}\langle o n, 3.14,3.14\rangle$
$\xrightarrow{\text { push }}\langle$ on, $0,3.14\rangle$

Example

- Switch may be turned on whenever at least 2 time units has elapsed since last "turn off"
- Light automatically switches off after 9 time units.

Example execution

\langle off $, 0,0\rangle \xrightarrow{3.5}\langle$ off $, 3.5,3.5\rangle \xrightarrow{\text { push }}\langle$ on, 0,0$\rangle \xrightarrow{3.14}\langle$ on, 3.14, 3.14 \rangle
$\xrightarrow{\text { push }}\langle$ on, $0,3.14\rangle \xrightarrow{3}\langle o n, 3,6.14\rangle$

Example

- Switch may be turned on whenever at least 2 time units has elapsed since last "turn off"
- Light automatically switches off after 9 time units.

Example execution

$$
\begin{aligned}
& \langle\text { off }, 0,0\rangle \xrightarrow{3.5}\langle\text { off }, 3.5,3.5\rangle \xrightarrow{\text { push }}\langle o n, 0,0\rangle \xrightarrow{3.14}\langle o n, 3.14,3.14\rangle \\
& \xrightarrow{\text { push }}\langle\text { on, } 0,3.14\rangle \xrightarrow{3}\langle\text { on, } 3,6.14\rangle \xrightarrow{2.86}\langle o n, 5.86,9\rangle
\end{aligned}
$$

Example

- Switch may be turned on whenever at least 2 time units has elapsed since last "turn off"
- Light automatically switches off after 9 time units.

Example execution


```
\mathrm{ push}}\langle\mathrm{ on, 0,3.14\ }\xrightarrow{}{3}\langleon,3,6.14\rangle\xrightarrow{}{2.86}\langleon,5.86,9\rangle\xrightarrow{}{\mathrm{ click }}\langle\mathrm{ off, 0, 9}
```


Remark: Non-Zenoness

Beware of Zeno! (paradox)

- When the invariant is violated some edge must be enabled
- Automata should admit the possibility of time to diverge

Outline

(1) Motivations
(2) Timed systems: Modeling and Semantics

- Timed automata
- Semantics
- Combination
(3) Symbolic Reachability for Timed Systems
- Making the state space finite
- Region automata
- Zone automata
(4) Hybrid Systems: Modeling and Semantics
- Hybrid automata
(5) Symbolic Reachability for Hybrid Systems
- Multi-Rate and Rectangular Hybrid Automata
- Linear Hybrid Automata
(6) Exercises

Combination of Timed Automata

- Complex system = product of interacting systems
- Let $A_{1} \stackrel{\text { def }}{=}\left\langle L_{1}, L_{1}^{0}, \Sigma_{1}, X_{1}, \Phi_{1}\left(X_{1}\right), E_{1}\right\rangle, A_{2} \xlongequal{\text { def }}\left\langle L_{2}, L_{2}^{0}, \Sigma_{2}, X_{2}, \Phi_{2}\left(X_{2}\right), E_{2}\right\rangle$
- Product: $A_{1} \| A_{2} \stackrel{\text { def }}{=}\left\langle L_{1} \times L_{2}, L_{1}^{0} \times L_{2}^{0}, \Sigma_{1} \cup \Sigma_{2}, X_{1} \cup X_{2}, \Phi_{1}\left(X_{1}\right) \cup \Phi_{2}\left(X_{2}\right), E_{1} \| E_{2}\right\rangle$
- Transition iff:

Combination of Timed Automata

- Complex system = product of interacting systems
- Let $A_{1} \stackrel{\text { def }}{=}\left\langle L_{1}, L_{1}^{0}, \Sigma_{1}, X_{1}, \Phi_{1}\left(X_{1}\right), E_{1}\right\rangle, A_{2} \stackrel{\text { def }}{=}\left\langle L_{2}, L_{2}^{0}, \Sigma_{2}, X_{2}, \Phi_{2}\left(X_{2}\right), E_{2}\right\rangle$
- Product: $A_{1} \| A_{2} \stackrel{\text { def }}{=}\left\langle L_{1} \times L_{2}, L_{1}^{0} \times L_{2}^{0}, \Sigma_{1} \cup \Sigma_{2}, X_{1} \cup X_{2}, \Phi_{1}\left(X_{1}\right) \cup \Phi_{2}\left(X_{2}\right), E_{1}\right|\left|E_{2}\right\rangle$
- Transition iff:

Combination of Timed Automata

- Complex system = product of interacting systems
- Let $A_{1} \stackrel{\text { def }}{=}\left\langle L_{1}, L_{1}^{0}, \Sigma_{1}, X_{1}, \Phi_{1}\left(X_{1}\right), E_{1}\right\rangle, A_{2} \xlongequal{\text { def }}\left\langle L_{2}, L_{2}^{0}, \Sigma_{2}, X_{2}, \Phi_{2}\left(X_{2}\right), E_{2}\right\rangle$
- Product: $A_{1} \| A_{2} \stackrel{\text { def }}{=}\left\langle L_{1} \times L_{2}, L_{1}^{0} \times L_{2}^{0}, \Sigma_{1} \cup \Sigma_{2}, X_{1} \cup X_{2}, \Phi_{1}\left(X_{1}\right) \cup \Phi_{2}\left(X_{2}\right), E_{1} \| E_{2}\right\rangle$
- Transition iff:

Combination of Timed Automata

- Complex system = product of interacting systems
- Let $A_{1} \stackrel{\text { def }}{=}\left\langle L_{1}, L_{1}^{0}, \Sigma_{1}, X_{1}, \Phi_{1}\left(X_{1}\right), E_{1}\right\rangle, A_{2} \stackrel{\text { def }}{=}\left\langle L_{2}, L_{2}^{0}, \Sigma_{2}, X_{2}, \Phi_{2}\left(X_{2}\right), E_{2}\right\rangle$
- Product: $A_{1} \| A_{2} \stackrel{\text { def }}{=}\left\langle L_{1} \times L_{2}, L_{1}^{0} \times L_{2}^{0}, \Sigma_{1} \cup \Sigma_{2}, X_{1} \cup X_{2}, \Phi_{1}\left(X_{1}\right) \cup \Phi_{2}\left(X_{2}\right), E_{1} \| E_{2}\right\rangle$
- Transition iff:
- Label a belongs to both alphabets \Longrightarrow synchronized blocking synchronization: a-labeled switches cannot be shot alone
- Label a only in the alphabet of $A_{1} \Longrightarrow$ asynchronized
- Label a only in the alphabet of $A_{2} \Longrightarrow$ asynchronized

Combination of Timed Automata

- Complex system = product of interacting systems
- Let $A_{1} \stackrel{\text { def }}{=}\left\langle L_{1}, L_{1}^{0}, \Sigma_{1}, X_{1}, \Phi_{1}\left(X_{1}\right), E_{1}\right\rangle, A_{2} \stackrel{\text { def }}{=}\left\langle L_{2}, L_{2}^{0}, \Sigma_{2}, X_{2}, \Phi_{2}\left(X_{2}\right), E_{2}\right\rangle$
- Product: $A_{1} \| A_{2} \stackrel{\text { def }}{=}\left\langle L_{1} \times L_{2}, L_{1}^{0} \times L_{2}^{0}, \Sigma_{1} \cup \Sigma_{2}, X_{1} \cup X_{2}, \Phi_{1}\left(X_{1}\right) \cup \Phi_{2}\left(X_{2}\right), E_{1} \| E_{2}\right\rangle$
- Transition iff:
- Label a belongs to both alphabets \Longrightarrow synchronized blocking synchronization: a-labeled switches cannot be shot alone
- Label a only in the alphabet of $A_{1} \Longrightarrow$ asynchronized
- Label a only in the alphabet of $A_{2} \Longrightarrow$ asynchronized

Combination of Timed Automata

- Complex system = product of interacting systems
- Let $A_{1} \stackrel{\text { def }}{=}\left\langle L_{1}, L_{1}^{0}, \Sigma_{1}, X_{1}, \Phi_{1}\left(X_{1}\right), E_{1}\right\rangle, A_{2} \xlongequal{\text { def }}\left\langle L_{2}, L_{2}^{0}, \Sigma_{2}, X_{2}, \Phi_{2}\left(X_{2}\right), E_{2}\right\rangle$
- Product: $A_{1} \| A_{2} \stackrel{\text { def }}{=}\left\langle L_{1} \times L_{2}, L_{1}^{0} \times L_{2}^{0}, \Sigma_{1} \cup \Sigma_{2}, X_{1} \cup X_{2}, \Phi_{1}\left(X_{1}\right) \cup \Phi_{2}\left(X_{2}\right), E_{1} \| E_{2}\right\rangle$
- Transition iff:
- Label a belongs to both alphabets \Longrightarrow synchronized blocking synchronization: a-labeled switches cannot be shot alone
- Label a only in the alphabet of $A_{1} \Longrightarrow$ asynchronized
- Label a only in the alphabet of $A_{2} \Longrightarrow$ asynchronized

Combination of Timed Automata

- Complex system = product of interacting systems
- Let $A_{1} \stackrel{\text { def }}{=}\left\langle L_{1}, L_{1}^{0}, \Sigma_{1}, X_{1}, \Phi_{1}\left(X_{1}\right), E_{1}\right\rangle, A_{2} \xlongequal{\text { def }}\left\langle L_{2}, L_{2}^{0}, \Sigma_{2}, X_{2}, \Phi_{2}\left(X_{2}\right), E_{2}\right\rangle$
- Product: $A_{1} \| A_{2} \stackrel{\text { def }}{=}\left\langle L_{1} \times L_{2}, L_{1}^{0} \times L_{2}^{0}, \Sigma_{1} \cup \Sigma_{2}, X_{1} \cup X_{2}, \Phi_{1}\left(X_{1}\right) \cup \Phi_{2}\left(X_{2}\right), E_{1} \| E_{2}\right\rangle$
- Transition iff:
- Label a belongs to both alphabets \Longrightarrow synchronized blocking synchronization: a-labeled switches cannot be shot alone
- Label a only in the alphabet of $A_{1} \Longrightarrow$ asynchronized
- Label a only in the alphabet of $A_{2} \Longrightarrow$ asynchronized

Transition Product

$$
\begin{aligned}
& \Sigma_{1} \xlongequal{\text { def }}\{a, b\} \\
& \Sigma_{2} \xlongequal{\text { def }}\{a, c\}
\end{aligned}
$$

Transition Product: Example

Example: Train-gate controller [Alur CAV'99]

Desired property: $G\left(s_{2} \rightarrow t_{2}\right)$

Train-gate controller: Product

Outline

(1) Motivations
(2) Timed systems: Modeling and Semantics

- Timed automata
- Semantics
- Combination
(3) Symbolic Reachability for Timed Systems
- Making the state space finite
- Region automata
- Zone automata
(4) Hybrid Systems: Modeling and Semantics
- Hybrid automata
(5) Symbolic Reachability for Hybrid Systems
- Multi-Rate and Rectangular Hybrid Automata
- Linear Hybrid Automata
(b) Exercises

Outline

(1) Motivations
2) Timed systems: Modeling and Semantics

- Timed automata
- Semantics
- Combination
(3) Symbolic Reachability for Timed Systems
- Making the state space finite
- Region automata
- Zone automata

4 Hybrid Systems: Modeling and Semantics

- Hybrid automata
(5) Symbolic Reachability for Hybrid Systems
- Multi-Rate and Rectangular Hybrid Automata
- Linear Hybrid Automata
(6) Exercises

Reachability Analysis

- Verification of safety requirement: reachability problem
- Input: a timed automaton A and a set of target locations $L^{F} \subseteq L$
- Problem: Determining whether L^{F} is reachable in a timed automaton A
- A location $/$ of A is reachable if some state q with location component l is a reachable state of the transition system S_{A}

Timed/hybrid Systems: problem

Problem

The system S_{A} associated to A has infinitely-many states \& symbols.

- Is finite state analysis possible?
- Is reachability problem decidable?

gives rise to the infinite transition system:

Idea: Finite Partitioning

Goal

Partition the state space into finitely-many equivalence classes, so that equivalent states exhibit (bi)similar behaviors

Reachability analysis

Timed Vs Time-Abstract Relations

Idea

Infinite transition system associated with a timed/hybrid automaton A:

- S_{A} : Labels on continuous steps are delays in \mathbb{Q}^{+}
- U_{A} (time-abstract): actual delays are suppressed
\Longrightarrow all continuous steps have same label
- from "wait δ and switch" to "wait (sometime) and switch"

Time-abstract transition system U_{A}

U_{A} (time-abstract): actual delays are suppressed

- Only the change due to location switch is stated explicitly
\Longrightarrow Cuts system into finitely many labels
- U_{A} (instead of S_{A}) allows for capturing untimed properties (e.g., reachability, safety)

Time-abstract transition system U_{A}

U_{A} (time-abstract): actual delays are suppressed

- Only the change due to location switch is stated explicitly
\Longrightarrow Cuts system into finitely many labels
- U_{A} (instead of S_{A}) allows for capturing untimed properties (e.g., reachability, safety)

Example

A: ("wait δ; switch;")
$\left\langle I_{0}, 0,0\right\rangle \xrightarrow{1.2}\left\langle I_{0}, 1.2,1.2\right\rangle \xrightarrow{a}\left\langle I_{1}, 0,1.2\right\rangle \xrightarrow{0.7}\left\langle I_{1}, 0.7,1.9\right\rangle \xrightarrow{b}\left\langle I_{2}, 0.7,0\right\rangle$
S_{A} : ("wait δ and switch;")
$\left\langle I_{0}, 0,0\right\rangle \xrightarrow{1.2+a}\left\langle I_{1}, 0,1.2\right\rangle \xrightarrow{0.7+b}\left\langle I_{2}, 0.7,0\right\rangle$
U_{A} : ("wait (sometime) and switch;")
$\left\langle I_{0}, 0,0\right\rangle \xrightarrow{a}\left\langle I_{1}, 0,1.2\right\rangle \xrightarrow{b}\left\langle I_{2}, 0.7,0\right\rangle$

Stable quotients

Idea: Collapse states which are equivalent modulo "wait \& switch"

- Cut to finitely many states
- Stable equivalence relation
- Quotient of $U_{A}=$ transition system $\left[U_{A}\right]$

L^{F}-sensitive equivalence relation

All equivalent states in a class belong to either L^{F} or not L^{F}

- E.g.: states with different labels cannot be equivalent

Stable Quotient: Intuitive example

Task: plan trip from DISI to VR train station

"Take the next \#5 bus to TN train station and then the 6pm train to VR"

- Constraints:
- It is 5.18 pm
- Train to VR leaves at TN train station at 6.00pm
- it takes 3 minutes to walk from DISI to BUS stop
- Bus \#5 passes at 5.20pm or at 5.40pm
- Bus \#5 takes 15 minutes to reach TN train station
- it takes 2 minutes to walk from BUS stop to TN train station
- Time-Abstract plan $\left(U_{A}\right)$
"walk to bus stop; take 5.40 \#5 bus to TN train-station stop;
walk to train station; take the 6pm train to VR"
- Actual (implicit) plan (A):
"wait δ_{1}; walk to bus stop; wait δ_{2}; take 5.40 \#5 bus to TN train-station stop;
wait δ_{3} at bus stop; walk to train station; wait δ_{4}; take the 6 pm train to VR"
for some $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}$ s.t $\delta_{1}+\delta_{2}=19 \mathrm{~min}$ and $\delta_{3}+\delta_{4}=3 \mathrm{~min}$
- All executions with distinct values of δ_{j} are bisimilar

Stable Quotient: Intuitive example

Task: plan trip from DISI to VR train station

"Take the next \#5 bus to TN train station and then the 6pm train to VR"

- Constraints:
- It is 5.18 pm
- Train to VR leaves at TN train station at 6.00pm
- it takes 3 minutes to walk from DISI to BUS stop
- Bus \#5 passes at 5.20pm or at 5.40pm
- Bus \#5 takes 15 minutes to reach TN train station
- it takes 2 minutes to walk from BUS stop to TN train station
- Time-Abstract plan $\left(U_{A}\right)$:
"walk to bus stop; take 5.40 \#5 bus to TN train-station stop; walk to train station; take the 6pm train to VR"
- Actual (implicit) plan (A):
"wait δ_{1}; walk to bus stop; wait δ_{2}; take 5.40 \#5 bus to TN train-station stop;
wait δ_{3} at bus stop; walk to train station; wait δ_{4}; take the 6 pm train to VR"
for some $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}$ s.t $\delta_{1}+\delta_{2}=19 \mathrm{~min}$ and $\delta_{3}+\delta_{4}=3 \mathrm{~min}$
- All executions with distinct values of δ_{i} are bisimilar

Stable Quotient：Intuitive example

Task：plan trip from DISI to VR train station

＂Take the next \＃5 bus to TN train station and then the 6pm train to VR＂
－Constraints：
－It is 5.18 pm
－Train to VR leaves at TN train station at 6．00pm
－it takes 3 minutes to walk from DISI to BUS stop
－Bus \＃5 passes at 5．20pm or at 5．40pm
－Bus \＃5 takes 15 minutes to reach TN train station
－it takes 2 minutes to walk from BUS stop to TN train station
－Time－Abstract plan $\left(U_{A}\right)$ ：
＂walk to bus stop；take 5.40 \＃5 bus to TN train－station stop； walk to train station；take the 6pm train to VR＂
－Actual（implicit）plan（ A ）：
＂wait δ_{1} ；walk to bus stop；wait δ_{2} ；take 5.40 \＃5 bus to TN train－station stop； wait δ_{3} at bus stop；walk to train station；wait δ_{4} ；take the 6 pm train to VR＂ for some $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}$ s．t $\delta_{1}+\delta_{2}=19 \mathrm{~min}$ and $\delta_{3}+\delta_{4}=3 \mathrm{~min}$

Stable Quotient: Intuitive example

Task: plan trip from DISI to VR train station

"Take the next \#5 bus to TN train station and then the 6pm train to VR"

- Constraints:
- It is 5.18 pm
- Train to VR leaves at TN train station at 6.00pm
- it takes 3 minutes to walk from DISI to BUS stop
- Bus \#5 passes at 5.20pm or at 5.40pm
- Bus \#5 takes 15 minutes to reach TN train station
- it takes 2 minutes to walk from BUS stop to TN train station
- Time-Abstract plan $\left(U_{A}\right)$:
"walk to bus stop; take 5.40 \#5 bus to TN train-station stop; walk to train station; take the 6pm train to VR"
- Actual (implicit) plan (A):
"wait δ_{1}; walk to bus stop; wait δ_{2}; take 5.40 \#5 bus to TN train-station stop; wait δ_{3} at bus stop; walk to train station; wait δ_{4}; take the 6 pm train to VR"
for some $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}$ s.t $\delta_{1}+\delta_{2}=19 \mathrm{~min}$ and $\delta_{3}+\delta_{4}=3 \mathrm{~min}$
- All executions with distinct values of δ_{i} are bisimilar

Outline

(1) Motivations

2 Timed systems: Modeling and Semantics

- Timed automata
- Semantics
- Combination

3 Symbolic Reachability for Timed Systems

- Making the state space finite
- Region automata
- Zone automata

4 Hybrid Systems: Modeling and Semantics

- Hybrid automata
(5) Symbolic Reachability for Hybrid Systems
- Multi-Rate and Rectangular Hybrid Automata
- Linear Hybrid Automata
(6) Exercises

Region Equivalence over clock interpretation

Preliminary definitions \& terminology

Given a clock x :

