Formal Methods Module I: Automated Reasoning Ch. 03: Temporal Logics

Roberto Sebastiani

DISI, Università di Trento, Italy - roberto. sebastiani@unitn.it
URL: https://disi.unitn.it/rseba/DIDATTICA/fm2023/
Teaching assistant: Giuseppe Spallitta - giuseppe.spallitta@unitn.it

M.S. in Computer Science, Mathematics, \& Artificial Intelligence Systems

Academic year 2022-2023
last update: Tuesday $4^{\text {th }}$ April, 2023, 12:26
Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti, M. Di Natale, P. Pandya, M. Pistore, M. Roveri, C. Tinelli, and S. Tonetta, who detain its copyright. Some exampes displayed in these slides are taken from [Clarke, Grunberg \& Peled, "Model Checking", MIT Press], and their copyright is detained by the authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this material is strictly forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be displayed in public without containing this copyright notice.

Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems (hints)
(2) Properties and Temporal Logics
- Properties
- Temporal Logics
(3) Linear Temporal Logic - LTL
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples

4. Computation Tree Logic - CTL

- CTL: Syntax and Semantics
- Some CTL Model Checking Examples
(5) LTL vs. CTL
(6) Exercises

Outline

(9) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems (hints)
(2) Properties and Temporal Logics
- Properties
- Temporal Logics
(3) Linear Temporal Logic - LTL
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples

4. Computation Tree Logic - CTL

- CTL: Syntax and Semantics
- Some CTL Model Checking Examples
(5) LTL vs. CTL
(6) Exercises

Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems (hints)
(2) Properties and Temporal Logics
- Properties
- Temporal Logics
(3) Linear Temporal Logic - LTL
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples

4. Computation Tree Logic - CTL

- CTL: Syntax and Semantics
- Some CTL Model Checking Examples
(5) LTL vs. CTL
(6) Exercises

Kripke Models

- Theoretical role: the semantic framework for a variety of logics
- Modal Logics
- Description Logics
- Temporal Logics
- ...
- Practical role: used to describe reactive systems:
- nonterminating systems with infinite behaviors
(e.g. communication protocols, hardware circuits);
- represent the dynamic evolution of modeled systems;
- a state includes values to state variables, program counters, content of communication channels.
- can be animated and validated before their actual implementation

Kripke Models

- Theoretical role: the semantic framework for a variety of logics
- Modal Logics
- Description Logics
- Temporal Logics
- ...
- Practical role: used to describe reactive systems:
- nonterminating systems with infinite behaviors (e.g. communication protocols, hardware circuits);
- represent the dynamic evolution of modeled systems;
- a state includes values to state variables, program counters, content of communication channels.
- can be animated and validated before their actual implementation

Kripke Model: Formal Definition

- A Kripke model $\langle S, I, R, A P, L\rangle$ consists of
- a finite set of states S;

Remark
Unlike with other types of Automata (e.g., Buechi), in Kripke models the values of all variables are always assigned in each state.

Kripke Model: Formal Definition

- A Kripke model $\langle S, I, R, A P, L\rangle$ consists of
- a finite set of states S;
- a set of initial states $I \subseteq S$;
- a set of transitions $R \subset S \times S$;
- a set of atomic propositions AP;
- a labeling function $L: S \longmapsto 2^{A P}$
- We assume R total: for every state s, there exists (at least) one state s^{\prime} s.t. $\left(s, s^{\prime}\right) \in R$
- Sometimes we use variables with discrete bounded values $v_{i} \in\left\{d_{1}, \ldots, d_{k}\right\}$ (can be encoded with $\lceil\log (k)\rceil$ Boolean variables)

Remark
Unlike with other types of Automata (e.g., Buechi), in Kripke models the values of all variables are always assigned in each state.

Kripke Model: Formal Definition

- A Kripke model $\langle S, I, R, A P, L\rangle$ consists of
- a finite set of states S;
- a set of initial states $I \subseteq S$;
- a set of transitions $R \subseteq S \times S$;
- a set of atomic propositions AP;
- a labeling function $L: S \longmapsto 2^{A P}$
- We assume R total for every state s, there exists (at least) one state s^{\prime} s.t. $\left(s, s^{\prime}\right) \in R$
- Sometimes we use variables with discrete bounded values $v_{i} \in\left\{d_{1}, \ldots, d_{k}\right\}$ (can be encoded with $\lceil\log (k)\rceil$ Boolean variables)

Remark
Unlike with other types of Automata (e.g., Buechi), in Kripke models the values of all variables are always assigned in each state.

Kripke Model: Formal Definition

- A Kripke model $\langle S, I, R, A P, L\rangle$ consists of
- a finite set of states S;
- a set of initial states $I \subseteq S$;
- a set of transitions $R \subseteq S \times S$;
- a set of atomic propositions AP;
- a labeling function $L: S \longmapsto 2^{A P}$
- We assume R total for every state s, there exists (at least) one state s^{\prime} s.t. $\left(s, s^{\prime}\right) \in R$
- Sometimes we use variables with discrete bounded values $v_{i} \in\left\{d_{1}, \ldots, d_{k}\right\}$ (can be encoded with $\lceil\log (k)\rceil$ Boolean variables)

Remark
Unlike with other types of Automata (e.g., Buechi), in Kripke models the values of all variables are always assigned in each state.

Kripke Model: Formal Definition

- A Kripke model $\langle S, I, R, A P, L\rangle$ consists of
- a finite set of states S;
- a set of initial states $I \subseteq S$;
- a set of transitions $R \subseteq S \times S$;
- a set of atomic propositions $A P$;
- We assume R total: for every state s, there exists (at least) one state s^{\prime} s.t. $\left(s, s^{\prime}\right) \in R$
- Sometimes we use variables with discrete bounded values $v_{i} \in\left\{d_{1}, \ldots, d_{k}\right\}$ (can be encoded with $\lceil\log (k)\rceil$ Boolean variables)

Remark
Unlike with other types of Automata (e.g., Buechi), in Kripke models the values of all variables are always assigned in each state.

Kripke Model: Formal Definition

- A Kripke model $\langle S, I, R, A P, L\rangle$ consists of
- a finite set of states S;
- a set of initial states $I \subseteq S$;
- a set of transitions $R \subseteq S \times S$;
- a set of atomic propositions $A P$;
- a labeling function $L: S \longmapsto 2^{A P}$.
- We assume R total: for every state s, there exists (at least) one state s^{\prime} s.t. $\left(s, s^{\prime}\right) \in R$
- Sometimes we use variables with discrete bounded values $v_{i} \in\left\{d_{1}, \ldots, d_{k}\right\}$ (can be encoded with $\lceil\log (k)\rceil$ Boolean variables)

Remark
Unlike with other types of Automata (e.g., Buechi), in Kripke models the values of all variables are always assigned in each state.

Kripke Model: Formal Definition

- A Kripke model $\langle S, I, R, A P, L\rangle$ consists of
- a finite set of states S;
- a set of initial states $I \subseteq S$;
- a set of transitions $R \subseteq S \times S$;
- a set of atomic propositions $A P$;
- a labeling function $L: S \longmapsto 2^{A P}$.
- We assume R total: for every state s, there exists (at least) one state s^{\prime} s.t. $\left(s, s^{\prime}\right) \in R$
- Sometimes we use variables with discrete bounded values $v_{i} \in\left\{d_{1}, \ldots, d_{k}\right\}$ (can be encoded with $\lceil\log (k)\rceil$ Boolean variables)

Remark
Unlike with other types of Automata (e.g., Buechi), in Kripke models the values of all variables are always assigned in each state.

Kripke Model: Formal Definition

- A Kripke model $\langle S, I, R, A P, L\rangle$ consists of
- a finite set of states S;
- a set of initial states $I \subseteq S$;
- a set of transitions $R \subseteq S \times S$;
- a set of atomic propositions $A P$;
- a labeling function $L: S \longmapsto 2^{A P}$.
- We assume R total: for every state s, there exists (at least) one state s^{\prime} s.t. $\left(s, s^{\prime}\right) \in R$
- Sometimes we use variables with discrete bounded values $v_{i} \in\left\{d_{1}, \ldots, d_{k}\right\}$ (can be encoded with $\lceil\log (k)\rceil$ Boolean variables)

[^0] are always assigned in each state.

Kripke Model: Formal Definition

- A Kripke model $\langle S, I, R, A P, L\rangle$ consists of
- a finite set of states S;
- a set of initial states $I \subseteq S$;
- a set of transitions $R \subseteq S \times S$;
- a set of atomic propositions $A P$;
- a labeling function $L: S \longmapsto 2^{A P}$.
- We assume R total: for every state s, there exists (at least) one state s^{\prime} s.t. $\left(s, s^{\prime}\right) \in R$
- Sometimes we use variables with discrete bounded values $v_{i} \in\left\{d_{1}, \ldots, d_{k}\right\}$ (can be encoded with $\lceil\log (k)\rceil$ Boolean variables)

Remark

Unlike with other types of Automata (e.g., Buechi), in Kripke models the values of all variables are always assigned in each state.

Kripke Structures: Two Alternative Representations:

- each state identifies univocally the values of the atomic propositions which hold there
- each state is labeled by a bit vector

Kripke Structures: Two Alternative Representations:

- each state identifies univocally the values of the atomic propositions which hold there
- each state is labeled by a bit vector

Example: a Kripke model for mutual exclusion

Path in a Kripke Model

A path in a Kripke model M is an infinite sequence of states

Composing Kripke Models

- Complex Kripke Models are tipically obtained by composition of smaller ones
- Components can be combined via
- asynchronous composition.
- synchronous composition,

Asynchronous Composition

- Interleaving of evolution of components.
- At each time instant, one component is selected to perform a transition.

- Typical example: communication protocols.

Asynchronous Composition/Product: formal definition

Asynchronous product of Kripke models

Let $M_{1} \stackrel{\text { def }}{=}\left\langle S_{1}, l_{1}, R_{1}, A P_{1}, L_{1}\right\rangle, M_{2} \stackrel{\text { def }}{=}\left\langle S_{2}, I_{2}, R_{2}, A P_{2}, L_{2}\right\rangle$. Then the asynchronous product $M \stackrel{\text { def }}{=} M_{1} \| M_{2}$ is $M \stackrel{\text { def }}{=}\langle S, I, R, A P, L\rangle$, where

- $S \subseteq S_{1} \times S_{2}$ s.t., $\forall\left\langle s_{1}, s_{2}\right\rangle \in S, \forall I \in A P_{1} \cap A P_{2}, I \in L_{1}\left(s_{1}\right)$ iff $I \in L_{2}\left(s_{2}\right)$
- $I \subseteq I_{1} \times I_{2}$ s.t. $I \subseteq S$
- $R\left(\left\langle s_{1}, s_{2}\right\rangle,\left\langle t_{1}, t_{2}\right\rangle\right)$ iff $\left(R_{1}\left(s_{1}, t_{1}\right)\right.$ and $\left.s_{2}=t_{2}\right)$ or $\left(s_{1}=t_{1}\right.$ and $\left.R_{2}\left(s_{2}, t_{2}\right)\right)$
- $A P=A P_{1} \cup A P_{2}$
- $L: S \longmapsto 2^{A P}$ s.t. $L\left(\left\langle s_{1}, s_{2}\right\rangle\right) \stackrel{\text { def }}{=} L_{1}\left(s_{1}\right) \cup L_{2}\left(s_{2}\right)$.

Note: combined states must agree on the values of Boolean variables.

Asynchronous Composition/Product: formal definition

Asynchronous product of Kripke models

Let $M_{1} \stackrel{\text { def }}{=}\left\langle S_{1}, l_{1}, R_{1}, A P_{1}, L_{1}\right\rangle, M_{2} \stackrel{\text { def }}{=}\left\langle S_{2}, I_{2}, R_{2}, A P_{2}, L_{2}\right\rangle$. Then the asynchronous product $M \stackrel{\text { def }}{=} M_{1} \| M_{2}$ is $M \stackrel{\text { def }}{=}\langle S, I, R, A P, L\rangle$, where

- $S \subseteq S_{1} \times S_{2}$ s.t., $\forall\left\langle s_{1}, s_{2}\right\rangle \in S, \forall I \in A P_{1} \cap A P_{2}, I \in L_{1}\left(s_{1}\right)$ iff $I \in L_{2}\left(s_{2}\right)$
- $I \subseteq I_{1} \times I_{2}$ s.t. $I \subseteq S$
- $R\left(\left\langle s_{1}, s_{2}\right\rangle,\left\langle t_{1}, t_{2}\right\rangle\right)$ iff $\left(R_{1}\left(s_{1}, t_{1}\right)\right.$ and $\left.s_{2}=t_{2}\right)$ or $\left(s_{1}=t_{1}\right.$ and $\left.R_{2}\left(s_{2}, t_{2}\right)\right)$
- $A P=A P_{1} \cup A P_{2}$
- $L: S \longmapsto 2^{A P}$ s.t. $L\left(\left\langle s_{1}, s_{2}\right\rangle\right) \stackrel{\text { def }}{=} L_{1}\left(s_{1}\right) \cup L_{2}\left(s_{2}\right)$.

Note: combined states must agree on the values of Boolean variables.

Asynchronous composition is associative:
$\left.\left(\ldots\left(M_{1} \| M_{2}\right) \| \ldots\right) \| M_{n}\right)=\left(M 1| |\left(M_{2} \|\left(\ldots \| \mid M_{n}\right) \ldots\right)=M_{1}\left\|M_{2}\right\| \ldots \| M_{n}\right.$

Asynchronous Composition: Example 1

Asynchronous Composition: Example 2

non-reachable state
$x=1 \quad 4 B$

Asynchronous Composition: Example 2

Synchronous Composition

- Components evolve in parallel.
- At each time instant, every component performs a transition.

