
Formal Method Mod. 2 (Model Checking)
Laboratory 10

Giuseppe Spallitta
giuseppe.spallitta@unitn.it

Università degli studi di Trento

May 18, 2022



Outline

1. Bounded Model Checking

2. K-Invariant

3. Exercises



Bounded Model Checking

Idea
▶ look for a counter-example path of increasing length k

▶ bug oriented: is there a bad behaviour?

▶ for each k : build a boolean formula that is satisfiable iff there
is a counter-example of length k
(can be expressed using k · |s| variables)

▶ use of a SAT procedure to check the satisfiability of the
boolean formula
▶ can manage complex formulas on several 100K variables
▶ returns satisfying assignment (i.e. a counter-example)

Giuseppe Spallitta 1. Bounded Model Checking
1/23



Bounded Model Checking

Idea
▶ look for a counter-example path of increasing length k

▶ bug oriented: is there a bad behaviour?

▶ for each k : build a boolean formula that is satisfiable iff there
is a counter-example of length k
(can be expressed using k · |s| variables)

▶ use of a SAT procedure to check the satisfiability of the
boolean formula
▶ can manage complex formulas on several 100K variables
▶ returns satisfying assignment (i.e. a counter-example)

Giuseppe Spallitta 1. Bounded Model Checking
1/23



Bounded Model Checking

Idea
▶ look for a counter-example path of increasing length k

▶ bug oriented: is there a bad behaviour?

▶ for each k : build a boolean formula that is satisfiable iff there
is a counter-example of length k
(can be expressed using k · |s| variables)

▶ use of a SAT procedure to check the satisfiability of the
boolean formula
▶ can manage complex formulas on several 100K variables
▶ returns satisfying assignment (i.e. a counter-example)

Giuseppe Spallitta 1. Bounded Model Checking
1/23



Commands for Bounded Model Checking

NuSMV/ nuXmv
▶ go_bmc: initializes the system for the BMC verification.
▶ bmc_pick_state, bmc_simulate [-k]: simulate the system
▶ check_ltlspec_bmc checks LTL specifications
▶ check_invar_bmc checks INVAR specifications

nuXmv only
▶ go_msat: initializes the system so as to use the MathSAT 5

SMT Solver as back-end
▶ msat_pick_state, msat_simulate [-k]: simulate the system
▶ msat_check_ltlspec_bmc: checks LTL specifications
▶ msat_check_invar_bmc: checks INVAR specifications

Giuseppe Spallitta 1. Bounded Model Checking
2/23



Example: BMC simulation

modulo 8 counter

MODULE main
VAR
b0 : boolean;
b1 : boolean;
b2 : boolean;
ASSIGN
init(b0) := FALSE;
init(b1) := FALSE;
init(b2) := FALSE;
next(b0) := !b0;
next(b1) := (!b0 & b1)
| (b0 & !b1);
next(b2) := ((b0 & b1) & !b2)
| (!(b0 & b1) & b2);
DEFINE
out := toint(b0)
+ 2*toint(b1)
+ 4*toint(b2);

NuSMV > read_model -i counter8.smv
NuSMV > bmc_go;
NuSMV > bmc_pick_state;
NuSMV > bmc_simulate -k 3 -p
-> State: 1.1 <-
b0 = FALSE
b1 = FALSE
b2 = FALSE
out = 0
-> State: 1.2 <-
b0 = TRUE
out = 1
-> State: 1.3 <-
b0 = FALSE
b1 = TRUE
out = 2
-> State: 1.4 <-
b0 = TRUE
out = 3

Giuseppe Spallitta 1. Bounded Model Checking
3/23



Checking LTL specifications

The following specification is false:

LTLSPEC G (out = 3 -> X out = 5)

0 1 2 3 4

▶ It is an example of safety property: nothing bad ever happens.
– the counterexample is a finite trace (of length 4)
– important: there are no counterexamples of length up to 3