- $\lfloor x\rfloor$ is the integral part of $x(e x:\lfloor 3.7\rfloor=3)$
- $\operatorname{fr}(\mathrm{x})$ is the fractional part of $x(\mathrm{ex}: \operatorname{fr}(3.7)=0.7)$
- C_{x} is the maximum constant occurring in clock constraints $x \bowtie C_{x}$

Region Equivalence over clock interpretation

Preliminary definitions \& terminology

Given a clock x :

- $\lfloor x\rfloor$ is the integral part of $x(e x:\lfloor 3.7\rfloor=3)$
- $\operatorname{fr}(\mathrm{x})$ is the fractional part of x (ex: $\operatorname{fr}(3.7)=0.7)$
- C_{x} is the maximum constant occurring in clock constraints $x \bowtie C_{x}$

Region Equivalence: $\nu \cong \nu^{\prime}$
Given a timed automaton \boldsymbol{A}, two clock interpretations ν, ν^{\prime} are region equivalent ($\nu \cong \nu^{\prime}$) iff all the following conditions hold:

Region Equivalence over clock interpretation

Preliminary definitions \& terminology

Given a clock x :

- $\lfloor x\rfloor$ is the integral part of $x(e x:\lfloor 3.7\rfloor=3)$
- $\operatorname{fr}(\mathrm{x})$ is the fractional part of x (ex: $\operatorname{fr}(3.7)=0.7)$
- C_{x} is the maximum constant occurring in clock constraints $x \bowtie C_{x}$

Region Equivalence: $\nu \cong \nu^{\prime}$
Given a timed automaton \boldsymbol{A}, two clock interpretations ν, ν^{\prime} are region equivalent ($\nu \cong \nu^{\prime}$) iff all the following conditions hold:
C1: For every clock x, either $\lfloor\nu(x)\rfloor=\left\lfloor\nu^{\prime}(x)\right\rfloor$ or $\lfloor\nu(x)\rfloor,\left\lfloor\nu^{\prime}(x)\right\rfloor \geq C_{x}$
C2: For every clock pair x, y s.t. $\nu(x), \nu^{\prime}(x) \leq C_{x}$ and $\nu(y), \nu^{\prime}(y) \leq C_{y}$

C3: For every clock x s.t. $\nu(x), \nu^{\prime}(x) \leq C_{x}$
$\operatorname{fr}(\nu(x))=0$ iff $f r\left(\nu^{\prime}(x)\right)=0$

Region Equivalence over clock interpretation

Preliminary definitions \& terminology

Given a clock x :

- $\lfloor x\rfloor$ is the integral part of $x(e x:\lfloor 3.7\rfloor=3)$
- $\operatorname{fr}(\mathrm{x})$ is the fractional part of x (ex: $\operatorname{fr}(3.7)=0.7)$
- C_{x} is the maximum constant occurring in clock constraints $x \bowtie C_{x}$

Region Equivalence: $\nu \cong \nu^{\prime}$
Given a timed automaton \boldsymbol{A}, two clock interpretations ν, ν^{\prime} are region equivalent ($\nu \cong \nu^{\prime}$) iff all the following conditions hold:
C1: For every clock x, either $\lfloor\nu(x)\rfloor=\left\lfloor\nu^{\prime}(x)\right\rfloor$ or $\lfloor\nu(x)\rfloor,\left\lfloor\nu^{\prime}(x)\right\rfloor \geq C_{x}$
C2: For every clock pair x, y s.t. $\nu(x), \nu^{\prime}(x) \leq C_{x}$ and $\nu(y), \nu^{\prime}(y) \leq C_{y}$, $\operatorname{fr}(\nu(\mathrm{x})) \leq \operatorname{fr}(\nu(\mathrm{y}))$ iff $\operatorname{fr}\left(\nu^{\prime}(\mathrm{x})\right) \leq \operatorname{fr}\left(\nu^{\prime}(\mathrm{y})\right)$

Region Equivalence over clock interpretation

Preliminary definitions \& terminology

Given a clock x :

- $\lfloor x\rfloor$ is the integral part of $x(e x:\lfloor 3.7\rfloor=3)$
- $\operatorname{fr}(\mathrm{x})$ is the fractional part of $x(\mathrm{ex}: \operatorname{fr}(3.7)=0.7)$
- C_{x} is the maximum constant occurring in clock constraints $x \bowtie C_{x}$

Region Equivalence: $\nu \cong \nu^{\prime}$

Given a timed automaton \boldsymbol{A}, two clock interpretations ν, ν^{\prime} are region equivalent ($\nu \cong \nu^{\prime}$) iff all the following conditions hold:
C1: For every clock x, either $\lfloor\nu(x)\rfloor=\left\lfloor\nu^{\prime}(x)\right\rfloor$ or $\lfloor\nu(x)\rfloor,\left\lfloor\nu^{\prime}(x)\right\rfloor \geq C_{x}$
C2: For every clock pair x, y s.t. $\nu(x), \nu^{\prime}(x) \leq C_{x}$ and $\nu(y), \nu^{\prime}(y) \leq C_{y}$,

$$
\operatorname{fr}(\nu(\mathrm{x})) \leq \operatorname{fr}(\nu(\mathrm{y})) \text { iff } \operatorname{fr}\left(\nu^{\prime}(\mathrm{x})\right) \leq \operatorname{fr}\left(\nu^{\prime}(\mathrm{y})\right)
$$

C3: For every clock x s.t. $\nu(x), \nu^{\prime}(x) \leq C_{x}$

$$
\operatorname{fr}(\nu(\mathrm{x}))=0 \text { iff } \operatorname{fr}\left(\nu^{\prime}(\mathrm{x})\right)=0
$$

Conditions:

C1: For every clock x, either $\lfloor\nu(x)\rfloor=\left\lfloor\nu^{\prime}(x)\right\rfloor$ or $\lfloor\nu(x)\rfloor,\left\lfloor\nu^{\prime}(x)\right\rfloor \geq C_{x}$
C2: For every clock pair x, y s.t. $\nu(x), \nu^{\prime}(x) \leq C_{x}$ and $\nu(y), \nu^{\prime}(y) \leq C_{y}$,
$\mathrm{fr}(\nu(\mathrm{x})) \leq \mathrm{fr}(\nu(\mathrm{y}))$ iff $\operatorname{fr}\left(\nu^{\prime}(\mathrm{x})\right) \leq \operatorname{fr}\left(\nu^{\prime}(\mathrm{y})\right)$
C3: For every clock x s.t. $\nu(x), \nu^{\prime}(x) \leq C_{x}, \operatorname{fr}(\nu(x))=0$ iff $\operatorname{fr}\left(\nu^{\prime}(x)\right)=0$

Conditions: C1

C1: For every clock x, either $\lfloor\nu(x)\rfloor=\left\lfloor\nu^{\prime}(x)\right\rfloor$ or $\lfloor\nu(x)\rfloor,\left\lfloor\nu^{\prime}(x)\right\rfloor \geq C_{x}$
C2: For every clock pair x, y s.t. $\nu(x), \nu^{\prime}(x) \leq C_{x}$ and $\nu(y), \nu^{\prime}(y) \leq C_{y}$,
$\operatorname{fr}(\nu(x)) \leq \operatorname{fr}(\nu(y))$ iff $f r\left(\nu^{\prime}(x)\right) \leq \operatorname{fr}\left(\nu^{\prime}(y)\right)$
33: For every clock x s.t. $\nu(x), \nu^{\prime}(x) \leq C_{x}, \operatorname{fr}\left(\nu(x)=0\right.$ iff fr $\left(\nu^{\prime}(x)\right)=0$

Conditions: $\mathrm{C} 1+\mathrm{C} 2$

C1: For every clock x, either $\lfloor\nu(x)\rfloor=\left\lfloor\nu^{\prime}(x)\right\rfloor$ or $\lfloor\nu(x)\rfloor,\left\lfloor\nu^{\prime}(x)\right\rfloor \geq C_{x}$
C2: For every clock pair x, y s.t. $\nu(x), \nu^{\prime}(x) \leq C_{x}$ and $\nu(y), \nu^{\prime}(y) \leq C_{y}$, $\operatorname{fr}(\nu(\mathrm{x})) \leq \operatorname{fr}(\nu(\mathrm{y}))$ iff $\operatorname{fr}\left(\nu^{\prime}(\mathrm{x})\right) \leq \operatorname{fr}\left(\nu^{\prime}(\mathrm{y})\right)$

[^1]Conditions: $\mathrm{C} 1+\mathrm{C} 2+\mathrm{C} 3$

C1: For every clock x, either $\lfloor\nu(x)\rfloor=\left\lfloor\nu^{\prime}(x)\right\rfloor$ or $\lfloor\nu(x)\rfloor,\left\lfloor\nu^{\prime}(x)\right\rfloor \geq C_{x}$
C2: For every clock pair x, y s.t. $\nu(x), \nu^{\prime}(x) \leq C_{x}$ and $\nu(y), \nu^{\prime}(y) \leq C_{y}$, $\operatorname{fr}(\nu(\mathrm{x})) \leq \operatorname{fr}(\nu(\mathrm{y}))$ iff $\operatorname{fr}\left(\nu^{\prime}(\mathrm{x})\right) \leq \operatorname{fr}\left(\nu^{\prime}(\mathrm{y})\right)$
C3: For every clock x s.t. $\nu(x), \nu^{\prime}(x) \leq C_{x}, \operatorname{fr}(\nu(\mathrm{x}))=0$ iff fr $\left(\nu^{\prime}(\mathrm{x})\right)=0$

Regions, intuitive idea:

Intuition: $\nu \cong \nu^{\prime}$ iff they satisfy the same set of constraints in the form

$$
x_{i}<c, x_{i}>c, x_{i}=c, x_{i}-x_{j}<c, x_{i}-x_{j}>c, x_{i}-x_{j}=c
$$

s.t. $c \leq C_{x_{i}}$

Region Operations

Properties of Regions

- The region equivalence relation \cong is a time-abstract bisimulation:
- Action transitions: if $\nu \cong \mu$ and $\langle I, \nu\rangle \xrightarrow{a}\left\langle I^{\prime}, \nu^{\prime}\right\rangle$ for some I^{\prime}, ν^{\prime}, then there exists μ^{\prime} s.t. $\nu^{\prime} \cong \mu^{\prime}$ and $\langle I, \mu\rangle \xrightarrow{a}\left\langle I^{\prime}, \mu^{\prime}\right\rangle$
- Wait transitions: if $\nu \cong \mu$,
then for every $\delta \in \mathbb{Q}^{+}$there exists $\delta^{\prime} \in \mathbb{Q}^{+}$s.t. $\nu+\delta \cong \mu+\delta^{\prime}$

Properties of Regions

- The region equivalence relation \cong is a time-abstract bisimulation:
- Action transitions: if $\nu \cong \mu$ and $\langle I, \nu\rangle \xrightarrow{a}\left\langle I^{\prime}, \nu^{\prime}\right\rangle$ for some I^{\prime}, ν^{\prime}, then there exists μ^{\prime} s.t. $\nu^{\prime} \cong \mu^{\prime}$ and $\langle I, \mu\rangle \xrightarrow{a}\left\langle I^{\prime}, \mu^{\prime}\right\rangle$
- Wait transitions: if $\nu \cong \mu$, then for every $\delta \in \mathbb{Q}^{+}$there exists $\delta^{\prime} \in \mathbb{Q}^{+}$s.t. $\nu+\delta \cong \mu+\delta^{\prime}$

Properties of Regions

- The region equivalence relation \cong is a time-abstract bisimulation:
- Action transitions: if $\nu \cong \mu$ and $\langle I, \nu\rangle \xrightarrow{a}\left\langle I^{\prime}, \nu^{\prime}\right\rangle$ for some I^{\prime}, ν^{\prime}, then there exists μ^{\prime} s.t. $\nu^{\prime} \cong \mu^{\prime}$ and $\langle I, \mu\rangle \xrightarrow{a}\left\langle I^{\prime}, \mu^{\prime}\right\rangle$
- Wait transitions: if $\nu \cong \mu$, then for every $\delta \in \mathbb{Q}^{+}$there exists $\delta^{\prime} \in \mathbb{Q}^{+}$s.t. $\nu+\delta \cong \mu+\delta^{\prime}$

Properties of Regions

- The region equivalence relation \cong is a time-abstract bisimulation:
- Action transitions: if $\nu \cong \mu$ and $\langle I, \nu\rangle \xrightarrow{a}\left\langle I^{\prime}, \nu^{\prime}\right\rangle$ for some I^{\prime}, ν^{\prime}, then there exists μ^{\prime} s.t. $\nu^{\prime} \cong \mu^{\prime}$ and $\langle I, \mu\rangle \xrightarrow{a}\left\langle I^{\prime}, \mu^{\prime}\right\rangle$
- Wait transitions: if $\nu \cong \mu$, then for every $\delta \in \mathbb{Q}^{+}$there exists $\delta^{\prime} \in \mathbb{Q}^{+}$s.t. $\nu+\delta \cong \mu+\delta^{\prime}$
\Longrightarrow If $\nu \cong \mu$, then $\langle I, \nu\rangle$ and $\langle I, \mu\rangle$ satisfy the same temporal-logic formulas

Time-abstract Bisimulation in Regions

Number of Clock Regions

- Clock region: equivalence class of clock interpretations
- Number of clock regions upper-bounded by

$$
k!\cdot 2^{k} \cdot \Pi_{x \in X}\left(2 \cdot C_{x}+2\right), \text { s.t. } k \stackrel{\text { def }}{=}\|X\|
$$

- finite!
- exponential in the number of clocks
- grows with the values of C_{x}
- typically quite pessimistic
- 2 clocks x,y, $C_{x}=2, C_{y}=1$
- 8 open regions
- 14 open line segments
- 6 corner points

28 regions

Number of Clock Regions

- Clock region: equivalence class of clock interpretations
- Number of clock regions upper-bounded by

$$
k!\cdot 2^{k} \cdot \Pi_{x \in X}\left(2 \cdot C_{x}+2\right), \text { s.t. } k \stackrel{\text { def }}{=}\|X\|
$$

- finite!
- exponential in the number of clocks
- grows with the values of C_{x}
- typically quite pessimistic

Example

- 2 clocks $\mathrm{x}, \mathrm{y}, C_{x}=2, C_{y}=1$
- 8 open regions
- 14 open line segments
- 6 corner points
$\Longrightarrow 28$ regions

$$
<2 \cdot 2^{2} \cdot(2 \cdot 2+2) \cdot(2 \cdot 1+2)=192
$$

Region automaton

- Equivalent states $=$ identical location $+\cong$-equivalent evaluations
- Equivalent Classes (regions): finite, stable, L^{F}-sensitive
- $R(A)$: Region automaton of A
- States: $\langle I, r(A)\rangle$ s.t. $r(A)$ regions of A
\rightarrow Finite state automaton:
- Reachability problem $\left\langle A, L^{F}\right\rangle \Longrightarrow$ Reachability problem $\left\langle R(A), L^{F}\right\rangle$

Reachability in timed automata reduced to that in finite automata!

Region automaton

- Equivalent states $=$ identical location $+\cong$-equivalent evaluations
- Equivalent Classes (regions): finite, stable, L^{F}-sensitive
- $R(A)$: Region automaton of A
- States: $\langle I, r(A)\rangle$ s.t. $r(A)$ regions of A
- Reachability problem $\left\langle A, L^{F}\right\rangle \Longrightarrow$ Reachability problem $\left\langle R(A), L^{F}\right\rangle$ Reachability in timed automata reduced to that in finite automata!

Region automaton

- Equivalent states $=$ identical location $+\cong$-equivalent evaluations
- Equivalent Classes (regions): finite, stable, L^{F}-sensitive
- $R(A)$: Region automaton of A
- States: $\langle I, r(A)\rangle$ s.t. $r(A)$ regions of A
\Longrightarrow Finite state automaton!
- Reachability problem $\left\langle A, L^{F}\right\rangle \Longrightarrow$ Reachability problem $\left\langle R(A), L^{F}\right\rangle$ Reachability in timed automata reduced to that in finite automata!

Region automaton

- Equivalent states $=$ identical location $+\cong$-equivalent evaluations
- Equivalent Classes (regions): finite, stable, L^{F}-sensitive
- $R(A)$: Region automaton of A
- States: $\langle I, r(A)\rangle$ s.t. $r(A)$ regions of A
\Longrightarrow Finite state automaton!
- Reachability problem $\left\langle A, L^{F}\right\rangle \Longrightarrow$ Reachability problem $\left\langle R(A), L^{F}\right\rangle$

Reachability in timed automata reduced to that in finite automata!

Region automaton

- Equivalent states $=$ identical location $+\cong$-equivalent evaluations
- Equivalent Classes (regions): finite, stable, L^{F}-sensitive
- $R(A)$: Region automaton of A
- States: $\langle I, r(A)\rangle$ s.t. $r(A)$ regions of A
\Longrightarrow Finite state automaton!
- Reachability problem $\left\langle A, L^{F}\right\rangle \Longrightarrow$ Reachability problem $\left\langle R(A), L^{F}\right\rangle$
\Longrightarrow Reachability in timed automata reduced to that in finite automata!

Example: Region graph of a simple timed automata

Example: Region graph of a simple timed automata

May be further reduced (e.g., collapsing B, C, D into one state)

Complexity of Reasoning with Timed Automata

Reachability in Timed Automata

- Decidable!
- Linear with number of locations
- Exponential in the number of clocks
- Grows with the values of C_{x}
- Overall, PSPACE-Complete

Language-containment with Timed Automata

Undecidable!

Complexity of Reasoning with Timed Automata

```
Reachability in Timed Automata
    - Decidable!
    - Linear with number of locations
    - Exponential in the number of clocks
    - Grows with the values of Cx
    - Overall, PSPACE-Complete
```

Language-containment with Timed Automata
Undecidable!

