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CTL Model Checking

CTL Model Checking is a formal verification technique where...
...the system is represented as a Finite State Machine M:

...the property is expressed a CTL formula φ:

AG(p → AFq)

...the model checking algorithm checks whether in all initial states of M all the executions of
the model satisfy the formula (M |= φ).
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CTL Model Checking: General Idea

Two macro-steps:
1 construct the set of states where the formula holds:

[φ] := {s ∈ S : M, s |= φ}
([φ] is called the denotation of φ)

2 then compare with the set of initial states:
I ⊆ [φ] ?

The lion’s share of the effort in this process is on step 1: compute [φ].
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CTL Model Checking: General Idea [cont.]

In order to compute [φ]:
proceed “bottom-up” on the structure of the formula, computing [φi ] for each subformula φi
of AG(p → AFq):

[q],
[AFq],
[p],
[p → AFq],
[AG(p → AFq)]
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CTL Model Checking: General Idea [cont.]

In order to compute each [φi ]:
assign Propositional atoms by labeling function
handle Boolean operators by standard set operations
handle temporal operators AX, EX by computing pre-images
handle temporal operators AG, EG, AF, EF, AU, EU, by (implicitly) applying tableaux rules,
until a fixpoint is reached
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Tableaux Rules: a Quote

“After all... tomorrow is another day."
[Scarlett O’Hara, “Gone with the Wind”]
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CTL Model Checking: Example: AG(p → AFq)
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"q" "AF q"

Recall the AF tableau rule: AFq ↔ (q ∨ AXAFq)

Iteration: [AFq](1) = [q]; [AFq](i+1) = [q] ∪ AX[AFq](i)

[AFq](1) = [q] = {2}
[AFq](2) = [q ∨ AXq] = {2} ∪ {1} = {1, 2}
[AFq](3) = [q ∨ AX(q ∨ AXq)] = {2} ∪ {1} = {1, 2}
=⇒ (fix point reached)
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CTL Model Checking: Example: AG(p → AFq) [cont.]
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CTL Model Checking: Example: AG(p → AFq) [cont.]
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2 [AGφ](2) = [φ] ∩ AX[AGφ](1) = {1, 2, 4} ∩ {1, 3} = {1}
3 [AGφ](3) = [φ] ∩ AX[AGφ](2) = {1, 2, 4} ∩ {} = {}

=⇒ (fix point reached)
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CTL Model Checking: Example: AG(p → AFq) [cont.]

The set of states where the formula holds is empty
=⇒ the initial state does not satisfy the property
=⇒ M ̸|= AG(p → AFq)
Counterexample: a lazo-shaped path: 1,2, {3,4}ω (satisfying EF(p ∧ EG¬q))

Note
Counter-example reconstruction in general is not trivial, based on intermediate sets.
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The fixed-point theory of lattice of sets

Definition

Let 2S denote the power set of S, i.e., the set of all subsets of S.
For any finite set S, the structure ⟨2S,⊆⟩ forms a complete lattice with ∪ as join and ∩ as
meet operations.
A function F : 2S 7−→ 2S is monotonic provided S1 ⊆ S2 ⇒ F (S1) ⊆ F (S2).
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Fixed Points

Definition

Let ⟨2S,⊆⟩ be a complete lattice, S finite.
Given a function F : 2S 7−→ 2S, a ⊆ S is a fixed point of F iff

F (a) = a

a is a least fixed point (LFP) of F , written µx .F (x), iff, for every other fixed point a′ of F ,
a ⊆ a′

a is a greatest fixed point (GFP) of F , written νx .F (x), iff, for every other fixed point a′ of F ,
a′ ⊆ a
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Iteratively computing fixed points

Tarski’s Theorem
A monotonic function over a complete finite lattice has a least and a greatest fixed point.

(A corollary of) Kleene’s Theorem

A monotonic function F over a complete finite lattice has a least and a greatest fixed point, which
can be computed as follows:

the least fixed point of F is the limit of the chain ∅ ⊆ F (∅) ⊆ F (F (∅)) . . . ,
the greatest fixed point of F is the limit of chain S ⊇ F (S) ⊇ F (F (S)) . . .