Giuseppe Spallitta 1. Bounded Model Checking
4/23



Checking LTL specifications: output
NuSMV > check_ltlspec_bmc -p "G (out = 3 -> X out = 5)"
-- no counterexample found with bound 0 for specification ...
-- no counterexample found with bound 1 for specification ...
-- no counterexample found with bound 2 for specification ...
-- no counterexample found with bound 3 for specification ...
-- specification G (out = 3 -> X out = 5) is false
-- as demonstrated by the following execution sequence
-> State 1.1 <-
...
out = 0
-> State 1.2 <-
...
out = 1
-> State 1.3 <-
...
out = 2
-> State 1.4 <-
...
out = 3
-> State 1.5 <-
...
out = 4

Giuseppe Spallitta 1. Bounded Model Checking
5/23



Checking LTL specifications

The following specification is false:

LTLSPEC ! G ( F (out = 2));
LTLSPEC F ( G ! (out = 2));

0 1 2 3 4 5 6 7

▶ It is an example of liveness property: something desirable will
eventually happen

– the counterexample is an infinite trace (loop of length 8)
– since the state where out = 2 is entered infinitely often,

the property is false

Giuseppe Spallitta 1. Bounded Model Checking
6/23



Bounded Model Checking:
counter-examples

Looping counterexample

0 k−2 k−1 k

k+2 k+3 k+4 k+5

l−1 l l+1 l+2

=

k+1k
...

prefix : assignments from 0 to l − 1,
loop : infinitely repeat assignments l to k − 1,

loop-back : kth assignment, always identical to l th assignment.

Giuseppe Spallitta 1. Bounded Model Checking
7/23



Length and loopback condition
▶ check_ltlspec_bmc looks for counterexamples of length up to

k .

▶ check_ltlspec_bmc_onepb looks for counterexamples of length
k .

▶ To set the loopback conditions use: -l bmc_loopback.
▶ bmc_loopback >=0 : loop to a precise time point
▶ bmc_loopback < 0 : loop length
▶ bmc_loopback = ’X’: no loopback
▶ bmc_loopback = ’*’: all possible loopbacks

▶ To set the bounded length use: -k bmc_length.

▶ Default values: bmc_loopback = ’*’, bmc_length = 10

▶ Default values can be changed using:
▶ set bmc_length k sets the length to k
▶ set bmc_loopback l sets the loopback to l

Giuseppe Spallitta 1. Bounded Model Checking
8/23



Checking LTL specifications

Let us consider again the specification ! G ( F (out = 2))

NuSMV > check_ltlspec_bmc_onepb -k 9 -l 0 -p "! G ( F (out = 2))"
-- no counterexample found with bound 9

and loop at 0 for specification ...

NuSMV > check_ltlspec_bmc_onepb -k 8 -l 1 -p "! G ( F (out = 2))"
-- no counterexample found with bound 8

and loop at 1 for specification ...

NuSMV > check_ltlspec_bmc_onepb -k 9 -l 1 -p "! G ( F (out = 2))"
-- specification ! G F out = 2 is false
-- as demonstrated by the following execution sequence
...

0 1 2 3 4 5 6 7 0

Giuseppe Spallitta 1. Bounded Model Checking
9/23



Checking LTL specifications

Let us consider again the specification ! G ( F (out = 2))

NuSMV > check_ltlspec_bmc_onepb -k 9 -l 0 -p "! G ( F (out = 2))"
-- no counterexample found with bound 9

and loop at 0 for specification ...

NuSMV > check_ltlspec_bmc_onepb -k 8 -l 1 -p "! G ( F (out = 2))"
-- no counterexample found with bound 8

and loop at 1 for specification ...

NuSMV > check_ltlspec_bmc_onepb -k 9 -l 1 -p "! G ( F (out = 2))"
-- specification ! G F out = 2 is false
-- as demonstrated by the following execution sequence
...

0 1 2 3 4 5 6 7 0

Giuseppe Spallitta 1. Bounded Model Checking
9/23



Checking LTL specifications

Let us consider again the specification ! G ( F (out = 2))

NuSMV > check_ltlspec_bmc_onepb -k 9 -l 0 -p "! G ( F (out = 2))"
-- no counterexample found with bound 9

and loop at 0 for specification ...

