UNIVERSITA
DI TRENTO

Formal Method Mod. 2 (Model Checking)

Laboratory 9

Giuseppe Spallitta
giuseppe.spallitta@unitn.it

Universita degli studi di Trento

May 11, 2022

1. Planning problem
Blocks Example

OINTIL Id

1ANLS 11D3a VIISIIAINA | N NN

Planning Problem

&
=

Planning Problem
Given (I, G, T), where

» |: (representation of) initial state

UNIVERSITA DEGLI STUDI

DI TRENTO

» G: (representation of) goal state
» T: transition relation

find a sequence of transitions t1, ..., t, leading from the initial state
to the goal state.

Idea

Encode planning problem as a model checking problem, such that
pIan is provided as counter-example for the property.

. impose | as initial state
I 2. encode T as transition relation system

3. verify the LTL property | I (F goalbrerﬁtate)

anmng: pro

Example: blocks [1/9]

INITIAL GUAL

A C

UNIVERSITA DEGLI STUDI

DI TRENTO

B | =——> 8B
C A

T

Init : On(A, B),On(B, C),0n(C, T), Clear(A)
Goal : On(C,B),On(B,A),On(A, T)
Move(a, b, c)

Precond : Block(a) A Clear(a) A On(a, b)A
(Clear(c) Vv Table(c))A
axzbANa#cAb#c

Effect : Clear(b) A =On(a, b)A
On(a, c) A = Clear(c)

1. Planning problem

Example: blocks [2/9]

2 MODULE block(id, ab, bl)
2 VAR
52 above : {none, a, b, c}; -- the block above this one
;% below : {none, a, b, c}; -- the block below this one
> DEFINE

clear := (above = none);

INIT
above = ab &
below = bl

-- a block can’t be above or below itself
INVAR below != id & above != id

MODULE main

VAR
-- at each step only one block moves
move : {move_a, move_b, move_c};
block_a : block(a, none, b);
block_b : block(b, a, c);
block_c : block(c, b, none);

1. Planning problem

Example: blocks [3/9]

Z
=
2

» amoving block changes location and remains clear

TRANS
(move = move_a -> next(block_a.clear) &
next (block_a.below) != block_a.below)
(move = move_b -> next(block_b.clear) &
next (block_b.below) != block_b.below)
(move = move_c -> next(block_c.clear) &
next (block_c.below) != block_c.below)

UNIVERSITA DEGLI STUDI

DI TRENTO

» anon-moving block does not change its location

TRANS
(move != move_a -> next(block_a.below) = block_a.below)
(move != move_b -> next(block_b.below) = block_b.below)
(move != move_c -> next(block_c.below) = block_c.below)

1. Planning problem

Example: blocks [4/9]

¢ > ablock remains connected to any non-moving block
5o TRANS
;E (move != move_a & block_b.above = a
58 -> next(block_b.above) = a) &
(move != move_a & block_c.above = a
-> next(block_c.above) = a) &
(move != move_b & block_a.above = b
-> next(block_a.above) = b) &
(move != move_b & block_c.above = b
-> next(block_c.above) = b) &
(move != move_c & block_a.above = c
-> next(block_a.above) = c) &
(move != move_c & block_b.above = c

-> next(block_b.above) = c)

1. Planning problem

Example: blocks [4/9]

¢ > ablock remains connected to any non-moving block
5o TRANS
;E (move != move_a & block_b.above = a
58 -> next(block_b.above) = a) &
(move != move_a & block_c.above = a
-> next(block_c.above) = a) &
(move != move_b & block_a.above = b
-> next(block_a.above) = b) &
(move != move_b & block_c.above = b
-> next(block_c.above) = b) &
(move != move_c & block_a.above = c
-> next(block_a.above) = c) &
(move != move_c & block_b.above = c

-> next(block_b.above) = c)

i » Q: what about “below block’?