Since 2S is finite, convergence is obtained in a finite number of steps.
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CTL Model Checking and Lattices

If M = ⟨S, I,R,L,AP⟩ is a Kripke structure, then ⟨2S,⊆⟩ is a complete lattice
We identify φ with its denotation [φ]

=⇒ we can see logical operators as functions F : 2S 7−→ 2S on the complete lattice ⟨2S,⊆⟩
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Denotation of a CTL formula φ: [φ]

Definition of [φ]

[φ] := {s ∈ S : M, s |= φ}

Recursive definition of [φ]

[⊤] = S
[⊥] = {}
[p] = {s|p ∈ L(s)}
[¬φ1] = S/[φ1]
[φ1 ∧ φ2] = [φ1] ∩ [φ2]
[EXφ] = {s | ∃s′ ∈ [φ] s.t . ⟨s, s′⟩ ∈ R}
[EGβ] = νZ .( [β] ∩ [EXZ ] )
[E(β1Uβ2)] = µZ .( [β2] ∪ ([β1] ∩ [EXZ ]) )
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Case EX

Consider EXφ:
PPreImage(P)

[EXφ] = {s | ∃s′ ∈ [φ] s.t . ⟨s, s′⟩ ∈ R}
[EXφ] is said to be the Pre-image of [φ] (Preimage([φ]))
Key step of every CTL M.C. operation

Note

Preimage() is monotonic: X ⊆ X ′ =⇒ Preimage(X ) ⊆ Preimage(X ′)
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Case EG

Consider EGβ:
νZ .( [β] ∩ [EXZ ] ): greatest fixed point of the function Fβ : 2S 7−→ 2S, s.t.
Fβ([φ]) = ([β] ∩ Preimage([φ])

= ([β] ∩ {s | ∃s′ ∈ [φ] s.t . ⟨s, s′⟩ ∈ R})
Fβ Monotonic: a ⊆ a′ =⇒ Fβ(a) ⊆ Fβ(a′)

(Tarski’s theorem): νx .Fβ(x) always exists
(Kleene’s theorem): νx .Fβ(x) can be computed as the limit
S ⊇ Fβ(S) ⊇ Fβ(Fβ(S)) ⊇ . . ., in a finite number of steps.

Theorem (Clarke & Emerson)

[EGβ] = νZ .( [β] ∩ [EXZ ] )
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Case EG [cont.]

We can compute X := [EGβ] inductively as follows:
X0 := S
X1 := Fβ(S) = [β]
X2 := Fβ(Fβ(S)) = [β] ∩ Preimage(X1)
. . .

Xj+1 := F j+1
β (S) = [β] ∩ Preimage(Xj)

Noticing that X1 = [β] and Xj+1 ⊆ Xj for every j ≥ 0, and that
([β] ∩ Y ) ⊆ Xj ⊆ [β] =⇒ ([β] ∩ Y ) = (Xj ∩ Y ),
we can use instead the following inductive schema:

X1 := [β]
Xj+1 := Xj ∩ Preimage(Xj)

Xj

Y

[β]
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Case EU

Consider E(β1Uβ2):
µZ .( [β2] ∪ ([β1] ∩ [EXZ ]) ): least fixed point of the function Fβ1,β2 : 2S 7−→ 2S, s.t.
Fβ1,β2([φ]) = [β2] ∪ ([β1] ∩ Preimage([φ]))

= [β2] ∪ ([β1] ∩ {s | ∃s′ ∈ [φ] s.t . ⟨s, s′⟩ ∈ R})
Fβ1,β2 Monotonic: a ⊆ a′ =⇒ Fβ1,β2(a) ⊆ Fβ1,β2(a

′)

(Tarski’s theorem): µx .Fβ1,β2(x) always exists
(Kleene’s theorem): µx .Fβ1,β2(x) can be computed as the limit
∅ ⊆ Fβ1,β2(∅) ⊆ Fβ1,β2(Fβ1,β2(∅)) ⊆ . . ., in a finite number of steps.

Theorem (Clarke & Emerson)

[E(β1Uβ2)] = µZ .( [β2] ∪ ([β1] ∩ [EXZ ]) )
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Case EU [cont.]

We can compute X := [E(β1Uβ2)] inductively as follows:
X0 := ∅
X1 := Fβ1,β2(∅) = [β2]
X2 := Fβ1,β2(Fβ1,β2(∅)) = [β2] ∪ ([β1] ∩ Preimage(X1))
. . .