- Typical example: sequential hardware circuits.

Synchronous Composition/Product: formal definition

Synchronous product of Kripke models

Let $M_{1} \stackrel{\text { def }}{=}\left\langle S_{1}, I_{1}, R_{1}, A P_{1}, L_{1}\right\rangle, M_{2} \stackrel{\text { def }}{=}\left\langle S_{2}, I_{2}, R_{2}, A P_{2}, L_{2}\right\rangle$. Then the synchronous product $M \stackrel{\text { def }}{=} M_{1} \times M_{2}$ is $M \stackrel{\text { def }}{=}\langle S, I, R, A P, L\rangle$, where

- $S \subseteq S_{1} \times S_{2}$ s.t., $\forall\left\langle s_{1}, s_{2}\right\rangle \in S, \forall I \in A P_{1} \cap A P_{2}, I \in L_{1}\left(s_{1}\right)$ iff $I \in L_{2}\left(s_{2}\right)$
- $I \subseteq I_{1} \times I_{2}$ s.t. $I \subseteq S$
- $R\left(\left\langle s_{1}, s_{2}\right\rangle,\left\langle t_{1}, t_{2}\right\rangle\right)$ iff $\quad\left(R_{1}\left(s_{1}, t_{1}\right)\right.$ and $\left.R_{2}\left(s_{2}, t_{2}\right)\right)$
- $A P=A P_{1} \cup A P_{2}$
- $L: S \longmapsto 2^{A P}$ s.t. $L\left(\left\langle s_{1}, s_{2}\right\rangle\right) \stackrel{\text { def }}{=} L_{1}\left(s_{1}\right) \cup L_{2}\left(s_{2}\right)$.

Note: combined states must agree on the values of Boolean variables.

Synchronous Composition/Product: formal definition

Synchronous product of Kripke models

Let $M_{1} \stackrel{\text { def }}{=}\left\langle S_{1}, I_{1}, R_{1}, A P_{1}, L_{1}\right\rangle, M_{2} \stackrel{\text { def }}{=}\left\langle S_{2}, I_{2}, R_{2}, A P_{2}, L_{2}\right\rangle$. Then the synchronous product $M \stackrel{\text { def }}{=} M_{1} \times M_{2}$ is $M \stackrel{\text { def }}{=}\langle S, I, R, A P, L\rangle$, where

- $S \subseteq S_{1} \times S_{2}$ s.t., $\forall\left\langle s_{1}, s_{2}\right\rangle \in S, \forall I \in A P_{1} \cap A P_{2}, I \in L_{1}\left(s_{1}\right)$ iff $I \in L_{2}\left(s_{2}\right)$
- $I \subseteq I_{1} \times I_{2}$ s.t. $I \subseteq S$
- $R\left(\left\langle s_{1}, s_{2}\right\rangle,\left\langle t_{1}, t_{2}\right\rangle\right)$ iff $\quad\left(R_{1}\left(s_{1}, t_{1}\right)\right.$ and $\left.R_{2}\left(s_{2}, t_{2}\right)\right)$
- $A P=A P_{1} \cup A P_{2}$
- $L: S \longmapsto 2^{A P}$ s.t. $L\left(\left\langle s_{1}, s_{2}\right\rangle\right) \stackrel{\text { def }}{=} L_{1}\left(s_{1}\right) \cup L_{2}\left(s_{2}\right)$.

Note: combined states must agree on the values of Boolean variables.

Synchronous composition is associative:

$$
\left.\left(\ldots\left(M_{1} \times M_{2}\right) \times \ldots\right) \times M_{n}\right)=\left(M 1 \times\left(M_{2} \times\left(\ldots \times M_{n}\right) \ldots\right)=M_{1} \times M_{2} \times \ldots \times M_{n}\right.
$$

Synchronous Composition: Example 1

Synchronous Composition: Example 2

Synchronous Composition: Example 2 (cont.)

Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems (hints)
(2) Properties and Temporal Logics
- Properties
- Temporal Logics
(3) Linear Temporal Logic - LTL
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples
(4) Computation Tree Logic - CTL
- CTL: Syntax and Semantics
- Some CTL Model Checking Examples
(5) LTL vs. CTL
(6) Exercises

Description languages for Kripke Model

- Most often a Kripke model is not given explicitly (states, arcs),...
- ... rather it is usually presented in a structured language
(e.g., SMV, PROMELA, StateCharts, VHDL, ...)
- even a piece of SW can be seen as a Kripke model
- Each component is presented by specifying
- Aka as symbolic representation of a Kripke model

[^1]
Description languages for Kripke Model

- Most often a Kripke model is not given explicitly (states, arcs),...
- ... rather it is usually presented in a structured language (e.g., SMV, PROMELA, StateCharts, VHDL, ...)
- even a piece of SW can be seen as a Kripke model!
- Each component is presented by specifying
- Aka as symbolic representation of a Kripke model

[^2]
Description languages for Kripke Model

- Most often a Kripke model is not given explicitly (states, arcs),...
- ... rather it is usually presented in a structured language (e.g., SMV, PROMELA, StateCharts, VHDL, ...)
- even a piece of SW can be seen as a Kripke model!
- Each component is presented by specifying
- state variables: determine the set of atomic propositions $A P$, the state space S and the labeling L - initial values of variables V : determine the set of initial states I.
- described as a relation $I\left(V_{0}\right)$ in terms of state variables at step 0
- instructions: determine the transition relation R.
- described as a relation $R\left(V, V^{\prime}\right)$ in terms of current state variables V and next state variables V^{\prime}
- Aka as sumbolic renresentation of a Krinke model

[^3]
Description languages for Kripke Model

- Most often a Kripke model is not given explicitly (states, arcs),...
- ... rather it is usually presented in a structured language (e.g., SMV, PROMELA, StateCharts, VHDL, ...)
- even a piece of SW can be seen as a Kripke model!
- Each component is presented by specifying
- state variables: determine the set of atomic propositions $A P$, the state space S and the labeling L.
- initial values of variables V : determine the set of initial states I.
- described as a relation $I\left(V_{0}\right)$ in terms of state variables at step 0
- instructions: determine the transition relation R.
- described as a relation $R\left(V, V^{\prime}\right)$ in terms of current state variables V and next state variables V^{\prime}
- Aka as symbolic representation of a Kripke model

```
Remark
Tipically symbolic description are much more compact (and intuitive) than the explicit representation of the Kripke model.
```


Description languages for Kripke Model

- Most often a Kripke model is not given explicitly (states, arcs),...
- ... rather it is usually presented in a structured language (e.g., SMV, PROMELA, StateCharts, VHDL, ...)
- even a piece of SW can be seen as a Kripke mode!!
- Each component is presented by specifying
- state variables: determine the set of atomic propositions $A P$, the state space S and the labeling L. - initial values of variables V : determine the set of initial states I.
- described as a relation $I\left(V_{0}\right)$ in terms of state variables at step 0
- instructions: determine the transition relation R.
- described as a relation $R\left(V, V^{\prime}\right)$ in terms of current state variables V and next state variables V^{\prime}
- Aka as symbolic representation of a Kripke model

[^4]
Description languages for Kripke Model

- Most often a Kripke model is not given explicitly (states, arcs),...
- ... rather it is usually presented in a structured language (e.g., SMV, PROMELA, StateCharts, VHDL, ...)
- even a piece of SW can be seen as a Kripke mode!!
- Each component is presented by specifying
- state variables: determine the set of atomic propositions $A P$, the state space S and the labeling L. - initial values of variables V : determine the set of initial states I.
- described as a relation $I\left(V_{0}\right)$ in terms of state variables at step 0
- instructions: determine the transition relation R.
- described as a relation $R\left(V, V^{\prime}\right)$ in terms of current state variables V and next state variables V^{\prime}
- Aka as symbolic representation of a Kripke model

[^5]
Description languages for Kripke Model

- Most often a Kripke model is not given explicitly (states, arcs),...
- ... rather it is usually presented in a structured language (e.g., SMV, PROMELA, StateCharts, VHDL, ...)
- even a piece of SW can be seen as a Kripke model!
- Each component is presented by specifying
- state variables: determine the set of atomic propositions $A P$, the state space S and the labeling L. - initial values of variables V : determine the set of initial states l.
- described as a relation $I\left(V_{0}\right)$ in terms of state variables at step 0
- instructions: determine the transition relation R.
- described as a relation $R\left(V, V^{\prime}\right)$ in terms of current state variables V and next state variables V^{\prime}
- Aka as symbolic representation of a Kripke model

[^6]
Description languages for Kripke Model

- Most often a Kripke model is not given explicitly (states, arcs),...
- ... rather it is usually presented in a structured language (e.g., SMV, PROMELA, StateCharts, VHDL, ...)
- even a piece of SW can be seen as a Kripke mode!!
- Each component is presented by specifying
- state variables: determine the set of atomic propositions $A P$, the state space S and the labeling L. - initial values of variables V : determine the set of initial states l.
- described as a relation $I\left(V_{0}\right)$ in terms of state variables at step 0
- instructions: determine the transition relation R.
- described as a relation $R\left(V, V^{\prime}\right)$ in terms of current state variables V and next state variables V^{\prime}
- Aka as symbolic representation of a Kripke model

Remark

Tipically symbolic description are much more compact (and intuitive) than the explicit representation of the Kripke model.

The SMV language

- The input language of the SMV M.C. (and NuSMV)
- Booleans, enumerative and bounded integers as data types
- now enriched with other constructs, e.g. in NuXMV language
- An SMV program consists of:
- Declarations of the state variables (e.g., b0);
- Assignments that define the initial states
(e.g., init (b0) $:=0$).
- Assignments that define the transition relation (e.g., next (b0) := ! b0).
- Allows for both synchronous and asyncronous composition of modules (though synchronous interaction more natural)

Example: a Simple Counter Circuit

```
MODULE main
    VAR
        v0 : boolean;
        v1 : boolean;
        out : 0..3;
    ASSIGN
    init(v0) := 0;
    init(v1) := 0;
    next(v1) := (v0 xor v1);
    out := toint(v0) + 2*toint(v1);
```


Example: a Simple Counter Circuit

```
MODULE main
    VAR
        v0 : boolean;
    ASSIGN
    init(v0) := 0;
    init(v1) := 0;
    next(v1) := (v0 xor v1);
    out := toint(v0) + 2*toint(v1);
```


v_{1}	v_{0}	v_{1}^{\prime}	v_{0}^{\prime}
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

$l(V)=\left(\neg V_{0} \wedge \neg V_{1}\right)$

$$
R\left(V, V^{\prime}\right)=\left(v_{0}^{\prime} \leftrightarrow \neg v_{0}\right) \wedge\left(v_{1}^{\prime} \leftrightarrow v_{0} \oplus v_{1}\right)
$$

Standard Programming Languages

- Standard programming languages are typically sequential

Transition relation defined in terms also of the program counter

- Numbers \& values Booleanized

Standard Programming Languages

- Standard programming languages are typically sequential
\Longrightarrow Transition relation defined in terms also of the program counter
- Numbers \& values Booleanized

Standard Programming Languages

- Standard programming languages are typically sequential
\Longrightarrow Transition relation defined in terms also of the program counter
- Numbers \& values Booleanized

Standard Programming Languages

- Standard programming languages are typically sequential
\Longrightarrow Transition relation defined in terms also of the program counter
- Numbers \& values Booleanized

10. i = 0;	$(p c=10) \rightarrow\left(\left(i^{\prime}=0\right) \wedge\left(p c^{\prime}=11\right)\right)$
11. acc = 0.0;	$(p c=11) \rightarrow\left(\left(a c c^{\prime}=0.0\right) \wedge\left(p c^{\prime}=12\right)\right)$
12. while (i<dim) \{	$(p c=12) \rightarrow\left((i<\operatorname{dim}) \rightarrow\left(p c^{\prime}=13\right)\right)$
13. acc += V[i];	$(p c=12) \rightarrow\left(\neg(i<\operatorname{dim}) \rightarrow\left(p c^{\prime}=16\right)\right)$ $(p c=13) \rightarrow\left(\left(a c c^{\prime}=a c c+\operatorname{read}(V, i)\right) \wedge\left(p c^{\prime}=14\right)\right)$
14. i++; 15. \}	$\begin{aligned} & (p c=13) \rightarrow\left(\left(a c c^{\prime}=a c c+r e a d(V, i)\right) \wedge\left(p c^{\prime}=14\right)\right) \\ & \left.(p c=14) \rightarrow\left(i^{\prime}=i+1\right) \wedge\left(p c^{\prime}=15\right)\right) \end{aligned}$
15. \}	$\left.(p c=15) \rightarrow\left(p c^{\prime}=16\right)\right)$

Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems (hints)
(2) Properties and Temporal Logics
- Properties
- Temporal Logics
(3) Linear Temporal Logic - LTL
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples
(4) Computation Tree Logic - CTL
- CTL: Syntax and Semantics
- Some CTL Model Checking Examples
(5) LTL vs. CTL
(6) Exercises

Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems (hints)
(2) Properties and Temporal Logics
- Properties
- Temporal Logics
(3) Linear Temporal Logic - LTL
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples

4. Computation Tree Logic - CTL

- CTL: Syntax and Semantics
- Some CTL Model Checking Examples
(5) LTL vs. CTL
(6) Exercises

Safety Properties

- Bad events never happen
- deadlock: two processes waiting for input from each other, the system is unable to perform a transition.
- no reachable state satisfies a "bad" condition, e.g. never two processes in critical section at the same time
- Can be refuted by a finite behaviour
- Ex.: it is never the case that p.