1. Planning problem

Example: blocks [4/9]

Z
=
2

¢ > ablock remains connected to any non-moving block
5o TRANS
;E (move != move_a & block_b.above = a
58 -> next(block_b.above) = a) &
(move != move_a & block_c.above = a
-> next(block_c.above) = a) &
(move != move_b & block_a.above = b
-> next(block_a.above) = b) &
(move != move_b & block_c.above = b
-> next(block_c.above) = b) &
(move != move_c & block_a.above = c
-> next(block_a.above) = c) &
(move != move_c & block_b.above = c

-> next(block_b.above) = c)

i » Q: what about “below block’?
A: covered in previous slide!

1. Planning problem

Example: blocks [5/9]

2

(o

£ P positioning of blocks is symmetric: above and below relations
3 must be symmetric.

EO INVAR

2z (block_a.above = b <-> block_b.below = a)

%E (block_a.above = c <-> block_c.below = a)

(block_b.above =
(block_b.above =
(block_c.above =
(block_c.above =

block_a.below = b)
<-> block_c.below = b)
<-> block_a.below = c)
<-> block_b.below = c)

rrree
oo oo
A
1
\2

&

(block_a.above = none ->
(block_b.below != a & block_c.below != a))

& (block_b.above = none ->
(block_a.below != b & block_c.below != b))

& (block_c.above = none ->
(block_a.below != ¢ & block_b.below != c))

& (block_a.below = none ->

(block_b.above != a & block_c.above != a))
(block_b.below = none ->

(block_a.above != b & block_c.above != b))
& (block_c.below = none ->

(block_a.above != ¢ & block_b.above != c))
1. Planning problem

[_m|
&

Example: blocks [6/9]

a
§ » a block cannot move if it has some other block above itself
o TRANS
éé ('next(block_a.clear) -> next(move) != move_a) &
55 ('next(block_b.clear) -> next(move) != move_b) &
('next (block_c.clear) -> next(move) != move_c)

1. Planning problem

Example: blocks [6/9]

a
§ » a block cannot move if it has some other block above itself
o TRANS
éé ('next(block_a.clear) -> next(move) != move_a) &
55 ('next(block_b.clear) -> next(move) != move_b) &
('next (block_c.clear) -> next(move) != move_c)

» Q: what's wrong with following formulation?

TRANS
(next(block_a.clear) -> next(move) = move_a) &
(next(block_b.clear) -> next(move) = move_b) &
(next(block_c.clear) -> next(move) = move_c)

1. Planning problem

Example: blocks [6/9]

» a block cannot move if it has some other block above itself

TRANS

)
5
&
3
&)
2
a
=
2
&
=
z
5

o

o

E ('next(block_a.clear) -> next(move) '= move_a) &

g ('next(block_b.clear) -> next(move) != move_b) &
('next (block_c.clear) -> next(move) != move_c)

» Q: what's wrong with following formulation?

TRANS
(next(block_a.clear) -> next(move) = move_a) &
(next(block_b.clear) -> next(move) = move_b) &
(next(block_c.clear) -> next(move) = move_c)

A:
» move can only have one valid value = inconsistency
| whenever there are two clear blocks at the same time
» any non-clear block would still be able to move
I » same for “iff"* formulation
I 1. Planning problem

I

UNIVERSITA DEGLI STU

DI TRENTO

Example: blocks [7/9]

Remark

A plan is a sequence of transitions/actions leading from the initial
state to an accepting/goal state.

Idea
> assert property p: “goal state is not reachable”
» if a plan exists, nuXmv produces a counterexample for p

» the counterexample for p is a plan to reach the goal

1. Planning problem

- Example: blocks [8/9]

Z
o)
7

Examples

UNIVERSITA DEGLI STUDI

DI TRENTO

> get a plan for reaching “goal state”
LTLSPEC
! F(block_a.below = none & block_a.above = b &
block_b.below = a & block_b.above = c &
block_c.below = b & block_c.above = none)

1. Planning problem

- Example: blocks [8/9]

Z
=
2

Examples

UNIVERSITA DEGLI STUDI

DI TRENTO

> get a plan for reaching “goal state”
LTLSPEC
! F(block_a.below = none & block_a.above = b &
block_b.below = a & block_b.above = c &
block_c.below = b & block_c.above = none)

