
Formal Method Mod. 2 (Model Checking)
Laboratory 9

Giuseppe Spallitta
giuseppe.spallitta@unitn.it

Università degli studi di Trento

May 11, 2022

Outline

1. Planning problem
1) Blocks Example

2. Examples

3. Exercises

Planning Problem

Planning Problem
Given ⟨I ,G ,T ⟩, where
▶ I: (representation of) initial state
▶ G: (representation of) goal state
▶ T: transition relation

find a sequence of transitions t1, ..., tn leading from the initial state
to the goal state.

Idea
Encode planning problem as a model checking problem, such that
plan is provided as counter-example for the property.

1. impose I as initial state
2. encode T as transition relation system
3. verify the LTL property ! (F goal_state)

Giuseppe Spallitta 1. Planning problem
1/27

Example: blocks [1/9]

B B

GOAL

A C

A

INITIAL

C

T

Init : On(A,B),On(B,C),On(C ,T),Clear(A)
Goal : On(C ,B),On(B,A),On(A,T)
Move(a, b, c)

Precond : Block(a) ∧ Clear(a) ∧ On(a, b)∧
(Clear(c) ∨ Table(c))∧
a ̸= b ∧ a ̸= c ∧ b ̸= c

Effect : Clear(b) ∧ ¬On(a, b)∧
On(a, c) ∧ ¬Clear(c)

Giuseppe Spallitta 1. Planning problem
2/27

Example: blocks [2/9]

MODULE block(id, ab, bl)
VAR

above : {none, a, b, c}; -- the block above this one
below : {none, a, b, c}; -- the block below this one

DEFINE
clear := (above = none);

INIT
above = ab &
below = bl

-- a block can’t be above or below itself
INVAR below != id & above != id

MODULE main
VAR

-- at each step only one block moves
move : {move_a, move_b, move_c};
block_a : block(a, none, b);
block_b : block(b, a, c);
block_c : block(c, b, none);

...

Giuseppe Spallitta 1. Planning problem
3/27

Example: blocks [3/9]

▶ a moving block changes location and remains clear
TRANS

(move = move_a -> next(block_a.clear) &
next(block_a.below) != block_a.below) &

(move = move_b -> next(block_b.clear) &
next(block_b.below) != block_b.below) &

(move = move_c -> next(block_c.clear) &
next(block_c.below) != block_c.below)

▶ a non-moving block does not change its location
TRANS

(move != move_a -> next(block_a.below) = block_a.below) &
(move != move_b -> next(block_b.below) = block_b.below) &
(move != move_c -> next(block_c.below) = block_c.below)

Giuseppe Spallitta 1. Planning problem
4/27

Example: blocks [4/9]

▶ a block remains connected to any non-moving block
TRANS

(move != move_a & block_b.above = a
-> next(block_b.above) = a) &

(move != move_a & block_c.above = a
-> next(block_c.above) = a) &

(move != move_b & block_a.above = b
-> next(block_a.above) = b) &

(move != move_b & block_c.above = b
-> next(block_c.above) = b) &

(move != move_c & block_a.above = c
-> next(block_a.above) = c) &

(move != move_c & block_b.above = c
-> next(block_b.above) = c)

▶ Q: what about “below block”?
A: covered in previous slide!

Giuseppe Spallitta 1. Planning problem
5/27

Example: blocks [4/9]

▶ a block remains connected to any non-moving block
TRANS

(move != move_a & block_b.above = a
-> next(block_b.above) = a) &

(move != move_a & block_c.above = a
-> next(block_c.above) = a) &

(move != move_b & block_a.above = b
-> next(block_a.above) = b) &

(move != move_b & block_c.above = b
-> next(block_c.above) = b) &

(move != move_c & block_a.above = c
-> next(block_a.above) = c) &

(move != move_c & block_b.above = c
-> next(block_b.above) = c)

▶ Q: what about “below block”?

A: covered in previous slide!