Safety Properties

- Bad events never happen
- deadlock: two processes waiting for input from each other, the system is unable to perform a transition.
- no reachable state satisfies a "bad" condition, e.g. never two processes in critical section at the same time
- Can be refuted by a finite behaviour
- Ex.: it is never the case that p.

Safety Properties

- Bad events never happen
- deadlock: two processes waiting for input from each other, the system is unable to perform a transition.
- no reachable state satisfies a "bad" condition, e.g. never two processes in critical section at the same time
- Can be refuted by a finite behaviour
- Ex.: it is never the case that p.

Liveness Properties

- Something desirable will eventually happen
- sooner or later this will happen
- Can be refuted by infinite behaviour

Liveness Properties

- Something desirable will eventually happen
- sooner or later this will happen
- Can be refuted by infinite behaviour

- an infinite behaviour can be typically presented as a loop

Liveness Properties

- Something desirable will eventually happen
- sooner or later this will happen
- Can be refuted by infinite behaviour

- an infinite behaviour can be typically presented as a loop

Fairness Properties

- Something desirable will happen infinitely often
- important subcase of liveness
- whenever a subroutine takes control, it will always return it (sooner or later)
- Can be refuted by infinite behaviour
- a subroutine takes control and never returns it

Fairness Properties

- Something desirable will happen infinitely often
- important subcase of liveness
- whenever a subroutine takes control, it will always return it (sooner or later)
- Can be refuted by infinite behaviour
- a subroutine takes control and never returns it

- an infinite behaviour can be typically presented as a loop

Fairness Properties

－Something desirable will happen infinitely often
－important subcase of liveness
－whenever a subroutine takes control，it will always return it（sooner or later）
－Can be refuted by infinite behaviour
－a subroutine takes control and never returns it

－an infinite behaviour can be typically presented as a loop

Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems (hints)
(2) Properties and Temporal Logics
- Properties
- Temporal Logics
(3) Linear Temporal Logic - LTL
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples
(4) Computation Tree Logic - CTL
- CTL: Syntax and Semantics
- Some CTL Model Checking Examples
(5) LTL vs. CTL
(6) Exercises

Computation tree vs. computation paths

- Consider the following Kripke structure:

- Its execution can be seen as:

Computation tree vs. computation paths

- Consider the following Kripke structure:

- Its execution can be seen as:

Computation tree vs. computation paths

- Consider the following Kripke structure:

- Its execution can be seen as:
- an infinite set of computation paths

- an infinite
computation tree

Computation tree vs. computation paths

- Consider the following Kripke structure:

- Its execution can be seen as:
- an infinite set of computation paths

- an infinite
computation tree

Temporal Logics

- Express properties of "Reactive Systems"
- nonterminating behaviours,
- without explicit reference to time.
- Linear Temporal Logic (LTL)
- interpreted over each path of the Kripke structure
- linear model of time
- temporal operators
- "Medieval": "since birth, one's destiny is set".
- Computation Tree Logic (CTL)
- interpreted over computation tree of Kripke model
- branching model of time
- temporal operators plus path quantifiers
- "Humanistic": "one makes his/her own destiny step-by-step"

Temporal Logics

- Express properties of "Reactive Systems"
- nonterminating behaviours,
- without explicit reference to time.
- Linear Temporal Logic (LTL)
- interpreted over each path of the Kripke structure
- linear model of time
- temporal operators
- "Medieval": "since birth, one's destiny is set".

```
- Computation Tree Logic (CTL)
- interpreted over computation tree of Kripke model
- branching model of time
- temporal operators plus path quantifiers
- "Humanistic": "one makes his/her own destiny step-by-step"
```


Temporal Logics

- Express properties of "Reactive Systems"
- nonterminating behaviours,
- without explicit reference to time.
- Linear Temporal Logic (LTL)
- interpreted over each path of the Kripke structure
- linear model of time
- temporal operators
- "Medieval": "since birth, one's destiny is set".
- Computation Tree Logic (CTL)
- interpreted over computation tree of Kripke model
- branching model of time
- temporal operators plus path quantifiers
- "Humanistic": "one makes his/her own destiny step-by-step".

Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems (hints)
(2) Properties and Temporal Logics
- Properties
- Temporal Logics
(3) Linear Temporal Logic - LTL
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples
(4) Computation Tree Logic-CTL
- CTL: Syntax and Semantics
- Some CTL Model Checking Examples
(5) LTL vs. CTL
(6) Exercises

Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems (hints)
(2) Properties and Temporal Logics
- Properties
- Temporal Logics
(3) Linear Temporal Logic - LTL
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples

4. Computation Tree Logic - CTL

- CTL: Syntax and Semantics
- Some CTL Model Checking Examples
(5) LTL vs. CTL
(6) Exercises

Linear Temporal Logic (LTL): Syntax

- An atomic proposition is a LTL formula;
- if φ_{1} and φ_{2} are LTL formulae, then $\neg \varphi_{1}, \varphi_{1} \wedge \varphi_{2}, \varphi_{1} \vee \varphi_{2}, \varphi_{1} \rightarrow \varphi_{2}, \varphi_{1} \leftrightarrow \varphi_{2}, \varphi_{1} \oplus \varphi_{2}$ are

LTL formulae;

- if φ_{1} and φ_{2} are LTL formulae, then $\mathrm{X} \varphi_{1}, \mathrm{G} \varphi_{1}, \mathrm{~F} \varphi_{1}, \varphi_{1} \mathrm{U} \varphi_{2}$ are LTL formulae, where $\mathrm{X}, \mathrm{G}, \mathrm{F}$, U are the "next", "globally", "eventually", "until" temporal operators respectively.
- Another operator R "releases" (the dual of U) is used sometimes.

Linear Temporal Logic (LTL): Syntax

- An atomic proposition is a LTL formula;
- if φ_{1} and φ_{2} are LTL formulae, then $\neg \varphi_{1}, \varphi_{1} \wedge \varphi_{2}, \varphi_{1} \vee \varphi_{2}, \varphi_{1} \rightarrow \varphi_{2}, \varphi_{1} \leftrightarrow \varphi_{2}, \varphi_{1} \oplus \varphi_{2}$ are LTL formulae;
- if φ_{1} and φ_{2} are LTL formulae, then $\mathrm{X} \varphi_{1}, \mathrm{G} \varphi_{1}, \mathrm{~F} \varphi_{1}, \varphi_{1} \mathrm{U} \varphi_{2}$ are LTL formulae, where $\mathrm{X}, \mathrm{G}, \mathrm{F}$, U are the "next", "globally", "eventually", "until" temporal operators respectively.
- Another operator \mathbf{R} "releases" (the dual of \mathbf{U}) is used sometimes.

Linear Temporal Logic (LTL): Syntax

- An atomic proposition is a LTL formula;
- if φ_{1} and φ_{2} are LTL formulae, then $\neg \varphi_{1}, \varphi_{1} \wedge \varphi_{2}, \varphi_{1} \vee \varphi_{2}, \varphi_{1} \rightarrow \varphi_{2}, \varphi_{1} \leftrightarrow \varphi_{2}, \varphi_{1} \oplus \varphi_{2}$ are LTL formulae;
- if φ_{1} and φ_{2} are LTL formulae, then $\mathbf{X} \varphi_{1}, \mathbf{G} \varphi_{1}, \mathbf{F} \varphi_{1}, \varphi_{1} \mathbf{U} \varphi_{2}$ are LTL formulae, where $\mathbf{X}, \mathbf{G}, \mathbf{F}$, \mathbf{U} are the "next", "globally", "eventually","until" temporal operators respectively.
- Another operator R "releases" (the dual of U) is used sometimes.

Linear Temporal Logic (LTL): Syntax

- An atomic proposition is a LTL formula;
- if φ_{1} and φ_{2} are LTL formulae, then $\neg \varphi_{1}, \varphi_{1} \wedge \varphi_{2}, \varphi_{1} \vee \varphi_{2}, \varphi_{1} \rightarrow \varphi_{2}, \varphi_{1} \leftrightarrow \varphi_{2}, \varphi_{1} \oplus \varphi_{2}$ are LTL formulae;
- if φ_{1} and φ_{2} are LTL formulae, then $\mathbf{X} \varphi_{1}, \mathbf{G} \varphi_{1}, \mathbf{F} \varphi_{1}, \varphi_{1} \mathbf{U} \varphi_{2}$ are LTL formulae, where $\mathbf{X}, \mathbf{G}, \mathbf{F}$, \mathbf{U} are the "next", "globally", "eventually","until" temporal operators respectively.
- Another operator \mathbf{R} "releases" (the dual of \mathbf{U}) is used sometimes.

LTL semantics: intuitions

LTL is given by the standard boolean logic enhanced with the following temporal operators, which operate through paths $\left\langle s_{0}, s_{1}, \ldots, s_{k}, \ldots\right\rangle$:

- "Next" $\mathbf{X}: \mathbf{X} \varphi$ is true in s_{t} iff φ is true in s_{t+1}
- "Finally" (or "eventually") $\mathbf{F}: \mathbf{F} \varphi$ is true in s_{t} iff φ is true in some $s_{t^{\prime}}$ with $t^{\prime} \geq t$
- "Globally" (or "henceforth") $\mathbf{G}: \mathbf{G} \varphi$ is true in s_{t} iff φ is true in all $s_{t^{\prime}}$ with $t^{\prime} \geq t$
- "Until" $\mathbf{U}: \varphi \mathbf{U}$ is true in s_{t} iff, for some state $s_{t^{\prime}}$ s.t $t^{\prime} \geq t$:
- ψ is true in $s_{t^{\prime}}$ and
- φ is true in all states $s_{t^{\prime \prime}}$ s.t. $t \leq t^{\prime \prime}<t^{\prime}$
- "Releases" \mathbf{R} : $\varphi \mathbf{R} \psi$ is true in s_{t} iff, for all states $s_{t^{\prime}}$ s.t. $t^{\prime} \geq t$:
- ψ is true or
- φ is true in some states $s_{t^{\prime \prime}}$ with $t \leq t^{\prime \prime}<t^{\prime}$
" ψ can become false only if φ becomes true first"

LTL semantics: intuitions

next P
P until q

X_{P}

LTL: Some Noteworthy Examples

- Safety: "it never happens that a train is arriving and the bar is up"

$$
\mathbf{G}(\neg(\text { train_arriving } \wedge \text { bar_up }))
$$

- Liveness: "if input, then eventually output"

$$
\mathbf{G} \text { (input } \rightarrow \text { Foutput) }
$$

- Releases: "the device is not working if you don't first repair it"

$$
\text { (repair_device } \mathbf{R} \neg \text { working_device) }
$$

- Fairness: "infinitely often send "
GFsend
- Strong fairness: "infinitely often send implies infinitely often recv."

$$
\text { GFsend } \rightarrow \text { GFrecv }
$$

LTL Formal Semantics

$$
\begin{aligned}
& \begin{array}{rll}
\pi, s_{i} & \models a & \text { iff } \\
\pi, s_{i} & \models \neg \varphi & \text { iff } \\
\pi, s_{i} & \models \varphi \wedge \psi & \text { iff }
\end{array} \\
& \pi, \boldsymbol{s}_{i} \quad=\mathbf{X} \varphi \quad \text { iff } \\
& \pi, \boldsymbol{s}_{i} \models \mathbf{F} \varphi \quad \text { iff } \\
& \pi, \boldsymbol{s}_{i} \models \mathbf{G} \varphi \quad \text { iff } \\
& \pi, \boldsymbol{s}_{\boldsymbol{i}} \models \varphi \mathbf{U} \psi \quad \text { iff } \\
& \pi, \boldsymbol{s}_{i} \models \varphi \mathbf{R} \psi \quad \text { iff } \\
& a \in L\left(s_{i}\right) \\
& \begin{aligned}
\pi, s_{i} & \not \models \varphi \\
\pi, s_{i} & \neq \varphi \text { and }
\end{aligned} \\
& \pi, s_{i} \quad=\psi \\
& \pi, s_{i+1} \vDash \varphi \\
& \text { for some } j \geq i: \pi, s_{j} \models \varphi \\
& \text { for all } j \geq i: \pi, s_{j} \models \varphi \\
& \text { for some } j \geq i:\left(\pi, s_{j} \models \psi\right. \text { and } \\
& \text { for all } k \text { s.t. } i \leq k<j: \pi, s_{k} \quad=\varphi \text {) } \\
& \text { for all } j \geq i:\left(\pi, s_{j} \models \psi\right. \text { or } \\
& \text { for some } k \text { s.t. } i \leq k<j: \pi, s_{k} \quad=\varphi \text {) }
\end{aligned}
$$

LTL Formal Semantics (cont.)

- LTL properties are evaluated over paths, i.e., over infinite, linear sequences of states: $\pi=s_{0} \rightarrow s_{1} \rightarrow \cdots \rightarrow s_{t} \rightarrow s_{t+1} \rightarrow \cdots$
- Given an infinite sequence $\pi=S_{0}, S_{1}, S_{2}$,
- $\pi, s_{i}=\phi$ if ϕ is true in state s_{i} of π.
- $\pi \models \phi$ if ϕ is true in the initial state s_{0} of π.
- The LTL model checking problem $\mathcal{M} \models \phi$
- check if $\pi \models \phi$ for every path π of the Kripke structure \mathcal{M} (e.g., $\phi=$ Fdone)

LTL Formal Semantics (cont.)