Xj+1 := F j+1
β1,β2

(∅)) = [β2] ∪ ([β1] ∩ Preimage(Xj))

Noticing that X1 = [β2] and Xj+1 ⊇ Xj for every j ≥ 0, and that
([β2] ∪ Y ) ⊇ Xj ⊇ [β2] =⇒ ([β2] ∪ Y ) = (Xj ∪ Y ),
we can use instead the following inductive schema:

X1 := [β2]
Xj+1 := Xj ∪ ([β1] ∩ Preimage(Xj))

Y

Xj
[β2]
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A relevant subcase: EF

EFβ = E(⊤Uβ)

[⊤] = S =⇒ [⊤] ∩ Preimage(Xj) = Preimage(Xj)

We can compute X := [EFβ] inductively as follows:
X1 := [β]
Xj+1 := Xj ∪ Preimage(Xj)
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General Schema

Assume φ written in terms of ¬, ∧, EX, EU, EG
A general M.C. algorithm (fix-point):

1. for every φi ∈ Sub(φ), find [φi ]
2. Check if I ⊆ [φ]

Subformulas Sub(φ) of φ are checked bottom-up
To compute each [φi ]: if the main operator of φi is a

Propositional atoms: apply labeling function
Boolean operator: apply standard set operations
temporal operator: appy recursively the tableaux rules, until a fixpoint is reached

26 / 71



General Schema

Assume φ written in terms of ¬, ∧, EX, EU, EG
A general M.C. algorithm (fix-point):

1. for every φi ∈ Sub(φ), find [φi ]
2. Check if I ⊆ [φ]

Subformulas Sub(φ) of φ are checked bottom-up
To compute each [φi ]: if the main operator of φi is a

Propositional atoms: apply labeling function
Boolean operator: apply standard set operations
temporal operator: appy recursively the tableaux rules, until a fixpoint is reached

26 / 71



General Schema

Assume φ written in terms of ¬, ∧, EX, EU, EG
A general M.C. algorithm (fix-point):

1. for every φi ∈ Sub(φ), find [φi ]
2. Check if I ⊆ [φ]

Subformulas Sub(φ) of φ are checked bottom-up
To compute each [φi ]: if the main operator of φi is a

Propositional atoms: apply labeling function
Boolean operator: apply standard set operations
temporal operator: appy recursively the tableaux rules, until a fixpoint is reached

26 / 71



General Schema

Assume φ written in terms of ¬, ∧, EX, EU, EG
A general M.C. algorithm (fix-point):

1. for every φi ∈ Sub(φ), find [φi ]
2. Check if I ⊆ [φ]

Subformulas Sub(φ) of φ are checked bottom-up
To compute each [φi ]: if the main operator of φi is a

Propositional atoms: apply labeling function
Boolean operator: apply standard set operations
temporal operator: appy recursively the tableaux rules, until a fixpoint is reached

26 / 71



General Schema

Assume φ written in terms of ¬, ∧, EX, EU, EG
A general M.C. algorithm (fix-point):

1. for every φi ∈ Sub(φ), find [φi ]
2. Check if I ⊆ [φ]

Subformulas Sub(φ) of φ are checked bottom-up
To compute each [φi ]: if the main operator of φi is a

Propositional atoms: apply labeling function
Boolean operator: apply standard set operations
temporal operator: appy recursively the tableaux rules, until a fixpoint is reached

26 / 71



General Schema

Assume φ written in terms of ¬, ∧, EX, EU, EG
A general M.C. algorithm (fix-point):

1. for every φi ∈ Sub(φ), find [φi ]
2. Check if I ⊆ [φ]

Subformulas Sub(φ) of φ are checked bottom-up
To compute each [φi ]: if the main operator of φi is a

Propositional atoms: apply labeling function
Boolean operator: apply standard set operations
temporal operator: appy recursively the tableaux rules, until a fixpoint is reached

26 / 71



General Schema

Assume φ written in terms of ¬, ∧, EX, EU, EG
A general M.C. algorithm (fix-point):

1. for every φi ∈ Sub(φ), find [φi ]
2. Check if I ⊆ [φ]

Subformulas Sub(φ) of φ are checked bottom-up
To compute each [φi ]: if the main operator of φi is a

Propositional atoms: apply labeling function
Boolean operator: apply standard set operations
temporal operator: appy recursively the tableaux rules, until a fixpoint is reached

26 / 71



General Schema

Assume φ written in terms of ¬, ∧, EX, EU, EG
A general M.C. algorithm (fix-point):

1. for every φi ∈ Sub(φ), find [φi ]
2. Check if I ⊆ [φ]

Subformulas Sub(φ) of φ are checked bottom-up
To compute each [φi ]: if the main operator of φi is a

Propositional atoms: apply labeling function
Boolean operator: apply standard set operations
temporal operator: appy recursively the tableaux rules, until a fixpoint is reached

26 / 71



General Schema

Assume φ written in terms of ¬, ∧, EX, EU, EG
A general M.C. algorithm (fix-point):

1. for every φi ∈ Sub(φ), find [φi ]
2. Check if I ⊆ [φ]

Subformulas Sub(φ) of φ are checked bottom-up
To compute each [φi ]: if the main operator of φi is a