Giuseppe Spallitta 1. Planning problem
5/27

Example: blocks [4/9]

▶ a block remains connected to any non-moving block
TRANS

(move != move_a & block_b.above = a
-> next(block_b.above) = a) &

(move != move_a & block_c.above = a
-> next(block_c.above) = a) &

(move != move_b & block_a.above = b
-> next(block_a.above) = b) &

(move != move_b & block_c.above = b
-> next(block_c.above) = b) &

(move != move_c & block_a.above = c
-> next(block_a.above) = c) &

(move != move_c & block_b.above = c
-> next(block_b.above) = c)

▶ Q: what about “below block”?
A: covered in previous slide!

Giuseppe Spallitta 1. Planning problem
5/27

Example: blocks [5/9]
▶ positioning of blocks is symmetric: above and below relations

must be symmetric.
INVAR

(block_a.above = b <-> block_b.below = a)
& (block_a.above = c <-> block_c.below = a)
& (block_b.above = a <-> block_a.below = b)
& (block_b.above = c <-> block_c.below = b)
& (block_c.above = a <-> block_a.below = c)
& (block_c.above = b <-> block_b.below = c)

& (block_a.above = none ->
(block_b.below != a & block_c.below != a))

& (block_b.above = none ->
(block_a.below != b & block_c.below != b))

& (block_c.above = none ->
(block_a.below != c & block_b.below != c))

& (block_a.below = none ->
(block_b.above != a & block_c.above != a))

& (block_b.below = none ->
(block_a.above != b & block_c.above != b))

& (block_c.below = none ->
(block_a.above != c & block_b.above != c))

Giuseppe Spallitta 1. Planning problem
6/27

Example: blocks [6/9]
▶ a block cannot move if it has some other block above itself

...
TRANS

(!next(block_a.clear) -> next(move) != move_a) &
(!next(block_b.clear) -> next(move) != move_b) &
(!next(block_c.clear) -> next(move) != move_c)

...

▶ Q: what’s wrong with following formulation?
...
TRANS

(next(block_a.clear) -> next(move) = move_a) &
(next(block_b.clear) -> next(move) = move_b) &
(next(block_c.clear) -> next(move) = move_c)

...

A:
▶ move can only have one valid value =⇒ inconsistency

whenever there are two clear blocks at the same time
▶ any non-clear block would still be able to move
▶ same for “iff“ formulation

Giuseppe Spallitta 1. Planning problem
7/27

Example: blocks [6/9]
▶ a block cannot move if it has some other block above itself

...
TRANS

(!next(block_a.clear) -> next(move) != move_a) &
(!next(block_b.clear) -> next(move) != move_b) &
(!next(block_c.clear) -> next(move) != move_c)

...

▶ Q: what’s wrong with following formulation?
...
TRANS

(next(block_a.clear) -> next(move) = move_a) &
(next(block_b.clear) -> next(move) = move_b) &
(next(block_c.clear) -> next(move) = move_c)

...

A:
▶ move can only have one valid value =⇒ inconsistency

whenever there are two clear blocks at the same time
▶ any non-clear block would still be able to move
▶ same for “iff“ formulation

Giuseppe Spallitta 1. Planning problem
7/27

Example: blocks [6/9]
▶ a block cannot move if it has some other block above itself

...
TRANS

(!next(block_a.clear) -> next(move) != move_a) &
(!next(block_b.clear) -> next(move) != move_b) &
(!next(block_c.clear) -> next(move) != move_c)

...

▶ Q: what’s wrong with following formulation?
...
TRANS

(next(block_a.clear) -> next(move) = move_a) &
(next(block_b.clear) -> next(move) = move_b) &
(next(block_c.clear) -> next(move) = move_c)

...