- LTL properties are evaluated over paths, i.e., over infinite, linear sequences of states: $\pi=s_{0} \rightarrow s_{1} \rightarrow \cdots \rightarrow s_{t} \rightarrow s_{t+1} \rightarrow \cdots$
- Given an infinite sequence $\pi=s_{0}, s_{1}, s_{2}, \ldots$
- $\pi, s_{i} \models \phi$ if ϕ is true in state s_{i} of π.
- $\pi \models \phi$ if ϕ is true in the initial state s_{0} of π.
- The LTL model checking problem $\mathcal{M}=\phi$
- check if $\pi \models \phi$ for every path π of the Kripke structure \mathcal{M} (e.g., $\phi=$ Fdone)

LTL Formal Semantics (cont.)

- LTL properties are evaluated over paths, i.e., over infinite, linear sequences of states:
$\pi=s_{0} \rightarrow s_{1} \rightarrow \cdots \rightarrow s_{t} \rightarrow s_{t+1} \rightarrow \cdots$
- Given an infinite sequence $\pi=s_{0}, s_{1}, s_{2}, \ldots$
- $\pi, s_{i}=\phi$ if ϕ is true in state s_{i} of π.
- $\pi \models \phi$ if ϕ is true in the initial state s_{0} of π.
- The LTL model checking problem $\mathcal{M} \models \phi$
- check if $\pi \models \phi$ for every path π of the Kripke structure \mathcal{M} (e.g., $\phi=$ Fdone)

The LTL model checking problem $\mathcal{M} \models \phi$: remark

The LTL model checking problem $\mathcal{M} \models \phi$
$\pi \models \phi$ for every path π of the Kripke structure \mathcal{M}

Important Remark
(!!)

The LTL model checking problem $\mathcal{M} \models \phi$: remark

> The LTL model checking problem $\mathcal{M} \models \phi$ $\pi \models \phi$ for every path π of the Kripke structure \mathcal{M}

```
Important Remark
M}\not\vDash\phi\not=\mathcal{M}\models\neg\phi(!!
    - E.g. if \phi is a LTL formula and two paths }\mp@subsup{\pi}{1}{}\mathrm{ and }\mp@subsup{\pi}{2}{}\mathrm{ are s.t. }\mp@subsup{\pi}{1}{}\models\phi\mathrm{ and }\mp@subsup{\pi}{2}{}\models\neg\phi
```


The LTL model checking problem $\mathcal{M} \models \phi$: remark

```
The LTL model checking problem \mathcal{M}\models\phi
\models\phi}\mathrm{ for every path }\pi\mathrm{ of the Kripke structure }\mathcal{M
```

Important Remark
$\mathcal{M} \not \vDash \phi \nRightarrow \mathcal{M} \models \neg \phi(!!)$

- E.g. if ϕ is a LTL formula and two paths π_{1} and π_{2} are s.t. $\pi_{1} \models \phi$ and $\pi_{2} \models \neg \phi$.

Example: $\mathcal{M} \not \vDash \phi \nRightarrow \mathcal{M} \models \neg \phi$

Let $\pi_{1} \stackrel{\text { def }}{=}\left\{s_{1}\right\}^{\omega}, \pi_{2} \stackrel{\text { def }}{=}\left\{s_{2}\right\}^{\omega}$.

- $\mathcal{M} \not \vDash \mathbf{G} p$, in fact:
- $\pi_{1} \neq \mathbf{G} p$
- $\pi_{2} \vDash \mathbf{G} p$
- $\mathcal{M} \not \vDash \neg \mathbf{G} p$, in fact:

$$
\begin{aligned}
& \text { - } \pi_{1} \neq \neg \mathbf{G} p \\
& -\pi_{2} \not \vDash \neg \mathbf{G} p
\end{aligned}
$$

Syntactic properties of LTL operators

$$
\begin{aligned}
\varphi_{1} \vee \varphi_{2} & \Longleftrightarrow \neg \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right) \\
\ldots & \\
\mathbf{F} \varphi_{1} & \Longleftrightarrow \top \mathbf{U} \varphi_{1} \\
\mathbf{G} \varphi_{1} & \Longleftrightarrow \neg \mathbf{R} \varphi_{1} \\
\mathbf{F} \varphi_{1} & \Longleftrightarrow \neg \mathbf{G} \neg \varphi_{1} \\
\mathbf{G} \varphi_{1} & \Longleftrightarrow \neg \neg \boldsymbol{F}_{1} \\
\neg \mathbf{X} \varphi_{1} & \Longleftrightarrow \mathbf{X}_{\mathrm{A}} \\
\varphi_{1} \mathbf{R} \varphi_{1} & \Longleftrightarrow \neg\left(\neg \varphi_{1} \mathbf{U} \neg \varphi_{2}\right) \\
\varphi_{1} \mathbf{U}_{2} & \Longleftrightarrow \neg\left(\neg \varphi_{1} \mathbf{R} \neg \varphi_{2}\right)
\end{aligned}
$$

[^7]X, U only

Syntactic properties of LTL operators

$$
\begin{aligned}
\varphi_{1} \vee \varphi_{2} & \Longleftrightarrow \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right) \\
\ldots & \Longleftrightarrow \neg \mathbf{U}_{1} \\
\mathbf{F} \varphi_{1} & \Longleftrightarrow \mathbf{R}_{1} \\
\mathbf{G} \varphi_{1} & \Longleftrightarrow \mathbf{R}_{1} \\
\mathbf{F} \varphi_{1} & \Longleftrightarrow \neg \neg \varphi_{1} \\
\mathbf{G} \varphi_{1} & \Longleftrightarrow \neg \neg \boldsymbol{F}_{1} \\
\neg \mathbf{X}_{1} & \Longleftrightarrow \mathbf{X}_{\square} \varphi_{1} \\
\varphi_{1} \mathbf{R} \varphi_{2} & \Longleftrightarrow \neg\left(\neg \varphi_{1} \mathbf{U} \neg \varphi_{2}\right) \\
\varphi_{1} \mathbf{U} \varphi_{2} & \Longleftrightarrow \neg\left(\neg \varphi_{1} \mathbf{R} \neg \varphi_{2}\right)
\end{aligned}
$$

Note
LTL can be defined in terms of $\wedge, \neg, \mathbf{X}, \mathbf{U}$ only

Exercise

Prove that
G

Syntactic properties of LTL operators

$$
\begin{aligned}
\varphi_{1} \vee \varphi_{2} & \Longleftrightarrow \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right) \\
\ldots & \Longleftrightarrow \neg \mathbf{U}_{1} \\
\mathbf{F} \varphi_{1} & \Longleftrightarrow \mathbf{R}_{1} \\
\mathbf{G} \varphi_{1} & \Longleftrightarrow \mathbf{R}_{1} \\
\mathbf{F} \varphi_{1} & \Longleftrightarrow \neg \neg \varphi_{1} \\
\mathbf{G} \varphi_{1} & \Longleftrightarrow \neg \neg \boldsymbol{F}_{1} \\
\neg \mathbf{X}_{1} & \Longleftrightarrow \mathbf{X}_{\square} \varphi_{1} \\
\varphi_{1} \mathbf{R} \varphi_{2} & \Longleftrightarrow \neg\left(\neg \varphi_{1} \mathbf{U} \neg \varphi_{2}\right) \\
\varphi_{1} \mathbf{U} \varphi_{2} & \Longleftrightarrow \neg\left(\neg \varphi_{1} \mathbf{R} \neg \varphi_{2}\right)
\end{aligned}
$$

Note
LTL can be defined in terms of $\wedge, \neg, \mathbf{X}, \mathbf{U}$ only

Exercise

Prove that $\varphi_{1} \mathbf{R} \varphi_{2} \Longleftrightarrow \mathbf{G} \varphi_{2} \vee \varphi_{2} \mathbf{U}\left(\varphi_{1} \wedge \varphi_{2}\right)$

Proof of $\varphi \mathbf{R} \psi \Leftrightarrow(\mathbf{G} \psi \vee \psi \mathbf{U}(\varphi \wedge \psi))$

(All state indexes below are implicitly assumed to be ≥ 0.)
\Rightarrow : Let π be s.t. $\pi, s_{0} \models \varphi \mathbf{R} \psi$

- If $\forall j, \pi, s_{j} \models \psi$, then $\pi, s_{0} \models \mathbf{G} \psi$.
- Otherwise, let s_{k} be the first state s.t. $\pi, s_{k} \not \models \psi$.
- Since $\pi, \boldsymbol{s}_{0} \models \varphi \mathbf{R} \psi$, then $k>0$ and exists $k^{\prime}<k$ s.t. $\pi, S_{k^{\prime}} \models \varphi$
- By construction, $\pi, s_{k^{\prime}} \models \varphi \wedge \psi$ and, for every $w<k^{\prime}, \pi, s_{w} \models \psi$, so that $\pi, s_{0} \models \psi \mathbf{U}(\varphi \wedge \psi)$.
- Thus, $\pi, s_{0} \models \mathbf{G} \psi \vee \psi \mathbf{U}(\varphi \wedge \psi)$
\Leftarrow : Let π be s.t. $\pi, s_{0} \models \mathbf{G} \psi \vee \psi \mathbf{U}(\varphi \wedge \psi)$
- If $\pi, \boldsymbol{s}_{0} \models \mathbf{G} \psi$, then $\forall j, \pi, \boldsymbol{s}_{j} \models \psi$, so that $\pi, \boldsymbol{s}_{0} \models \varphi \mathbf{R} \psi$.
- Otherwise, $\pi, s_{0} \models \psi \mathbf{U}(\varphi \wedge \psi)$.
- Let s_{k} be the first state s.t. $\pi, s_{k} \not \vDash \psi$.
- by construction, $\exists k^{\prime}$ such that $\pi, S_{k^{\prime}} \models \varphi \wedge \psi$
- by the definition of k, we have that $k^{\prime}<k$ and $\forall w<k, \pi, S_{w} \models \psi$.
- Thus $\pi, s_{0}=\varphi \mathbf{R} \psi$

Strength of LTL operators

- $\mathbf{G} \varphi \models \varphi \models \mathbf{F} \varphi$
- $\mathbf{G} \varphi \models \mathbf{X}_{\varphi} \vDash \mathbf{F} \varphi$
- $\mathbf{G} \varphi \models \mathbf{X X} \ldots \mathbf{X}_{\varphi} \models \mathbf{F} \varphi$
- $\varphi \mathbf{U} \psi \models \mathbf{F} \psi$
- $\mathbf{G} \psi \models \varphi \mathbf{R} \psi$

LTL tableaux rules

- Let φ_{1} and φ_{2} be LTL formulae:

$$
\begin{aligned}
\mathbf{F} \varphi_{1} & \Longleftrightarrow\left(\varphi_{1} \vee \mathbf{X} \mathbf{F} \varphi_{1}\right) \\
\mathbf{G} \varphi_{1} & \Longleftrightarrow\left(\varphi_{1} \wedge \mathbf{X} \mathbf{G} \varphi_{1}\right) \\
\varphi_{1} \mathbf{U} \varphi_{2} & \Longleftrightarrow\left(\varphi_{2} \vee\left(\varphi_{1} \wedge \mathbf{X}\left(\varphi_{1} \mathbf{U} \varphi_{2}\right)\right)\right) \\
\varphi_{1} \mathbf{R} \varphi_{2} & \Longleftrightarrow\left(\varphi_{2} \wedge\left(\varphi_{1} \vee \mathbf{X}\left(\varphi_{1} \mathbf{R} \varphi_{2}\right)\right)\right)
\end{aligned}
$$

- If applied recursively, rewrite an LTL formula in terms of atomic and X-formulas:

$$
(p \mathbf{U} q) \wedge(\mathbf{G} \neg p) \Longrightarrow(q \vee(p \wedge \mathbf{X}(p \mathbf{U} q))) \wedge(\neg p \wedge \mathbf{X G} \neg p)
$$

Tableaux Rules: a Quote

"After all... tomorrow is another day."
[Scarlett O'Hara, "Gone with the Wind"]

Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems (hints)
(2) Properties and Temporal Logics
- Properties
- Temporal Logics
(3) Linear Temporal Logic - LTL
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples
(4) Computation Tree Logic - CTL
- CTL: Syntax and Semantics
- Some CTL Model Checking Examples
(5) LTL vs. CTL
(6) Exercises

Example 1: mutual exclusion (safety)

Example 1: mutual exclusion (safety)

YES: There is no reachable state in which $\left(C_{1} \wedge C_{2}\right)$ holds!

Example 2: liveness

Example 2: liveness

NO: there is an infinite cyclic solution in which C_{1} never holds!

Example 3: liveness

Example 3: liveness

YES: every path starting from each state where T_{1} holds passes through a state where C_{1} holds.

Example 4: fairness

Example 4: fairness

NO: e.g., in the initial state, there is an infinite cyclic solution in which C_{1} never holds!

Example 5: strong fairness

Example 5: strong fairness

YES: every path which visits T_{1} infinitely often also visits C_{1} infinitely often (see liveness property of previous example).

Example 6: blocking

Example 6: blocking

NO: e.g., in the initial state, there is an infinite cyclic solution in which N_{1} holds and T_{1} never holds!

Example 7: Releases

Example 7: Releases

YES: C_{1} in paths only strictly after T_{1} has occured.