» get a plan for reaching a configuration in which all blocks are
placed on the table
LTLSPEC -- look for a way to reach a configuration in which all the blocks

-- the table
! F(block_a.below = none & block_b.below = none & block_c.below =)none)

1. Planning problem

Example: blocks [9/9]

)
5
&
3
&)
2
a
=
2
&
=
z
5

e
z
&
IS
a

> at any given time, at least one block is placed on the table

INVARSPEC
block_a.below = none | block_b.below = none |
block_c.below none

1. Planning problem

Example: blocks [9/9]

)
5
&
3
&)
2
a
=
2
&
=
z
5

I
z
&
g
a

> at any given time, at least one block is placed on the table

INVARSPEC
block_a.below = none | block_b.below = none |
block_c.below none

> at any given time, at least one block has nothing above

INVARSPEC
block_a.above = none | block_b.above = none |
block_c.above none

1. Planning problem

Outline

UNIVERSITA DEGLI STUDI

DI TRENTO

2. Examples
The Tower of Hanoi

Ferryman
Tic-Tac-Toe

Example: tower of hanoi [1/5]

Game with 3 poles and N disks
of different sizes:

UNIVERSITA DEGLI STUDI

DI TRENTO

> initial state: stack of disks
with decreasing size on pole
A

> goal state: move stack on
pole C
» rules:
> only one disk may be
moved at each transition
» only the upper disk can
be moved
» a disk can not be placed
on top of a smaller disk

2. Examples

- Example: tower of hanoi [2/5]

Z
=
2

£ P base system model
§ MODULE main
2 VAR
EE dl : {left,middle,right}; -- smallest
£ d2 : {left,middle,right};
-8 d3 : {left,middle,right};
d4 : {left,middle,right}; -- largest
move : 1..4; -- possible moves
|
2. Examples

- Example: tower of hanoi [2/5]

Z
=
2

£ P base system model

§ MODULE main

2 VAR

EE dl : {left,middle,right}; -- smallest

£ d2 : {left,middle,right};

-8 d3 : {left,middle,right};
d4 : {left,middle,right}; -- largest
move : 1..4; -- possible moves

» disk i is moving

DEFINE
move_dl := (move = 1);
move_d2 := (move = 2);
move_d3 := (move = 3);
move_d4 := (move = 4);

2. Examples

UNIVERSITA DEGLI STUDI

DI TRENTO

- Example: tower of hanoi [2/5]

Z
=
2

> base system model

MODULE main
VAR

dl : {left,middle,right}; -- smallest
d2 : {left,middle,right};

d3 : {left,middle,right};

d4 : {left,middle,right}; -- largest
move : 1..4; -- possible moves

» disk i is moving

DEFINE
move_dl :
move_d2 :
move_d3 :
move_d4 :

(move = 1);
(move = 2);
(move = 3);
(move = 4);

» disk d; can move if a smaller disk is above him (i.e. they share
the same column)

clear_d1

clear_d2 :
clear_d3 :
clear_d4 :

TRUE;

d2!'=d1;

d3!=d1l & d3!=d2;

d4'!'=dl & d4!=d2 & d4!'=d3;
2. Examples

Example: tower of hanoi [3/5]

&

)

A
2

g0}

)

B

3 P initial state

[=}

o INIT

95 a1 = left &

Zz d2 = left &
d3 = left &

d4 = left & move = 1;

2. Examples

- Example: tower of hanoi [3/5]

Z
=
2

» initial state

UNIVERSITA DEGLI STUDI

° INIT
3 dl = left &
= d2 = left &

d3 = left &

d4 = left & move = 1;

» move description for disk 4

TRANS
move_d4 ->
-- disks location changes
next(dl) = dl &
next (d2) d2 &
next(d3) = d3 &
next(d4) !'= d4 &
-- d4 can not move on top of smaller disks
next(d4) !'= d1 &
next(d4) !'= d2 &
next(d4) != d3

2. Examples

Example: tower of hanoi [4/5]

» If in the next iteration a disk is not clear, you cannot move it.