A:
▶ move can only have one valid value =⇒ inconsistency

whenever there are two clear blocks at the same time
▶ any non-clear block would still be able to move
▶ same for “iff“ formulation

Giuseppe Spallitta 1. Planning problem
7/27

Example: blocks [7/9]

Remark
A plan is a sequence of transitions/actions leading from the initial
state to an accepting/goal state.

Idea
▶ assert property p: “goal state is not reachable”
▶ if a plan exists, nuXmv produces a counterexample for p
▶ the counterexample for p is a plan to reach the goal

Giuseppe Spallitta 1. Planning problem
8/27

Example: blocks [8/9]

Examples
▶ get a plan for reaching “goal state”

LTLSPEC
! F(block_a.below = none & block_a.above = b &

block_b.below = a & block_b.above = c &
block_c.below = b & block_c.above = none)

▶ get a plan for reaching a configuration in which all blocks are
placed on the table
LTLSPEC -- look for a way to reach a configuration in which all the blocks are on

-- the table
! F(block_a.below = none & block_b.below = none & block_c.below = none)

Giuseppe Spallitta 1. Planning problem
9/27

Example: blocks [8/9]

Examples
▶ get a plan for reaching “goal state”

LTLSPEC
! F(block_a.below = none & block_a.above = b &

block_b.below = a & block_b.above = c &
block_c.below = b & block_c.above = none)

▶ get a plan for reaching a configuration in which all blocks are
placed on the table
LTLSPEC -- look for a way to reach a configuration in which all the blocks are on

-- the table
! F(block_a.below = none & block_b.below = none & block_c.below = none)

Giuseppe Spallitta 1. Planning problem
9/27

Example: blocks [9/9]

▶ at any given time, at least one block is placed on the table
INVARSPEC

block_a.below = none | block_b.below = none |
block_c.below = none

▶ at any given time, at least one block has nothing above
INVARSPEC

block_a.above = none | block_b.above = none |
block_c.above = none

Giuseppe Spallitta 1. Planning problem
10/27

Example: blocks [9/9]

▶ at any given time, at least one block is placed on the table
INVARSPEC

block_a.below = none | block_b.below = none |
block_c.below = none

▶ at any given time, at least one block has nothing above
INVARSPEC

block_a.above = none | block_b.above = none |
block_c.above = none

Giuseppe Spallitta 1. Planning problem
10/27

Outline

1. Planning problem

2. Examples
1) The Tower of Hanoi
2) Ferryman
3) Tic-Tac-Toe

3. Exercises

Example: tower of hanoi [1/5]

Game with 3 poles and N disks
of different sizes:

▶ initial state: stack of disks
with decreasing size on pole
A

▶ goal state: move stack on
pole C

▶ rules:
▶ only one disk may be

moved at each transition
▶ only the upper disk can

be moved
▶ a disk can not be placed

on top of a smaller disk

Giuseppe Spallitta 2. Examples
11/27

Example: tower of hanoi [2/5]
▶ base system model

MODULE main
VAR

d1 : {left,middle,right}; -- smallest
d2 : {left,middle,right};
d3 : {left,middle,right};
d4 : {left,middle,right}; -- largest
move : 1..4; -- possible moves

▶ disk i is moving
DEFINE

move_d1 := (move = 1);
move_d2 := (move = 2);
move_d3 := (move = 3);
move_d4 := (move = 4);

...

▶ disk di can move if a smaller disk is above him (i.e. they share
the same column)

clear_d1 := TRUE;
clear_d2 := d2!=d1;
clear_d3 := d3!=d1 & d3!=d2;
clear_d4 := d4!=d1 & d4!=d2 & d4!=d3;

Giuseppe Spallitta 2. Examples
12/27

Example: tower of hanoi [2/5]
▶ base system model

MODULE main
VAR

d1 : {left,middle,right}; -- smallest
d2 : {left,middle,right};
d3 : {left,middle,right};
d4 : {left,middle,right}; -- largest
move : 1..4; -- possible moves

▶ disk i is moving
DEFINE

move_d1 := (move = 1);
move_d2 := (move = 2);
move_d3 := (move = 3);
move_d4 := (move = 4);

...