Example 8: XF

Example 8: XF

NO: a counter-example is the ∞-shaped loop:
($N 1, N 2$), $\{(T 1, N 2),(C 1, N 2),(C 1, T 2),(N 1, T 2),(N 1, C 2),(T 1, C 2)\}^{\omega}$

Exercise: $\mathbf{G}(T \rightarrow \mathbf{F} C)$ vs. $\mathbf{G F} T \rightarrow \mathbf{G F} C$

- Prove that $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F} C$, or produce a counterexample
- Prove that $\mathbf{G F T} \rightarrow \mathbf{G F C} \Longrightarrow \mathbf{G}(T \rightarrow \mathrm{FC})$, or produce a counterexample

Exercise: $\mathbf{G}(T \rightarrow \mathbf{F} C)$ vs. $\mathbf{G F} T \rightarrow \mathbf{G F} C$

- Prove that $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F} C$, or produce a counterexample
- Prove that $\mathbf{G F} T \rightarrow \mathbf{G F C} \Longrightarrow \mathbf{G}(T \rightarrow \mathbf{F C})$, or produce a counterexample

Example: $\mathbf{G}(T \rightarrow \mathbf{F C})$ vs. $\mathbf{G F} T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}$?
- YES: if $M=\mathrm{G}(T \rightarrow \mathrm{FC})$, then $M=\mathrm{GF} T \rightarrow \mathrm{GFC}$!
- let $M=\mathbf{G}(T \rightarrow \mathbf{F C})$.

Example: $\mathbf{G}(T \rightarrow \mathbf{F} C)$ vs. $\mathbf{G F} T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}$?
- YES: if $M \models \mathbf{G}(T \rightarrow \mathbf{F} C)$, then $M \models \mathbf{G F} T \rightarrow \mathbf{G F} C$!

Example: $\mathbf{G}(T \rightarrow \mathbf{F} C)$ vs. $\mathbf{G F} T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}$?
- YES: if $M \models \mathbf{G}(T \rightarrow \mathbf{F} C)$, then $M \models \mathbf{G F} T \rightarrow \mathbf{G F} C$!
- let $M \models \mathbf{G}(T \rightarrow \mathbf{F} C)$.

```
let }\pi\inM s.t. \pi=GF
    \Longrightarrow\pi, si}\models\mathbf{F}T\mathrm{ for each }\mp@subsup{s}{i}{}\in
    \Longrightarrow\pi, si}\modelsT\mathrm{ for each }\mp@subsup{s}{i}{}\in\pi\mathrm{ and for some sj }\in\pi\mathrm{ s.t.j }\geq
    \Longrightarrow\pi,}\mp@subsup{s}{j}{}=FC\mathrm{ for each }\mp@subsup{s}{i}{}\in\pi\mathrm{ and for some }\mp@subsup{s}{j}{}\in\pi\mathrm{ s.t.j }\geq
    \Longrightarrow\pi, sk}\modelsC\mathrm{ for each }\mp@subsup{s}{i}{}\in\pi\mathrm{ , for some }\mp@subsup{s}{j}{}\in\pi\mathrm{ s.t. }\geqi\geqi\mathrm{ and for some }k\geq
    \Longrightarrow\pi, sk}\models=C\mathrm{ for each }\mp@subsup{s}{i}{}\in\pi\mathrm{ and for some }k\geq
    \Longrightarrow| GFC
    \Longrightarrow M \| G F T

Example: \(\mathbf{G}(T \rightarrow \mathbf{F C})\) vs. \(\mathbf{G F} T \rightarrow \mathbf{G F} C\)
- \(\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}\) ?
- YES: if \(M \models \mathbf{G}(T \rightarrow \mathbf{F} C)\), then \(M \vDash \mathbf{G F} T \rightarrow \mathbf{G F C}\) !
- let \(M \vDash \mathbf{G}(T \rightarrow \mathbf{F} C)\).
let \(\pi \in M\) s.t. \(\pi \models\) GF \(T\)
```

\Longrightarrow\pi,}\mp@subsup{s}{j}{}=T\mathrm{ for each }\mp@subsup{s}{i}{}\in\pi\mathrm{ and for some s}\mp@subsup{s}{j}{}\in\pi\mathrm{ s.t. j }\geq
\Longrightarrow \pi , s _ { j } \models F C for each s _ { i } \in \pi and for some s _ { j } \in \pi s.t. j \geq i
\Longrightarrow \pi , s _ { k } \models C for each s _ { i } \in \pi , for some s s _ { j } \in \pi s.t. j \geq i and for some k \geq j
\#, sk|}=C\mathrm{ for each }\mp@subsup{s}{j}{}\in\pi\mathrm{ and for some }k\geq
"= GFC
\Longrightarrow M \| = G F T

Example: $\mathbf{G}(T \rightarrow \mathbf{F C})$ vs. $\mathbf{G F} T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}$?
- YES: if $M \models \mathbf{G}(T \rightarrow \mathbf{F} C)$, then $M \models \mathbf{G F} T \rightarrow \mathbf{G F} C$!
- let $M \models \mathbf{G}(T \rightarrow \mathbf{F} C)$. let $\pi \in M$ s.t. $\pi \models$ GFT
$\Longrightarrow \pi, s_{i} \models \mathbf{F} T$ for each $s_{i} \in \pi$

Example: $\mathbf{G}(T \rightarrow \mathbf{F} C)$ vs. GF $T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}$?
- YES: if $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$, then $M \models \mathbf{G F} T \rightarrow \mathbf{G F} C$!
- let $M \models \mathbf{G}(T \rightarrow \mathbf{F} C)$.
let $\pi \in M$ s.t. $\pi \models$ GFT
$\Longrightarrow \pi, \boldsymbol{s}_{i} \models \mathbf{F} T$ for each $\boldsymbol{s}_{i} \in \pi$
$\Longrightarrow \pi, s_{j} \models T$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{j}=F C$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{k} \models C$ for each $s_{i} \in \pi$, for some $s_{j} \in \pi$ s.t. $\geq i$ and for some $k \geq j$
$\Longrightarrow \pi, s_{k} \models C$ for each $s_{i} \in \pi$ and for some $k \geq i$
$\Longrightarrow \pi \models$ GFC$M=$ GFT

Example: $\mathbf{G}(T \rightarrow \mathbf{F} C)$ vs. GF $T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}$?
- YES: if $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$, then $M \models \mathbf{G F} T \rightarrow \mathbf{G F} C$!
- let $M \models \mathbf{G}(T \rightarrow \mathbf{F} C)$.
let $\pi \in M$ s.t. $\pi \models$ GFT
$\Longrightarrow \pi, \boldsymbol{s}_{i} \models \mathbf{F} T$ for each $\boldsymbol{s}_{i} \in \pi$
$\Longrightarrow \pi, s_{j} \models T$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{j} \models F C$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{k}=C$ for each $s_{i} \in \pi$, for some $s_{j} \in \pi$ s.t. $j \geq i$ and for some $k \geq j$ $\Longrightarrow \pi, s_{k}=C$ for each $s_{i} \in \pi$ and for some $k \geq i$
$\Longrightarrow \pi \models$ GFC
\qquad $M \models$ GF T

Example: $\mathbf{G}(T \rightarrow \mathbf{F} C)$ vs. GF $T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}$?
- YES: if $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$, then $M \models \mathbf{G F} T \rightarrow \mathbf{G F} C$!
- let $M \models \mathbf{G}(T \rightarrow \mathbf{F} C)$.
let $\pi \in M$ s.t. $\pi \models$ GFT
$\Longrightarrow \pi, s_{i} \models \mathbf{F} T$ for each $s_{i} \in \pi$
$\Longrightarrow \pi, s_{j} \models T$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{j} \models F C$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{k} \models C$ for each $s_{i} \in \pi$, for some $s_{j} \in \pi$ s.t. $j \geq i$ and for some $k \geq j$

Example: $\mathbf{G}(T \rightarrow \mathbf{F} C)$ vs. GF $T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}$?
- YES: if $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$, then $M \models \mathbf{G F} T \rightarrow \mathbf{G F} C$!
- let $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$. let $\pi \in M$ s.t. $\pi \models$ GFT
$\Longrightarrow \pi, s_{i} \models \mathbf{F} T$ for each $s_{i} \in \pi$
$\Longrightarrow \pi, s_{j} \models T$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{j} \models F C$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{k} \models C$ for each $s_{i} \in \pi$, for some $s_{j} \in \pi$ s.t. $j \geq i$ and for some $k \geq j$
$\Longrightarrow \pi, s_{k} \models C$ for each $s_{i} \in \pi$ and for some $k \geq i$

Example: $\mathbf{G}(T \rightarrow \mathbf{F} C)$ vs. GF $T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}$?
- YES: if $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$, then $M \models \mathbf{G F} T \rightarrow \mathbf{G F} C$!
- let $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$. let $\pi \in M$ s.t. $\pi \models$ GFT
$\Longrightarrow \pi, s_{i} \models \mathbf{F} T$ for each $s_{i} \in \pi$
$\Longrightarrow \pi, s_{j} \models T$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{j} \models F C$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{k} \models C$ for each $s_{i} \in \pi$, for some $s_{j} \in \pi$ s.t. $j \geq i$ and for some $k \geq j$
$\Longrightarrow \pi, s_{k} \models C$ for each $s_{i} \in \pi$ and for some $k \geq i$
$\Longrightarrow \pi \models$ GFC

Example: $\mathbf{G}(T \rightarrow \mathbf{F} C)$ vs. GF $T \rightarrow \mathbf{G F} C$

- $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longrightarrow \mathbf{G F} T \rightarrow \mathbf{G F C}$?
- YES: if $M \models \mathbf{G}(T \rightarrow \mathbf{F C})$, then $M \models \mathbf{G F} T \rightarrow \mathbf{G F} C$!
- let $M \models \mathbf{G}(T \rightarrow \mathbf{F} C)$.
let $\pi \in M$ s.t. $\pi \models$ GFT
$\Longrightarrow \pi, s_{i} \models \mathbf{F} T$ for each $s_{i} \in \pi$
$\Longrightarrow \pi, s_{j} \models T$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{j} \models F C$ for each $s_{i} \in \pi$ and for some $s_{j} \in \pi$ s.t. $j \geq i$
$\Longrightarrow \pi, s_{k} \models C$ for each $s_{i} \in \pi$, for some $s_{j} \in \pi$ s.t. $j \geq i$ and for some $k \geq j$
$\Longrightarrow \pi, s_{k} \models C$ for each $s_{i} \in \pi$ and for some $k \geq i$
$\Longrightarrow \pi \models$ GFC
$\Longrightarrow M \vDash \mathbf{G F} T \rightarrow \mathbf{G F} C$.

Example： $\mathbf{G}(T \rightarrow \mathbf{F} C)$ vs． $\mathbf{G F} T \rightarrow \mathbf{G F} C$
－ $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longleftarrow \mathbf{G F} T \rightarrow \mathbf{G F} C$ ？
－NO！．
－Counter example：
－ $\mathbf{G}(T \rightarrow \mathbf{F C})$ is not satisfied
Counter－example proposed by the student Vaishak Belle， 2008

Example： $\mathbf{G}(T \rightarrow \mathbf{F} C)$ vs． $\mathbf{G F} T \rightarrow \mathbf{G F} C$
－ $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longleftarrow \mathbf{G F} T \rightarrow \mathbf{G F} C$ ？
－NO！．
－Counter example：

Example： $\mathbf{G}(T \rightarrow \mathbf{F} C)$ vs．GF $T \rightarrow \mathbf{G F} C$

－ $\mathbf{G}(T \rightarrow \mathbf{F C}) \Longleftarrow \mathbf{G F} T \rightarrow \mathbf{G F} C$ ？
－NO！．
－Counter example：

－GF $T \rightarrow$ GFC is satisfied
－ $\mathbf{G}(T \rightarrow \mathbf{F} C)$ is not satisfied
（Counter－example proposed by the student Vaishak Belle，2008）

Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems (hints)
(2) Properties and Temporal Logics
- Properties
- Temporal Logics
(3) Linear Temporal Logic - LTL
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples
(4) Computation Tree Logic - CTL
- CTL: Syntax and Semantics
- Some CTL Model Checking Examples
(5) LTL vs. CTL
(6) Exercises

Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems (hints)
(2) Properties and Temporal Logics
- Properties
- Temporal Logics
(3) Linear Temporal Logic - LTL
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples

4. Computation Tree Logic - CTL

- CTL: Syntax and Semantics
- Some CTL Model Checking Examples
(5) LTL vs. CTL
(6) Exercises

Computational Tree Logic (CTL): Syntax

- An atomic proposition is a CTL formula;
- if φ_{1} and φ_{2} are CTL formulae, then $\neg \varphi_{1}, \varphi_{1} \wedge \varphi_{2}, \varphi_{1} \vee \varphi_{2}, \varphi_{1} \rightarrow \varphi_{2}, \varphi_{1} \leftrightarrow \varphi_{2}$ are CTL formulae;
- if φ_{1} and φ_{2} are CTL formulae, then $\mathrm{AX} \varphi_{1}, \mathrm{~A}\left(\varphi_{1} U \varphi_{2}\right), \mathrm{AG} \varphi_{1}, \mathrm{AF} \varphi_{1}, \mathrm{EX} \varphi_{1}, \mathrm{E}\left(\varphi_{1} \mathrm{U} \varphi_{2}\right)$, ($\mathrm{E}\left(\varphi_{1} \mathrm{R} \varphi_{2}\right)$ and $\mathrm{A}\left(\varphi_{1} \mathrm{R} \varphi_{2}\right)$ never used in practice.)

