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Planning Problem

Planning Problem
Given ⟨I ,G ,T ⟩, where
▶ I: (representation of) initial state
▶ G: (representation of) goal state
▶ T: transition relation

find a sequence of transitions t1, ..., tn leading from the initial state
to the goal state.

Idea
Encode planning problem as a model checking problem, such that
plan is provided as counter-example for the property.

1. impose I as initial state
2. encode T as transition relation system
3. verify the LTL property ! (F goal_state)
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Example: blocks [1/9]

B B

GOAL

A C

A

INITIAL

C

T

Init : On(A,B),On(B,C ),On(C ,T ),Clear(A)
Goal : On(C ,B),On(B,A),On(A,T )
Move(a, b, c)

Precond : Block(a) ∧ Clear(a) ∧ On(a, b)∧
(Clear(c) ∨ Table(c))∧
a ̸= b ∧ a ̸= c ∧ b ̸= c

Effect : Clear(b) ∧ ¬On(a, b)∧
On(a, c) ∧ ¬Clear(c)
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Example: blocks [2/9]

MODULE block(id, ab, bl)
VAR

above : {none, a, b, c}; -- the block above this one
below : {none, a, b, c}; -- the block below this one

DEFINE
clear := (above = none);

INIT
above = ab &
below = bl

-- a block can’t be above or below itself
INVAR below != id & above != id

MODULE main
VAR

-- at each step only one block moves
move : {move_a, move_b, move_c};
block_a : block(a, none, b);
block_b : block(b, a, c);
block_c : block(c, b, none);

...
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Example: blocks [3/9]

▶ a moving block changes location and remains clear
TRANS

(move = move_a -> next(block_a.clear) &
next(block_a.below) != block_a.below) &

(move = move_b -> next(block_b.clear) &
next(block_b.below) != block_b.below) &

(move = move_c -> next(block_c.clear) &
next(block_c.below) != block_c.below)

▶ a non-moving block does not change its location
TRANS

(move != move_a -> next(block_a.below) = block_a.below) &
(move != move_b -> next(block_b.below) = block_b.below) &
(move != move_c -> next(block_c.below) = block_c.below)
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Example: blocks [4/9]

▶ a block remains connected to any non-moving block
TRANS

(move != move_a & block_b.above = a
-> next(block_b.above) = a) &

(move != move_a & block_c.above = a
-> next(block_c.above) = a) &

(move != move_b & block_a.above = b
-> next(block_a.above) = b) &

(move != move_b & block_c.above = b
-> next(block_c.above) = b) &

(move != move_c & block_a.above = c
-> next(block_a.above) = c) &

(move != move_c & block_b.above = c
-> next(block_b.above) = c)

▶ Q: what about “below block”?
A: covered in previous slide!
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Example: blocks [5/9]
▶ positioning of blocks is symmetric: above and below relations

must be symmetric.
INVAR

(block_a.above = b <-> block_b.below = a)
& (block_a.above = c <-> block_c.below = a)
& (block_b.above = a <-> block_a.below = b)
& (block_b.above = c <-> block_c.below = b)
& (block_c.above = a <-> block_a.below = c)
& (block_c.above = b <-> block_b.below = c)

& (block_a.above = none ->
(block_b.below != a & block_c.below != a))

& (block_b.above = none ->
(block_a.below != b & block_c.below != b))

& (block_c.above = none ->
(block_a.below != c & block_b.below != c))

& (block_a.below = none ->
(block_b.above != a & block_c.above != a))

& (block_b.below = none ->
(block_a.above != b & block_c.above != b))

& (block_c.below = none ->
(block_a.above != c & block_b.above != c))
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Example: blocks [6/9]
▶ a block cannot move if it has some other block above itself

...
TRANS

(!next(block_a.clear) -> next(move) != move_a) &
(!next(block_b.clear) -> next(move) != move_b) &
(!next(block_c.clear) -> next(move) != move_c)

...

▶ Q: what’s wrong with following formulation?
...
TRANS

(next(block_a.clear) -> next(move) = move_a) &
(next(block_b.clear) -> next(move) = move_b) &
(next(block_c.clear) -> next(move) = move_c)

...