▶ disk di can move if a smaller disk is above him (i.e. they share
the same column)

clear_d1 := TRUE;
clear_d2 := d2!=d1;
clear_d3 := d3!=d1 & d3!=d2;
clear_d4 := d4!=d1 & d4!=d2 & d4!=d3;

Giuseppe Spallitta 2. Examples
12/27

Example: tower of hanoi [2/5]
▶ base system model

MODULE main
VAR

d1 : {left,middle,right}; -- smallest
d2 : {left,middle,right};
d3 : {left,middle,right};
d4 : {left,middle,right}; -- largest
move : 1..4; -- possible moves

▶ disk i is moving
DEFINE

move_d1 := (move = 1);
move_d2 := (move = 2);
move_d3 := (move = 3);
move_d4 := (move = 4);

...

▶ disk di can move if a smaller disk is above him (i.e. they share
the same column)

clear_d1 := TRUE;
clear_d2 := d2!=d1;
clear_d3 := d3!=d1 & d3!=d2;
clear_d4 := d4!=d1 & d4!=d2 & d4!=d3;

Giuseppe Spallitta 2. Examples
12/27

Example: tower of hanoi [3/5]

▶ initial state
INIT

d1 = left &
d2 = left &
d3 = left &
d4 = left & move = 1;

▶ move description for disk 4
TRANS

move_d4 ->
-- disks location changes
next(d1) = d1 &
next(d2) = d2 &
next(d3) = d3 &
next(d4) != d4 &
-- d4 can not move on top of smaller disks
next(d4) != d1 &
next(d4) != d2 &
next(d4) != d3

Giuseppe Spallitta 2. Examples
13/27

Example: tower of hanoi [3/5]

▶ initial state
INIT

d1 = left &
d2 = left &
d3 = left &
d4 = left & move = 1;

▶ move description for disk 4
TRANS

move_d4 ->
-- disks location changes
next(d1) = d1 &
next(d2) = d2 &
next(d3) = d3 &
next(d4) != d4 &
-- d4 can not move on top of smaller disks
next(d4) != d1 &
next(d4) != d2 &
next(d4) != d3

Giuseppe Spallitta 2. Examples
13/27

Example: tower of hanoi [4/5]

▶ If in the next iteration a disk is not clear, you cannot move it.
TRANS
(next(clear_d3) = FALSE) -> (next(move) != 3)
TRANS
(next(clear_d2) = FALSE) -> (next(move) != 2)
TRANS
(next(clear_d1) = FALSE) -> (next(move) != 1)
TRANS
(next(clear_d4) = FALSE) -> (next(move) != 4)

▶ If all columns are being used, do not choose as next move the
largest disk (or we would reach a deadlock).
TRANS
(next(clear_d1) & next(clear_d2) & next(clear_d3)) -> next(move) != 3
TRANS
(next(clear_d1) & next(clear_d2) & next(clear_d4)) -> next(move) != 4
TRANS
(next(clear_d4) & next(clear_d2) & next(clear_d3)) -> next(move) != 4
TRANS
(next(clear_d1) & next(clear_d3) & next(clear_d4)) -> next(move) != 4

Giuseppe Spallitta 2. Examples
14/27

Example: tower of hanoi [4/5]

▶ If in the next iteration a disk is not clear, you cannot move it.
TRANS
(next(clear_d3) = FALSE) -> (next(move) != 3)
TRANS
(next(clear_d2) = FALSE) -> (next(move) != 2)
TRANS
(next(clear_d1) = FALSE) -> (next(move) != 1)
TRANS
(next(clear_d4) = FALSE) -> (next(move) != 4)