Outline

(1) Motivations
(2) Timed systems: Modeling and Semantics

- Timed automata
- Semantics
- Combination

3 Symbolic Reachability for Timed Systems

- Making the state space finite
- Region automata
- Zone automata
(4) Hybrid Systems: Modeling and Semantics
- Hybrid automata
(5) Symbolic Reachability for Hybrid Systems
- Multi-Rate and Rectangular Hybrid Automata
- Linear Hybrid Automata
(b) Exercises

Zone Automata

- Collapse regions by convex unions of clock regions
- Clock Zone φ : set/conjunction of clock constraints in the form $\left(x_{i} \bowtie c\right),\left(x_{i}-x_{j} \bowtie c\right)$, $\bowtie \in\{>,<,=, \geq, \leq\}, c \in \mathbb{Z}$
- φ is a convex set in the k -dimensional euclidean space
- possibly unbounded

Contains all possible relationship for all clock value in a set

- Symbolic state: $\langle I, \varphi\rangle$
- I: location
- φ : clock zone

Zone Automata

- Collapse regions by convex unions of clock regions
- Clock Zone φ : set/conjunction of clock constraints in the form $\left(x_{i} \bowtie c\right),\left(x_{i}-x_{j} \bowtie c\right)$, $\bowtie \in\{>,<,=, \geq, \leq\}, c \in \mathbb{Z}$
- φ is a convex set in the k-dimensional euclidean space
- possibly unbounded

Contains all nossible relationship for all clock value in a set

- Symbolic state: 〈
- I: location
- φ : clock zone

Zone Automata

- Collapse regions by convex unions of clock regions
- Clock Zone φ : set/conjunction of clock constraints in the form $\left(x_{i} \bowtie c\right),\left(x_{i}-x_{j} \bowtie c\right)$, $\bowtie \in\{>,<,=, \geq, \leq\}, c \in \mathbb{Z}$
- φ is a convex set in the k -dimensional euclidean space
- possibly unbounded

Contains all possible relationship for all clock value in a set

- Symbolic state: 〈l
- I: location
- φ : clock zone

Zone Automata

- Collapse regions by convex unions of clock regions
- Clock Zone φ : set/conjunction of clock constraints in the form $\left(x_{i} \bowtie c\right),\left(x_{i}-x_{j} \bowtie c\right)$, $\bowtie \in\{>,<,=, \geq, \leq\}, c \in \mathbb{Z}$
- φ is a convex set in the k -dimensional euclidean space
- possibly unbounded
\Longrightarrow Contains all possible relationship for all clock value in a set
- I: location
- φ : clock zone

Zone Automata

- Collapse regions by convex unions of clock regions
- Clock Zone φ : set/conjunction of clock constraints in the form $\left(x_{i} \bowtie c\right),\left(x_{i}-x_{j} \bowtie c\right)$, $\bowtie \in\{>,<,=, \geq, \leq\}, c \in \mathbb{Z}$
- φ is a convex set in the k-dimensional euclidean space
- possibly unbounded
\Longrightarrow Contains all possible relationship for all clock value in a set
- Symbolic state: $\langle I, \varphi\rangle$
- I: location
- φ : clock zone

Zone Automata

Definition: Zone Automaton

- Given a Timed Automaton $A \stackrel{\text { def }}{=}\left\langle L, L^{0}, \Sigma, X, \Phi(X), E\right\rangle$, the Zone Automaton $\mathrm{Z}(\mathrm{A})$ is a transition system $\left\langle Q, Q^{0}, \Sigma, \rightarrow\right\rangle$ s.t.
- Q : set of all symbolic states of A (a symbolic state is $\langle I, \varphi\rangle)$
- $Q^{0} \stackrel{\text { def }}{=}\left\{\langle I,[X:=0]\rangle \mid I \in L^{0}\right\}$
- Σ : set of labels/events in A
- \rightarrow : set of "wait\&switch" symbolic transitions, in the form: $\langle 1, \varphi\rangle \xrightarrow{a}\langle/ /, \operatorname{succ}(\varphi, e)\rangle$ $\operatorname{succ}(\varphi, e)$: successor of φ after (waiting and) executing the switch $e \stackrel{\text { del }}{=}\left\langle I, a, \psi, \lambda, l^{\prime}\right\rangle$

[^2]
Zone Automata

Definition: Zone Automaton

- Given a Timed Automaton $A \stackrel{\text { def }}{=}\left\langle L, L^{0}, \Sigma, X, \Phi(X), E\right\rangle$, the Zone Automaton $Z(A)$ is a transition system $\left\langle Q, Q^{0}, \Sigma, \rightarrow\right\rangle$ s.t.
- Q : set of all symbolic states of A (a symbolic state is $\langle I, \varphi\rangle$)
- $Q^{0}=\left\{\langle I,[X:=0]\rangle \mid I \in L^{0}\right\}$
- \rightarrow : set of "wait\&switch" symbolic transitions, in the form: $\langle I, \varphi\rangle \xrightarrow{a}\left\langle I^{\prime}, \operatorname{succ}(\varphi, e)\right\rangle$ $\operatorname{succ}(\varphi, e)$: successor of φ after (waiting and) executing the switch $e \stackrel{\text { def }}{=}\left\langle I, a, \psi, \lambda, I^{\prime}\right\rangle$

[^3]
Zone Automata

Definition: Zone Automaton

- Given a Timed Automaton $A \stackrel{\text { def }}{=}\left\langle L, L^{0}, \Sigma, X, \Phi(X), E\right\rangle$, the Zone Automaton $Z(A)$ is a transition system $\left\langle Q, Q^{0}, \Sigma, \rightarrow\right\rangle$ s.t.
- Q : set of all symbolic states of A (a symbolic state is $\langle I, \varphi\rangle$)
- $Q^{0} \stackrel{\text { def }}{=}\left\{\langle I,[X:=0]\rangle \mid I \in L^{0}\right\}$
- Σ : set of labels/events in A
\rightarrow : set of "wait\&switch" symbolic transitions, in the form: $\langle I, \varphi\rangle \xrightarrow{a}\langle I$ ', $\operatorname{succ}(\varphi, e)\rangle$
$\operatorname{succ}(\varphi, e)$: successor of φ after (waiting and) executing the switch $e \stackrel{\text { def }}{=}\left\langle I, a, \psi, \lambda, I^{\prime}\right\rangle$
- $\operatorname{succ}(l l, \phi\rangle, e) \stackrel{\text { def }}{=}\left\langle l^{\prime}, \operatorname{succ}(, p, e)\right\rangle$

Zone Automata

Definition: Zone Automaton

- Given a Timed Automaton $A \stackrel{\text { def }}{=}\left\langle L, L^{0}, \Sigma, X, \Phi(X), E\right\rangle$, the Zone Automaton $Z(A)$ is a transition system $\left\langle Q, Q^{0}, \Sigma, \rightarrow\right\rangle$ s.t.
- Q : set of all symbolic states of A (a symbolic state is $\langle I, \varphi\rangle$)
- $Q^{0} \stackrel{\text { def }}{=}\left\{\langle I,[X:=0]\rangle \mid I \in L^{0}\right\}$
- Σ : set of labels/events in A
\bullet : set of "wait\&switch" symbolic transitions, in the form: $\langle I, \varphi\rangle \xrightarrow{a}\langle I$ ', $\operatorname{succ}(\varphi, e)\rangle$ $\operatorname{succ}(\varphi, e)$: successor of φ after (waiting and) executing the switch $e \stackrel{\text { def }}{=}\left\langle I, a, \psi, \lambda, I^{\prime}\right\rangle$

[^4]
Zone Automata

Definition: Zone Automaton

- Given a Timed Automaton $A \stackrel{\text { def }}{=}\left\langle L, L^{0}, \Sigma, X, \Phi(X), E\right\rangle$, the Zone Automaton $Z(A)$ is a transition system $\left\langle Q, Q^{0}, \Sigma, \rightarrow\right\rangle$ s.t.
- Q : set of all symbolic states of A (a symbolic state is $\langle I, \varphi\rangle$)
- $Q^{0} \stackrel{\text { def }}{=}\left\{\langle I,[X:=0]\rangle \mid I \in L^{0}\right\}$
- Σ : set of labels/events in A
- \rightarrow : set of "wait\&switch" symbolic transitions, in the form: $\langle I, \varphi\rangle \xrightarrow{a}\langle I$ ', succ $(\varphi, e)\rangle$ $\operatorname{succ}(\varphi, e)$: successor of φ after (waiting and) executing the switch $e \stackrel{\text { def }}{=}\left\langle I, a, \psi, \lambda, I^{\prime}\right\rangle$

[^5]
Zone Automata

Definition: Zone Automaton

- Given a Timed Automaton $A \stackrel{\text { def }}{=}\left\langle L, L^{0}, \Sigma, X, \Phi(X), E\right\rangle$, the Zone Automaton $Z(A)$ is a transition system $\left\langle Q, Q^{0}, \Sigma, \rightarrow\right\rangle$ s.t.
- Q : set of all symbolic states of A (a symbolic state is $\langle I, \varphi\rangle$)
- $Q^{0} \stackrel{\text { def }}{=}\left\{\langle I,[X:=0]\rangle \mid I \in L^{0}\right\}$
- Σ : set of labels/events in A
- \rightarrow : set of "wait\&switch" symbolic transitions, in the form: $\langle I, \varphi\rangle \xrightarrow{a}\langle I$ ', succ $(\varphi, e)\rangle$ $\operatorname{succ}(\varphi, e)$: successor of φ after (waiting and) executing the switch $e \stackrel{\text { def }}{=}\left\langle I, a, \psi, \lambda, I^{\prime}\right\rangle$
- $\operatorname{succ}(\langle I, \varphi\rangle, e) \stackrel{\text { def }}{=}\left\langle I^{\prime}, \operatorname{succ}(\varphi, e)\right\rangle$

Zone Automata: Symbolic Transitions

Definition: $\operatorname{succ}(\varphi, e)$

- Let $e \stackrel{\text { def }}{=}\left\langle I, a, \psi, \lambda, I^{\prime}\right\rangle$, and ϕ, ϕ^{\prime} the invariants in I, I^{\prime}
- Then

$$
\operatorname{succ}(\varphi, e) \stackrel{\text { det }}{=}(((\varphi \wedge \phi) \Uparrow \wedge \phi) \wedge \psi)[\lambda:=0]
$$

- \wedge : standard conjunction/intersection
- \Uparrow : projection to infinity: $\psi \Uparrow \stackrel{\text { def }}{=}\{\nu+\delta \mid \nu \in \psi, \delta \in[0,+\infty)\}$
- $[\lambda:=0]$: reset projection: $\psi[\lambda:=0] \stackrel{\text { def }}{=}\{\nu[\lambda:=0] \mid \nu \in \psi\}$
- note: φ is considered "immediately before entering l "

Zone Automata: Symbolic Transitions (cont.)

- Initial zone: values before entering the location
- Intersection with invariant ϕ : values allowed to enter the location
- Projection to infinity: values allowed to enter the location, after waiting unbounded time
- Intersection with invariant ϕ : values allowed to enter the location, after waiting a legal amount of time
- Intersection with guard ψ : values allowed to enter the location, after waiting a legal amount of time, from which the switch can be shoi
- Reset projection λ : values ..., after reset

$$
\operatorname{succ}(\varphi, \boldsymbol{e}) \stackrel{\text { det }}{=}(((\varphi \wedge \phi) \uparrow \wedge \phi) \wedge \psi)[\lambda:=0]
$$

Zone Automata: Symbolic Transitions (cont.)

- Initial zone: values before entering the location
- Intersection with invariant ϕ : values allowed to enter the location
- Projection to infinity: values allowed to enter the location, after waiting unbounded time
- Intersection with invariant ϕ : values allowed to enter the location, after waiting a legal amount of time
- Intersection with guard ψ : values allowed to enter the location. after waiting a legal amount of time, from which the switch can be
shot
- Reset projection λ : values ..., after reset

Zone Automata: Symbolic Transitions (cont.)

- Initial zone: values before entering the location
- Intersection with invariant ϕ
- Projection to infinity: values allowed to enter the location, after waiting unbounded time
- Intersection with invariant ϕ : values allowed to enter the location, after waiting a legal amount of time
- Intersection with guard ψ : values allowed to enter the location, after waiting a legal amount of time, from which the switch can be shoi
- Reset projection λ : values ..., after reset

$$
\operatorname{succ}(\varphi, \boldsymbol{e}) \stackrel{\text { det }}{=}(((\varphi \wedge \phi) \Uparrow \wedge \phi) \wedge \psi)[\lambda:=0]
$$

Zone Automata: Symbolic Transitions (cont.)

- Initial zone: values before entering the location
- Intersection with invariant ϕ : values allowed to enter the location
- Projection to infinity: values allowed to enter the location, after waiting unbounded time
- Intersection with invariant ϕ : values allowed to enter the location, after waiting a legal amount of time
- Intersection with guard ψ : values allowed to enter the location, after waiting a legal amount of time, from which the switch can be shoi
- Reset projection λ : values ..., after reset

$$
\operatorname{succ}(\varphi, \boldsymbol{e}) \stackrel{\text { det }}{=}(((\varphi \wedge \phi) \uparrow \wedge \phi) \wedge \psi)[\lambda:=0]
$$

Zone Automata: Symbolic Transitions (cont.)

- Initial zone: values before entering the location
- Intersection with invariant ϕ : values allowed to enter the location
- Projection to infinity: values allowed to enter the location, after waiting unbounded time
- Intersection with invariant ϕ : values allowed to enter the location, after waiting a legal amount of time
- Intersection with guard ψ : values allowed to enter the location, after waiting a legal amount of time, from which the switch can be shot
- Reset projection λ : values ..., after reset

$$
\operatorname{succ}(\varphi, \boldsymbol{e}) \stackrel{\text { det }}{=}(((\varphi \wedge \phi) \Uparrow \wedge \phi) \wedge \psi)[\lambda:=0]
$$

Zone Automata: Symbolic Transitions (cont.)

- Initial zone: values before entering the location
- Intersection with invariant ϕ : values allowed to enter the location
- Projection to infinity: values allowed to enter the location, after waiting unbounded time
- Intersection with invariant ϕ
- Intersection with guard ψ : values allowed to enter the location, after waiting a legal amount of time, from which the switch can be shoi
- Reset projection λ : values ..., after reset

$$
\operatorname{succ}(\varphi, \boldsymbol{e}) \stackrel{\text { det }}{=}(((\varphi \wedge \phi) \Uparrow \wedge \phi) \wedge \psi)[\lambda:=0]
$$

Zone Automata: Symbolic Transitions (cont.)

- Initial zone: values before entering the location
- Intersection with invariant ϕ : values allowed to enter the location
- Projection to infinity: values allowed to enter the location, after waiting unbounded time
- Intersection with invariant ϕ : values allowed to enter the location, after waiting a legal amount of time
- Intersection with guard ψ : values allowed to enter the location, after waiting a legal amount of time, from which the switch can be shot
- Reset projection λ : values ..., after reset

$$
\operatorname{succ}(\varphi, e) \stackrel{\text { def }}{=}(((\varphi \wedge \phi) \Uparrow \wedge \phi) \wedge \psi)[\lambda:=0]
$$

Zone Automata: Symbolic Transitions (cont.)

- Initial zone: values before entering the location
- Intersection with invariant ϕ : values allowed to enter the location
- Projection to infinity: values allowed to enter the location, after waiting unbounded time
- Intersection with invariant ϕ : values allowed to enter the location, after waiting a legal amount of time
- Intersection with guard ψ
- Reset projection λ : values ..., after reset

$$
\operatorname{succ}(\varphi, e) \stackrel{\text { det }}{=}(((\varphi \wedge \phi) \Uparrow \wedge \phi) \wedge \psi)[\lambda:=0]
$$

Zone Automata: Symbolic Transitions (cont.)

- Initial zone: values before entering the location
- Intersection with invariant ϕ : values allowed to enter the location
- Projection to infinity: values allowed to enter the location, after waiting unbounded time
- Intersection with invariant ϕ : values allowed to enter the location, after waiting a legal amount of time
- Intersection with guard ψ : values allowed to enter the location, after waiting a legal amount of time, from which the switch can be shot
- Reset projection λ : values ..., after reset

$$
\operatorname{succ}(\varphi, e) \stackrel{\text { def }}{=}(((\varphi \wedge \phi) \Uparrow \wedge \phi) \wedge \psi)[\lambda:=0]
$$

Zone Automata: Symbolic Transitions (cont.)

- Initial zone: values before entering the location
- Intersection with invariant ϕ : values allowed to enter the location
- Projection to infinity: values allowed to enter the location, after waiting unbounded time
- Intersection with invariant ϕ : values allowed to enter the location, after waiting a legal amount of time
- Intersection with guard ψ : values allowed to enter the location, after waiting a legal amount of time, from which the switch can be shot
- Reset projection λ

$$
\operatorname{succ}(\varphi, e) \stackrel{a(d)}{=}(((\varphi \wedge \phi) \Uparrow \wedge \phi) \wedge \psi)[\lambda:=0]
$$

Zone Automata: Symbolic Transitions (cont.)

- Initial zone: values before entering the location
- Intersection with invariant ϕ : values allowed to enter the location
- Projection to infinity: values allowed to enter the location, after waiting unbounded time
- Intersection with invariant ϕ : values allowed to enter the location, after waiting a legal amount of time
- Intersection with guard ψ : values allowed to enter the location, after waiting a legal amount of time, from which the switch can be shot
- Reset projection λ : values ..., after reset

$$
\operatorname{succ}(\varphi, e) \stackrel{\cos }{=}(((\varphi \wedge \phi) \Uparrow \wedge \phi) \wedge \psi)[\lambda:=0]
$$

Zone Automata: Symbolic Transitions (cont.)

- Initial zone: values before entering the location
- Intersection with invariant ϕ : values allowed to enter the location
- Projection to infinity: values allowed to enter the location, after waiting unbounded time
- Intersection with invariant ϕ : values allowed to enter the location, after waiting a legal amount of time
- Intersection with guard ψ : values allowed to enter the location, after waiting a legal amount of time, from which the switch can be shot
- Reset projection λ : values ..., after reset
\Longrightarrow Final!

$$
\operatorname{succ}(\varphi, e) \stackrel{a(d)}{=}(((\varphi \wedge \phi) \Uparrow \wedge \phi) \wedge \psi)[\lambda:=0]
$$

Example: Zone Automata, Symbolic Transitions

Initial zone: $(x \geq 0) \wedge(x \leq 2) \wedge$
$(y \geq 0) \wedge(y \leq 3) \wedge(y-x \geq-1) \wedge(y-x \leq 2)$

- Intersection with invariant $\alpha \cdot(y \geq 1) \wedge(v \leq 5)$
- Projection to infinity:
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$
- Intersection with guard $\psi:(y \geq 4)$

- Reset projection $\lambda \stackrel{\text { def }}{=}\{y:=0\}$

Example: Zone Automata, Symbolic Transitions

- Initial zone: $(x \geq 0) \wedge(x \leq 2) \wedge$
$(y \geq 0) \wedge(y \leq 3) \wedge(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$
- Projection to infinity:
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$

- Reset projection $\lambda \stackrel{\text { def }}{=}\{y:=0\}$

Example: Zone Automata, Symbolic Transitions

- Initial zone: $(x \geq 0) \wedge(x \leq 2) \wedge$
$(y \geq 0) \wedge(y \leq 3) \wedge(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$
- Projection to infinity:
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$

- Reset projection $\lambda \stackrel{\text { def }}{=}\{y:=0\}$

Example: Zone Automata, Symbolic Transitions

- Initial zone: $(x \geq 0) \wedge(x \leq 2) \wedge$
$(y \geq 0) \wedge(y \leq 3) \wedge(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$
$\Longrightarrow(x \geq 0) \wedge(x \leq 2) \wedge(y \geq 1) \wedge$
$(y \leq 3) \wedge(y-x \leq 2)$
- Projection to infinity:
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$

- Reset projection $\lambda \stackrel{\text { def }}{=}\{y:=0\}$

Example: Zone Automata, Symbolic Transitions

- Initial zone: $(x \geq 0) \wedge(x \leq 2) \wedge$
$(y \geq 0) \wedge(y \leq 3) \wedge(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$
$\Longrightarrow(x \geq 0) \wedge(x \leq 2) \wedge(y \geq 1) \wedge$
$(y \leq 3) \wedge(y-x \leq 2)$
- Projection to infinity:
$\Longrightarrow(x \geq 0) \wedge(y \geq 1) \wedge$
$(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$

- Reset projection $\lambda \stackrel{\text { def }}{=}\{y:=0\}$

Example: Zone Automata, Symbolic Transitions

- Initial zone: $(x \geq 0) \wedge(x \leq 2) \wedge$
$(y \geq 0) \wedge(y \leq 3) \wedge(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$
$\Longrightarrow(x \geq 0) \wedge(x \leq 2) \wedge(y \geq 1) \wedge$
$(y \leq 3) \wedge(y-x \leq 2)$
- Projection to infinity:
$\Longrightarrow(x \geq 0) \wedge(y \geq 1) \wedge$
$(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$
- Intersection with guard ψ : $(y \geq 4)$