A:
▶ move can only have one valid value =⇒ inconsistency

whenever there are two clear blocks at the same time
▶ any non-clear block would still be able to move
▶ same for “iff“ formulation
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Example: blocks [7/9]

Remark
A plan is a sequence of transitions/actions leading from the initial
state to an accepting/goal state.

Idea
▶ assert property p: “goal state is not reachable”
▶ if a plan exists, nuXmv produces a counterexample for p
▶ the counterexample for p is a plan to reach the goal
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Example: blocks [8/9]

Examples
▶ get a plan for reaching “goal state”

LTLSPEC
! F(block_a.below = none & block_a.above = b &

block_b.below = a & block_b.above = c &
block_c.below = b & block_c.above = none)

▶ get a plan for reaching a configuration in which all blocks are
placed on the table
LTLSPEC -- look for a way to reach a configuration in which all the blocks are on

-- the table
! F(block_a.below = none & block_b.below = none & block_c.below = none)
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Example: blocks [9/9]

▶ at any given time, at least one block is placed on the table
INVARSPEC

block_a.below = none | block_b.below = none |
block_c.below = none

▶ at any given time, at least one block has nothing above
INVARSPEC

block_a.above = none | block_b.above = none |
block_c.above = none
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Example: tower of hanoi [1/5]

Game with 3 poles and N disks
of different sizes:

▶ initial state: stack of disks
with decreasing size on pole
A

▶ goal state: move stack on
pole C

▶ rules:
▶ only one disk may be

moved at each transition
▶ only the upper disk can

be moved
▶ a disk can not be placed

on top of a smaller disk
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Example: tower of hanoi [2/5]
▶ base system model

MODULE main
VAR

d1 : {left,middle,right}; -- smallest
d2 : {left,middle,right};
d3 : {left,middle,right};
d4 : {left,middle,right}; -- largest
move : 1..4; -- possible moves

▶ disk i is moving
DEFINE

move_d1 := (move = 1);
move_d2 := (move = 2);
move_d3 := (move = 3);
move_d4 := (move = 4);

...

▶ disk di can move if a smaller disk is above him (i.e. they share
the same column)

clear_d1 := TRUE;
clear_d2 := d2!=d1;
clear_d3 := d3!=d1 & d3!=d2;
clear_d4 := d4!=d1 & d4!=d2 & d4!=d3;
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Example: tower of hanoi [3/5]

▶ initial state
INIT

d1 = left &
d2 = left &
d3 = left &
d4 = left & move = 1;

▶ move description for disk 4
TRANS

move_d4 ->
-- disks location changes
next(d1) = d1 &
next(d2) = d2 &
next(d3) = d3 &
next(d4) != d4 &
-- d4 can not move on top of smaller disks
next(d4) != d1 &
next(d4) != d2 &
next(d4) != d3
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Example: tower of hanoi [4/5]

▶ If in the next iteration a disk is not clear, you cannot move it.
TRANS
(next(clear_d3) = FALSE) -> (next(move) != 3)
TRANS
(next(clear_d2) = FALSE) -> (next(move) != 2)
TRANS
(next(clear_d1) = FALSE) -> (next(move) != 1)
TRANS
(next(clear_d4) = FALSE) -> (next(move) != 4)

▶ If all columns are being used, do not choose as next move the
largest disk (or we would reach a deadlock).
TRANS
(next(clear_d1) & next(clear_d2) & next(clear_d3)) -> next(move) != 3
TRANS
(next(clear_d1) & next(clear_d2) & next(clear_d4)) -> next(move) != 4
TRANS
(next(clear_d4) & next(clear_d2) & next(clear_d3)) -> next(move) != 4
TRANS
(next(clear_d1) & next(clear_d3) & next(clear_d4)) -> next(move) != 4
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Example: tower of hanoi [5/5]

▶ get a plan for reaching “goal state”
LTLSPEC
! F(d1=right & d2=right & d3=right & d4=right)

INVARSPEC
!(d1=right & d2=right & d3=right & d4=right)
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Example: ferryman [1/4]

A ferryman has to bring a sheep, a cabbage, and a wolf safely
across a river.
▶ initial state: all animals are on the right side
▶ goal state: all animals are on the left side
▶ rules:

▶ the ferryman can cross the river with at most one passenger on
his boat

▶ the cabbage and the sheep can not be left unattended on the
same side of the river

▶ the sheep and the wolf can not be left unattended on the same
side of the river

Q: can the ferryman transport all the goods to the other side
safely?
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Example: ferryman [2/4]
▶ base system model

MODULE main
VAR

cabbage : {right,left};
sheep : {right,left};
wolf : {right,left};
man : {right,left};
move : {c, s, w, e}; -- possible moves

DEFINE
carry_cabbage := (move = c);
carry_sheep := (move = s);
carry_wolf := (move = w);
no_carry := (move = e);

▶ initial state
ASSIGN

init(cabbage) := right;
init(sheep) := right;
init(wolf) := right;
init(man) := right;
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Example: ferryman [3/4]

▶ ferryman carries cabbage
TRANS

carry_cabbage ->
next(cabbage) != cabbage &
next(man) != man &
next(sheep) = sheep &
next(wolf) = wolf

▶ ferryman carries sheep
TRANS

carry_sheep ->
next(sheep) != sheep &
next(man) != man &
next(cabbage) = cabbage &
next(wolf) = wolf

▶ ferryman carries wolf
TRANS

carry_wolf ->
next(wolf) != wolf &
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage

▶ ferryman carries nothing
TRANS

no_carry ->
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage &
next(wolf) = wolf

Giuseppe Spallitta 2. Examples
18/27



Example: ferryman [3/4]

▶ ferryman carries cabbage
TRANS

carry_cabbage ->
next(cabbage) != cabbage &
next(man) != man &
next(sheep) = sheep &
next(wolf) = wolf

▶ ferryman carries sheep
TRANS

carry_sheep ->
next(sheep) != sheep &
next(man) != man &
next(cabbage) = cabbage &
next(wolf) = wolf

▶ ferryman carries wolf
TRANS

carry_wolf ->
next(wolf) != wolf &
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage

▶ ferryman carries nothing
TRANS

no_carry ->
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage &
next(wolf) = wolf

Giuseppe Spallitta 2. Examples
18/27



Example: ferryman [3/4]

▶ ferryman carries cabbage
TRANS

carry_cabbage ->
next(cabbage) != cabbage &
next(man) != man &
next(sheep) = sheep &
next(wolf) = wolf

▶ ferryman carries sheep
TRANS

carry_sheep ->
next(sheep) != sheep &
next(man) != man &
next(cabbage) = cabbage &
next(wolf) = wolf

▶ ferryman carries wolf
TRANS

carry_wolf ->
next(wolf) != wolf &
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage

▶ ferryman carries nothing
TRANS

no_carry ->
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage &
next(wolf) = wolf

Giuseppe Spallitta 2. Examples
18/27



Example: ferryman [3/4]

▶ ferryman carries cabbage
TRANS

carry_cabbage ->
next(cabbage) != cabbage &
next(man) != man &
next(sheep) = sheep &
next(wolf) = wolf

▶ ferryman carries sheep
TRANS

carry_sheep ->
next(sheep) != sheep &
next(man) != man &
next(cabbage) = cabbage &
next(wolf) = wolf

▶ ferryman carries wolf
TRANS

carry_wolf ->
next(wolf) != wolf &
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage

▶ ferryman carries nothing
TRANS

no_carry ->
next(man) != man &
next(sheep) = sheep &
next(cabbage) = cabbage &
next(wolf) = wolf

Giuseppe Spallitta 2. Examples
18/27



Example: ferryman [4/4]

▶ If the man is not in the same side of an animal, we cannot
choose it for the next movement (otherwise deadlock).
TRANS

next(man) != next(cabbage) -> next(move) != c
TRANS

next(man) != next(sheep) -> next(move) != s
TRANS

next(man) != next(wolf) -> next(move) != w
▶ get a plan for reaching “goal state”

DEFINE
safe_state := (sheep = wolf | sheep = cabbage) -> sheep = man;
goal := cabbage = left & sheep = left & wolf = left;

LTLSPEC
! (safe_state U goal)
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Example: tic-tac-toe [1/5]

Tic-tac-toe is a turn-based game for two adversarial players (X and
O) marking the squares of a board (→ a 3×3 grid). The player
who succeeds in placing three respective marks in a horizontal,
vertical or diagonal row wins the game.