▶ If all columns are being used, do not choose as next move the
largest disk (or we would reach a deadlock).
TRANS
(next(clear_d1) & next(clear_d2) & next(clear_d3)) -> next(move) != 3
TRANS
(next(clear_d1) & next(clear_d2) & next(clear_d4)) -> next(move) != 4
TRANS
(next(clear_d4) & next(clear_d2) & next(clear_d3)) -> next(move) != 4
TRANS
(next(clear_d1) & next(clear_d3) & next(clear_d4)) -> next(move) != 4

Giuseppe Spallitta 2. Examples
14/27

Example: tower of hanoi [5/5]

▶ get a plan for reaching “goal state”
LTLSPEC
! F(d1=right & d2=right & d3=right & d4=right)

INVARSPEC
!(d1=right & d2=right & d3=right & d4=right)

Giuseppe Spallitta 2. Examples
15/27

Example: ferryman [1/4]

A ferryman has to bring a sheep, a cabbage, and a wolf safely
across a river.
▶ initial state: all animals are on the right side
▶ goal state: all animals are on the left side
▶ rules:

▶ the ferryman can cross the river with at most one passenger on
his boat

▶ the cabbage and the sheep can not be left unattended on the
same side of the river

▶ the sheep and the wolf can not be left unattended on the same
side of the river

Q: can the ferryman transport all the goods to the other side
safely?

Giuseppe Spallitta 2. Examples
16/27

Example: ferryman [2/4]
▶ base system model

MODULE main
VAR

cabbage : {right,left};
sheep : {right,left};
wolf : {right,left};
man : {right,left};
move : {c, s, w, e}; -- possible moves

DEFINE
carry_cabbage := (move = c);
carry_sheep := (move = s);
carry_wolf := (move = w);
no_carry := (move = e);

▶ initial state
ASSIGN

init(cabbage) := right;
init(sheep) := right;
init(wolf) := right;
init(man) := right;

Giuseppe Spallitta 2. Examples
17/27

Example: ferryman [2/4]
▶ base system model

MODULE main
VAR

cabbage : {right,left};
sheep : {right,left};
wolf : {right,left};
man : {right,left};
move : {c, s, w, e}; -- possible moves

DEFINE
carry_cabbage := (move = c);
carry_sheep := (move = s);
carry_wolf := (move = w);
no_carry := (move = e);

▶ initial state
ASSIGN

init(cabbage) := right;
init(sheep) := right;
init(wolf) := right;
init(man) := right;

Giuseppe Spallitta 2. Examples
17/27

Example: ferryman [3/4]

▶ ferryman carries cabbage
TRANS

carry_cabbage ->
next(cabbage) != cabbage &
next(man) != man &
next(sheep) = sheep &
next(wolf) = wolf

▶ ferryman carries sheep
TRANS

carry_sheep ->
next(sheep) != sheep &
next(man) != man &
next(cabbage) = cabbage &
next(wolf) = wolf

▶ ferryman carries wolf
TRANS

carry_wolf ->
next(wolf) != wolf &
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage

▶ ferryman carries nothing
TRANS

no_carry ->
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage &
next(wolf) = wolf

Giuseppe Spallitta 2. Examples
18/27

Example: ferryman [3/4]

▶ ferryman carries cabbage
TRANS

carry_cabbage ->
next(cabbage) != cabbage &
next(man) != man &
next(sheep) = sheep &
next(wolf) = wolf

▶ ferryman carries sheep
TRANS

carry_sheep ->
next(sheep) != sheep &
next(man) != man &
next(cabbage) = cabbage &
next(wolf) = wolf

▶ ferryman carries wolf
TRANS

carry_wolf ->
next(wolf) != wolf &
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage

▶ ferryman carries nothing
TRANS

no_carry ->
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage &
next(wolf) = wolf

Giuseppe Spallitta 2. Examples
18/27

Example: ferryman [3/4]

▶ ferryman carries cabbage
TRANS

carry_cabbage ->
next(cabbage) != cabbage &
next(man) != man &
next(sheep) = sheep &
next(wolf) = wolf