Computational Tree Logic (CTL): Syntax

- An atomic proposition is a CTL formula;
- if φ_{1} and φ_{2} are CTL formulae, then $\neg \varphi_{1}, \varphi_{1} \wedge \varphi_{2}, \varphi_{1} \vee \varphi_{2}, \varphi_{1} \rightarrow \varphi_{2}, \varphi_{1} \leftrightarrow \varphi_{2}$ are CTL formulae;are CTL formulae, then $\mathrm{AX} \varphi_{1}, \mathrm{~A}\left(\varphi_{1} \mathrm{U} \varphi_{2}\right), \mathrm{AG} \varphi_{1}, \mathrm{AF} \varphi_{1}, \mathrm{EX} \varphi_{1}, \mathrm{E}\left(\varphi_{1} \mathrm{U} \varphi_{2}\right)$, are CTL formulae. and $\mathbf{A}\left(\varphi_{1} \mathbf{R} \varphi_{2}\right)$ never us ϵ d in practice.)

Computational Tree Logic (CTL): Syntax

- An atomic proposition is a CTL formula;
- if φ_{1} and φ_{2} are CTL formulae, then $\neg \varphi_{1}, \varphi_{1} \wedge \varphi_{2}, \varphi_{1} \vee \varphi_{2}, \varphi_{1} \rightarrow \varphi_{2}, \varphi_{1} \leftrightarrow \varphi_{2}$ are CTL formulae;
- if φ_{1} and φ_{2} are CTL formulae, then $\mathbf{A X} \varphi_{1}, \mathbf{A}\left(\varphi_{1} \mathbf{U} \varphi_{2}\right), \mathbf{A G} \varphi_{1}, \mathbf{A F} \varphi_{1}, \mathbf{E X} \varphi_{1}, \mathbf{E}\left(\varphi_{1} \mathbf{U} \varphi_{2}\right)$, $E \mathbf{E} \varphi_{1}, \mathbf{E F} \varphi_{1}$, , are CTL formulae. ($\mathbf{E}\left(\varphi_{1} \mathbf{R} \varphi_{2}\right)$ and $\mathbf{A}\left(\varphi_{1} \mathbf{R} \varphi_{2}\right)$ never used in practice.)

CTL semantics: intuitions

CTL is given by the standard boolean logic enhanced with the operators $A X, A G, A F, A U, E X$, EG, EF, EU:

- "Necessarily Next" $\mathbf{A X}: \mathbf{A X} \varphi$ is true in s_{t} iff φ is true in every successor state s_{t+1}
- "Possibly Next" EX: EX φ is true in s_{t} iff φ is true in one successor state s_{t+1}
- "Necessarily in the future" (or "Inevitably") $\mathbf{A F}$: $\mathbf{A F} \varphi$ is true in s_{t} iff φ is inevitably true in some $s_{t^{\prime}}$ with $t^{\prime} \geq t$
- "Possibly in the future" (or "Possibly") $\mathbf{E F}: \mathbf{E F} \varphi$ is true in s_{t} iff φ may be true in some $s_{t^{\prime}}$ with $t^{\prime} \geq t$

CTL semantics: intuitions [cont.]

- "Globally" (or "always") AG: AG φ is true in s_{t} iff φ is true in all $s_{t^{\prime}}$ with $t^{\prime} \geq t$
- "Possibly henceforth" $\mathbf{E G}: \mathbf{E G} \varphi$ is true in s_{t} iff φ is possibly true henceforth
- "Necessarily Until" $\mathbf{A U}: \mathbf{A}(\varphi \mathbf{U} \psi)$ is true in s_{t} iff necessarily φ holds until ψ holds.
- "Possibly Until" EU: $\mathbf{E}(\varphi \mathbf{U} \psi)$ is true in s_{t} iff possibly φ holds until ψ holds.

CTL semantics: intuitions [cont.]

CTL Formal Semantics

Let $\left(s_{i}, s_{i+1}, \ldots\right)$ be a path outgoing from state s_{i} in M

M, s_{i}	$\vDash a$	iff $a \in L\left(s_{i}\right)$	
M, s_{i}	$\vDash \neg \varphi$	iff $M, s_{i} \not \models \varphi$	
M, s_{i}	$\vDash \varphi \vee \psi$	$\text { iff } \quad \begin{aligned} & M, s_{i} \models \varphi \text { or } \\ & M, s_{i} \models \psi \end{aligned}$	
M, s_{i}	$\vDash A X \varphi$	iff for all (s_{i}, s_{i+1}, \ldots),	M, $s_{i+1} \models \varphi$
M, s_{i}	$\vDash E X \varphi$	iff for some (s_{i}, s_{i+1}, \ldots),	M, $s_{i+1} \models \varphi$
M, s_{i}	$\vDash A G \varphi$	iff for all (s_{i}, s_{i+1}, \ldots),	for all $j \geq i . M, s_{j} \models \varphi$
M, s_{i}	$\vDash E G \varphi$	iff for some (s_{i}, s_{i+1}, \ldots),	for all $j \geq i . M, s_{j} \models \varphi$
M, s_{i}	$\vDash A F \varphi$	iff for all (s_{i}, s_{i+1}, \ldots),	for some $j \geq i . M, s_{j} \models \varphi$
M, s_{i}	$\vDash E F \varphi$	iff for some (s_{i}, s_{i+1}, \ldots),	for some $j \geq i . M, s_{j} \models \varphi$
M, s_{i}	$\vDash A(\varphi U \psi)$	iff for all (s_{i}, s_{i+1}, \ldots),	for some $j \geq i$. ($M, s_{j} \models \psi$ and forall k s.t. $i \leq k<j . M, s_{k} \models \varphi$)
M, s_{i}	$\vDash E(\varphi U \psi)$	iff for some (s_{i}, s_{i+1}, \ldots),	for some $j \geq i$. ($M, s_{j} \models \psi$ and forall k s.t. $i \leq k<j . M, s_{k} \models \varphi$)

Formal Semantics (cont.)

- CTL properties (e.g. AFdone) are evaluated over trees.

- Every temporal operator $(\mathbf{F}, \mathbf{G}, \mathbf{X}, \mathbf{U})$ is preceded by a path quantifier (\mathbf{A} or \mathbf{E}).
- Universal modalities (AF, AG, AX, AU): the temporal formula is true in all the paths starting in the current state.
- Existential modalities (EF, EG, EX, EU): the temporal formula is true in some path starting in the current state.

Formal Semantics (cont.)

- CTL properties (e.g. AFdone) are evaluated over trees.

- Every temporal operator $(\mathbf{F}, \mathbf{G}, \mathbf{X}, \mathbf{U})$ is preceded by a path quantifier (\mathbf{A} or \mathbf{E}).
- Universal modalities (AF, AG, AX, AU): the temporal formula is true in all the paths starting in the current state.
- Existential modalities (EF, EG. EX, EU): the temporal formula is true in some path starting in the current state.

Formal Semantics (cont.)

- CTL properties (e.g. AFdone) are evaluated over trees.

- Every temporal operator ($\mathbf{F}, \mathbf{G}, \mathbf{X}, \mathbf{U}$) is preceded by a path quantifier (\mathbf{A} or \mathbf{E}).
- Universal modalities (AF, AG, AX, AU): the temporal formula is true in all the paths starting in the current state.
- Existential modalities (EF, EG, EX, EU): the temporal formula is true in some path starting in the current state.

Formal Semantics (cont.)

- CTL properties (e.g. AFdone) are evaluated over trees.

- Every temporal operator ($\mathbf{F}, \mathbf{G}, \mathbf{X}, \mathbf{U}$) is preceded by a path quantifier (\mathbf{A} or \mathbf{E}).
- Universal modalities (AF, AG, AX, AU): the temporal formula is true in all the paths starting in the current state.
- Existential modalities (EF, EG, EX, EU): the temporal formula is true in some path starting in the current state.

The CTL model checking problem $\mathcal{M} \models \phi$

```
The CTL model checking problem \mathcal{M}\models\phi
M},\boldsymbol{s}\models\phi\mathrm{ for every initial state s I I of the Kripke structure
```


Important Remark

The CTL model checking problem $\mathcal{M} \models \phi$

```
The CTL model checking problem \mathcal{M}\models\phi
M},\boldsymbol{s}\models\phi\mathrm{ for every initial state s | I of the Kripke structure
```

```
Important Remark
M}\not\vDash\phi\not=\mathcal{M}\models\neg\phi(!!
    - E.g. if }\phi\mathrm{ is a universal formula A... and two initial states so, s1 are s.t. }\mathcal{M},\mp@subsup{s}{0}{}\models\phi\mathrm{ and
        M, s1 \not=\phi
    - \mathcal{M}\not\vDash\phi\Longrightarrow\mathcal{N}=\neg\phi\mathrm{ if }\mathcal{M}\mathrm{ has only one initial state}
```


The CTL model checking problem $\mathcal{M} \models \phi$

```
The CTL model checking problem \mathcal{M}\models\phi
M},\boldsymbol{s}\models\phi\mathrm{ for every initial state s I I of the Kripke structure
```


Important Remark

$\mathcal{M} \not \vDash \phi \nRightarrow \mathcal{M} \models \neg \phi(!!)$

- E.g. if ϕ is a universal formula $\mathbf{A} .$. and two initial states s_{0}, s_{1} are s.t. $\mathcal{M}, s_{0} \models \phi$ and $\mathcal{M}, s_{1} \not \models \phi$
- $\mathcal{M} \not \vDash \phi \Longrightarrow \mathcal{M}=\neg \phi$ if \mathcal{M} has only one initial state

The CTL model checking problem $\mathcal{M} \models \phi$

```
The CTL model checking problem \mathcal{M}\models\phi
M},\boldsymbol{s}\models\phi\mathrm{ for every initial state s I I of the Kripke structure
```


Important Remark

$\mathcal{M} \not \vDash \phi \nRightarrow \mathcal{M} \models \neg \phi(!!)$

- E.g. if ϕ is a universal formula $\mathbf{A} .$. and two initial states s_{0}, s_{1} are s.t. $\mathcal{M}, s_{0} \models \phi$ and $\mathcal{M}, s_{1} \not \models \phi$
- $\mathcal{M} \not \vDash \phi \Longrightarrow \mathcal{M} \models \neg \phi$ if \mathcal{M} has only one initial state

Example: $\mathcal{M} \not \vDash \phi \nRightarrow \mathcal{M} \models \neg \phi$

- $\mathcal{M} \not \vDash \mathbf{A G} p$, in fact:
- $\mathcal{M}, s_{1} \notin \mathbf{A G} p$ (e.g., $\left\{s_{1}, \ldots\right\}$ is a counter-example)
- $\mathcal{M}, \boldsymbol{s}_{2} \models \mathbf{A G} p$
- $\mathcal{M} \not \models \neg \mathbf{A G} p$, in fact:
- $\mathcal{M}, s_{1}=\neg \mathbf{A G p}$ (i.e., $\mathcal{M}, s_{1} \models E F \neg p$)
- $\mathcal{M}, \mathrm{s}_{2} \not \vDash \neg \mathbf{A G p}$ (i.e., $\mathcal{M}, s_{2} \not \vDash E F \neg p$)

Syntactic properties of CTL operators

$$
\begin{aligned}
& \varphi_{1} \vee \varphi_{2} \Longleftrightarrow \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right) \\
& \ldots \\
& \mathbf{A}\left(\varphi_{1} \mathbf{U}_{2}\right) \Longleftrightarrow \neg \mathbf{E}\left(\neg \varphi_{2} \mathbf{U}\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)\right) \wedge \neg \mathbf{E} \mathbf{G} \neg \varphi_{2} \\
& \mathbf{E F} \varphi_{1} \Longleftrightarrow \mathbf{E}\left(\neg \mathbf{U} \varphi_{1}\right) \\
& \mathbf{A G} \varphi_{1} \Longleftrightarrow \neg \mathbf{E F} \neg \varphi_{1} \\
& \mathbf{A F} \varphi_{1} \Longleftrightarrow \neg \mathbf{E G} \neg \varphi_{1} \\
& \mathbf{A X} \varphi_{1} \Longleftrightarrow \mathbf{E X}_{\mathrm{l}}
\end{aligned}
$$

Note
 CTL can be defined in terms of \wedge, \neg, EX, EG, EU only

Exercise
prove that $\boldsymbol{\wedge}\left(\varphi_{1} \cup \varphi_{2}\right)$
EG
$\mathbf{E}\left(\neg \varphi_{2} \mathbf{U}\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)\right)$

Syntactic properties of CTL operators

$$
\begin{aligned}
& \varphi_{1} \vee \varphi_{2} \quad \Longleftrightarrow \quad \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right) \\
& \mathbf{A}\left(\varphi_{1} \mathbf{U} \varphi_{2}\right) \Longleftrightarrow \neg \mathbf{E}\left(\neg \varphi_{2} \mathbf{U}\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)\right) \wedge \neg \mathbf{E} \mathbf{G} \neg \varphi_{2} \\
& \mathbf{E F} \varphi_{1} \quad \Longleftrightarrow \mathbf{E}\left(\top \mathbf{U} \varphi_{1}\right) \\
& \mathbf{A G} \varphi_{1} \quad \Longleftrightarrow \quad \neg \mathbf{E F} \neg \varphi_{1} \\
& \text { AF } \varphi_{1} \quad \Longleftrightarrow \quad \neg E G \neg \varphi_{1} \\
& \mathbf{A X} \varphi_{1} \quad \Longleftrightarrow \quad \neg \mathbf{E X} \neg \varphi_{1}
\end{aligned}
$$

Note
CTL can be defined in terms of $\wedge, \neg, \mathbf{E X}, \mathbf{E G}, \mathbf{E U}$ only