- Reset projection $\lambda \stackrel{\text { def }}{=}\{y:=0\}$

Example: Zone Automata, Symbolic Transitions

- Initial zone: $(x \geq 0) \wedge(x \leq 2) \wedge$
$(y \geq 0) \wedge(y \leq 3) \wedge(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$
$\Longrightarrow(x \geq 0) \wedge(x \leq 2) \wedge(y \geq 1) \wedge$
$(y \leq 3) \wedge(y-x \leq 2)$
- Projection to infinity:
$\Longrightarrow(x \geq 0) \wedge(y \geq 1) \wedge$
$(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$
$\Longrightarrow(x \geq 0) \wedge(y \geq 1) \wedge(y \leq 5) \wedge$
$(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with guard ψ : $(y \geq 4)$

- Reset projection $\lambda \stackrel{\text { def }}{=}\{y:=0\}$

Example: Zone Automata, Symbolic Transitions

- Initial zone: $(x \geq 0) \wedge(x \leq 2) \wedge$
$(y \geq 0) \wedge(y \leq 3) \wedge(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$
$\Longrightarrow(x \geq 0) \wedge(x \leq 2) \wedge(y \geq 1) \wedge$
$(y \leq 3) \wedge(y-x \leq 2)$
- Projection to infinity:
$\Longrightarrow(x \geq 0) \wedge(y \geq 1) \wedge$
$(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$
$\Longrightarrow(x \geq 0) \wedge(y \geq 1) \wedge(y \leq 5) \wedge$
$(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with guard $\psi:(y \geq 4)$

- Reset projection $\lambda \stackrel{\text { def }}{=}\{y:=0\}$

Example: Zone Automata, Symbolic Transitions

- Initial zone: $(x \geq 0) \wedge(x \leq 2) \wedge$
$(y \geq 0) \wedge(y \leq 3) \wedge(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$
$\Longrightarrow(x \geq 0) \wedge(x \leq 2) \wedge(y \geq 1) \wedge$
$(y \leq 3) \wedge(y-x \leq 2)$
- Projection to infinity:
$\Longrightarrow(x \geq 0) \wedge(y \geq 1) \wedge$
$(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$
$\Longrightarrow(x \geq 0) \wedge(y \geq 1) \wedge(y \leq 5) \wedge$
$(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with guard ψ : $(y \geq 4)$
$\Longrightarrow(y \geq 4) \wedge(y \leq 5) \wedge$
$(y-x \geq-1) \wedge(y-x \leq 2)$

- Reset projection $\lambda \stackrel{\text { def }}{=}\{y:=0\}$

Example: Zone Automata, Symbolic Transitions

- Initial zone: $(x \geq 0) \wedge(x \leq 2) \wedge$
$(y \geq 0) \wedge(y \leq 3) \wedge(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$
$\Longrightarrow(x \geq 0) \wedge(x \leq 2) \wedge(y \geq 1) \wedge$
$(y \leq 3) \wedge(y-x \leq 2)$
- Projection to infinity:
$\Longrightarrow(x \geq 0) \wedge(y \geq 1) \wedge$
$(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$
$\Longrightarrow(x \geq 0) \wedge(y \geq 1) \wedge(y \leq 5) \wedge$
$(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with guard $\psi:(y \geq 4)$
$\Longrightarrow(y \geq 4) \wedge(y \leq 5) \wedge$
$(y-x \geq-1) \wedge(y-x \leq 2)$

- Reset projection $\lambda \stackrel{\text { def }}{=}\{y:=0\}$

$$
0) \wedge(y \leq 0)
$$

Example: Zone Automata, Symbolic Transitions

- Initial zone: $(x \geq 0) \wedge(x \leq 2) \wedge$

$$
(y \geq 0) \wedge(y \leq 3) \wedge(y-x \geq-1) \wedge(y-x \leq 2)
$$

- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$
$\Longrightarrow(x \geq 0) \wedge(x \leq 2) \wedge(y \geq 1) \wedge$
$(y \leq 3) \wedge(y-x \leq 2)$
- Projection to infinity:
$\Longrightarrow(x \geq 0) \wedge(y \geq 1) \wedge$
$(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$
$\Longrightarrow(x \geq 0) \wedge(y \geq 1) \wedge(y \leq 5) \wedge$
$(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with guard ψ : $(y \geq 4)$
$\Longrightarrow(y \geq 4) \wedge(y \leq 5) \wedge$
$(y-x \geq-1) \wedge(y-x \leq 2)$

- Reset projection $\lambda \stackrel{\text { def }}{=}\{y:=0\}$
$\Longrightarrow(x \geq 2) \wedge(x \leq 6) \wedge(y \geq 0) \wedge(y \leq 0)$

Example: Zone Automata, Symbolic Transitions

- Initial zone: $(x \geq 0) \wedge(x \leq 2) \wedge$
$(y \geq 0) \wedge(y \leq 3) \wedge(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$
$\Longrightarrow(x \geq 0) \wedge(x \leq 2) \wedge(y \geq 1) \wedge$
$(y \leq 3) \wedge(y-x \leq 2)$
- Projection to infinity:
$\Longrightarrow(x \geq 0) \wedge(y \geq 1) \wedge$
$(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with invariant $\phi:(y \geq 1) \wedge(y \leq 5)$
$\Longrightarrow(x \geq 0) \wedge(y \geq 1) \wedge(y \leq 5) \wedge$
$(y-x \geq-1) \wedge(y-x \leq 2)$
- Intersection with guard $\psi:(y \geq 4)$
$\Longrightarrow(y \geq 4) \wedge(y \leq 5) \wedge$
$(y-x \geq-1) \wedge(y-x \leq 2)$

- Reset projection $\lambda \stackrel{\text { def }}{=}\{y:=0\}$
$\Longrightarrow(x \geq 2) \wedge(x \leq 6) \wedge(y \geq 0) \wedge(y \leq 0)$
\Longrightarrow Final!

Remark on $\operatorname{succ}(\varphi, e)$

- In the above definition of $\operatorname{succ}(\varphi, e), \varphi$ is considered "immediately before entering l":

$$
\operatorname{succ}(\varphi, e) \stackrel{\text { def }}{=}(((\varphi \wedge \phi) \Uparrow \wedge \phi) \wedge \psi)[\lambda:=0]
$$

- Alternative definition of $\operatorname{succ}(\varphi, e), \varphi$ is considered "immediately after entering I": $\operatorname{succ}(\varphi, e) \stackrel{\text { def }}{=}\left(((\varphi \Uparrow \wedge \phi) \wedge \psi)[\lambda:=0] \wedge \phi^{\prime}\right)$
- no initial intersection with the invariant ϕ of source location /
(here φ is assumed to be already the result of such intersection)
- final intersection with the invariant ϕ^{\prime} of target location l^{\prime}

Remark on $\operatorname{succ}(\varphi, e)$

- In the above definition of $\operatorname{succ}(\varphi, e), \varphi$ is considered "immediately before entering l":

$$
\operatorname{succ}(\varphi, e) \stackrel{\text { det }}{=}(((\varphi \wedge \phi) \Uparrow \wedge \phi) \wedge \psi)[\lambda:=0]
$$

- Alternative definition of $\operatorname{succ}(\varphi, e), \varphi$ is considered "immediately after entering l":

$$
\operatorname{succ}(\varphi, e) \stackrel{\text { def }}{=}\left(((\varphi \Uparrow \wedge \phi) \wedge \psi)[\lambda:=0] \wedge \phi^{\prime}\right)
$$

- no initial intersection with the invariant ϕ of source location / (here φ is assumed to be already the result of such intersection)
- final intersection with the invariant ϕ^{\prime} of target location I^{\prime}

Symbolic Reachability Analysis

```
    function Reachable (A, L'F) // A \stackrel{\mathrm{ def }}{=}\langleL,\mp@subsup{L}{}{0},\Sigma,X,\Phi(X),E\rangle
    2: Reachable = \emptyset
    3: Frontier = {\II,{X=0}\rangle||}\mp@subsup{I}{i}{}\in\mp@subsup{L}{}{0}
4: while (Frontier }\not=\emptyset\mathrm{ ) do
5: extract }\langleI,\varphi\rangle\mathrm{ from Frontier
6: if (I\inLF}\mathrm{ and }\varphi\not=\perp)\mathrm{ then
        return True
        end if
        if (\not\exists\langleI, \varphi'\rangle\in Reachable s.t. \varphi\subseteq \varphi') then
        add }\langleI,\varphi\rangle\mathrm{ to Reachable
        for e \in outcoming(I) do
                add \operatorname{succ}(\varphi,e) to Frontier
            end for
        end if
15: end while
16: return False
```


Canonical Data-structures for Zones: DBMs

Difference-bound Matrices (DBMs)

- Matrix representation of constraints
- bounds on a single clock
- differences between 2 clocks
- Reduced form computed by all-pairs shortest path algorithm (e.g. Floyd-Warshall)
- Reduced DBM is canonical: equivalent sets of constraints produce the same reduced DBM
- Operations s.a reset, time-successor, inclusion, intersection are efficient
\Longrightarrow Popular choice in timed-automata-based tools

Difference-bound matrices, DBMs

- DBM: matrix $(k+1) \times(k+1), k$ being the number of clocks
- added an implicit fake variable $x_{0} \xlongequal{\text { def }} 0$ s.t. $x_{i} \bowtie c \Longrightarrow x_{i}-x_{0} \bowtie c$
- each element is a pair (value, $\{0,1\}$), s.t " $\{0,1\}$ " means " $\{<, \leq\}$ "

Difference-bound matrices, DBMs

- DBM: matrix $(k+1) \times(k+1), k$ being the number of clocks
- added an implicit fake variable $x_{0} \xlongequal{\text { def }} 0$ s.t. $x_{i} \bowtie c \Longrightarrow x_{i}-x_{0} \bowtie c$
- each element is a pair (value, $\{0,1\}$), s.t " $\{0,1\}$ " means " $\{<, \leq\}$ "

Example:

$$
\left(0 \leq x_{1}\right) \quad \wedge\left(0<x_{2}\right) \quad \wedge\left(x_{1}<2\right) \quad \wedge\left(x_{2}<1\right) \quad \wedge\left(x_{1}-x_{2} \geq 0\right)
$$

Difference-bound matrices, DBMs

- DBM: matrix $(k+1) \times(k+1), k$ being the number of clocks
- added an implicit fake variable $x_{0} \xlongequal{\text { def }} 0$ s.t. $x_{i} \bowtie c \Longrightarrow x_{i}-x_{0} \bowtie c$
- each element is a pair (value, $\{0,1\}$), s.t " $\{0,1\}$ " means " $\{<, \leq\}$ "

Example:

$$
\begin{array}{lllll}
\left(0 \leq x_{1}\right) & \wedge\left(0<x_{2}\right) & \wedge\left(x_{1}<2\right) & \wedge\left(x_{2}<1\right) & \wedge\left(x_{1}-x_{2} \geq 0\right) \\
\left(x_{0}-x_{1} \leq 0\right) & \wedge\left(x_{0}-x_{2}<0\right) & \wedge\left(x_{1}-x_{0}<2\right) & \wedge\left(x_{2}-x_{0}<1\right) & \wedge\left(x_{2}-x_{1} \leq 0\right)
\end{array}
$$

Difference-bound matrices, DBMs

- DBM: matrix $(k+1) \times(k+1), k$ being the number of clocks
- added an implicit fake variable $x_{0} \xlongequal{\text { def }} 0$ s.t. $x_{i} \bowtie c \Longrightarrow x_{i}-x_{0} \bowtie c$
- each element is a pair (value, $\{0,1\}$), s.t " $\{0,1\}$ " means " $\{<, \leq\}$ "

Example:

$$
\begin{array}{lllll}
\left(0 \leq x_{1}\right) & \wedge\left(0<x_{2}\right) & \wedge\left(x_{1}<2\right) & \wedge\left(x_{2}<1\right) & \wedge\left(x_{1}-x_{2} \geq 0\right) \\
\left(x_{0}-x_{1} \leq 0\right) & \wedge\left(x_{0}-x_{2}<0\right) & \wedge\left(x_{1}-x_{0}<2\right) & \wedge\left(x_{2}-x_{0}<1\right) & \wedge\left(x_{2}-x_{1} \leq 0\right)
\end{array}
$$

$D_{0 i}=$ lower bound
$D_{i 0}=$ upper bound
$D_{i j}=$ upper bound of x_{i} and x_{j}
difference
$\cdot \mathrm{i}, \mathrm{j}:(c, 1) \rightarrow \underline{\mathrm{Xi}-\mathrm{Xj}} \leq c$
$\bullet \mathrm{i}, \mathrm{j}:(c, 0) \rightarrow \underline{\mathrm{Xi}-\mathrm{X}_{\mathrm{j}}}<c$
$\cdot \mathrm{i}, \mathrm{j}: \infty \rightarrow$ absence of bound

Difference-bound matrices, DBMs (cont.)

- Use all-pairs shortest paths, check DBM
- Add $x_{i}-x_{i} \leq 0$ for each i
- Idea: given $x_{i}-x_{j} \bowtie c, x_{i}-x_{k} \bowtie c_{1}$ and $x_{k}-x_{j} \bowtie c_{2}$ s.t. $\bowtie \in\{\leq,<\}$, then c is updated with $c_{1}+c_{2}$ if $c_{1}+c_{2}<c$
- Satisfiable (no negative loops) \Longrightarrow a non-empty clock zone
- Canonical: matrices with tightest possible constraints
- Canonical DBMs represent clock zones:
equivalent sets of constraints \Longleftrightarrow same reduced DBM

Matrix D			Matrix D^{\prime}		
0	1	2	0	1	2
0	∞	$(0,1)$	$(0,0)$	$(0,1)$	$(0,1)$
1	$(0,0)$				
1	$(2,0)$	∞	∞	$(2,0)$	$(0,1)$
2	$(2,0)$				
	$1,0)$	$(0,1)$	∞	$(1,0)$	$(0,1)$

Canonical Data-structures for Zones: DBMs

When are two sets of constraints equivalent?

D1 | $x<=1$ |
| :--- |
| $y-x<=2$ |
| $z-y<=2$ |
| $z<=9$ |

Graph

Shortest
Path
Closure

D2

$x<=1$
$y-x<=2$
$y<=3$
$z-y<=2$
$z<=7$

Complexity Issues

- In theory:
- Zone automaton might be exponentially bigger than the region automaton
- In practice:
- Fewer reachable vertices \Longrightarrow performances much improved

Timed Automata: summary

- Only continuous variables are timers
- Invariants and Guards: $x \bowtie$ const, $\bowtie \in\{<,>, \leq, \geq\}$
- Actions: $\mathrm{x}:=0$
- Reachability is decidable
- Clustering of regions into zones desirable in practice
- Tools: Uppaal, Kronos, RED ...
- Symbolic representation: matrices

Decidable Problems with Timed Automata

- Model checking branching-time properties of timed automata
- Reachability in rectangular automata
- Timed bisimilarity: are two given timed automata bisimilar?
- Optimization: Compute shortest paths (e.g. minimum time reachability) in timed automata with costs on locations and edges
- Controller synthesis: Computing winning strategies in timed automata with controllable and uncontrollable transitions

Outline

(1) Motivations
(2) Timed systems: Modeling and Semantics

- Timed automata
- Semantics
- Combination
(3) Symbolic Reachability for Timed Systems
- Making the state space finite
- Region automata
- Zone automata

4 Hybrid Systems: Modeling and Semantics

- Hybrid automata
(5) Symbolic Reachability for Hybrid Systems
- Multi-Rate and Rectangular Hybrid Automata
- Linear Hybrid Automata
(6) Exercises

Hybrid Systems

Hybrid (Dynamical) System

- A dynamical system that exhibits both continuous and discrete dynamic behavior
\Longrightarrow Can both:
- flow (described by differential equations) and
- jump (described by a state machine or automaton).
- Mostly used to model Cyber-Physical Systems (CPSs)
- a physical (chemical, biological...) mechanism is controlled by computer-based algorithms
- physical and software components are deeply intertwined
- Most popular formalism: Hybrid Automata and variants

Hybrid Systems

Hybrid (Dynamical) System

- A dynamical system that exhibits both continuous and discrete dynamic behavior
\Longrightarrow Can both:
- flow (described by differential equations) and
- jump (described by a state machine or automaton).
- Mostly used to model Cyber-Physical Systems (CPSs)
- a physical (chemical, biological...) mechanism is controlled by computer-based algorithms
- physical and software components are deeply intertwined
- Most popular formalism: Hybrid Automata and variants

Hybrid Systems

Hybrid (Dynamical) System

- A dynamical system that exhibits both continuous and discrete dynamic behavior
\Longrightarrow Can both:
- flow (described by differential equations) and
- jump (described by a state machine or automaton).
- Mostly used to model Cyber-Physical Systems (CPSs)
- a physical (chemical, biological...) mechanism is controlled by computer-based algorithms
- physical and software components are deeply intertwined
- Most popular formalism: Hybrid Automata and variants

Hybrid Sysmem: Example

Outline

(1) Motivations
2) Timed systems: Modeling and Semantics

- Timed automata
- Semantics
- Combination
(3) Symbolic Reachability for Timed Systems
- Making the state space finite
- Region automata
- Zone automata

4 Hybrid Systems: Modeling and Semantics

- Hybrid automata
(5) Symbolic Reachability for Hybrid Systems
- Multi-Rate and Rectangular Hybrid Automata
- Linear Hybrid Automata
(6) Exercises

Hybrid Automata

- Locations, Switches, Labels (like in standard aut.)
- Continuous variables:
- value evolves with time
- e.g., distance, speed, pres sure, temperature,
- Guards: $g(X) \geq 0$
- sets of inequalities (equalities) on functions on X
- constrain the execution of the switch
- Jump Transformations $J\left(X, X^{\prime}\right)$
- discrete transformation on the values of X

Invariants: $X \in \operatorname{In} v_{l}(X)$

- set of invariant constraints on X
- ensure progress
- Continuous Flow: $\frac{d X}{d t} \in$ flowi $_{i}(X)$
- set of degree-1 differential (in)equalities
- describe continuous dynamics
- Initial: $X \in \operatorname{Init} /(X)$
- initial conditions ($\operatorname{Init},(X)=\perp$ iff $\left./ \notin L^{0}\right)$

Hybrid Automata

- Locations, Switches, Labels (like in standard aut.)
- Continuous variables: $X \stackrel{\text { def }}{=}\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \in \mathbb{R}$
- value evolves with time
- e.g., distance, speed, pressure, temperature, ...
- Guards: $g(X) \geq 0$
- sets of inequalities (equalities) on functions on X
- constrain the execution of the switch
- Jump Transformations $J\left(X, X^{\prime}\right)$
- discrete transformation on the values of X
- Invariants: $X \in \operatorname{In} v_{l}(X)$
- set of invariant constraints on X
- ensure progress
- Continuous Flow: $\frac{d X}{d t} \in$ flow $_{l}(X)$
- set of degree-1 differential (in)equalities
- describe continuous dynamics
- Initial: $X \in \operatorname{Init}(X)$
- initial conditions ($\operatorname{Init}_{I}(X)=\perp$ iff $I \notin L^{0}$)

Hybrid Automata

- Locations, Switches, Labels (like in standard aut.)
- Continuous variables: $X \stackrel{\text { def }}{=}\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \in \mathbb{R}$
- value evolves with time
- e.g., distance, speed, pressure, temperature, ...
- Guards: $g(X) \geq 0$
- sets of inequalities (equalities) on functions on X
- constrain the execution of the switch
- Jump Transformations $J\left(X, X^{\prime}\right)$

- discrete transformation on the values of X

Invariants: $X \in \operatorname{In} v_{l}(X)$

- set of invariant constraints on X
- ensure progress

Continuous Flow:

- set of degree-1 differential (in)equalities
- describe continuous dynamics
- Initial: $X \in \operatorname{Init}_{1}(X)$
- initial conditions ($\operatorname{Init} /(X)=\perp$ iff $/ \notin L^{0}$)

Hybrid Automata

- Locations, Switches, Labels (like in standard aut.)
- Continuous variables: $X \stackrel{\text { def }}{=}\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \in \mathbb{R}$
- value evolves with time
- e.g., distance, speed, pressure, temperature, ...
- Guards: $g(X) \geq 0$
- sets of inequalities (equalities) on functions on X
- constrain the execution of the switch
- Jump Transformations $J\left(X, X^{\prime}\right)$
- discrete transformation on the values of X
- Invariants: $X \in \operatorname{In} v_{1}(X)$
- set of invariant constraints on X
- ensure progress
- Continuous Flow: $\frac{d^{x}}{d t} \in$ flow $_{i}(X)$
- set of degree-1 differential (in)equalities
- describe continuous dynamics
- Initial: $X \in \ln t_{1}(X)$
- initial conditions (Init $_{\prime}(X)=\perp$ iff $I \notin L^{0}$)

Hybrid Automata

- Locations, Switches, Labels (like in standard aut.)
- Continuous variables: $X \stackrel{\text { det }}{=}\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \in \mathbb{R}$
- value evolves with time
- e.g., distance, speed, pressure, temperature, ...
- Guards: $g(X) \geq 0$
- sets of inequalities (equalities) on functions on X
- constrain the execution of the switch
- Jump Transformations $J\left(X, X^{\prime}\right)$
- discrete transformation on the values of X
- Invariants: $X \in \ln v_{l}(X)$
- set of invariant constraints on X
- ensure progress
- Continuous Flow: $\frac{d X}{d t} \in$ flow $_{i}(X)$
- set of degree-1 differential (in)equalities
- describe continuous dynamics
- Initial: $X \in \ln i_{1}(X)$
- initial conditions ($\operatorname{lnit} /(X)=\perp$ iff $\left.I \notin L^{0}\right)$

Hybrid Automata

- Locations, Switches, Labels (like in standard aut.)
- Continuous variables: $X \stackrel{\text { def }}{=}\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \in \mathbb{R}$
- value evolves with time
- e.g., distance, speed, pressure, temperature, ...
- Guards: $g(X) \geq 0$
- sets of inequalities (equalities) on functions on X
- constrain the execution of the switch
- Jump Transformations $J\left(X, X^{\prime}\right)$
- discrete transformation on the values of X
- Invariants: $X \in \operatorname{Inv} v_{l}(X)$
- set of invariant constraints on X
- ensure progress
- Continuous Flow: $\frac{d X}{d t} \in$ flow $_{l}(X)$
- set of degree-1 differential (in)equalities
- describe continuous dynamics
- Initial: $X \in \operatorname{Init}(X)$
- initial conditions (Init, $(X)=\perp$ iff $I \notin L^{0}$)

Hybrid Automata

- Locations, Switches, Labels (like in standard aut.)
- Continuous variables: $X \stackrel{\text { det }}{=}\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \in \mathbb{R}$
- value evolves with time
- e.g., distance, speed, pressure, temperature, ...
- Guards: $g(X) \geq 0$
- sets of inequalities (equalities) on functions on X
- constrain the execution of the switch
- Jump Transformations $J\left(X, X^{\prime}\right)$
- discrete transformation on the values of X
- Invariants: $X \in \operatorname{Inv}(X)$
- set of invariant constraints on X
- ensure progress
- Continuous Flow: $\frac{d X}{d t} \in$ flow $_{l}(X)$
- set of degree-1 differential (in)equalities
- describe continuous dynamics
- Initial: $X \in \operatorname{Init} /(X)$
- initial conditions ($\operatorname{Init}(X)=\perp$ iff $\left.I \notin L^{0}\right)$

Hybrid Automata $A=\left\langle L, L^{0}, X, \Sigma, \Phi(X), E\right\rangle$

- L : Set of locations,
- $L^{0} \in L$: Set of initial locations (s.t. Init/ $(X)=\perp$ iff $I \notin L_{0}$)
- X : Set of k continuous variables
- $\Phi(X)$: Set of Constraints on X
- Σ : Set of synchronization labels (alphabet)
- E : Set of edges
- State space: $L \times \mathbb{R}^{k}$
- state: $\langle I, \psi\rangle$ s.t. $I \in L$ and $\psi \in \mathbb{R}^{k}$
- region ψ : subset of \mathbb{R}^{k}
- For each location I:
- Initial states: region $I_{n i t}(X)$
- Invariant: region $\operatorname{In} v_{l}(X)$
- Continuous dynamics: $\frac{\text { ax }}{d t} \in$ flow $_{1}(X)$
- For each edge e from location / to location /'
- Guard: region $g(X) \geq 0$
- Update relation "Jump" $J\left(X, X^{\prime}\right)$ over $\mathbb{R}^{k} \times \mathbb{R}^{k}$
- Synchronization label $a \in \Sigma$ (communication information)

Hybrid Automata $A=\left\langle L, L^{0}, X, \Sigma, \Phi(X), E\right\rangle$

- L: Set of locations,
- $L^{0} \in L$: Set of initial locations (s.t. Init $(X)=\perp$ iff $I \notin L_{0}$)
- X : Set of k continuous variables
- $\Phi(X)$: Set of Constraints on X
- Σ : Set of synchronization labels (alphabet)
- E : Set of edges
- State space: $L \times \mathbb{R}^{k}$,
- state: $\langle I, \psi\rangle$ s.t. $I \in L$ and $\psi \in \mathbb{R}^{k}$
- region ψ : subset of \mathbb{R}^{k}
- For each location I:
- Initial states: region Init/ (X)
- Invariant: region $\operatorname{In} v_{l}(X)$
- Continuous dynamics: $\frac{d X}{d t} \in$ flow $_{i}(X)$
- For each edge e from location / to location I^{\prime}
- Guard: region $g(X) \geq 0$
- Update relation "Jump" $J\left(X, X^{\prime}\right)$ over $\mathbb{R}^{k} \times \mathbb{R}^{k}$
- Synchronization label $a \in \Sigma$ (communication information)

Hybrid Automata $A=\left\langle L, L^{0}, X, \Sigma, \Phi(X), E\right\rangle$

- L: Set of locations,
- $L^{0} \in L$: Set of initial locations (s.t. Init/ $(X)=\perp$ iff $I \notin L_{0}$)
- X : Set of k continuous variables
- $\Phi(X)$: Set of Constraints on X
- Σ : Set of synchronization labels (alphabet)
- E : Set of edges
- State space: $L \times \mathbb{R}^{k}$,
- state: $\langle I, \psi\rangle$ s.t. $I \in L$ and $\psi \in \mathbb{R}^{k}$
- region ψ : subset of \mathbb{R}^{k}
- For each location I:
- Initial states: region $\operatorname{Init}_{l}(X)$
- Invariant: region $\operatorname{Inv}_{l}(X)$
- Continuous dynamics: $\frac{d X}{d t} \in$ flow $_{l}(X)$
- For each edge e from location / to location /'
- Guard: region $g(X) \geq 0$
- Update relation "Jump" $J\left(X, X^{\prime}\right)$ over $\mathbb{R}^{k} \times \mathbb{R}^{k}$
- Synchronization label $a \in \Sigma$ (communication information)

Hybrid Automata $A=\left\langle L, L^{0}, X, \Sigma, \Phi(X), E\right\rangle$

- L: Set of locations,
- $L^{0} \in L$: Set of initial locations (s.t. $\operatorname{Init}_{l}(X)=\perp$ iff $I \notin L_{0}$)
- X : Set of k continuous variables
- $\Phi(X)$: Set of Constraints on X
- Σ : Set of synchronization labels (alphabet)
- E : Set of edges
- State space: $L \times \mathbb{R}^{k}$,
- state: $\langle I, \psi\rangle$ s.t. $I \in L$ and $\psi \in \mathbb{R}^{k}$
- region ψ : subset of \mathbb{R}^{k}
- For each location I:
- Initial states: region $\operatorname{Init}_{l}(X)$
- Invariant: region $\operatorname{Inv}_{l}(X)$
- Continuous dynamics: $\frac{d X}{d t} \in$ flow $_{l}(X)$
- For each edge e from location $/$ to location $/{ }^{\prime}$
- Guard: region $g(X) \geq 0$
- Update relation "Jump" $J\left(X, X^{\prime}\right)$ over $\mathbb{R}^{k} \times \mathbb{R}^{k}$
- Synchronization label $a \in \Sigma$ (communication information)

Remark: Degree of $f_{l o w_{l}}(X)$

- Continuous dynamics described w.l.o.g. with sets of degree-1 differential (in)equalities flow $_{l}(X)$
- Sets/conjunctions of higher-degree differential (in)equalities can be reduced to degree 1 by renaming
- Ex:

$$
\begin{gathered}
\left(a_{1} \frac{d^{2} s}{d t^{2}}+a_{2} \frac{d s}{d t}+a_{3} s+a_{4} \bowtie 0\right) \\
\Downarrow \\
\left(v=\frac{d s}{d t}\right) \wedge\left(a_{1} \frac{d v}{d t}+a_{2} v+a_{3} s+a_{4} \bowtie 0\right)
\end{gathered}
$$

(Finite) Executions of Hybrid Automata

- State: pair $\langle I, X\rangle$ such that $X \in \operatorname{Inv}(X)$
- Initialization: $\langle I, X\rangle$ such that $X \in \operatorname{Init}(X)$
- Two types of state updates (transitions)

(Finite) Executions of Hybrid Automata

- State: pair $\langle I, X\rangle$ such that $X \in \operatorname{Inv}(X)$
- Initialization: $\langle I, X\rangle$ such that $X \in \operatorname{Init} t_{/}(X)$
- Two types of state updates (transitions)

(Finite) Executions of Hybrid Automata

- State: pair $\langle I, X\rangle$ such that $X \in \operatorname{Inv} v_{I}(X)$
- Initialization: $\langle I, X\rangle$ such that $X \in \operatorname{Init} I_{l}(X)$
- Two types of state updates (transitions)
- Discrete switches
if there there is an a-labeled edge e from $/$ to I^{\prime} s.t.
- Continuous flows:
$f(t) \stackrel{\text { def }}{=}\left\langle f_{0}(t), \ldots, f_{k}(t)\right\rangle:[0, \delta] \longmapsto \mathbb{R}^{k}$ is a continuous function s.t.

(Finite) Executions of Hybrid Automata

- State: pair $\langle I, X\rangle$ such that $X \in \operatorname{Inv} v_{I}(X)$
- Initialization: $\langle I, X\rangle$ such that $X \in \operatorname{Init} t_{(}(X)$
- Two types of state updates (transitions)
- Discrete switches: $\langle I, X\rangle \xrightarrow{a}\left\langle I^{\prime}, X^{\prime}\right\rangle$ if there there is an a-labeled edge e from $/$ to $/$ ' s.t.
- X, X^{\prime} satisfy $\ln v_{l}(X)$ and $\operatorname{Inv} v_{l}(X)$ respectively
- X satisfies the guard of e (i.e. $g(X) \geq 0$) and
- $\left\langle X, X^{\prime}\right\rangle$ satisfies the jump condition of e (i.e.,
- Continuous flows:
$f(t) \stackrel{\text { def }}{=}\left\langle f_{0}(t), \ldots, f_{k}(t)\right\rangle:[0, \delta] \longmapsto \mathbb{R}^{k}$ is a continuous function s.t.

(Finite) Executions of Hybrid Automata

- State: pair $\langle I, X\rangle$ such that $X \in \operatorname{Inv} v_{I}(X)$
- Initialization: $\langle I, X\rangle$ such that $X \in \operatorname{Init} I_{/}(X)$
- Two types of state updates (transitions)
- Discrete switches: $\langle I, X\rangle \xrightarrow{a}\left\langle I^{\prime}, X^{\prime}\right\rangle$ if there there is an a-labeled edge e from $/$ to $l \prime$ s.t.
- X, X^{\prime} satisfy $\operatorname{Inv}_{l}(X)$ and $\operatorname{Inv} v_{l^{\prime}}(X)$ respectively
- X satisfies the guard of e (i.e. $g(X) \geq 0$) and
- $\left\langle X, X^{\prime}\right\rangle$ satisfies the jump condition of e (i.e.,
- Continuous flows:
$f(t) \stackrel{\text { def }}{=}\left\langle f_{0}(t) \ldots, f_{k}(t)\right\rangle:[0, \delta] \longmapsto \mathbb{R}^{k}$ is a continuous function s.t.

(Finite) Executions of Hybrid Automata

- State: pair $\langle I, X\rangle$ such that $X \in \operatorname{Inv} v_{I}(X)$
- Initialization: $\langle I, X\rangle$ such that $X \in \operatorname{Init} I_{/}(X)$
- Two types of state updates (transitions)
- Discrete switches: $\langle I, X\rangle \xrightarrow{a}\left\langle I^{\prime}, X^{\prime}\right\rangle$
if there there is an a-labeled edge e from $/$ to l ' s.t.
- X, X^{\prime} satisfy $\operatorname{In} v_{l}(X)$ and $\operatorname{In} v_{l^{\prime}}(X)$ respectively
- X satisfies the guard of e (i.e. $g(X) \geq 0$) and
- Continuous flows:
$f(t) \stackrel{\text { def }}{=}\left\langle f_{0}(t), \ldots, f_{k}(t)\right\rangle:[0, \delta] \longmapsto \mathbb{R}^{k}$ is a continuous function s.t.

(Finite) Executions of Hybrid Automata

- State: pair $\langle I, X\rangle$ such that $X \in \operatorname{Inv} v_{I}(X)$
- Initialization: $\langle I, X\rangle$ such that $X \in \operatorname{Init} I_{/}(X)$
- Two types of state updates (transitions)
- Discrete switches: $\langle I, X\rangle \xrightarrow{a}\left\langle I^{\prime}, X^{\prime}\right\rangle$
if there there is an a-labeled edge e from $/$ to l ' s.t.
- X, X^{\prime} satisfy $\operatorname{Inv}_{l}(X)$ and $\operatorname{Inv}_{l^{\prime \prime}}(X)$ respectively
- X satisfies the guard of e (i.e. $g(X) \geq 0$) and
- $\left\langle X, X^{\prime}\right\rangle$ satisfies the jump condition of e (i.e., $\left\langle X, X^{\prime}\right\rangle \in J\left(X, X^{\prime}\right)$)
- Continuous flows: $f(t) \stackrel{\text { def }}{=}\left\langle f_{0}(t), \ldots, f_{k}(t)\right\rangle:[0, \delta] \longmapsto \mathbb{R}^{k}$ is a continuous function s.t.

(Finite) Executions of Hybrid Automata

- State: pair $\langle I, X\rangle$ such that $X \in \operatorname{Inv} v_{I}(X)$
- Initialization: $\langle I, X\rangle$ such that $X \in \operatorname{Init} I_{/}(X)$
- Two types of state updates (transitions)
- Discrete switches: $\langle I, X\rangle \xrightarrow{a}\left\langle I^{\prime}, X^{\prime}\right\rangle$
if there there is an a-labeled edge e from $/$ to $/$ ' s.t.
- X, X^{\prime} satisfy $\operatorname{Inv}_{l}(X)$ and $\operatorname{Inv}_{l^{\prime \prime}}(X)$ respectively
- X satisfies the guard of e (i.e. $g(X) \geq 0$) and
- $\left\langle X, X^{\prime}\right\rangle$ satisfies the jump condition of e (i.e., $\left\langle X, X^{\prime}\right\rangle \in J\left(X, X^{\prime}\right)$)
- Continuous flows: $\langle I, X\rangle \xrightarrow{t}\left\langle I, X^{\prime}\right\rangle$ $f(t) \stackrel{\text { def }}{=}\left\langle f_{0}(t), \ldots, f_{k}(t)\right\rangle:[0, \delta] \longmapsto \mathbb{R}^{k}$ is a continuous function s.t.

(Finite) Executions of Hybrid Automata

- State: pair $\langle I, X\rangle$ such that $X \in \operatorname{Inv} v_{I}(X)$
- Initialization: $\langle I, X\rangle$ such that $X \in \operatorname{Init} I_{/}(X)$
- Two types of state updates (transitions)
- Discrete switches: $\langle I, X\rangle \xrightarrow{a}\left\langle I^{\prime}, X^{\prime}\right\rangle$
if there there is an a-labeled edge e from $/$ to $/$ ' s.t.
- X, X^{\prime} satisfy $\operatorname{Inv}_{l}(X)$ and $\operatorname{Inv}_{l^{\prime \prime}}(X)$ respectively
- X satisfies the guard of e (i.e. $g(X) \geq 0$) and
- $\left\langle X, X^{\prime}\right\rangle$ satisfies the jump condition of e (i.e., $\left\langle X, X^{\prime}\right\rangle \in J\left(X, X^{\prime}\right)$)
- Continuous flows: $\langle I, X\rangle \xrightarrow{f}\left\langle I, X^{\prime}\right\rangle$ $f(t) \stackrel{\text { def }}{=}\left\langle f_{0}(t), \ldots, f_{k}(t)\right\rangle:[0, \delta] \longmapsto \mathbb{R}^{k}$ is a continuous function s.t.
- $f(0)=X$
- for every $t \in[0, \delta], f(t) \in \operatorname{Inv}(X)$
- for every t

(Finite) Executions of Hybrid Automata

- State: pair $\langle I, X\rangle$ such that $X \in \operatorname{Inv} v_{I}(X)$
- Initialization: $\langle I, X\rangle$ such that $X \in \operatorname{Init} I_{/}(X)$
- Two types of state updates (transitions)
- Discrete switches: $\langle I, X\rangle \xrightarrow{a}\left\langle I^{\prime}, X^{\prime}\right\rangle$
if there there is an a-labeled edge e from $/$ to $/$ ' s.t.
- X, X^{\prime} satisfy $\operatorname{Inv}_{l}(X)$ and $\operatorname{Inv}_{l^{\prime \prime}}(X)$ respectively
- X satisfies the guard of e (i.e. $g(X) \geq 0$) and
- $\left\langle X, X^{\prime}\right\rangle$ satisfies the jump condition of e (i.e., $\left\langle X, X^{\prime}\right\rangle \in J\left(X, X^{\prime}\right)$)
- Continuous flows: $\langle I, X\rangle \xrightarrow{f}\left\langle I, X^{\prime}\right\rangle$ $f(t) \stackrel{\text { def }}{=}\left\langle f_{0}(t), \ldots, f_{k}(t)\right\rangle:[0, \delta] \longmapsto \mathbb{R}^{k}$ is a continuous function s.t.
- $f(0)=X$
- $f(\delta)=X^{\prime}$
- for every t