▶ Example: O wins ▶ we model tic-tac-toe puzzle
as an array of size nine

1 | 2 | 3
____|___|____

4 | 5 | 6
____|___|____

7 | 8 | 9
| |
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Example: tic-tac-toe [2/5]

▶ base system model
MODULE main
VAR

B : array 1..9 of {0,1,2};
player : 1..2;
move : 0..9;

▶ initial state
INIT

B[1] = 0 &
B[2] = 0 &
B[3] = 0 &
B[4] = 0 &
B[5] = 0 &
B[6] = 0 &
B[7] = 0 &
B[8] = 0 &
B[9] = 0;

INIT
move = 0;
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Example: tic-tac-toe [3/5]
▶ turns modeling

ASSIGN
init(player) := 1;
next(player) :=

case
player = 1 : 2;
player = 2 : 1;

esac;

▶ move modeling
TRANS

B[1] != 0 -> next(move) != 1
TRANS

next(move) = 1 ->
next(B[1]) = player &
next(B[2])=B[2] &
next(B[3])=B[3] &
next(B[4])=B[4] &
next(B[5])=B[5] &
next(B[6])=B[6] &
next(B[7])=B[7] &
next(B[8])=B[8] &
next(B[9])=B[9]
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Example: tic-tac-toe [4/5]

▶ “end” state
DEFINE
win1 := (B[1]=1 & B[2]=1 & B[3]=1) | (B[4]=1 & B[5]=1 & B[6]=1) |

(B[7]=1 & B[8]=1 & B[9]=1) | (B[1]=1 & B[4]=1 & B[7]=1) |
(B[2]=1 & B[5]=1 & B[8]=1) | (B[3]=1 & B[6]=1 & B[9]=1) |
(B[1]=1 & B[5]=1 & B[9]=1) | (B[3]=1 & B[5]=1 & B[7]=1);

win2 := (B[1]=2 & B[2]=2 & B[3]=2) | (B[4]=2 & B[5]=2 & B[6]=2) |
(B[7]=2 & B[8]=2 & B[9]=2) | (B[1]=2 & B[4]=2 & B[7]=2) |
(B[2]=2 & B[5]=2 & B[8]=2) | (B[3]=2 & B[6]=2 & B[9]=2) |
(B[1]=2 & B[5]=2 & B[9]=2) | (B[3]=2 & B[5]=2 & B[7]=2);

draw := !win1 & !win2 &
B[1]!=0 & B[2]!=0 & B[3]!=0 & B[4]!=0 &
B[5]!=0 & B[6]!=0 & B[7]!=0 & B[8]!=0 & B[9]!=0;

TRANS
(win1 | win2 | draw) <-> next(move)=0
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Example: tic-tac-toe [5/5]

▶ We can easily check if there is a way to reach every end state
using the typical formulation:
LTLSPEC

! (F draw)
LTLSPEC

! (F win1)
LTLSPEC

! (F win2)

For each property, an execution satisfying the property is
returned as counterexample.

Giuseppe Spallitta 2. Examples
24/27



Outline

1. Planning problem

2. Examples

3. Exercises



Exercises [1/3

Tower of Hanoi
Extend the tower of hanoi to handle five disks, and check that the
goal state is reachable.
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Exercises [2/3]

Ferryman

Another ferryman has to bring a fox, a chicken, a caterpillar and a
crop of lettuce safely across a river.
▶ initial state: all goods are on the right side
▶ goal state: all goods are on the left side
▶ rules:

▶ the ferryman can cross the river with at most two passengers
on his boat

▶ the fox eats the chicken if left unattended on the same side of
the river

▶ the chicken eats the caterpillar if left unattended on the same
side of the river

▶ the caterpillar eats the lettuce if left unattended on the same
side of the river

Can the ferryman bring every item safely on the other side?
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Exercises [3/3]

Sudoku
Encode in an SMV model the game of Sudoku, write a property so
that nuXmv finds the solution.
You can find the rules on Wikipedia.

Tip

Use a MODULE to avoid repetitions of the same constraints.
220 lines are enough.
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