Exercise
prove that $\mathbf{A}\left(\varphi_{1} \mathbf{U} \varphi_{2}\right)$ \qquad $\mathbf{E}\left(\neg \varphi_{2} \mathbf{U}\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)\right)$

Syntactic properties of CTL operators

$$
\begin{aligned}
& \varphi_{1} \vee \varphi_{2} \quad \Longleftrightarrow \quad \neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right) \\
& \mathbf{A}\left(\varphi_{1} \mathbf{U} \varphi_{2}\right) \Longleftrightarrow \neg \mathbf{E}\left(\neg \varphi_{2} \mathbf{U}\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)\right) \wedge \neg \mathbf{E G} \neg \varphi_{2} \\
& \mathbf{E F} \varphi_{1} \quad \Longleftrightarrow \mathbf{E}\left(\top \mathbf{U} \varphi_{1}\right) \\
& \mathbf{A G} \varphi_{1} \quad \Longleftrightarrow \quad \neg \mathbf{E F} \neg \varphi_{1} \\
& \text { AF } \varphi_{1} \quad \Longleftrightarrow \quad \neg E G \neg \varphi_{1} \\
& \mathbf{A X} \varphi_{1} \quad \Longleftrightarrow \quad \neg \mathbf{E X} \neg \varphi_{1}
\end{aligned}
$$

Note
CTL can be defined in terms of $\wedge, \neg, \mathbf{E X}, \mathbf{E G}, \mathbf{E U}$ only
Exercise:
prove that $\mathbf{A}\left(\varphi_{1} \mathbf{U} \varphi_{2}\right) \Longleftrightarrow \neg \mathbf{E G} \neg \varphi_{2} \wedge \neg \mathbf{E}\left(\neg \varphi_{2} \mathbf{U}\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right)\right)$

Strength of CTL operators

- $\mathbf{A}[\mathbf{O P}] \varphi \models \mathbf{E}[\mathbf{O P}] \varphi$, s.t. $[\mathbf{O P}] \in\{\mathbf{X}, \mathbf{F}, \mathbf{G}, \mathbf{U}\}$
- $\mathbf{A G}_{\varphi} \models \varphi \models \mathbf{A F} \varphi, \mathbf{E G}_{\varphi} \models \varphi \models \mathbf{E F} \varphi$
- $\mathbf{A G} \varphi \models \mathbf{A X} \varphi \models \mathbf{A F} \varphi, \mathbf{E G} \varphi \models \mathbf{E X} \varphi \models \mathbf{E F} \varphi$
- $\mathbf{A G} \varphi \models \mathbf{A X} \ldots \mathbf{A X} \varphi \models \mathbf{A F} \varphi, \mathbf{E G}_{\varphi} \models \mathbf{E X} \ldots \mathbf{E X} \varphi \models \mathbf{E F}_{\varphi}$
- $\mathbf{A}(\varphi \mathbf{U} \psi) \models \mathbf{A F} \psi, \mathbf{E}(\varphi \mathbf{U} \psi) \models \mathbf{E F} \psi$

CTL tableaux rules

- Let φ_{1} and φ_{2} be CTL formulae:

$\mathbf{A F} \varphi_{1}$	$\Longleftrightarrow\left(\varphi_{1} \vee \operatorname{AXAF} \varphi_{1}\right)$
$\mathbf{A G} \varphi_{1}$	$\Longleftrightarrow\left(\varphi_{1} \wedge \mathbf{A X A G} \varphi_{1}\right)$
$\mathbf{A}\left(\varphi_{1} \mathbf{U} \varphi_{2}\right)$	$\Longleftrightarrow\left(\varphi_{2} \vee\left(\varphi_{1} \wedge \mathbf{A X A}\left(\varphi_{1} \mathbf{U} \varphi_{2}\right)\right)\right)$
$\mathbf{E F} \varphi_{1}$	$\Longleftrightarrow\left(\varphi_{1} \vee \operatorname{EXEF} \varphi_{1}\right)$
$\mathbf{E G} \varphi_{1}$	$\Longleftrightarrow\left(\varphi_{1} \wedge \operatorname{EXEG} \varphi_{1}\right)$
$\mathbf{E}\left(\varphi_{1} \mathbf{U} \varphi_{2}\right)$	$\Longleftrightarrow\left(\varphi_{2} \vee\left(\varphi_{1} \wedge \operatorname{EXE}\left(\varphi_{1} \mathbf{U} \varphi_{2}\right)\right)\right)$

- Recursive definitions of AF, AG, AU, EF, EG, EU.
- If applied recursively, rewrite a CTL formula in terms of atomic, $\mathbf{A X}$ - and EX-formulas:

$$
\mathbf{A}(p \mathbf{U} q) \wedge\left(\mathbf{E G}_{\neg}-p\right) \Longrightarrow(q \vee(p \wedge \mathbf{A X A}(p \mathbf{U} q))) \wedge\left(\neg p \wedge \operatorname{EXEG}_{\neg}-p\right)
$$

Tableaux Rules: a Quote

"After all... tomorrow is another day."
[Scarlett O'Hara, "Gone with the Wind"]

Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems (hints)
(2) Properties and Temporal Logics
- Properties
- Temporal Logics
(3) Linear Temporal Logic - LTL
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples
(4) Computation Tree Logic - CTL
- CTL: Syntax and Semantics
- Some CTL Model Checking Examples
(5) LTL vs. CTL
(6) Exercises

Example 1: mutual exclusion (safety)

Example 1: mutual exclusion (safety)

YES: There is no reachable state in which $\left(C_{1} \wedge C_{2}\right)$ holds!
(Same as the $\mathbf{G} \neg\left(C_{1} \wedge C_{2}\right)$ in LTL.)

Example 2: liveness

Example 2: liveness

No: there is an infinite cyclic solution in which C_{1} never holds! (Same as $\mathbf{F} C_{1}$ in LTL.)

Example 3: liveness

Example 3: liveness

YES: every path starting from each state where T_{1} holds passes through a state where C_{1} holds (Same as $\mathbf{G}\left(T_{1} \rightarrow \mathbf{F} C_{1}\right)$ in LTL.)

Example 4: fairness

Example 4: fairness

NO: e.g., in the initial state, there is an infinite cyclic solution in which C_{1} never holds! (Same as GFC C_{1} in LTL.)

Example 5: fairness (2)

Example 5: fairness (2)

NO: there is an infinite 8 -shaped cyclic solution in which $($ turn $=0)$ never holds!

Example 6: blocking

Example 6: blocking

YES: from each state where N_{1} holds there is a path leading to a state where T_{1} holds (No corresponding LTL formula.)

Example 7: blocking (2)

Example 7: blocking (2)

NO: e.g., in the initial state, there is an infinite cyclic solution in which N_{1} holds and T_{1} never holds!
(Same as LTL formula $\mathbf{G}\left(N_{1} \rightarrow \mathbf{F} T_{1}\right)$.)

Example 8:

Example 8:

YES: there is an infinite cyclic solution where N_{1} always holds (No corresponding LTL formula.)

Example 9:

Example 9:

YES: there is an infinite cyclic solution where N_{1} always holds, and from every state you necessarily reach one state of such cycle (No corresponding LTL formula.)

Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems (hints)
(2) Properties and Temporal Logics
- Properties
- Temporal Logics
(3) Linear Temporal Logic - LTL
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples
(4) Computation Tree Logic - CTL
- CTL: Syntax and Semantics
- Some CTL Model Checking Examples

(5) LTL vs. CTL

(6) Exercises

LTL vs. CTL: expressiveness

- Many CTL formulas cannot be expressed in LTL (e.g., those containing existentially quantified subformulas) E.g., $\mathbf{A G}\left(N_{1} \rightarrow \mathbf{E F} T_{1}\right)$, AFAG φ
- Many LTL formulas cannot be expressed in CTL (e.g. fairness LTL formulas) E.g., GFT $T_{1} \rightarrow$ GFC C_{1}, FG φ
- Some formulas can be expressed both in LTL and in CTL (typically LTL formulas with operators of nesting depth 1 , and/or with operators occurring positively)
E.g., $\mathrm{G} \neg\left(C_{1} \wedge C_{2}\right), \mathrm{F} C_{1}, \mathrm{G}\left(T_{1} \rightarrow \mathrm{~F} C_{1}\right), \mathrm{GF} C_{1}$

LTL vs. CTL: expressiveness

- Many CTL formulas cannot be expressed in LTL (e.g., those containing existentially quantified subformulas)
E.g., $\mathbf{A G}\left(N_{1} \rightarrow \mathbf{E F} T_{1}\right)$, AFAG φ
- Many LTL formulas cannot be expressed in CTL (e.g. fairness LTL formulas)
E.g., $\mathrm{GF}_{1} \rightarrow \mathbf{G F} C_{1}, \mathrm{FG} \varphi$
- Some formulas can be expressed both in LTL and in CTL (typically LTL formulas with operators of nesting depth 1, and/or with operators occurring positively)
E.g., $\mathrm{G} \neg\left(C_{1} \wedge C_{2}\right), \mathrm{FC} C_{1}, \mathrm{G}\left(T_{1} \rightarrow \mathrm{FC}_{1}\right), \mathrm{GF} C_{1}$

LTL vs. CTL: expressiveness

- Many CTL formulas cannot be expressed in LTL (e.g., those containing existentially quantified subformulas)
E.g., $\mathbf{A G}\left(N_{1} \rightarrow \mathbf{E F} T_{1}\right)$, AFAG φ
- Many LTL formulas cannot be expressed in CTL (e.g. fairness LTL formulas)
E.g., GFT $T_{1} \rightarrow$ GFC C_{1}, FG φ
- Some formulas can be expressed both in LTL and in CTL (typically LTL formulas with operators of nesting depth 1, and/or with operators occurring positively) E.g., $\mathbf{G} \neg\left(C_{1} \wedge C_{2}\right), \mathbf{F} C_{1}, \mathbf{G}\left(T_{1} \rightarrow \mathbf{F} C_{1}\right), \mathrm{GF} C_{1}$

LTL vs. CTL: expressiveness

- Many CTL formulas cannot be expressed in LTL (e.g., those containing existentially quantified subformulas)
E.g., $\mathbf{A G}\left(N_{1} \rightarrow \mathbf{E F} T_{1}\right)$, AFAG φ
- Many LTL formulas cannot be expressed in CTL (e.g. fairness LTL formulas)
E.g., GFT $T_{1} \rightarrow$ GFC C_{1}, FG φ
- Some formulas can be expressed both in LTL and in CTL (typically LTL formulas with operators of nesting depth 1, and/or with operators occurring positively) E.g., $\mathbf{G} \neg\left(C_{1} \wedge C_{2}\right), \mathbf{F} C_{1}, \mathbf{G}\left(T_{1} \rightarrow \mathbf{F} C_{1}\right), \mathrm{GF} C_{1}$

Example: AFAGp vs. FGp

LTL vs. CTL: M.C. Algorithms

- LTL M.C. problems are typically handled with automata- based M.C. approaches (Wolper \& Vardi)
- CTL M.C. problems are typically handled with symbolic M.C. approaches (Clarke \& McMillan)
- LTL M.C. problems can be reduced to CTL M.C. problems under fairness constraints (Clarke et al.)

LTL vs. CTL: M.C. Algorithms

- LTL M.C. problems are typically handled with automata- based M.C. approaches (Wolper \& Vardi)
- CTL M.C. problems are typically handled with symbolic M.C. approaches (Clarke \& McMillan)
- LTL M.C. problems can be reduced to CTL M.C. problems under fairness constraints (Clarke et al.)

LTL vs. CTL: M.C. Algorithms

- LTL M.C. problems are typically handled with automata- based M.C. approaches (Wolper \& Vardi)
- CTL M.C. problems are typically handled with symbolic M.C. approaches (Clarke \& McMillan)
- LTL M.C. problems can be reduced to CTL M.C. problems under fairness constraints (Clarke et al.)
- Syntax: let p 's, φ 's, ψ 's being propositions, state formulae and path formulae respectively:
- $p, \neg \varphi, \varphi_{1} \wedge \varphi_{2}, \mathbf{A} \psi, \mathbf{E} \psi$ are state formulae (properties of the set of paths starting from a state)
- $\varphi, \neg \psi, \psi_{1} \wedge \psi_{2}, \mathbf{X} \psi, \mathbf{G} \psi, \mathbf{F} \psi, \psi_{1} \mathbf{U} \psi_{2}$ are path formulae (properties of a path)
- Semantics: A, E, X, G, F, U as in CTL
- A, E: quantify on paths (as in CTL)
- X, G, F, U: (as in LTL)
- as in CTL, but X, G, F, U not necessarily preceded by A,E

Remark
 In principle in CTL* one may have sequences of nested path quantifiers.
 In such case, the most internal one dominates:

$M, s \models \mathbf{A E} \psi$ iff $M, s \models \mathbf{E} \psi, \quad M, s \models \mathbf{E A} \psi$ iff $M, s \models \mathbf{A} \psi$

- Syntax: let p 's, φ 's, ψ 's being propositions, state formulae and path formulae respectively:
- $p, \neg \varphi, \varphi_{1} \wedge \varphi_{2}, \mathbf{A} \psi, \mathbf{E} \psi$ are state formulae (properties of the set of paths starting from a state)
- $\varphi, \neg \psi, \psi_{1} \wedge \psi_{2}, \mathbf{X} \psi, \mathbf{G} \psi, \mathbf{F} \psi, \psi_{1} \mathbf{U} \psi_{2}$ are path formulae (properties of a path)
- Semantics: A, E, X, G, F, U as in CTL
- A, \mathbf{E} : quantify on paths (as in CTL)
- X, G, F, U: (as in LTL)
- as in CTL, but X, G, F, U not necessarily preceded by A,E