NuSMV > check_ltlspec_bmc_onepb -k 8 -l 1 -p "! G ( F (out = 2))"
-- no counterexample found with bound 8

and loop at 1 for specification ...

NuSMV > check_ltlspec_bmc_onepb -k 9 -l 1 -p "! G ( F (out = 2))"
-- specification ! G F out = 2 is false
-- as demonstrated by the following execution sequence
...

0 1 2 3 4 5 6 7 0

Giuseppe Spallitta 1. Bounded Model Checking
9/23



Checking LTL specifications

Let us consider again the specification !G ( F (out =2))

NuSMV > check_ltlspec_bmc_onepb -k 9 -l X -p "! G ( F (out =2))"
-- no counterexample found with bound 9 and no loop for specification ...

NuSMV > check_ltlspec_bmc_onepb -k 10 -l -8 -p "! G ( F (out =2))"
-- specification ! G F out = 2 is false
-- as demonstrated by the following execution sequence
...

0 1 2 3 4 5 6 7 0 1 2

loop length = 8

Giuseppe Spallitta 1. Bounded Model Checking
10/23



Checking LTL specifications

Let us consider again the specification !G ( F (out =2))

NuSMV > check_ltlspec_bmc_onepb -k 9 -l X -p "! G ( F (out =2))"
-- no counterexample found with bound 9 and no loop for specification ...

NuSMV > check_ltlspec_bmc_onepb -k 10 -l -8 -p "! G ( F (out =2))"
-- specification ! G F out = 2 is false
-- as demonstrated by the following execution sequence
...

0 1 2 3 4 5 6 7 0 1 2

loop length = 8

Giuseppe Spallitta 1. Bounded Model Checking
10/23



Outline

1. Bounded Model Checking

2. K-Invariant

3. Exercises



Checking invariants

▶ Bounded model checking can be used also for checking
invariants

▶ Invariants are checked via the check_invar_bmc command
▶ Invariants are checked via an inductive reasoning, i.e.

nuXmv tries to prove that:
▶ the property holds in every initial state
▶ the property holds in every state that is reachable from

another state in which the property holds

Giuseppe Spallitta 2. K-Invariant
11/23



Checking invariants

Consider the following example:

MODULE main
VAR
out : 0..15;

ASSIGN
init(out) := 0;

TRANS
case
out = 7 : next(out) = 0;
TRUE : next(out) = ((out + 1) mod 16);
esac

INVARSPEC out in 0..10
INVARSPEC out in 0..7

0 1 2 3

4
567

8 9 10
11

121314
15

Giuseppe Spallitta 2. K-Invariant
12/23



Checking invariants

NuSMV > check_invar_bmc
-- cannot prove the invariant out in (0 .. 10) : the induction fails
-- as demonstrated by the following execution sequence
-> State 1.1 <-
out = 10
-> State 1.2 <-
out = 11
-- invariant out in (0 .. 7) is true

▶ The invariant out in 0..10 is true, but the the induction
fails because a state in which out=11 can be reached from a
state in which out=10

▶ Thus: if an invariant cannot be proved by inductive reasoning,
it does not necessarily mean that the formula is false

▶ The stronger invariant out in 0..7 is proved true by BMC,
therefore also the invariant out in 0..10 is true

Giuseppe Spallitta 2. K-Invariant
13/23



Outline

1. Bounded Model Checking

2. K-Invariant

3. Exercises



Exercise: Cleaning Robot [1/5]

Exercise
Model a rechargeable cleaning robot which task is to move around
a 10 × 10 room and clean it.
The robot state is so composed:
▶ variables “x” and “y”, ranging from 0 to 9, keep track of the

robot’s position;
▶ variable “state”, with values in MOVE, CHECK, CHARGE, CLEAN,

OFF, keeps track of the next action taken by the robot;
▶ variable “budget” in { 0..100 } which signals the remaining

power;
▶ output variable “pos”, defined to be equal y · 10 + x .

Giuseppe Spallitta 3. Exercises
14/23



Exercise: Cleaning Robot [2/5]

▶ At the beginning, the robot is in state “CHECK” and all other
vars are 0.

