
Formal Method Mod. 1 (Automated Reasoning)
Laboratory 4

Giuseppe Spallitta
giuseppe.spallitta@unitn.it

Università degli studi di Trento

March 30, 2022

Outline

1. Advanced SMT solving
1) Cybersecurity applications
2) Private investigations
3) Formal verification of algorithms

2. Homeworks

Black hat hacker

Exercise 4.1: hacking key
You want to access the UniTN database. Sadly the server is
protected by a key. From reverse engineering you obtain the
following part of code executed by the machine:

% Key is the concat of 3 32-bit numbers a,b and c
assert(isMultiple(a,5))
assert(or(a,b) == 2022))
assert(a - b > 1000)
assert(isAverage(c, [a,b]))
assert(c<0x76543210)
login()

Given you have one opportunity to log in and that if you fail you
will be expelled, can you guess the key?

Giuseppe Spallitta 1. Advanced SMT solving
1/23

Black hat hacker: properties

▶ Properties are trivial for most of the part, since they simply
require to encode the content of the Python instructions
assert.

▶ Be careful: we work with bit vectors, so do not forget to use
the correct operators.

▶ Moreover, be sure that integers used as constants are also
treated as bit vector (MathSAT does not provide implicit type
conversion :()

Giuseppe Spallitta 1. Advanced SMT solving
2/23

Black hat hacker: constant conversion

▶ The simplest alternative is directly setting the number using
the instruction:
(_ bv<number> <size>)

▶ But when we manage negative numbers, bv-1 does not work,
so we require a different instruction, which maps integers to
their equivalent BV representation assuming the size chosen is
high enough:
(_ to_bv 3) (- 2)

▶ You can also write numbers using the hexadecimal or binary
representation (convenient when dealing with low numbers of
bits) using prefixing respectively #x or #b.

Giuseppe Spallitta 1. Advanced SMT solving
3/23

bv-1

Black hat hacker: variables

As always, we first define the variables that efficiently describe the
problem:
▶ 3 variables are necessary to store the three sub-parts of the

entire key.
▶ The comment highlights that they are Bit vectors, so the type

is also clearly defined.

Giuseppe Spallitta 1. Advanced SMT solving
4/23

Black hat hacker: functions

▶ No function is mandatory for this problem; the two high-level
operations can be encoded as functions if desired.

▶ isMultiple can be defined as a 2-arity function
(BitVector, Int) ⇒ Bool.

▶ isAverage can be defined as a 3-arity function
(BitVector, BitVector, BitVector) ⇒ Bool.

▶ Other than that,the encoding is simply to write using
SMT-LIB functions.

Giuseppe Spallitta 1. Advanced SMT solving
5/23

Private investigations

Exercise 4.2: who killed Agatha?
Someone who lives in Dreadbury Mansion killed Aunt Agatha.
Agatha, the butler, and Charles live in Dreadbury Mansion, and are
the only people who live therein. A killer always hates his victim,
and is never richer than his victim. Charles hates no one that Aunt
Agatha hates. Agatha hates everyone except the butler. The butler
hates everyone not richer than Aunt Agatha. The butler hates
everyone Aunt Agatha hates. No one hates everyone. Who killed
Agatha?

Giuseppe Spallitta 1. Advanced SMT solving
6/23

First approach: without quantifiers

▶ MathSAT does not natively support quantifiers!
▶ If we iterate through all variables, we can simulate the

behaviour of ∃ and ∀ thanks to the Shannon expansion.
▶ Can we use functions that maps variables to a truth value, in

order to set if a relation holds?

Giuseppe Spallitta 1. Advanced SMT solving
7/23

Private investigations: variables

First we must define constants, predicates and functions that
efficiently describe the problem:
▶ Constants: agatha, butler, charles (for each person, I use a

different Int.
▶ Predicates/Functions: hates(X,Y), richer(X,Y)

The killer will be an Int variable, constrained by all the conditions
stated in the problem and the hidden ones.

Giuseppe Spallitta 1. Advanced SMT solving
8/23

Int
Int

Private investigations: SMT formulae (1)

▶ A killer always hates his victim...
hates(killer, agatha))

▶ and is never richer than his victim.
¬ richer(killer, agatha))

▶ Charles hates no one that Aunt Agatha hate.
∀x.(hates(agatha, x) → ¬ hates(charles, x)))

Giuseppe Spallitta 1. Advanced SMT solving
9/23

Private investigations: SMT formulae (2)

▶ Agatha hates everyone except the butler.
∀x.(x != butler → (hates(agatha, x))

▶ The butler hates everyone not richer than Aunt Agatha
∀x.(¬ richer(x, agatha) → (hates(butler, x))

▶ The butler hates everyone Aunt Agatha hates.
∀x.(hates(agatha, x) → hates(butler, x)))

▶ No one hates everyone.
∀x∃y.(¬ hates(x,y))

Giuseppe Spallitta 1. Advanced SMT solving
10/23

Private investigations: hidden conditions

Richer is a function such as:
▶ It is non-reflexive:

∀x.(¬richer(x , x))
▶ It is non-symmetric:

∀xy.(richer(x , y) ↔ ¬richer(y , x))

Giuseppe Spallitta 1. Advanced SMT solving
11/23

Defininf functions

▶ Every time you define a function mapping one or more values
to a Boolean or a sorted type, be sure to encode also its
hidden properties; this could drastically change the behaviour
of the solver!