Propositional atoms: apply labeling function
Boolean operator: apply standard set operations
temporal operator: appy recursively the tableaux rules, until a fixpoint is reached

26 / 71



General M.C. Procedure

state_set Check(CTL_formula β) {
case β of
⊤: return S;
⊥: return {};
p: return {s | p ∈ L(s)};
¬β1: return S / Check(β1);
β1 ∧ β2: return Check(β1) ∩ Check(β2);
EXβ1: return PreImage(Check(β1));
EGβ1: return Check_EG(Check(β1));
E(β1Uβ2): return Check_EU(Check(β1),Check(β2));

}
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PreImage

Compute [EXβ]

state_set PreImage(state_set [β]) {
X := {};
for each s ∈ S do

for each s′ s.t . s′ ∈ [β] and ⟨s, s′⟩ ∈ R do
X := X ∪ {s};

return X ;
}
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Check_EG

Compute [EGβ]

state_set Check_EG(state_set [β]) {
X ′ := [β]; j := 1;
repeat

X := X ′; j := j + 1;
X ′ := X ∩ PreImage(X );

until (X ′ = X );
return X ;
}
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Check_EU

Compute [E(β1Uβ2)]

state_set Check_EU(state_set [β1],[β2]) {
X ′ := [β2]; j := 1;
repeat

X := X ′; j := j + 1;
X ′ := X ∪ ([β1] ∩ PreImage(X ));

until (X ′ = X );
return X ;
}
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A relevant subcase: Check_EF

Compute [EFβ]

state_set Check_EF(state_set [β]) {
X ′ := [β]; j := 1;
repeat

X := X ′; j := j + 1;
X ′ := X ∪ PreImage(X );

until (X ′ = X );
return X ;
}
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Example 1: fairness

N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical,  T = trying,  C = critical User 1 User 2

M |= AGAFC1 ? =⇒ M |= ¬EFEG¬C1 ?
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Example 1: fairness
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Example 1: fairness

[EG¬C1], step 1:
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Example 1: fairness

[EG¬C1], step 2:
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Example 1: fairness

[EG¬C1], step 3:
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Example 1: fairness

[EG¬C1], step 4:
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Example 1: fairness

[EG¬C1], FIXPOINT!
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Example 1: fairness

[EFEG¬C1], STEP 0
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Example 1: fairness

[EFEG¬C1], STEP 1
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Example 1: fairness

[EFEG¬C1], STEP 2
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Example 1: fairness

[EFEG¬C1], STEP 3
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Example 1: fairness

[EFEG¬C1], STEP 4

N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical,  T = trying,  C = critical User 1 User 2

M |= AGAFC1 ? =⇒ M |= ¬EFEG¬C1 ?

45 / 71



Example 1: fairness

[EFEG¬C1], FIXPOINT!
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Example 1: fairness

[¬EFEG¬C1]
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N = noncritical,  T = trying,  C = critical User 1 User 2

M |= AGAFC1 ? =⇒ M |= ¬EFEG¬C1 ? =⇒ NO!
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Example 2: liveness
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C1, N2
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N = noncritical,  T = trying,  C = critical User 1 User 2

M |= AG(T1 → AFC1) ? =⇒ M |= ¬EF(T1 ∧ EG¬C1) ?
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Example 2: liveness

[T1]:
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N = noncritical,  T = trying,  C = critical User 1 User 2

M |= AG(T1 → AFC1) ? =⇒ M |= ¬EF(T1 ∧ EG¬C1) ?
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Example 2: liveness

[EG¬C1], STEPS 0-4: (see previous example)
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Example 2: liveness

[T1 ∧ EG¬C1] :
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Example 2: liveness

[EF(T1 ∧ EG¬C1)] :
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Example 2: liveness

[¬EF(T1 ∧ EG¬C1)] :

N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical,  T = trying,  C = critical User 1 User 2

M |= AG(T1 → AFC1) ? =⇒ M |= ¬EF(T1 ∧ EG¬C1) ? YES!
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The property verified is...
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Homework

Apply the same process to all the CTL examples of Chapter 3.
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Complexity of CTL Model Checking: M |= φ

Step 1: compute [φ]

Compute [φ] bottom-up on the O(|φ|) sub-formulas of φ:
O(|φ|) steps...
... each requiring at most exploring O(|M|) states

=⇒ O(|M| · |φ|) steps
Step 2: check I ⊆ [φ]: O(|M|)

=⇒ O(|M| · |φ|)
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Model Checking of Invariants

Invariant properties have the form AG p (e.g., AG¬bad)
Checking invariants is the negation of a reachability problem:

is there a reachable state that is also a bad state? (AG¬bad = ¬EFbad)

Standard M.C. algorithm reasons backward from the bad by iteratively applying PreImage:

Y ′ := Y ∪ PreImage(Y )

until a fixed point is reached.
Then the complement is computed and I is checked for inclusion in the resulting set.
Better algorithm: reasons backward from the bad by iteratively applying PreImage:

Y ′ := Y ∪ PreImage(Y )

until (i) it intersect [I] or (ii) a fixed point is reached
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Model Checking of Invariants [cont.]