TRANS

(next(clear_d3) = FALSE) -> (next(move) != 3)
TRANS

(next (clear_d2)
TRANS
(next(clear_d1) = FALSE) -> (next(move) != 1)
TRANS

(next(clear_d4) = FALSE) -> (next(move) != 4)

)
5
&
3
&)
2
a
=
2
&
=
z
5

I
z
&
g
a

FALSE) -> (next(move) != 2)

2. Examples

Z
=
2

UNIVERSITA DEGLI STUDI

DI TRENTO

- Example: tower of hanoi [4/5]

» If in the next iteration a disk is not clear, you cannot move it.

TRANS

(next(clear_d3) = FALSE) -> (next(move) != 3)
TRANS

(next (clear_d2)
TRANS
(next(clear_d1) = FALSE) -> (next(move) != 1)
TRANS

(next(clear_d4) = FALSE) -> (next(move) != 4)

FALSE) -> (next(move) != 2)

» If all columns are being used, do not choose as
largest disk (or we would reach a deadlock).

TRANS
(next(clear_d1) & next(clear_d2) & next(clear_d3))
TRANS
(next(clear_d1) & next(clear_d2) & next(clear_d4))
TRANS
(next(clear_d4) & next(clear_d2) & next(clear_d3))
TRANS
(next(clear_d1) & next(clear_d3) & next(clear_d4))

2. Examples

next move the

->

->

>

->

next (move)

next (move)

next (move)

next (move)

Example: tower of hanoi [5/5]

)
5
&
3
&)
2
a
=
2
&
=
z
5

e
z
&
IS
a

> get a plan for reaching “goal state”
LTLSPEC
! F(di=right & d2=right & d3=right & d4=right)
INVARSPEC
! (dl=right & d2=right & d3=right & d4=right)

2. Examples

&
=

UNIVERSITA DEGLI STUDI

DI TRENTO

i
I safely?

Example: ferryman [1/4]

A ferryman has to bring a sheep, a cabbage, and a wolf safely
across a river.

> initial state: all animals are on the right side

> goal state: all animals are on the left side
» rules:

» the ferryman can cross the river with at most one passenger on
his boat

» the cabbage and the sheep can not be left unattended on the
same side of the river

» the sheep and the wolf can not be left unattended on the same
side of the river

Q: can the ferryman transport all the goods to the other side

2. Examples

UNIVERSITA DEGLI STUDI

DI TRENTO

- Example: ferryman [2/4]

Z
=
2

» base system model

MODULE main

VAR
cabbage : {right,left};
sheep : {right,left};
wolf : {right,left};
man : {right,left};
move : {c, s, w, e};

DEFINE

carry_cabbage :=
carry_sheep 1=
carry_wolf 1=
no_carry 1=

(move =

(move
(move

(move =

-- possible moves

c);
s);
W)
e);

2. Examples

- Example: ferryman [2/4]

Z
=
2

3

g P base system model

2 MODULE main

o VAR

éé cabbage : {right,left};

En sheep : {right,left};
wolf : {right,left};
man : {right,left};
move : {c, s, w, e}; -- possible moves

DEFINE
carry_cabbage := (move = c);
carry_sheep := (move = s);
carry_wolf := (move = w);
no_carry := (move = e);
> initial state
ASSIGN

I init(cabbage) := right;
init (sheep) 1= right;
init(wolf) 1= right;
init (man) 1= right;

2. Examples

Example: ferryman [3/4]

» ferryman carries cabbage

TRANS
carry_cabbage ->
next (cabbage) != cabbage &
next(man) != man &
next (sheep) = sheep &
next (wolf) = wolf

)
5
&
3
&)
2
a
=
2
&
=
z
5

e
z
&
IS
a

2. Examples

- Example: ferryman [3/4]

Z
=
2

» ferryman carries cabbage

TRANS
carry_cabbage ->
next (cabbage) != cabbage &
next(man) !'= man &
next (sheep) = sheep &
next (wolf) = wolf

UNIVERSITA DEGLI STUDI

DI TRENTO

» ferryman carries sheep

TRANS
carry_sheep ->
next (sheep) != sheep &
next(man) != man &
next (cabbage) = cabbage &
next (wolf) = wolf

2. Examples

- Example: ferryman [3/4]

Z
=
2

g

g

g

[=}

o . .