▶ ferryman carries sheep
TRANS

carry_sheep ->
next(sheep) != sheep &
next(man) != man &
next(cabbage) = cabbage &
next(wolf) = wolf

▶ ferryman carries wolf
TRANS

carry_wolf ->
next(wolf) != wolf &
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage

▶ ferryman carries nothing
TRANS

no_carry ->
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage &
next(wolf) = wolf

Giuseppe Spallitta 2. Examples
18/27

Example: ferryman [3/4]

▶ ferryman carries cabbage
TRANS

carry_cabbage ->
next(cabbage) != cabbage &
next(man) != man &
next(sheep) = sheep &
next(wolf) = wolf

▶ ferryman carries sheep
TRANS

carry_sheep ->
next(sheep) != sheep &
next(man) != man &
next(cabbage) = cabbage &
next(wolf) = wolf

▶ ferryman carries wolf
TRANS

carry_wolf ->
next(wolf) != wolf &
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage

▶ ferryman carries nothing
TRANS

no_carry ->
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage &
next(wolf) = wolf

Giuseppe Spallitta 2. Examples
18/27

Example: ferryman [4/4]

▶ If the man is not in the same side of an animal, we cannot
choose it for the next movement (otherwise deadlock).
TRANS

next(man) != next(cabbage) -> next(move) != c
TRANS

next(man) != next(sheep) -> next(move) != s
TRANS

next(man) != next(wolf) -> next(move) != w
▶ get a plan for reaching “goal state”

DEFINE
safe_state := (sheep = wolf | sheep = cabbage) -> sheep = man;
goal := cabbage = left & sheep = left & wolf = left;

LTLSPEC
! (safe_state U goal)

Giuseppe Spallitta 2. Examples
19/27

Example: tic-tac-toe [1/5]

Tic-tac-toe is a turn-based game for two adversarial players (X and
O) marking the squares of a board (→ a 3×3 grid). The player
who succeeds in placing three respective marks in a horizontal,
vertical or diagonal row wins the game.

▶ Example: O wins ▶ we model tic-tac-toe puzzle
as an array of size nine

1 | 2 | 3
____|___|____

4 | 5 | 6
____|___|____

7 | 8 | 9
| |

Giuseppe Spallitta 2. Examples
20/27

Example: tic-tac-toe [2/5]

▶ base system model
MODULE main
VAR

B : array 1..9 of {0,1,2};
player : 1..2;
move : 0..9;

▶ initial state
INIT

B[1] = 0 &
B[2] = 0 &
B[3] = 0 &
B[4] = 0 &
B[5] = 0 &
B[6] = 0 &
B[7] = 0 &
B[8] = 0 &
B[9] = 0;

INIT
move = 0;

Giuseppe Spallitta 2. Examples
21/27

Example: tic-tac-toe [2/5]

▶ base system model
MODULE main
VAR

B : array 1..9 of {0,1,2};
player : 1..2;
move : 0..9;

▶ initial state
INIT

B[1] = 0 &
B[2] = 0 &
B[3] = 0 &
B[4] = 0 &
B[5] = 0 &
B[6] = 0 &
B[7] = 0 &
B[8] = 0 &
B[9] = 0;

INIT
move = 0;

Giuseppe Spallitta 2. Examples
21/27

Example: tic-tac-toe [3/5]
▶ turns modeling

ASSIGN
init(player) := 1;
next(player) :=

case
player = 1 : 2;
player = 2 : 1;

esac;

▶ move modeling
TRANS

B[1] != 0 -> next(move) != 1
TRANS

next(move) = 1 ->
next(B[1]) = player &
next(B[2])=B[2] &
next(B[3])=B[3] &
next(B[4])=B[4] &
next(B[5])=B[5] &
next(B[6])=B[6] &
next(B[7])=B[7] &
next(B[8])=B[8] &
next(B[9])=B[9]