Remark
 In principle in CTL* one may have sequences of nested path quantifiers. In such case, the most internal one dominates

$M, s \models \mathbf{A E} \psi$ iff $M, s \models \mathbf{E} \psi, \quad M, s \models \mathbf{E A} \psi$ iff $M, s \models \mathbf{A} \psi$
－Syntax：let p＇s，φ＇s，ψ＇s being propositions，state formulae and path formulae respectively：
－$p, \neg \varphi, \varphi_{1} \wedge \varphi_{2}, \mathbf{A} \psi, \mathbf{E} \psi$ are state formulae （properties of the set of paths starting from a state）
－$\varphi, \neg \psi, \psi_{1} \wedge \psi_{2}, \mathbf{X} \psi, \mathbf{G} \psi, \mathbf{F} \psi, \psi_{1} \mathbf{U} \psi_{2}$ are path formulae （properties of a path）
－Semantics：A，E，X，G，F，U as in CTL
－A， \mathbf{E} ：quantify on paths（as in CTL）
－X，G，F，U：（as in LTL）
－as in CTL，but X，G，F， \mathbf{U} not necessarily preceded by \mathbf{A}, \mathbf{E}

Remark

In principle in CTL＊one may have sequences of nested path quantifiers．
In such case，the most internal one dominates：

$$
M, \boldsymbol{s} \models \mathbf{A E} \psi \text { iff } M, \boldsymbol{s} \models \mathbf{E} \psi, \quad M, \boldsymbol{s} \models \mathbf{E A} \psi \text { iff } M, \boldsymbol{s} \models \mathbf{A} \psi .
$$

CTL* vs LTL \& CTL

CTL* subsumes both CTL and LTL

- φ in CTL $\Longrightarrow \varphi$ in CTL* (e.g., AG($\left.N_{1} \rightarrow E F T_{1}\right)$
- φ in LTL $\Longrightarrow \mathbf{A} \varphi$ in CTL* $\left(\right.$ e.g., $\mathbf{A}\left(\mathbf{G F} T_{1} \rightarrow \mathbf{G F} C_{1}\right)$
- LTL \cup CTL \subset CTL* (e.g., E(GFp \rightarrow GFq))

CTL* vs LTL \& CTL

CTL* subsumes both CTL and LTL

- φ in CTL $\Longrightarrow \varphi$ in CTL* (e.g., AG $\left(N_{1} \rightarrow E F T_{1}\right)$
- LTL \cup CTL \subset CTL* (e.g., E(GFp \rightarrow GFq))

CTL* vs LTL \& CTL

CTL* subsumes both CTL and LTL

- φ in CTL $\Longrightarrow \varphi$ in CTL* (e.g., AG $\left(N_{1} \rightarrow E F T_{1}\right)$
- φ in LTL $\Longrightarrow \mathbf{A} \varphi$ in CTL* (e.g., $\mathbf{A}\left(\mathbf{G F} T_{1} \rightarrow \mathbf{G F} C_{1}\right)$

CTL* vs LTL \& CTL

CTL* subsumes both CTL and LTL

- φ in CTL $\Longrightarrow \varphi$ in CTL* (e.g., AG $\left(N_{1} \rightarrow E F T_{1}\right)$
- φ in LTL $\Longrightarrow \mathbf{A} \varphi$ in CTL* (e.g., $\mathbf{A}\left(\mathbf{G F} T_{1} \rightarrow \mathbf{G F} C_{1}\right)$
- LTL \cup CTL \subset CTL* (e.g., $\mathrm{E}(\mathrm{GF} p \rightarrow \mathbf{G F q})$)

CTL* vs LTL \& CTL

CTL* subsumes both CTL and LTL

- φ in CTL $\Longrightarrow \varphi$ in CTL* (e.g., AG $\left(N_{1} \rightarrow E F T_{1}\right)$
- φ in LTL $\Longrightarrow \mathbf{A} \varphi$ in CTL* (e.g., $\mathbf{A}\left(\mathbf{G F} T_{1} \rightarrow \mathbf{G F} C_{1}\right)$
- LTL \cup CTL \subset CTL* (e.g., $\mathrm{E}(\mathrm{GF} p \rightarrow \mathbf{G F q})$)

"You have no respect for logic. (...)
I have no respect for those who have no respect for logic."
https://www.youtube.com/watch?v=uGstM8QMCjQ

Outline

(1) Transition Systems as Kripke Models

- Kripke Models
- Languages for Transition Systems (hints)
(2) Properties and Temporal Logics
- Properties
- Temporal Logics
(3) Linear Temporal Logic - LTL
- LTL: Syntax and Semantics
- Some LTL Model Checking Examples
(4) Computation Tree Logic - CTL
- CTL: Syntax and Semantics
- Some CTL Model Checking Examples
(5) LTL vs. CTL
(6) Exercises

Exercise: LTL Model Checking (path)

Consider the following path π :

For each of the following facts, say if it is true of false in LTL.
(a) $\pi, s_{0} \models \mathbf{G F} q$
(b) $\pi, s_{0} \models \mathrm{FG}(q \leftrightarrow \neg p)$
(c) $\pi, s_{2} \models \mathbf{G} p$
(d) $\pi, s_{2} \models p \mathbf{U} q$

Exercise: LTL Model Checking (path)

Consider the following path π :

For each of the following facts, say if it is true of false in LTL.
(a) $\pi, s_{0} \models \mathbf{G F} q$ [Solution: true]
(b) $\pi, s_{0} \models \mathrm{FG}(q \leftrightarrow \neg p)$
(c) $\pi, s_{2} \models \mathbf{G} p$
(d) $\pi, s_{2} \models p \mathbf{U} q$

Exercise: LTL Model Checking (path)

Consider the following path π :

For each of the following facts, say if it is true of false in LTL.
(a) $\pi, s_{0} \models \mathbf{G F} q$ [Solution: true]
(b) $\pi, s_{0} \models \mathrm{FG}(q \leftrightarrow \neg p)$ [Solution: true]
(c) $\pi, s_{2} \models \mathbf{G} p$
(d) $\pi, s_{2} \models p \mathbf{U} q$

Exercise: LTL Model Checking (path)

Consider the following path π :

For each of the following facts, say if it is true of false in LTL.
(a) $\pi, s_{0} \models$ GF q [Solution: true]
(b) $\pi, s_{0} \models \mathrm{FG}(q \leftrightarrow \neg p)$ [Solution: true]
(c) $\pi, s_{2} \models \mathbf{G} p$
[Solution: false]
(d) $\pi, s_{2} \models p \mathbf{U}$

Exercise: LTL Model Checking (path)

Consider the following path π :

For each of the following facts, say if it is true of false in LTL.
(a) $\pi, s_{0} \models \mathbf{G F} q$ [Solution: true]
(b) $\pi, s_{0} \models \mathrm{FG}(q \leftrightarrow \neg p)$ [Solution: true]
(c) $\pi, s_{2} \models \mathbf{G} p$
[Solution: false]
(d) $\pi, s_{2} \models p \cup q$
[Solution: true]

Ex: LTL Model Checking

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in LTL.
(a) $M \models(p \mathbf{U} q)$
(b) $M \models \mathbf{G}(\neg p \rightarrow F \neg q)$
(c) $M \models \mathbf{G} p \rightarrow \mathbf{G} q$
(d) $M \models$ FGp

Ex: LTL Model Checking

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in LTL.
(a) $M \models(p \mathbf{U} q)$
[Solution: true]
(b) $M \models \mathbf{G}(\neg p \rightarrow F \neg q)$
(c) $M \models \mathbf{G} p \rightarrow \mathbf{G} q$
(d) $M \models$ FGp

Ex: LTL Model Checking

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in LTL.
(a) $M \models(p \mathbf{U} q)$
[Solution: true]
(b) $M \models \mathbf{G}(\neg p \rightarrow F \neg q)$
[Solution: true]
(c) $M \models \mathbf{G} p \rightarrow \mathbf{G} q$
(d) $M \models$ FGp

Ex: LTL Model Checking

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in LTL.
(a) $M \models(p \mathbf{U} q)$
[Solution: true]
(b) $M \models \mathbf{G}(\neg p \rightarrow F \neg q)$
[Solution: true]
(c) $M \models \mathbf{G} p \rightarrow \mathbf{G} q$ [Solution: true]
(d) $M \models$ FGp

Ex: LTL Model Checking

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in LTL.
(a) $M \models(p \mathbf{U} q)$ [Solution: true]
(b) $M \models \mathbf{G}(\neg p \rightarrow F \neg q)$ [Solution: true]
(c) $M \models \mathbf{G} p \rightarrow \mathbf{G} q$ [Solution: true]
(d) $M \models$ FGp
[Solution: false]

Ex: CTL Model Checking

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in CTL.
(a) $M \models \mathbf{A F} \neg p$
(b) $M \models \mathrm{EG} p$
(c) $M \models \mathbf{A}(p \cup q)$
(d) $M \models \mathbf{E}(p \mathbf{\square} \neg q)$

Ex: CTL Model Checking

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in CTL.
(a) $M \models \mathbf{A F} \neg p$ [Solution: false]
(b) $M \models \mathrm{EG} p$
(c) $M \models \mathbf{A}(p \cup q)$
(d) $M \models \mathbf{E}(p \mathbf{\square} \neg q)$

Ex: CTL Model Checking

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in CTL.
(a) $M \models \mathbf{A F} \neg p$ [Solution: false]
(b) $M \models \mathrm{EG} p$
[Solution: false]
(c) $M \models \mathbf{A}(p \cup q)$
(d) $M \models \mathbf{E}(p \mathbf{\square} \neg q)$

Ex: CTL Model Checking

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in CTL.
(a) $M \models \mathbf{A F} \neg p$ [Solution: false]
(b) $M \models \mathrm{EG} p$
[Solution: false]
(c) $M \models \mathbf{A}(p \cup q)$
[Solution: true]
(d) $M \models \mathbf{E}(p \mathbf{U} \neg q)$

Ex: CTL Model Checking

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in CTL.
(a) $M \models \mathbf{A F} \neg p$ [Solution: false]
(b) $M \models \mathrm{EG} p$
[Solution: false]
(c) $M \models \mathbf{A}(p \cup q)$ [Solution: true]
(d) $M \models \mathbf{E}(p \mathbf{U} \neg q)$ [Solution: true]

Ex: CTL Model Checking

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in CTL.
(a) $M \models \mathbf{A F} \neg q$
(b) $M \models E G q$
(c) $M \models((\mathbf{A G A F} p \vee \mathbf{A G A F} q) \wedge(\mathbf{A G A F} \neg p \vee \mathbf{A G A F} \neg q)) \rightarrow q$
(d) $M \models \operatorname{AFEG}(p \wedge q)$

Ex: CTL Model Checking

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in CTL.
(a) $M \models \mathbf{A F} \neg q$
[Solution: false]
(b) $M \models \mathrm{EG} q$
(c) $M \models((\mathbf{A G A F} p \vee \mathbf{A G A F} q) \wedge(\mathbf{A G A F} \neg p \vee \mathbf{A G A F} \neg q)) \rightarrow q$
(d) $M \models \operatorname{AFEG}(p \wedge q)$

Ex: CTL Model Checking

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in CTL.
(a) $M \models \mathbf{A F} \neg q$
[Solution: false]
(b) $M \models \mathrm{EG} q$
[Solution: false]
(c) $M \models((\mathbf{A G A F} p \vee \mathbf{A G A F} q) \wedge(\mathbf{A G A F} \neg p \vee \mathbf{A G A F} \neg q)) \rightarrow q$
(d) $M \models \operatorname{AFEG}(p \wedge q)$

Ex: CTL Model Checking

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in CTL.
(a) $M \models \mathbf{A F} \neg q$
[Solution: false]
(b) $M \models \mathrm{EG} q$
[Solution: false]
(c) $M \models((\mathbf{A G A F} p \vee \mathbf{A G A F} q) \wedge(\mathbf{A G A F} \neg p \vee \mathbf{A G A F} \neg q)) \rightarrow q$
[Solution: true]
(d) $M \models \operatorname{AFEG}(p \wedge q)$

Ex: CTL Model Checking

Consider the following Kripke Model M :

For each of the following facts, say if it is true or false in CTL.
(a) $M \models \mathbf{A F} \neg q$ [Solution: false]
(b) $M \models \mathrm{EG} q$
[Solution: false]
(c) $M \models(($ AGAF $p \vee$ AGAF $q) \wedge($ AGAF $\neg p \vee$ AGAF $\neg q)) \rightarrow q$ [Solution: true]
(d) $M \models \operatorname{AFEG}(p \wedge q)$ [Solution: false]

[^0]: Remark
 Unlike with other types of Automata (e.g., Buechi), in Kripke models the values of all variables

[^1]: Remark
 Tipically symbolic description are much more compact (and intuitive) than the explicit representation of the Kripke model.

[^2]: Remark
 Tipically symbolic description are much more compact (and intuitive) than the explicit representation of the Kripke model.

[^3]: Remark
 Tipically symbolic description are much more compact (and intuitive) than the explicit representation of the Kripke model.

[^4]: Remark
 Tipically symbolic description are much more compact (and intuitive) than the explicit representation of the Kripke model.

[^5]: Remark
 Tipically symbolic description are much more compact (and intuitive) than the explicit representation of the Kripke model.

[^6]: Remark
 Tipically symbolic description are much more compact (and intuitive) than the explicit representation of the Kripke model.

[^7]: LTL can be defined in terms of