0
$\ln v_{1}(X)$
flow $_{1}(X)$

(Finite) Executions of Hybrid Automata

- State: pair $\langle I, X\rangle$ such that $X \in \operatorname{Inv} v_{I}(X)$
- Initialization: $\langle I, X\rangle$ such that $X \in \operatorname{Init} I_{/}(X)$
- Two types of state updates (transitions)
- Discrete switches: $\langle I, X\rangle \xrightarrow{a}\left\langle I^{\prime}, X^{\prime}\right\rangle$
if there there is an a-labeled edge e from $/$ to $/$ ' s.t.
- X, X^{\prime} satisfy $\operatorname{Inv}_{l}(X)$ and $\operatorname{Inv}_{l^{\prime \prime}}(X)$ respectively
- X satisfies the guard of e (i.e. $g(X) \geq 0$) and
- $\left\langle X, X^{\prime}\right\rangle$ satisfies the jump condition of e (i.e., $\left\langle X, X^{\prime}\right\rangle \in J\left(X, X^{\prime}\right)$)
- Continuous flows: $\langle I, X\rangle \xrightarrow{f}\left\langle I, X^{\prime}\right\rangle$
$f(t) \stackrel{\text { def }}{=}\left\langle f_{0}(t), \ldots, f_{k}(t)\right\rangle:[0, \delta] \longmapsto \mathbb{R}^{k}$ is a continuous function s.t.
- $f(0)=X$
- $f(\delta)=X^{\prime}$
- for every $t \in[0, \delta], f(t) \in \operatorname{Inv}_{l}(X)$

(Finite) Executions of Hybrid Automata

- State: pair $\langle I, X\rangle$ such that $X \in \operatorname{Inv} v_{I}(X)$
- Initialization: $\langle I, X\rangle$ such that $X \in \operatorname{Init}_{l}(X)$
- Two types of state updates (transitions)
- Discrete switches: $\langle I, X\rangle \xrightarrow{a}\left\langle I^{\prime}, X^{\prime}\right\rangle$
if there there is an a-labeled edge e from $/$ to $/$ ' s.t.
- X, X^{\prime} satisfy $\operatorname{Inv}_{l}(X)$ and $\operatorname{Inv}_{l^{\prime \prime}}(X)$ respectively
- X satisfies the guard of e (i.e. $g(X) \geq 0$) and
- $\left\langle X, X^{\prime}\right\rangle$ satisfies the jump condition of e (i.e., $\left\langle X, X^{\prime}\right\rangle \in J\left(X, X^{\prime}\right)$)
- Continuous flows: $\langle I, X\rangle \xrightarrow{t}\left\langle I, X^{\prime}\right\rangle$
$f(t) \stackrel{\text { def }}{=}\left\langle f_{0}(t), \ldots, f_{k}(t)\right\rangle:[0, \delta] \longmapsto \mathbb{R}^{k}$ is a continuous function s.t.
- $f(0)=x$
- $f(\delta)=X^{\prime}$
- for every $t \in[0, \delta], f(t) \in \operatorname{Inv}_{l}(X)$
- for every $t \in[0, \delta], \frac{d f(t)}{d t} \in$ flow $_{l}(X)$

Example: Gate for a railroad controller

Example: Gate for a railroad controller

Outline

(1) Motivations
(2) Timed systems: Modeling and Semantics

- Timed automata
- Semantics
- Combination
(3) Symbolic Reachability for Timed Systems
- Making the state space finite
- Region automata
- Zone automata
(4) Hybrid Systems: Modeling and Semantics
- Hybrid automata
(5) Symbolic Reachability for Hybrid Systems
- Multi-Rate and Rectangular Hybrid Automata
- Linear Hybrid Automata
(b) Exercises

General Symbolic-Reachability Schema

```
1: R = I(X)
2: while (True) do
3: if (R intersects F) then
        return True
        else
        if (Image (R)\subseteqR) then
                return False
        else
            R=R\cupImage(R)
        end if
    end if
12: end while
- I: initial; F: Final; R: Reachable; Image(R): successors of R
- need a data type to representt state sets (regions)
- Termination may or may not be guaranteed
```


Symbolic Representations

- Necessary operations on Regions
- Union
- Intersection
- Negation
- Projection
- Renaming
- Equality/containment test
- Emptiness test
- Different choices for different classes of problems
- BDDs for Boolean variables in hardware verification
- DBMs in Timed automata
- Polyhedra in Linear Hybrid Automata
-

Symbolic Representations

- Necessary operations on Regions
- Union
- Intersection
- Negation
- Projection
- Renaming
- Equality/containment test
- Emptiness test
- Different choices for different classes of problems
- BDDs for Boolean variables in hardware verification
- DBMs in Timed automata
- Polyhedra in Linear Hybrid Automata
- ...

Reachability for Hybrid Systems

- Same algorithm works in principle
- Problem: What is a suitable representation of regions?
- Precise solutions available for restricted continuous dynamics
- Even for linear systems, over-approximations of reachable set needed

Reachability for Hybrid Systems

- Same algorithm works in principle
- Problem: What is a suitable representation of regions?
- Region: subset of \mathbb{R}^{k}
- Main problem: handling continuous dynamics
- Precise solutions available for restricted continuous dynamics
- Even for linear systems, over-approximations of reachable set needed

Reachability for Hybrid Systems

- Same algorithm works in principle
- Problem: What is a suitable representation of regions?
- Region: subset of \mathbb{R}^{k}
- Main problem: handling continuous dynamics
- Precise solutions available for restricted continuous dynamics
- Timed automata
- Multi-rate \& Rectangular Hybrid Automata (reduced to Timed aut.)
- Linear Hybrid Automata
- Even for linear systems, over-approximations of reachable set needed

Reachability for Hybrid Systems

- Same algorithm works in principle
- Problem: What is a suitable representation of regions?
- Region: subset of \mathbb{R}^{k}
- Main problem: handling continuous dynamics
- Precise solutions available for restricted continuous dynamics
- Timed automata
- Multi-rate \& Rectangular Hybrid Automata (reduced to Timed aut.)
- Linear Hybrid Automata
- Even for linear systems, over-approximations of reachable set needed

Reachability Analysis for Dynamical Systems

- Goal: Given an initial region, compute whether a bad state can be reached
- Key step: compute Reach (X) for a given set X under $\frac{d X}{d t}=f(X)$

Notation: (hereafter we often use " $d X$ " or " \dot{X} " as a shortcut of " $\frac{d X \text { " }}{d t}$

Outline

(1) Motivations
(2) Timed systems: Modeling and Semantics

- Timed automata
- Semantics
- Combination
(3) Symbolic Reachability for Timed Systems
- Making the state space finite
- Region automata
- Zone automata
(4) Hybrid Systems: Modeling and Semantics
- Hybrid automata
(5) Symbolic Reachability for Hybrid Systems
- Multi-Rate and Rectangular Hybrid Automata
- Linear Hybrid Automata
(6) Exercises

Simple Hybrid Automata: Multi-Rate and Rectangular

Two simple forms of Hybrid Automata

- Multi-Rate Automata
- Rectangular Automata
- Idea: can be reduced to Timed Automata
- Typically used as over-approximations of complex hybrid automata

Multi-rate Automata

- Modest extension of timed automata
- Dynamics of the form $\frac{d X}{d t}=$ const
- Guards and invariants: $x<$ const, $x>$ const
- Resets: x := const
- Simple translation to timed automata by shifting and scaling:

Multi－rate Automata

－Modest extension of timed automata
－Dynamics of the form $\frac{d X}{d t}=$ const
－Guards and invariants：$x<$ const，$x>$ const
－Resets：x ：＝const
－Simple translation to timed automata by shifting and scaling：
－if $x_{i}:=d_{i}$ then rename it with a fresh var v_{i} s．t．$v_{i}+$
－if $\frac{d x_{i}}{d t}=c_{i}$ ，then rename it with a fresh var u_{i} s．t．c_{i} ．

Multi－rate Automata

－Modest extension of timed automata
－Dynamics of the form $\frac{d X}{d t}=$ const
－Guards and invariants：$x<$ const，$x>$ const
－Resets：$x:=$ const
－Simple translation to timed automata by shifting and scaling：
－if $x_{i}:=d_{i}$ then rename it with a fresh var v_{i} s．t．$v_{i}+d_{i}=x_{i}$
－if $\frac{d x_{i}}{d t}=c_{i}$ ，then rename it with a fresh var u_{i} s．t．$c_{i} \cdot u_{i}=x_{i}$
－shift \＆rescale constants in constraints accordingly

Multi-rate Automata

- Modest extension of timed automata
- Dynamics of the form $\frac{d X}{d t}=$ const
- Guards and invariants: $x<$ const, $x>$ const
- Resets: $x:=$ const
- Simple translation to timed automata by shifting and scaling:
- if $x_{i}:=d_{i}$ then rename it with a fresh var v_{i} s.t. $v_{i}+d_{i}=x_{i}$
- if $\frac{d x_{i}}{d t}=c_{i}$, then rename it with a fresh var u_{i} s.t. $c_{i} \cdot u_{i}=x_{i}$
- shift \& rescale constants in constraints accordingly

Multi-rate Automata

- Modest extension of timed automata
- Dynamics of the form $\frac{d X}{d t}=$ const
- Guards and invariants: $x<$ const, $x>$ const
- Resets: $x:=$ const
- Simple translation to timed automata by shifting and scaling:
- if $x_{i}:=d_{i}$ then rename it with a fresh var v_{i} s.t. $v_{i}+d_{i}=x_{i}$
- if $\frac{d x_{i}}{d t}=c_{i}$, then rename it with a fresh var u_{i} s.t. $c_{i} \cdot u_{i}=x_{i}$
- shift \& rescale constants in constraints accordingly

Rectangular Automata (simplified)

- More interesting extension of timed automata
- Dynamics of the form $\frac{d X}{d t} \in$ [const1, const2] ($\dot{x} \in$ [const1, const2])
- Guards and invariants: $x<$ const, $x>$ const
- Jumps: x := const
- Translation to multi-rate automata (hints). For each x :

Rectangular Automata (simplified)

- More interesting extension of timed automata
- Dynamics of the form $\frac{d X}{d t} \in$ [const1, const2] ($\dot{x} \in$ [const1, const2])
- Guards and invariants: $x<$ const, $x>$ const
- Jumps: $x:=$ const
- Translation to multi-rate automata (hints). For each x :

Rectangular Automata (simplified)

- More interesting extension of timed automata
- Dynamics of the form $\frac{d X}{d t} \in$ [const1, const2] ($\dot{x} \in$ [const1, const2])
- Guards and invariants: $x<$ const, $x>$ const
- Jumps: $x:=$ const
- Translation to multi-rate automata (hints). For each x :
- Introduce x_{M}, x_{m} describing the greatest/least possible x values
- flow: substitute $\dot{x}<c_{u}$ with $\dot{x}_{M}=c_{u}$ and $\dot{x}>c_{l}$ with $\dot{x}_{m}=c_{l}$
- invariants: substitute $\operatorname{In} v_{l}(x)$ with $\operatorname{In} v_{l}\left(x_{M}\right), \operatorname{In} v_{l}\left(x_{m}\right)$
- guards: substitute $x>c$ with $x_{M}>c$, add jump $x_{m}:=c$ (if none)
substitute $x<c$ with $x_{m}<c$, add jump $x_{M}:=c$ (if none)
- jump: if $x:=c$, then both $x_{M}:=c$ and $x_{m}:=c$

Rectangular Automata (simplified)

- More interesting extension of timed automata
- Dynamics of the form $\frac{d X}{d t} \in[$ const1, const2] ($\dot{x} \in$ [const1, const2])
- Guards and invariants: $x<$ const, $x>$ const
- Jumps: $x:=$ const
- Translation to multi-rate automata (hints). For each x :
- Introduce x_{M}, x_{m} describing the greatest/least possible x values
- flow: substitute $\dot{x}<c_{u}$ with $\dot{x}_{M}=c_{u}$ and $\dot{x}>c_{l}$ with $\dot{x}_{m}=c_{l}$
- invariants: substitute $\operatorname{In} v_{l}(x)$ with $\operatorname{In} v_{l}\left(x_{M}\right), \operatorname{In} v_{l}\left(x_{m}\right)$
- guards: substitute $x>c$ with $x_{M}>c$, add jump $x_{m}:=c$ (if none)
substitute $x<c$ with $x_{m}<c$, add jump $x_{M}:=c$ (if none)
- jump: if $x:=c$, then both $x_{M}:=c$ and $x_{m}:=c$

Rectangular Automata (simplified)

- More interesting extension of timed automata
- Dynamics of the form $\frac{d X}{d t} \in$ [const1, const2] ($\dot{x} \in$ [const1, const2])
- Guards and invariants: $x<$ const, $x>$ const
- Jumps: $x:=$ const
- Translation to multi-rate automata (hints). For each x :
- Introduce x_{M}, x_{m} describing the greatest/least possible x values
- flow: substitute $\dot{x}<c_{u}$ with $\dot{x}_{M}=c_{u}$ and $\dot{x}>c_{l}$ with $\dot{x}_{m}=c_{l}$
- invariants: substitute $\operatorname{Inv}_{l}(x)$ with $\operatorname{Inv}_{l}\left(x_{M}\right), \operatorname{Inv}_{l}\left(x_{m}\right)$
- guards: substitute $x>c$ with $x_{M}>c$, add jump $x_{m}:=c$ (if none)
substitute $x<c$ with $x_{m}<c$, add jump $x_{M}:=c$ (if none)
- jump: if $x:=c$, then both $x_{M}:=c$ and $x_{m}:=c$

Rectangular Automata (simplified)

- More interesting extension of timed automata
- Dynamics of the form $\frac{d X}{d t} \in$ [const1, const2] ($\dot{x} \in$ [const1, const2])
- Guards and invariants: $x<$ const, $x>$ const
- Jumps: $x:=$ const
- Translation to multi-rate automata (hints). For each x :
- Introduce x_{M}, x_{m} describing the greatest/least possible x values
- flow: substitute $\dot{x}<c_{u}$ with $\dot{x}_{M}=c_{u}$ and $\dot{x}>c_{l}$ with $\dot{x}_{m}=c_{l}$
- invariants: substitute $\operatorname{In}_{l}(x)$ with $\operatorname{In} v_{l}\left(x_{M}\right), \operatorname{In} v_{l}\left(x_{m}\right)$
- guards: substitute $x>c$ with $x_{M}>c$, add jump $x_{m}:=c$ (if none)
substitute $x<c$ with $x_{m}<c$, add jump $x_{M}:=c$ (if none)
- jump: if $x:=c$, then both $x_{M}:=c$ and $x_{m}:=c$

Rectangular Automata (simplified)

- More interesting extension of timed automata
- Dynamics of the form $\frac{d X}{d t} \in$ [const1, const2] ($\dot{x} \in$ [const1, const2])
- Guards and invariants: $x<$ const, $x>$ const
- Jumps: $x:=$ const
- Translation to multi-rate automata (hints). For each x :
- Introduce x_{M}, x_{m} describing the greatest/least possible x values
- flow: substitute $\dot{x}<c_{u}$ with $\dot{x}_{M}=c_{u}$ and $\dot{x}>c_{l}$ with $\dot{x}_{m}=c_{l}$
- invariants: substitute $\operatorname{In}_{l}(x)$ with $\operatorname{In} v_{l}\left(x_{M}\right), \operatorname{In} v_{l}\left(x_{m}\right)$
- guards: substitute $x>c$ with $x_{M}>c$, add jump $x_{m}:=c$ (if none)
substitute $x<c$ with $x_{m}<c$, add jump $x_{M}:=c$ (if none)
- jump: if $x:=c$, then both $x_{M}:=c$ and $x_{m}:=c$

Example: Gate for a railroad controller

Rectangular Automaton

Example: Gate for a railroad controller

Multi-rate Automaton

Example: Gate for a railroad controller

Rectangular automaton

Example: Gate for a railroad controller

Multi-rate automaton

Outline

(1) Motivations
2) Timed systems: Modeling and Semantics

- Timed automata
- Semantics
- Combination
(3) Symbolic Reachability for Timed Systems
- Making the state space finite
- Region automata
- Zone automata
(4) Hybrid Systems: Modeling and Semantics
- Hybrid automata
(5) Symbolic Reachability for Hybrid Systems
- Multi-Rate and Rectangular Hybrid Automata
- Linear Hybrid Automata

Linear Hybrid Automata

- Polyhedron φ : set/conjunction of linear inequalities on X in the form $(A \cdot X \geq B)$, s.t. $A \in \mathbb{R}^{m} \times \mathbb{R}^{k}$ and $B \in \mathbb{R}^{m}$ for some m.
- φ is a convex set in the k-dimensional euclidean space
- possibly unbounded

Contains all possible values for all variables in a set

- Symbolic state: $\langle I, \varphi\rangle$
- I: location
- φ : polyhedron
(generalization of zone automata)

Linear Hybrid Automata

- Polyhedron φ : set/conjunction of linear inequalities on X in the form $(A \cdot X \geq B)$, s.t. $A \in \mathbb{R}^{m} \times \mathbb{R}^{k}$ and $B \in \mathbb{R}^{m}$ for some m.
- φ is a convex set in the k -dimensional euclidean space
- possibly unbounded

Contains all possible values for all variables in a set

- Symbolic state: $\langle I, \varphi\rangle$
- I: location
- φ : polyhedron
(generalization of zone automata)

Linear Hybrid Automata

- Polyhedron φ : set/conjunction of linear inequalities on X in the form $(A \cdot X \geq B)$, s.t. $A \in \mathbb{R}^{m} \times \mathbb{R}^{k}$ and $B \in \mathbb{R}^{m}$ for some m.
- φ is a convex set in the k -dimensional euclidean space
- possibly unbounded
\Longrightarrow Contains all possible values for all variables in a set
- I: location
- φ : polyhedro (generalization of zone automata)

Linear Hybrid Automata

- Polyhedron φ : set/conjunction of linear inequalities on X in the form $(A \cdot X \geq B)$, s.t. $A \in \mathbb{R}^{m} \times \mathbb{R}^{k}$ and $B \in \mathbb{R}^{m}$ for some m.
- φ is a convex set in the k -dimensional euclidean space
- possibly unbounded
\Longrightarrow Contains all possible values for all variables in a set
- Symbolic state: $\langle I, \varphi\rangle$
- I: location
- φ : polyhedron
(generalization of zone automata)

Linear Hybrid Automata $A=\left\langle L, L^{0}, X, \Sigma, \Phi(X), E\right\rangle$

- State space: $L \times \mathbb{R}^{k}$,
- polyhedron ψ : subset of \mathbb{R}^{k} in the form $A \cdot X \geq B$
- For each edge e from location / to location I^{\prime}
- For each location I :

Continuous Dynamics
Time-invariant, state-independent dynamics specified by a convex polyhedron constraining first derivatives

Es: $\frac{d x}{d t}$

\square $1.7 \frac{\mathrm{~d}}{\mathrm{~d}}$

Linear Hybrid Automata $A=\left\langle L, L^{0}, X, \Sigma, \Phi(X), E\right\rangle$

- State space: $L \times \mathbb{R}^{k}$,
- state: $\langle l, \psi\rangle$ s.t. $I \in L$ and $\psi \in \mathbb{R}^{k}$
- polyhedron ψ : subset of \mathbb{R}^{k} in the form $A \cdot X \geq B$
- For each edge e from location / to location I'
- For each location I:

Continuous Dynamics
Time-invariant, state-independent dynamics specified by a convex polyhedron constraining first derivatives

Linear Hybrid Automata $A=\left\langle L, L^{0}, X, \Sigma, \Phi(X), E\right\rangle$

- State space: $L \times \mathbb{R}^{k}$,
- state: $\langle I, \psi\rangle$ s.t. $I \in L$ and $\psi \in \mathbb{R}^{k}$
- polyhedron ψ : subset of \mathbb{R}^{k} in the form $A \cdot X \geq B$
- For each edge e from location I to location /'
- For each location I :

Continuous Dynamics
Time-invariant, state-independent dynamics specified by a convex polyhedron constraining first derivatives

Linear Hybrid Automata $A=\left\langle L, L^{0}, X, \Sigma, \Phi(X), E\right\rangle$