22 > ferryman carries cabbage » ferryman carries wolf

E

55 TRANS TRANS

carry_cabbage -> carry_wolf ->

next (cabbage) != cabbage & next (wolf) != wolf &
next(man) !'= man & next(man) != man &
next (sheep) = sheep & next (sheep) = sheep &
next (wolf) = wolf next (cabbage) = cabbage

» ferryman carries sheep

TRANS
carry_sheep ->
next (sheep) != sheep &
next(man) != man &
next (cabbage) = cabbage &
next (wolf) = wolf

2. Examples

- Example: ferryman [3/4]

Z
=
2

UNIVERSITA DEGLI STUDI

o . .
z » ferryman carries cabbage » ferryman carries wolf
5 TRANS TRANS
carry_cabbage -> carry_wolf ->
next (cabbage) != cabbage & next (wolf) != wolf &
next(man) !'= man & next(man) != man &
next (sheep) = sheep & next (sheep) = sheep &
next (wolf) = wolf next (cabbage) = cabbage
» ferryman carries sheep » ferryman carries nothing
TRANS TRANS
carry_sheep -> no_carry ->
next (sheep) != sheep & next(man) '= man &
next(man) != man & next (sheep) = sheep &
next (cabbage) = cabbage & next (cabbage) = cabbage &
I next (wolf) = wolf next (wolf) = wolf
2. Examples

UNIVERSITA DEGLI STUDI

DI TRENTO

- Example: ferryman [4/4]

Z
=
2

» If the man is not in the same side of an animal, we cannot

choose it for the next movement (otherwise deadlock).
TRANS

next(man) != next(cabbage) -> next(move) != c
TRANS

next(man) != next(sheep) -> next(move) != s
TRANS

next(man) != next(wolf) -> next(move) != w
get a plan for reaching “goal state”
DEFINE

safe_state := (sheep = wolf | sheep = cabbage) -> sheep = man;

goal := cabbage = left & sheep = left & wolf = left;

LTLSPEC
! (safe_state U goal)

2. Examples

Example: tic-tac-toe [1/5]

Tic-tac-toe is a turn-based game for two adversarial players (X and
O) marking the squares of a board (— a 3x3 grid). The player
who succeeds in placing three respective marks in a horizontal,
vertical or diagonal row wins the game.

UNIVERSITA DEGLI STUDI

DI TRENTO

> 0 wins > we model tic-tac-toe puzzle
as an array of size nine

b 11213
I S
' Xlo S
|

2. Examples

Example: tic-tac-toe [2/5]

a

=]

=

Z P base system model

2 MODULE main

52 VAR

;E B : array 1..9 of {0,1,2};
I=1a)

player : 1..2;
move : 0..9;

2. Examples

Example: tic-tac-toe [2/5]

» base system model

MODULE main

VAR
B : array 1..9 of {0,1,2};
player : 1..2;
move : 0..9;

)
5
&
3
&)
2
a
=
2
&
=
z
5

I
z
&
g
a

» initial state

INIT
B[1] =
B[2] =
B[3] =
B[4] =
B[5] =
B[6] =
B[7] =
B[8] =
B[9] =

INIT
move = 0;

(= elelNelNeNeNe Ne e
rrrerreeee

2. Examples

Example: tic-tac-toe [3/5]

> turns modeling
ASSIGN
init(player) := 1;
next(player) :=
case
player
player
esac;

)
3
&
=]
9
2
a
=
2
&
2
z
5

e
zZ
&
=
a

wn
N =
= N

2. Examples

Example: tic-tac-toe [3/5]