I

ϕ
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Forward Model Checking of Invariants

Alternative algorithm (often more efficient): forward checking
Compute the set of bad states [bad ]
Compute the set of initial states I
Compute incrementally the set of reachable states from I until (i) it intersect [bad ] or (ii) a
fixed point is reached
Basic step is the (Forward) Image:

Image(Y )
def
= {s′ | s ∈ Y and R(s, s′) holds}

Simplest form: compute the set of reachable states.
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Computing Reachable states: basic

State_Set Compute_reachable() {
Y ′ := I;Y := ∅; j := 1;
while (Y ′ ̸= Y )

j := j + 1;
Y := Y ′;
Y ′ := Y ∪ Image(Y );

}
return Y;
}

Y=reachable
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Computing Reachable states: advanced

State_Set Compute_reachable() {
Y := F := I; j := 1;
while (F ̸= ∅)

j := j + 1;
F := Image(F ) \ Y ;
Y := Y ∪ F ;

}
return Y;
}

Y=reachable;F=frontier (new)

62 / 71



Computing Reachable states [cont.]
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Checking of Invariant Properties: basic

bool Forward_Check_EF(State_Set BAD) {
Y := I; Y ′ := ∅; j := 1;
while (Y ′ ̸= Y ) and (Y ′ ∩ BAD) = ∅

j := j + 1;
Y := Y ′;
Y ′ := Y ∪ Image(Y );

}
if (Y ′ ∩ BAD) ̸= ∅ // counter-example

return true
else // fixpoint reached

return false
}

Y=reachable;
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Checking of Invariant Properties: advanced

bool Forward_Check_EF(State_Set BAD) {
Y := F := I; j := 1;
while (F ̸= ∅) and (F ∩ BAD) = ∅

j := j + 1;
F := Image(F ) \ Y ;
Y := Y ∪ F ;

}
if (F ∩ BAD) ̸= ∅ // counter-example

return true
else // fixpoint reached

return false
}

Y=reachable;F=frontier (new)
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Checking of Invariant Properties [cont.]
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Checking of Invariants: Counterexamples

if layer n intersects with the bad states, then the property is violated
a counterexample can be reconstructed proceeding backwards
(i) select any state of BAD ∩ F [n] (we know it is satisfiable), call it t [n]

(ii) compute Preimage(t [n]), i.e. the states that can result in t [n] in one step
(iii) compute Preimage(t [n]) ∩ F [n − 1], and select one state t [n − 1]
iterate (i)-(iii) until the initial states are reached
t [0], t [1], . . . , t [n] is our counterexample
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Checking of Invariants: Counterexamples [cont.]
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Ex: CTL Model Checking

Consider the Kripke Model M below, and the CTL property φ
def
= AG((p ∧ q) → EGq).

¬pq
s0

p¬q
s2

pq
s1

(a) Rewrite φ into an equivalent formula φ′ expressed in terms of EX,EG,EU/EF only.

[ Solution: φ′ = ¬EF¬((¬p ∨ ¬q) ∨ EGq) = ¬EF((p ∧ q) ∧ ¬EGq) ]

(b) Compute bottom-up the denotations of all subformulas of φ′. (Ex: [p] = {s1, s2})

[ Solution:

[p] = {s1, s2}
[q] = {s0, s1}
[(p ∧ q)] = {s1}
[EGq] = {s0, s1}

[¬EGq] = {s2}
[((p ∧ q) ∧ ¬EGq)] = {}
[EF((p ∧ q) ∧ ¬EGq)] = {}
[¬EF((p ∧ q) ∧ ¬EGq)] = {s0, s1, s2}

]

(c) As a consequence of point (b), say whether M |= φ or not.

[ Solution: Yes, {s1, s2} ⊆ [φ′]. ]
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[¬EF((p ∧ q) ∧ ¬EGq)] = {s0, s1, s2}

]

(c) As a consequence of point (b), say whether M |= φ or not.

[ Solution: Yes, {s1, s2} ⊆ [φ′]. ]
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