Giuseppe Spallitta 2. Examples
22/27

Example: tic-tac-toe [3/5]
▶ turns modeling

ASSIGN
init(player) := 1;
next(player) :=

case
player = 1 : 2;
player = 2 : 1;

esac;

▶ move modeling
TRANS

B[1] != 0 -> next(move) != 1
TRANS

next(move) = 1 ->
next(B[1]) = player &
next(B[2])=B[2] &
next(B[3])=B[3] &
next(B[4])=B[4] &
next(B[5])=B[5] &
next(B[6])=B[6] &
next(B[7])=B[7] &
next(B[8])=B[8] &
next(B[9])=B[9]

Giuseppe Spallitta 2. Examples
22/27

Example: tic-tac-toe [4/5]

▶ “end” state
DEFINE
win1 := (B[1]=1 & B[2]=1 & B[3]=1) | (B[4]=1 & B[5]=1 & B[6]=1) |

(B[7]=1 & B[8]=1 & B[9]=1) | (B[1]=1 & B[4]=1 & B[7]=1) |
(B[2]=1 & B[5]=1 & B[8]=1) | (B[3]=1 & B[6]=1 & B[9]=1) |
(B[1]=1 & B[5]=1 & B[9]=1) | (B[3]=1 & B[5]=1 & B[7]=1);

win2 := (B[1]=2 & B[2]=2 & B[3]=2) | (B[4]=2 & B[5]=2 & B[6]=2) |
(B[7]=2 & B[8]=2 & B[9]=2) | (B[1]=2 & B[4]=2 & B[7]=2) |
(B[2]=2 & B[5]=2 & B[8]=2) | (B[3]=2 & B[6]=2 & B[9]=2) |
(B[1]=2 & B[5]=2 & B[9]=2) | (B[3]=2 & B[5]=2 & B[7]=2);

draw := !win1 & !win2 &
B[1]!=0 & B[2]!=0 & B[3]!=0 & B[4]!=0 &
B[5]!=0 & B[6]!=0 & B[7]!=0 & B[8]!=0 & B[9]!=0;

TRANS
(win1 | win2 | draw) <-> next(move)=0

Giuseppe Spallitta 2. Examples
23/27

Example: tic-tac-toe [5/5]

▶ We can easily check if there is a way to reach every end state
using the typical formulation:
LTLSPEC

! (F draw)
LTLSPEC

! (F win1)
LTLSPEC

! (F win2)

For each property, an execution satisfying the property is
returned as counterexample.

Giuseppe Spallitta 2. Examples
24/27

Outline

1. Planning problem

2. Examples

3. Exercises

Exercises [1/3

Tower of Hanoi
Extend the tower of hanoi to handle five disks, and check that the
goal state is reachable.

Giuseppe Spallitta 3. Exercises
25/27

Exercises [2/3]

Ferryman

Another ferryman has to bring a fox, a chicken, a caterpillar and a
crop of lettuce safely across a river.
▶ initial state: all goods are on the right side
▶ goal state: all goods are on the left side
▶ rules:

▶ the ferryman can cross the river with at most two passengers
on his boat

▶ the fox eats the chicken if left unattended on the same side of
the river

▶ the chicken eats the caterpillar if left unattended on the same
side of the river

▶ the caterpillar eats the lettuce if left unattended on the same
side of the river

Can the ferryman bring every item safely on the other side?

Giuseppe Spallitta 3. Exercises
26/27

Exercises [3/3]

Sudoku
Encode in an SMV model the game of Sudoku, write a property so
that nuXmv finds the solution.
You can find the rules on Wikipedia.

Tip

Use a MODULE to avoid repetitions of the same constraints.
220 lines are enough.

Giuseppe Spallitta 3. Exercises
27/27

https://en.wikipedia.org/wiki/Sudoku

	Planning problem
	Blocks Example

	Examples
	The Tower of Hanoi
	Ferryman
	Tic-Tac-Toe

	Exercises