- State space: $L \times \mathbb{R}^{k}$,
- state: $\langle I, \psi\rangle$ s.t. $I \in L$ and $\psi \in \mathbb{R}^{k}$
- polyhedron ψ : subset of \mathbb{R}^{k} in the form $A \cdot X \geq B$
- For each edge e from location $/$ to location I^{\prime}
- Guard: region $(A \cdot X \geq B)$: polyhedron on X
- Update relation "Jump" $J\left(X, X^{\prime}\right): X^{\prime}:=T \cdot X+B, T \in \mathbb{R}^{k} \times \mathbb{R}^{k}, B \in \mathbb{R}$
- Synchronization label $a \in \Sigma$ (communication information)
- For each location I:

Continuous Dynamics
Time-invariant state-independent dynamics specified by a convex polyhedron constraining first derivatives

Linear Hybrid Automata $A=\left\langle L, L^{0}, X, \Sigma, \Phi(X), E\right\rangle$

- State space: $L \times \mathbb{R}^{k}$,
- state: $\langle I, \psi\rangle$ s.t. $I \in L$ and $\psi \in \mathbb{R}^{k}$
- polyhedron ψ : subset of \mathbb{R}^{k} in the form $A \cdot X \geq B$
- For each edge e from location $/$ to location I^{\prime}
- Guard: region $(A \cdot X \geq B)$: polyhedron on X
- Update relation "Jump
- Synchronization label $a \in \Sigma$ (communication information)
- For each location I:

Continuous Dynamics
Time-invariant state-independent dynamics specified by a convex polyhedron constraining first derivatives

Linear Hybrid Automata $A=\left\langle L, L^{0}, X, \Sigma, \Phi(X), E\right\rangle$

- State space: $L \times \mathbb{R}^{k}$,
- state: $\langle I, \psi\rangle$ s.t. $I \in L$ and $\psi \in \mathbb{R}^{k}$
- polyhedron ψ : subset of \mathbb{R}^{k} in the form $A \cdot X \geq B$
- For each edge e from location $/$ to location I^{\prime}
- Guard: region $(A \cdot X \geq B)$: polyhedron on X
- Update relation "Jump" $J\left(X, X^{\prime}\right): X^{\prime}:=T \cdot X+B, T \in \mathbb{R}^{k} \times \mathbb{R}^{k}, B \in \mathbb{R}$
- Synchronization label $a \in \Sigma$ (communication information)
- For each location I:

Linear Hybrid Automata $A=\left\langle L, L^{0}, X, \Sigma, \Phi(X), E\right\rangle$

- State space: $L \times \mathbb{R}^{k}$,
- state: $\langle I, \psi\rangle$ s.t. $I \in L$ and $\psi \in \mathbb{R}^{k}$
- polyhedron ψ : subset of \mathbb{R}^{k} in the form $A \cdot X \geq B$
- For each edge e from location $/$ to location I^{\prime}
- Guard: region $(A \cdot X \geq B)$: polyhedron on X
- Update relation "Jump" $J\left(X, X^{\prime}\right)$: $X^{\prime}:=T \cdot X+B, T \in \mathbb{R}^{k} \times \mathbb{R}^{k}, B \in \mathbb{R}$
- Synchronization label $a \in \Sigma$ (communication information)
- For each location I:

Continuous Dynamics
Time-invariant, state-independent dynamics specified by a convex polyhedron constraining first derivatives
$3, \frac{d x}{d t}=\frac{d y}{d t}, 2.1 \frac{d x}{d t}$

Linear Hybrid Automata $A=\left\langle L, L^{0}, X, \Sigma, \Phi(X), E\right\rangle$

- State space: $L \times \mathbb{R}^{k}$,
- state: $\langle I, \psi\rangle$ s.t. $I \in L$ and $\psi \in \mathbb{R}^{k}$
- polyhedron ψ : subset of \mathbb{R}^{k} in the form $A \cdot X \geq B$
- For each edge e from location $/$ to location I^{\prime}
- Guard: region $(A \cdot X \geq B)$: polyhedron on X
- Update relation "Jump" $J\left(X, X^{\prime}\right)$: $X^{\prime}:=T \cdot X+B, T \in \mathbb{R}^{k} \times \mathbb{R}^{k}, B \in \mathbb{R}$
- Synchronization label $a \in \Sigma$ (communication information)
- For each location I :
- Initial states: region $\operatorname{Init}_{1}(X)$: polyhedron on X
- Invariant: region $\operatorname{Inv}(X)$: polyhedron on X
- Continuous dynamics flow (X) : polyhedron on

Continuous Dynamics
Time-invariant, state-independent dynamics specified by a convex polyhedron constraining first derivatives

Linear Hybrid Automata $A=\left\langle L, L^{0}, X, \Sigma, \Phi(X), E\right\rangle$

- State space: $L \times \mathbb{R}^{k}$,
- state: $\langle I, \psi\rangle$ s.t. $I \in L$ and $\psi \in \mathbb{R}^{k}$
- polyhedron ψ : subset of \mathbb{R}^{k} in the form $A \cdot X \geq B$
- For each edge e from location $/$ to location I^{\prime}
- Guard: region $(A \cdot X \geq B)$: polyhedron on X
- Update relation "Jump" $J\left(X, X^{\prime}\right)$: $X^{\prime}:=T \cdot X+B, T \in \mathbb{R}^{k} \times \mathbb{R}^{k}, B \in \mathbb{R}$
- Synchronization label $a \in \Sigma$ (communication information)
- For each location I :
- Initial states: region $\operatorname{Init}_{l}(X)$: polyhedron on X
- Invariant: region $\operatorname{Inv}(X)$: polyhedron on X
- Continuous dynamics flow (X) : polyhedron on

Continuous Dynamics

Time-invariant, state-independent dynamics specified by a convex polyhedron constraining first derivatives

Linear Hybrid Automata $A=\left\langle L, L^{0}, X, \Sigma, \Phi(X), E\right\rangle$

- State space: $L \times \mathbb{R}^{k}$,
- state: $\langle I, \psi\rangle$ s.t. $I \in L$ and $\psi \in \mathbb{R}^{k}$
- polyhedron ψ : subset of \mathbb{R}^{k} in the form $A \cdot X \geq B$
- For each edge e from location $/$ to location I^{\prime}
- Guard: region $(A \cdot X \geq B)$: polyhedron on X
- Update relation "Jump" $J\left(X, X^{\prime}\right)$: $X^{\prime}:=T \cdot X+B, T \in \mathbb{R}^{k} \times \mathbb{R}^{k}, B \in \mathbb{R}$
- Synchronization label $a \in \Sigma$ (communication information)
- For each location I :
- Initial states: region $\operatorname{Init}_{l}(X)$: polyhedron on X
- Invariant: region $\operatorname{Inv}(X)$: polyhedron on X
- Continuous dynamics flowi (X) : polyhedron on

Continuous Dynamics
Time-invariant, state-independent dynamics specified by a convex polyhedron constraining first derivatives

Linear Hybrid Automata $A=\left\langle L, L^{0}, X, \Sigma, \Phi(X), E\right\rangle$

- State space: $L \times \mathbb{R}^{k}$,
- state: $\langle I, \psi\rangle$ s.t. $I \in L$ and $\psi \in \mathbb{R}^{k}$
- polyhedron ψ : subset of \mathbb{R}^{k} in the form $A \cdot X \geq B$
- For each edge e from location $/$ to location I^{\prime}
- Guard: region $(A \cdot X \geq B)$: polyhedron on X
- Update relation "Jump" $J\left(X, X^{\prime}\right): X^{\prime}:=T \cdot X+B, T \in \mathbb{R}^{k} \times \mathbb{R}^{k}, B \in \mathbb{R}$
- Synchronization label $a \in \Sigma$ (communication information)
- For each location I :
- Initial states: region $\operatorname{Init}_{l}(X)$: polyhedron on X
- Invariant: region $\operatorname{Inv}(X)$: polyhedron on X
- Continuous dynamics flow (X) : polyhedron on $\frac{d X}{d t}$

Continuous Dynamics

Time-invariant, state-independent dynamics specified by a convex polyhedron constraining first derivatives

Linear Hybrid Automata $A=\left\langle L, L^{0}, X, \Sigma, \Phi(X), E\right\rangle$

- State space: $L \times \mathbb{R}^{k}$,
- state: $\langle I, \psi\rangle$ s.t. $I \in L$ and $\psi \in \mathbb{R}^{k}$
- polyhedron ψ : subset of \mathbb{R}^{k} in the form $A \cdot X \geq B$
- For each edge e from location $/$ to location I^{\prime}
- Guard: region $(A \cdot X \geq B)$: polyhedron on X
- Update relation "Jump" $J\left(X, X^{\prime}\right): X^{\prime}:=T \cdot X+B, T \in \mathbb{R}^{k} \times \mathbb{R}^{k}, B \in \mathbb{R}$
- Synchronization label $a \in \Sigma$ (communication information)
- For each location I :
- Initial states: region $\operatorname{Init}_{l}(X)$: polyhedron on X
- Invariant: region $\operatorname{Inv}(X)$: polyhedron on X
- Continuous dynamics flow $_{l}(X)$: polyhedron on $\frac{d X}{d t}$

Continuous Dynamics

Time-invariant, state-independent dynamics specified by a convex polyhedron constraining first derivatives
Es: $\frac{d x}{d t} \geq 3, \frac{d x}{d t}=\frac{d y}{d t}, 2.1 \frac{d x}{d t}-3.5 \frac{d y}{d t}+1.7 \frac{d z}{d t} \geq 3.1, \ldots$

Example: Gate for a railroad controller

Reachability Computation: Key Steps

- Compute "discrete" successors of $\langle I, \psi\rangle$
- Compute "continuous" successor of $\langle I, \psi\rangle$
- Check if ψ intersects with "bad" region
- Check if newly-found ψ is covered by already-visited polyhedra $\psi_{1}, \ldots, \psi_{n}$ (expensive!)

Reachability Computation: Key Steps

- Compute "discrete" successors of $\langle I, \psi\rangle$
- Compute "continuous" successor of $\langle I, \psi\rangle$
- Check if ψ intersects with "bad" region
- Check if newly-found ψ is covered by already-visited polyhedra $\psi_{1}, \ldots, \psi_{n}$ (expensive!)

Reachability Computation: Key Steps

- Compute "discrete" successors of $\langle I, \psi\rangle$
- Compute "continuous" successor of $\langle I, \psi\rangle$
- Check if ψ intersects with "bad" region
- Check if newly-found ψ is covered by already-visited polyhedra $\psi_{1}, \ldots, \psi_{n}$ (expensive!)

Reachability Computation: Key Steps

- Compute "discrete" successors of $\langle I, \psi\rangle$
- Compute "continuous" successor of $\langle I, \psi\rangle$
- Check if ψ intersects with "bad" region
- Check if newly-found ψ is covered by already-visited polyhedra $\psi_{1}, \ldots, \psi_{n}$ (expensive!)

Computing Discrete Successors of $\langle I, \psi\rangle$

- Intersect ψ with the guard ϕ
\Longrightarrow result is a polyhedron
- Apply linear transformation of J to the result
\Longrightarrow result is a polyhedron
- Intersect with the invariant of target location //
\Longrightarrow result is a polyhedron

Computing Discrete Successors of $\langle I, \psi\rangle$

- Intersect ψ with the guard ϕ \Longrightarrow result is a polyhedron
- Apply linear transformation of J to the result \Longrightarrow result is a polyhedron
- Intersect with the invariant of target location /' \Longrightarrow result is a polyhedron

Computing Discrete Successors of $\langle I, \psi\rangle$

- Intersect ψ with the guard ϕ \Longrightarrow result is a polyhedron
- Apply linear transformation of J to the result \Longrightarrow result is a polyhedron
- Intersect with the invariant of target location I^{\prime} \Longrightarrow result is a polyhedron

Computing Time Successor

- Consider maximum and minimum rates between derivatives (external vertices in the flow polyhedron)
- Apply these extremal rates for computing the projection to infinity (to be intersected with invariant)
- Hint: $\frac{d y}{d x}=\frac{\frac{d y}{d x}}{\frac{d x}{d t}}$ s.t. $\max x, y \frac{d y}{d x}=\max _{x, y} \frac{\frac{d y}{d x}}{\frac{d t}{d}}$ and $\min _{x, y} \frac{d y}{d x}=\min _{x, y} \frac{\frac{d y}{d x}}{\frac{d x}{d}}$

Computing Time Successor

- Consider maximum and minimum rates between derivatives (external vertices in the flow polyhedron)
- Apply these extremal rates for computing the projection to infinity (to be intersected with invariant)
- Hint: $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$, s.t. $\max _{x, y} \frac{d y}{d x}=\max _{x, y} \frac{\frac{d y}{\frac{\partial t}{d x}}}{\frac{d t}{d t}}$ and $\min _{x, y} \frac{d y}{d x}=\min _{x, y} \frac{\frac{d y}{d t}}{\frac{d x}{d t}}$

Linear Hybrid Automata: Symbolic Transitions

Definition: $\operatorname{succ}(\varphi, e)$

- Let $e \stackrel{\text { def }}{=}\left\langle I, a, \psi, J, I^{\prime}\right\rangle$, and ϕ, ϕ^{\prime} the invariants in I, I^{\prime}
- Then

$$
\operatorname{succ}(\varphi, e) \stackrel{\text { def }}{=} J(((\varphi \wedge \phi) \Uparrow \wedge \phi) \wedge \psi)
$$

(φ immediately before entering the location)

$$
\operatorname{succ}(\varphi, e) \stackrel{\text { def }}{=} J((\varphi \Uparrow \wedge \phi) \wedge \psi) \wedge \phi^{\prime}
$$

(φ immediately after entering the location):

- \wedge : standard conjunction/intersection
- \Uparrow : continuous successor $\psi \Uparrow$
- J: Jump transformation $J(X) \stackrel{\text { def }}{=} T \cdot X+B$
- note: φ is considered "immediately after entering l "

Linear Hybrid Automata: Symbolic Transitions (cont.)

- Initial zone: values allowed to enter location I
- Proiection to infinity: after waiting unbounded time
- Intersection with invariant ϕ :
waiting a legal amount of time
- Intersection with guard $\psi:$... from which the switch can be shot
- Jumn . I. after iump
- Intersection with invariant ϕ^{\prime} : ... values allowed to enter location /'

$$
\operatorname{succ}(\varphi, \boldsymbol{e}) \stackrel{\text { det }}{=} J((\varphi \uparrow \wedge \phi) \wedge \psi) \wedge \phi^{\prime}
$$

Linear Hybrid Automata: Symbolic Transitions (cont.)

- Initial zone: values allowed to enter location /
- Projection to infinity: ... after waiting unbounded time
- Intersection with invariant $\phi:$.... waiting a legal amount of time
- Intersection with guard ψ : ... from which the switch can be shot
- Jump J: ..., after jump
- Intersection with invariant ϕ^{\prime} : ... values allowed to enter location /'

$$
\operatorname{succ}(\varphi, e) \stackrel{\text { def }}{=} J((\varphi \uparrow \wedge \phi) \wedge \psi) \wedge \phi^{\prime}
$$

Linear Hybrid Automata: Symbolic Transitions (cont.)

- Initial zone: values allowed to enter location /
- Projection to infinity
- Intersection with invariant $\phi:$... waiting a legal amount of time
- Intersection with guard ψ : ... from which the switch can be shot
- Jumn . I. after iump
- Intersection with invariant ϕ^{\prime} : ... values allowed to enter location /'

$$
\operatorname{succ}(\varphi, e) \stackrel{\text { def }}{=} J((\varphi \Uparrow
$$

\square
\square

Linear Hybrid Automata: Symbolic Transitions (cont.)

- Initial zone: values allowed to enter location I
- Projection to infinity: ... after waiting unbounded time
- Intersection with invariant ϕ : ... waiting a legal amount of time
- Intersection with guard $\psi: \ldots$ from which the switch can be shot
- Jump J: ..., after jump
- Intersection with invarian $\phi^{\prime}: \ldots$ values allowed to enter location /I

$$
\operatorname{succ}(\varphi, e) \stackrel{\text { det }}{=} J((\varphi \Uparrow
$$

Linear Hybrid Automata: Symbolic Transitions (cont.)

- Initial zone: values allowed to enter location /
- Projection to infinity: ... after waiting unbounded time
- Intersection with invariant ϕ
- Intersection with guard ψ : ... from which the switch can be shot
- Jump J: ..., after jump
- Intersection with invariant ϕ^{\prime} : ... values allowed to enter location /'

$$
\operatorname{succ}(\varphi, e) \stackrel{\operatorname{det}}{=} J((\varphi \Uparrow \wedge \phi)
$$

Linear Hybrid Automata: Symbolic Transitions (cont.)

- Initial zone: values allowed to enter location I
- Projection to infinity: ... after waiting unbounded time
- Intersection with invariant ϕ : ... waiting a legal amount of time
- Intersection with guard $\psi: \ldots$ from which the switch can be shot
- Jumn .I. after jumr
- Intersection with invariant ϕ^{\prime} : ... values allowed to enter location I^{\prime}

$$
\operatorname{succ}(\varphi, e) \stackrel{\text { def }}{=} J((\varphi \Uparrow \wedge \phi)
$$

Linear Hybrid Automata: Symbolic Transitions (cont.)

- Initial zone: values allowed to enter location /
- Projection to infinity: ... after waiting unbounded time
- Intersection with invariant ϕ : ... waiting a legal amount of time
- Intersection with guard ψ
- Jump J: ..., after jump
- Intersection with invarian $\phi^{\prime}: \ldots$ values allowed to enter location /'

$$
\operatorname{succ}(\varphi, e) \stackrel{\text { def }}{=} J((\varphi \Uparrow \wedge \phi) \wedge \psi)
$$

Linear Hybrid Automata: Symbolic Transitions (cont.)

- Initial zone: values allowed to enter location /
- Projection to infinity: ... after waiting unbounded time
- Intersection with invariant ϕ : ... waiting a legal amount of time
- Intersection with guard ψ : ... from which the switch can be shot
- Jump J: ..., after jump
- Intersection with invariant ϕ^{\prime} : ... values allowed to enter location ${ }^{\prime}$

$$
\operatorname{succ}(\varphi, \boldsymbol{e}) \stackrel{\text { def }}{=} J((\varphi \Uparrow \wedge \phi) \wedge \psi) \wedge \phi^{\prime}
$$

Linear Hybrid Automata: Symbolic Transitions (cont.)

- Initial zone: values allowed to enter location /
- Projection to infinity: ... after waiting unbounded time
- Intersection with invariant ϕ : ... waiting a legal amount of time
- Intersection with guard ψ : ... from which the switch can be shot
- Jump J
- Intersection with invariant ϕ^{\prime} : ... values allowed to enter location ${ }^{\prime}$

$$
\operatorname{succ}(\varphi, e) \stackrel{\text { def }}{=} J((\varphi \Uparrow \wedge \phi) \wedge \psi) \wedge \phi^{\prime}
$$

Linear Hybrid Automata: Symbolic Transitions (cont.)

- Initial zone: values allowed to enter location /
- Projection to infinity: ... after waiting unbounded time
- Intersection with invariant ϕ : ... waiting a legal amount of time
- Intersection with guard ψ : ... from which the switch can be shot
- Jump J: ..., after jump
- Intersection with invariant ϕ^{\prime} : ... values allowed to enter location I^{\prime}

$$
\operatorname{succ}(\varphi, e) \stackrel{\text { def }}{=} J((\varphi \uparrow \wedge \phi) \wedge \psi) \wedge \phi^{\prime}
$$

Linear Hybrid Automata: Symbolic Transitions (cont.)