▶ The budget is decreased by a single unit each time the robot is
in state “MOVE” or “CLEAN” (and budget > 0)

▶ The budget is restored to 100 if the robot is in “CHARGE”
state.

▶ Otherwise, the budget doesn’t change.

Giuseppe Spallitta 3. Exercises
15/23



Exercise: Cleaning Robot [3/5]

The robot changes state according to this ordered set of rules:
▶ if the robot is in “pos” 0 and the budget is smaller than 100,

then the next state is “CHARGE”
▶ if the budget is 0, then the next state is “OFF”
▶ if the robot is in state “CHARGE” or “MOVE”, then the next

state is “CHECK”
▶ if the robot is in state “CHECK”, then the next state is either

“CLEAN” or “MOVE”
▶ otherwise, the next state is “MOVE”.

Giuseppe Spallitta 3. Exercises
16/23



Exercise: Cleaning Robot [4/5]

Encode, using the constraint-style (easier!), the following
constraints:
▶ if the state is different than “MOVE”, then the position of the

robot never changes.
▶ if the state is equal to “MOVE”, then the robot moves by a

single square in one of the cardinal directions: it increases or
decreases either “x” or “y”, but not both at the same time.

Giuseppe Spallitta 3. Exercises
17/23



Exercise: Cleaning Robot [5/5]

Encode and verify the following properties:
▶ in all possible executions, the robot changes position infinitely

many times (false)
▶ it is never the case that the robot’s action is either “MOVE” or

“CLEAN” and the available budget is zero (false)
▶ if the robot charges infinitely often, then it changes position

infinitely many times (true)
▶ if the robot is in “pos” 0, then it is necessarily always the case

that in the future it will occupy a different position (true)
▶ the robot does not move along the diagonals (true)

Giuseppe Spallitta 3. Exercises
18/23



Exercise: Number Paranoia

Numbers Paranoia
Encode and solve the following puzzle as a planning problem using
nuXmv or NuSMV

Giuseppe Spallitta 3. Exercises
19/23



Homework [1/3]

Cannibals
Three missionaries and three cannibals want to cross a river but
they have only one boat that holds two. If the cannibals ever
outnumber the missionaries on either bank, the missionaries will be
eaten. The boat cannot cross the river by itself with no people on
board. The problem consists of finding a strategy to make them
cross the river safely.

Goals
▶ model the problem in SMV
▶ use nuXmv or NuSMV to prove that there exists a solution to

the planning problem

Giuseppe Spallitta 3. Exercises
20/23



Homework [2/3]

Gnome sort
Model the following code as a module:

procedure gnomeSort(arr, len):
l0: pos := 0
l1: while (pos < len):
l2: if (pos == 0 or arr[pos] >= arr[pos - 1]):
l3: pos := pos + 1

else:
l4: swap(arr[pos], arr[pos - 1])

pos := pos - 1
l5: return # self-loop here!

}

Declare, inside the main module, the following variables:
▶ arr: array initialised to { 9, 7, 5, 3, 1 }
▶ sorter: instance of gnomeSort(arr, 5)

Giuseppe Spallitta 3. Exercises
21/23



Homework [2/3]

Verify
▶ the algorithm always terminates;
▶ eventually in the future, the array will be sorted forever;
▶ eventually the array is sorted, and the algorithm is not done

until the array is sorted.

Giuseppe Spallitta 3. Exercises
22/23



Homework [3/3]

Leaping frogs

The puzzle involves seven rocks and six frogs. The seven rocks are
laid out in a horizontal line and the six frogs are evenly divided into
a green trio and a brown trio. The green frogs sit on the rocks on
the right side and the brown frogs sit on the rocks on the left side.
The rock in the middle is vacant. Can you move the frogs to the
opposite side? Notice that you can only move one frog at a time,
and they can only move forward to an empty rock or jump over one
(and only one) frog, to reach an empty rock.

Goals
▶ model the problem in SMV
▶ use nuXmv or NuSMV to prove that there exists a solution to

the planning problem
Giuseppe Spallitta 3. Exercises

23/23


	Bounded Model Checking
	K-Invariant
	Exercises