> turns modeling
ASSIGN
init(player) := 1;
next(player) :=
case
player
player
esac;

G
)
=
&
=1
[}
2
a
IE.Q
2
&
=1a)

wn
N =
= N

» move modeling
TRANS
B[1] !'= 0 -> next(move) != 1
TRANS
next(move) = 1 ->
next(B[1]) = player &
next (B[2])=B[2] &
next (B[3])=B[3]
next (B[4])=B[4]
next (B[5])=B[5]
next (B[6])=B[6]
next (B[7]1)=B[7]
next (B[8])=B[8]
next (B[9])=B[9]

R

2. Examples

Example: tic-tac-toe [4/5]

I

> “end” state

UNIVERSITA DEGLI STU

% DEFINE
= winl := (B[1]=1 & B[2]=1 & B[3]=1) | (B[4]=1 & B[5]=1 & B[6]=1) |
(B[7]1=1 & B[8]=1 & B[9]1=1) | (B[1]l=1 & B[4]=1 & B[7]1=1) |
(B[2]=1 & B[5]=1 & B[8]=1) | (B[3]=1 & B[6]=1 & B[9]=1) |
(B[1]=1 & B[5]=1 & B[9]=1) | (B[3]=1 & B[5]=1 & B[7]=1);
win2 := (B[1]=2 & B[2]=2 & B[3]=2) | (B[4]=2 & B[5]=2 & B[6]=2) |
(B[71=2 & B[8]=2 & B[9]1=2) | (B[1]l=2 & B[4]=2 & B[71=2) |
(B[2]=2 & B[5]=2 & B[8]=2) | (B[3]=2 & B[6]=2 & B[9]=2) |
(B[1]=2 & B[5]=2 & B[9]=2) | (B[3]=2 & B[5]=2 & B[7]=2);
draw := !winl & !win2 &

B[1]!=0 & B[2]!'=0 & B[3]!=0 & B[4]!=0 &
B[5]1!=0 & B[6]!=0 & B[7]!=0 & B[8]!=0 & B[9]!=0;

TRANS
(winl | win2 | draw) <-> next(move)=0

2. Examples

Example: tic-tac-toe [5/5]

I

UNIVERSITA DEGLI STU

DI TRENTO

» We can easily check if there is a way to reach every end state
using the typical formulation:
LTLSPEC
! (F draw)
LTLSPEC
! (F winl)
LTLSPEC
! (F win2)

For each property, an execution satisfying the property is
returned as counterexample.

2. Examples

OINTIL Id
1AN1S M193a YUSIIAIND

3. Exercises

Exercises [1/3

UNIVERSITA DEGLI STUDI

DI TRENTO

Tower of Hanoi

Extend the tower of hanoi to handle five disks, and check that the
goal state is reachable.

3. Exercises

Exercises [2/3]

I

Ferryman

Another ferryman has to bring a fox, a chicken, a caterpillar and a
crop of lettuce safely across a river.

UNIVERSITA DEGLI STU

DI TRENTO

> initial state: all goods are on the right side

> goal state: all goods are on the left side
> rules:

» the ferryman can cross the river with at most two passengers
on his boat

> the fox eats the chicken if left unattended on the same side of
the river

» the chicken eats the caterpillar if left unattended on the same
side of the river

» the caterpillar eats the lettuce if left unattended on the same
side of the river

3. Exercises

i
I Can the ferryman bring every item safely on the other side?
[|

&
=

UNIVERSITA DEGLI STUDI

DI TRENTO

Exercises [3/3]

Sudoku

Encode in an SMV model the game of Sudoku, write a property so
that nuXmv finds the solution.
You can find the rules on Wikipedia.

Tip
Use a MODULE to avoid repetitions of the same constraints.
220 lines are enough.

3. Exercises

https://en.wikipedia.org/wiki/Sudoku

	Planning problem
	Blocks Example

	Examples
	The Tower of Hanoi
	Ferryman
	Tic-Tac-Toe

	Exercises