- Initial zone: values allowed to enter location /
- Projection to infinity: ... after waiting unbounded time
- Intersection with invariant ϕ : ... waiting a legal amount of time
- Intersection with guard ψ : ... from which the switch can be shot
- Jump J: ..., after jump
- Intersection with invariant ϕ^{\prime}

$$
\operatorname{succ}(\varphi, e) \stackrel{\text { def }}{=} J((\varphi \Uparrow \wedge \phi) \wedge \psi) \wedge \phi^{\prime}
$$

Linear Hybrid Automata: Symbolic Transitions (cont.)

- Initial zone: values allowed to enter location /
- Projection to infinity: ... after waiting unbounded time
- Intersection with invariant ϕ : ... waiting a legal amount of time
- Intersection with guard ψ : ... from which the switch can be shot
- Jump J: ..., after jump
- Intersection with invariant ϕ^{\prime} : ... values allowed to enter location I/

$$
\operatorname{succ}(\varphi, e) \stackrel{\text { def }}{=} J((\varphi \Uparrow \wedge \phi) \wedge \psi) \wedge \phi^{\prime}
$$

Linear Hybrid Automata: Symbolic Transitions (cont.)

- Initial zone: values allowed to enter location /
- Projection to infinity: ... after waiting unbounded time
- Intersection with invariant ϕ : ... waiting a legal amount of time
- Intersection with guard ψ : ... from which the switch can be shot
- Jump J: ..., after jump
- Intersection with invariant ϕ^{\prime} : ... values allowed to enter location I/
\Longrightarrow Final!

$$
\operatorname{succ}(\varphi, e) \stackrel{\operatorname{det}}{=} J((\varphi \Uparrow \wedge \phi) \wedge \psi) \wedge \phi^{\prime}
$$

Symbolic Reachability Analysis

```
function Reachable \((A, F) / / A \stackrel{\text { def }}{=}\left\langle L, L^{0}, \Sigma, X, \Phi(X), E\right\rangle, F \stackrel{\text { def }}{=}\left\{\left\langle l_{i}, \phi_{i}\right\rangle\right\}_{i}\)
    Reachable = \(\emptyset\)
    Frontier \(=\left\{\left\langle I, \operatorname{Init}_{/}(X)\right\rangle \mid I \in L^{0}\right\}\)
    while (Frontier \(\neq \emptyset\) ) do
        extract \(\langle I, \varphi\rangle\) from Frontier
        if \(((\varphi \wedge \phi) \neq \perp\) for some \(\langle I, \phi\rangle \in F)\) then
        return True
        end if
        if \(\left(\nexists\left\langle I, \varphi^{\prime}\right\rangle \in\right.\) Reachable s.t. \(\left.\varphi \subseteq \varphi^{\prime}\right)\) then
        add \(\langle I, \varphi\rangle\) to Reachable
        for \(\boldsymbol{e} \in\) outcoming( \(/\) ) do
            add \(\operatorname{succ}(\varphi, e)\) to Frontier
        end for
    end if
15: end while
16: return False
\(\Longrightarrow\) same schema as with zone automata
```


Summary: Linear Hybrid Automata

- Strategy implemented in HyTech
- Core computation: manipulation of polyhedra
- Bottlenecks
- proliferation of polyhedra (unions)
- computing with high-dimension polyhedra
- Many case studies

Outline

(1) Motivations
(2) Timed systems: Modeling and Semantics

- Timed automata
- Semantics
- Combination
(3) Symbolic Reachability for Timed Systems
- Making the state space finite
- Region automata
- Zone automata
(4) Hybrid Systems: Modeling and Semantics
- Hybrid automata
(5) Symbolic Reachability for Hybrid Systems
- Multi-Rate and Rectangular Hybrid Automata
- Linear Hybrid Automata

(6) Exercises

Ex: Execution of a Timed System

Consider only the following piece of a timed automaton A, x_{1} and x_{2} being clocks.

Ex: Execution of a Timed System

Consider only the following piece of a timed automaton A, x_{1} and x_{2} being clocks.

(a) In general, what is the minimum amount of time from an occurrence of event b and the subsequent occurrence of the event a ?

Ex: Execution of a Timed System

Consider only the following piece of a timed automaton A, x_{1} and x_{2} being clocks.

(a) In general, what is the minimum amount of time from an occurrence of event b and the subsequent occurrence of the event a ? [Solution: 1 time unit.]

Ex: Execution of a Timed System

Consider only the following piece of a timed automaton A, x_{1} and x_{2} being clocks.

(a) In general, what is the minimum amount of time from an occurrence of event b and the subsequent occurrence of the event a ? [Solution: 1 time unit.]
(b) Write a legal execution from state $\left\langle L_{1}, 0.0,2.0\right\rangle$ to state $\left\langle L_{1}, 0.0,3.0\right\rangle$.

Ex: Execution of a Timed System

Consider only the following piece of a timed automaton A, x_{1} and x_{2} being clocks.

(a) In general, what is the minimum amount of time from an occurrence of event b and the subsequent occurrence of the event a ? [Solution: 1 time unit.]
(b) Write a legal execution from state $\left\langle L_{1}, 0.0,2.0\right\rangle$ to state $\left\langle L_{1}, 0.0,3.0\right\rangle$. [Solution:

$$
\left.\left\langle L_{1}, 0.0,2.0\right\rangle \xrightarrow{1.0}\left\langle L_{1}, 1.0,3.0\right\rangle \xrightarrow{a}\left\langle L_{2}, 1.0,3.0\right\rangle \xrightarrow{0.0}\left\langle L_{2}, 1.0,3.0\right\rangle \xrightarrow{b}\left\langle L_{1}, 0.0,3.0\right\rangle\right]
$$

Ex: Execution of a Timed System

Consider only the following piece of a timed automaton A, x_{1} and x_{2} being clocks.

(a) In general, what is the minimum amount of time from an occurrence of event b and the subsequent occurrence of the event a ? [Solution: 1 time unit.]
(b) Write a legal execution from state $\left\langle L_{1}, 0.0,2.0\right\rangle$ to state $\left\langle L_{1}, 0.0,3.0\right\rangle$. [Solution:
$\left.\left\langle L_{1}, 0.0,2.0\right\rangle \xrightarrow{1.0}\left\langle L_{1}, 1.0,3.0\right\rangle \xrightarrow{a}\left\langle L_{2}, 1.0,3.0\right\rangle \xrightarrow{0.0}\left\langle L_{2}, 1.0,3.0\right\rangle \xrightarrow{b}\left\langle L_{1}, 0.0,3.0\right\rangle\right]$
(c) Is it possible to have a legal execution in which switches e_{2}, e_{1}, e_{2} are shot consecutively (possibly interleaved by time elapses), without being interleaved by other switches? If yes, write one such execution. If not, explain why.

Ex: Execution of a Timed System

Consider only the following piece of a timed automaton A, x_{1} and x_{2} being clocks.

(a) In general, what is the minimum amount of time from an occurrence of event b and the subsequent occurrence of the event a ? [Solution: 1 time unit.]
(b) Write a legal execution from state $\left\langle L_{1}, 0.0,2.0\right\rangle$ to state $\left\langle L_{1}, 0.0,3.0\right\rangle$. [Solution:
$\left.\left\langle L_{1}, 0.0,2.0\right\rangle \xrightarrow{1.0}\left\langle L_{1}, 1.0,3.0\right\rangle \xrightarrow{a}\left\langle L_{2}, 1.0,3.0\right\rangle \xrightarrow{0.0}\left\langle L_{2}, 1.0,3.0\right\rangle \xrightarrow{b}\left\langle L_{1}, 0.0,3.0\right\rangle\right]$
(c) Is it possible to have a legal execution in which switches e_{2}, e_{1}, e_{2} are shot consecutively (possibly interleaved by time elapses), without being interleaved by other switches? If yes, write one such execution. If not, explain why. [Solution: Yes: $\left\langle L_{2}, \ldots, 2.0\right\rangle \xrightarrow{b}\left\langle L_{1}, 0.0,2.0\right\rangle \xrightarrow{1.0}\left\langle L_{1}, 1.0,3.0\right\rangle \xrightarrow{a}\left\langle L_{2}, 1.0,3.0\right\rangle \xrightarrow{0.0}\left\langle L_{2}, 1.0,3.0\right\rangle \xrightarrow{b}\left\langle L_{1}, 0.0,3.0\right\rangle$ Note: if the guard of e_{2} were strictly greater than 2 , this would not be possible.]

Ex: Timed Automata: Regions

Consider the following timed automaton A .

Considere the correponding Region automaton $R(A)$. For each of the following pairs of states of A, say if the two states belong to the same region.
(a) $s_{0}=\left(L_{1}, 2.5,3.2\right), s_{1}=\left(L_{1}, 2.5,3.7\right)$
(b) $s_{0}=\left(L_{1}, 1.5,2.2\right), s_{1}=\left(L_{1}, 1.5,2.7\right)$
(c) $s_{0}=\left(L_{2}, 0.5,1.4\right), s_{1}=\left(L_{2}, 0.5,1.0\right)$
(d) $s_{0}=\left(L_{2}, 1.7,0.5\right), s_{1}=\left(L_{2}, 1.5,0.1\right)$

Ex: Timed Automata: Regions

Consider the following timed automaton A.

Considere the correponding Region automaton $R(A)$. For each of the following pairs of states of A, say if the two states belong to the same region.
(a) $s_{0}=\left(L_{1}, 2.5,3.2\right), s_{1}=\left(L_{1}, 2.5,3.7\right)$ [Solution: yes]
(b) $s_{0}=\left(L_{1}, 1.5,2.2\right), s_{1}=\left(L_{1}, 1.5,2.7\right)$
(c) $s_{0}=\left(L_{2}, 0.5,1.4\right), s_{1}=\left(L_{2}, 0.5,1.0\right)$
(d) $s_{0}=\left(L_{2}, 1.7,0.5\right), s_{1}=\left(L_{2}, 1.5,0.1\right)$

Ex: Timed Automata: Regions

Consider the following timed automaton A.

Considere the correponding Region automaton $R(A)$. For each of the following pairs of states of A, say if the two states belong to the same region.
(a) $s_{0}=\left(L_{1}, 2.5,3.2\right), s_{1}=\left(L_{1}, 2.5,3.7\right)$ [Solution: yes]
(b) $s_{0}=\left(L_{1}, 1.5,2.2\right), s_{1}=\left(L_{1}, 1.5,2.7\right)$ [Solution: no]
(c) $s_{0}=\left(L_{2}, 0.5,1.4\right), s_{1}=\left(L_{2}, 0.5,1.0\right)$
(d) $s_{0}=\left(L_{2}, 1.7,0.5\right), s_{1}=\left(L_{2}, 1.5,0.1\right)$

Ex: Timed Automata: Regions

Consider the following timed automaton A.

Considere the correponding Region automaton $R(A)$. For each of the following pairs of states of A, say if the two states belong to the same region.
(a) $s_{0}=\left(L_{1}, 2.5,3.2\right), s_{1}=\left(L_{1}, 2.5,3.7\right)$ [Solution: yes]
(b) $s_{0}=\left(L_{1}, 1.5,2.2\right), s_{1}=\left(L_{1}, 1.5,2.7\right)$ [Solution: no]
(c) $s_{0}=\left(L_{2}, 0.5,1.4\right), s_{1}=\left(L_{2}, 0.5,1.0\right)$ [Solution: no]
(d) $s_{0}=\left(L_{2}, 1.7,0.5\right), s_{1}=\left(L_{2}, 1.5,0.1\right)$

Ex: Timed Automata: Regions

Consider the following timed automaton A.

Considere the correponding Region automaton $R(A)$. For each of the following pairs of states of A, say if the two states belong to the same region.
(a) $s_{0}=\left(L_{1}, 2.5,3.2\right), s_{1}=\left(L_{1}, 2.5,3.7\right)$ [Solution: yes]
(b) $s_{0}=\left(L_{1}, 1.5,2.2\right), s_{1}=\left(L_{1}, 1.5,2.7\right)$ [Solution: no]
(c) $s_{0}=\left(L_{2}, 0.5,1.4\right), s_{1}=\left(L_{2}, 0.5,1.0\right)$ [Solution: no]
(d) $s_{0}=\left(L_{2}, 1.7,0.5\right), s_{1}=\left(L_{2}, 1.5,0.1\right)$ [Solution: yes]

Ex: Timed Automata: Zones

Consider the following switch e in a timed automaton, x and y being clocks:

and let $Z_{1} \stackrel{\text { def }}{=}\left\langle L_{1}, \varphi\right\rangle$ s.t $\varphi \stackrel{\text { def }}{=}(x \geq 2) \wedge(x \leq 3) \wedge(y \geq 2) \wedge(y \leq 5) \wedge(y-x \leq 2)$. Compute $\operatorname{succ}\left(Z_{1}, e\right)$, drawing the process on the cartesian space $\langle x, y\rangle$.

Ex: Timed Automata: Zones

Consider the following switch e in a timed automaton, x and y being clocks:

and let $Z_{1} \stackrel{\text { def }}{=}\left\langle L_{1}, \varphi\right\rangle$ s.t $\varphi \stackrel{\text { def }}{=}(x \geq 2) \wedge(x \leq 3) \wedge(y \geq 2) \wedge(y \leq 5) \wedge(y-x \leq 2)$. Compute $\operatorname{succ}\left(Z_{1}, e\right)$, drawing the process on the cartesian space $\langle x, y\rangle$.
[Solution: The solution is $\operatorname{succ}\left(Z_{1}, e\right)=\left\langle Z_{2}, \perp\right\rangle$. In fact, the zone reached by waiting in L_{1} has empty intersection with the guard, as displayed in figure:

Difference Bound Matrices

Consider the zone:
$\varphi \stackrel{\text { def }}{=}\left(x_{1} \leq 3\right) \wedge\left(x_{2} \leq 2\right) \wedge\left(x_{3} \leq 5\right) \wedge$
$\left(x_{1}-x_{3} \leq 2\right) \wedge\left(x_{2}-x_{1} \leq-2\right) \wedge\left(x_{3}-x_{1} \leq 3\right) \wedge\left(x_{3}-x_{2} \leq 1\right)$
(a) Compute the corresponding DBM
(b) Compute the reduced DBM

Difference Bound Matrices

［ Solution：$\varphi \stackrel{\text { def }}{=}\left(x_{1} \leq 3\right) \wedge\left(x_{2} \leq 2\right) \wedge\left(x_{3} \leq 5\right) \wedge$ $\left(x_{1}-x_{3} \leq 2\right) \wedge\left(x_{2}-x_{1} \leq-2\right) \wedge\left(x_{3}-x_{1} \leq 3\right) \wedge\left(x_{3}-x_{2} \leq 1\right)$

Difference Bound Matrices

[Solution: $\begin{aligned} & \varphi \stackrel{\text { def }}{=}\left(x_{1} \leq 3\right) \wedge\left(x_{2} \leq 2\right) \wedge\left(x_{3} \leq 5\right) \wedge \\ & \left(x_{1}-x_{3} \leq 2\right) \wedge\left(x_{2}-x_{1} \leq-2\right) \wedge\left(x_{3}-x_{1} \leq 3\right) \wedge\left(x_{3}-x_{2} \leq 1\right)\end{aligned}$ Initial DBM:

| | x_{0} | x_{1} | x_{2} | x_{3} |
| ---: | ---: | ---: | ---: | ---: | ---: |
| x_{0} | $\langle\infty, \leq\rangle$ | $\langle\infty, \leq\rangle$ | $\langle\infty, \leq\rangle$ | $\langle\infty, \leq\rangle$ |
| x_{1} | $\langle 3, \leq\rangle$ | $\langle\infty, \leq\rangle$ | $\langle\infty, \leq\rangle$ | $\langle 2, \leq\rangle$ |
| x_{2} | $\langle 2, \leq\rangle$ | $\langle-2, \leq\rangle$ | $\langle\infty, \leq\rangle$ | $\langle\infty, \leq\rangle$ |
| x_{3} | $\langle 5, \leq\rangle$ | $\langle 3, \leq\rangle$ | $\langle 1, \leq\rangle$ | $\langle\infty, \leq\rangle$ |

]

Difference Bound Matrices

[Solution: $\begin{aligned} & \varphi \stackrel{\text { def }}{=}\left(x_{1} \leq 3\right) \wedge\left(x_{2} \leq 2\right) \wedge\left(x_{3} \leq 5\right) \wedge \\ & \left(x_{1}-x_{3} \leq 2\right) \wedge\left(x_{2}-x_{1} \leq-2\right) \wedge\left(x_{3}-x_{1} \leq 3\right) \wedge\left(x_{3}-x_{2} \leq 1\right)\end{aligned}$

Initial DBM:

Reduced DBM:

	x_{0}	x_{1}	x_{2}	x_{3}
x_{0}	$\langle 0, \leq\rangle$	$\langle\infty, \leq\rangle$	$\langle\infty, \leq\rangle$	$\langle\infty, \leq\rangle$
x_{1}	$\langle 3, \leq\rangle$	$\langle 0, \leq\rangle$	$\langle 3, \leq\rangle$	$\langle 2, \leq\rangle$
x_{2}	$\langle 1, \leq\rangle$	$\langle-2, \leq\rangle$	$\langle 0, \leq\rangle$	$\langle 0, \leq\rangle$
x_{3}	$\langle 2, \leq\rangle$	$\langle-1, \leq\rangle$	$\langle 1, \leq\rangle$	$\langle 0, \leq\rangle$

]

Hybrid Automata

A railway－crossing gate，whose dynamics is represented by the hybrid automaton in the figure，receives from a controller two possible input signals \｛lower，raise\}. (θ ，in degrees，represents the angle between the bar and the ground．）
When the gate is open the controller receives a signal＂incoming＂when a train is incoming，it waits a fixed amount of time Δt ，then it sends the gate the lower order．
It is known that an incoming train takes an amount of time within the interval［70，100］time units to get from the remote sensor to the gate．
Compute the maximum amount of time Δt which guarantees that the train does not reach the gate before the bar is completely lowered，and briefly explain why．

Hybrid Automata

[Solution: Δt is 60 time units. In fact, the maximum value of Δt the controller can afford waiting is given by the minimum time the train may take to reach the gate (70), minus the maximum time taken by the bar to lower, that is, the time taken to lower the angle from 90 to 0 at the lowest absolute speed $(90 /|-9|)$. Overall, we have thus $\Delta t=70-90 /(|-9|)=60$.]

[^0]: Initial State

 - $\langle q, 0\rangle$
 - Initial state

[^1]: C3: For every clock x s.t. $\nu(x), \nu^{\prime}(x) \leq C_{x}$, fr $(\nu(x))=0$ iff fr $\left(\nu^{\prime}(x)\right)=0$

[^2]: - $\operatorname{succ}(\langle I, \varphi\rangle, e) \stackrel{\text { det }}{=}\left\langle I^{\prime}, \operatorname{succ}(\varphi, e)\right\rangle$

[^3]: - $\operatorname{succ}(\langle I, \varphi\rangle, e) \xlongequal{=}\left\langle l^{\prime}, \operatorname{succ}(\varphi, e)\right\rangle$

[^4]: - $\operatorname{succ}(l \mid,(0), e) \stackrel{\text { dee }}{=}\langle | \quad \operatorname{succ}((0, e)\rangle$

[^5]: - $\operatorname{succ}(\langle I, \varphi\rangle, e) \stackrel{\text { dee }}{=}\left\langle l^{\prime}, \operatorname{succ}(\varphi, e)\right\rangle$