▶ A brief list includes:
▶ (non-)Simmetry
▶ (non-)Reflexivity
▶ (non-)Transitivity

Giuseppe Spallitta 1. Advanced SMT solving
12/23

Second approach: with quantifiers

▶ Z3 supports quantifiers!
▶ pysmt offers the two shortcuts: ForAll e Exists, accepting the

list of quantified variables and the formula.
▶ Can we use Z3 to easily encode the same problem?

Giuseppe Spallitta 1. Advanced SMT solving
13/23

Checking algorithms

Exercise 4.3: pair programming
Given the following function to compute the greatest common
divisor can you formally check if, given two random numbers, a
solution is obtained under 5 iterations?

int GCD(int x, int y){
while(true) {

int m = x % y;
if (m == 0) return y;
x = y ;
y = m;

}
}

Giuseppe Spallitta 1. Advanced SMT solving
14/23

SMT Model Checking?

▶ Every time we must check something happening at a specific
iteration, we could think of encoding it as a Bounded Model
Checking (BMC) problem.

▶ A BMC problem usually requires:
▶ An initial state I.
▶ A transition relation T to move among different steps,

considering n transitions.
▶ A final state to reach F.

▶ In our case the initialization of the arrays x and y is part of I,
while T is defined as the various branches depending on the
conditional statement.

Giuseppe Spallitta 1. Advanced SMT solving
15/23

Checking algorithms: variables

As always, we first define the variables that efficiently describe the
problem:
▶ We need to store the value of the three variables m, x and y

and their evolution during several iterations.
▶ Using simple Int variables does NOT work, because in the end

we would ask the same variable to assume multiple values at
the same time.

▶ We can instead use Array mapping the index of iteration to
its value at that moment: Array Int Int

Giuseppe Spallitta 1. Advanced SMT solving
16/23

Int
Array

Checking algorithms: properties (1)

▶ We first must initialize the first elements of each array, setting
the input values and the first value of m as the remainder.

▶ The If line requires to define two assertions, depending of the
value of m. They will simulate the behaviour of the
conditional instruction.

Giuseppe Spallitta 1. Advanced SMT solving
17/23

Checking algorithms: properties (2)

▶ If m = 0, then we already found a solution and we can stop.
▶ Otherwise, we must compute the new values for the second

iteration and update the array.
▶ We must iterate this process until the arrays are used for five

times. If at that moment m is still not 0, we can return false
so that we prove its unsatisfiability.

▶ To easily retrieve the solution when the solver returns SAT, we
can create an additional variable to store the value of y once
we reached the end of the loop.

Giuseppe Spallitta 1. Advanced SMT solving
18/23

Checking algorithms: properties (3)

▶ Remember that the assertion are NOT executed sequentially,
but they must. Working with Int variables, there could be
cases where no constraints are actually active on them and so
the solver can freely choose a value to assign.

▶ We must encode conditions such that the DPLL search is
bound to fix some values for each step, partially simulating the
sequentiality.

▶ To easily retrieve the solution when the solver returns SAT, we
can create an additional variable to store the value of y once
we reached the end of the loop.

Giuseppe Spallitta 1. Advanced SMT solving
19/23

SMT Model Checking?

▶ The case we considered is not exactly a BMC problem (there
is no clear final state, it depends on the number of assertions
computed by the solver), but it can be seen as a generalization
of it.
⇒ Encoding BMC problems is easier, since the final state is
usually trivial and the main issue is formally encoding the
transition among states.

▶ If you want to know the general correctness of the algorithm,
without upper boundaries, SMT is not your ideal tool...
⇒ If you are interested, the second part of the Formal Method
laboratories will cover it ;)

Giuseppe Spallitta 1. Advanced SMT solving
20/23

Outline

1. Advanced SMT solving

2. Homeworks

Solving Kakuro

Homework 4.1: kakuro

Kakuro is a puzzle in which one
must put the numbers 1 to 9 in
the different cells such that they
satisfy certain constraints. If a
clue is present in a row or
column, the sum of the cell for
that row should be equal to the
value. Within each sum all the
numbers have to be different, so
to add up to 4 we can have 1+3
or 3+1. Can we find a solution
using SMT solvers?

Giuseppe Spallitta 2. Homeworks
21/23

Homeworks

Exercise 4.2: task manager
Your PC needs to complete 5 different tasks (A,B,C,D and E) to
correctly save a file. There are some constraints about the order
execution of the tasks:
▶ We can execute A after D is completed.
▶ We can execute B after C and E are completed.
▶ We can execute E after B or D are completed.
▶ We can execute C after A is completed.

Which is the task that will execute for last?

Giuseppe Spallitta 2. Homeworks
22/23

Homeworks

Homework 4.3: Collatz conjecture
Given a number x , check if the following algorithm that describe
the Collatz conjecture ends in 5 turns (including the first one where
it checks the current number):

def conjecture(x)
while(true):

if x == 1:
break

if isOdd(x):
x = x * 3 + 1

elif isEven(x):
x = x / 2

return SAT

Giuseppe Spallitta 2. Homeworks
23/23

	Advanced SMT solving
	Cybersecurity applications
	Private investigations
	Formal verification of algorithms

	Homeworks

