Formal Methods Module II: Formal Verification Ch. 10: SMT-Based Model Checking

Roberto Sebastiani

DISI, Università di Trento, Italy - roberto. sebastiani@unitn. it
URL: http://disi.unitn.it/rseba/DIDATTICA/fm2022/
Teaching assistant: Giuseppe Spallitta - giuseppe.spallitta@unitn.it

M.S. in Computer Science, Mathematics, \& Artificial Intelligence Systems

Academic year 2021-2022
last update: Tuesday $31^{\text {st }}$ May, 2022, 12:22
Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti, M. Di Natale, P. Pandya, M. Pistore, M. Roveri, C. Tinelli, and S. Tonetta, who detain its copyright. Some exampes displayed in these slides are taken from [Clarke, Grunberg \& Peled, "Model Checking", MIT Press], and their copyright is detained by the authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this material is strictly forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be displayed in public without containing this copyright notice.

Outline

(1) Motivations \& Context
(2) Background (from previous chapters)
(3) SMT-Based Bounded Model Checking of Timed Systems

- Basic Ideas
- Basic Encoding
- Improved \& Extended Encoding
- A Case-Study

4 SMT-Based Bounded Model Checking of Linear Hybrid Systems (hints)
(5) Proposed Exercises

Outline

（1）Motivations \＆Context

（2）Background（from previous chapters）
（3）SMT－Based Bounded Model Checking of Timed Systems
－Basic Ideas
－Basic Encoding
－Improved \＆Extended Encoding
－A Case－Study
（4）SMT－Based Bounded Model Checking of Linear Hybrid Systems（hints）
（5）Proposed Exercises

Motivations

- Model Checking for Timed Systems:
- relevant improvements and results over the last decades
- historically, "explicit-state" search style, based on DBMs
- notable examples: Kronos, Uppaal
- More recently, symbolic verification techniques:
- extensions of decision diagrams
- CDD, DDD, RED, ...
- Key problem: potential blow up in size
- A more recent and viable alternative to Binary Decision Diagrams: SAT-based MC
- Bounded Model Checking (BMC), K-induction, IC3/PDR,

Motivations

- Model Checking for Timed Systems:
- relevant improvements and results over the last decades
- historically, "explicit-state" search style, based on DBMs
- notable examples: Kronos, Uppaal
- More recently, symbolic verification techniques:
- extensions of decision diagrams
- CDD, DDD, RED, ...
- Key problem: potential blow up in size
- A more recent and viable alternative to Binary Decision Diagrams: SAT-based MC
- Bounded Model Checking (BMC), K-induction, IC3/PDR,

Motivations

- Model Checking for Timed Systems:
- relevant improvements and results over the last decades
- historically, "explicit-state" search style, based on DBMs
- notable examples: Kronos, Uppaal
- More recently, symbolic verification techniques:
- extensions of decision diagrams
- CDD, DDD, RED, ...
- Key problem: potential blow up in size
- A more recent and viable alternative to Binary Decision Diagrams: SAT-based MC
- Bounded Model Checking (BMC), K-induction, IC3/PDR,

Motivations

- Model Checking for Timed Systems:
- relevant improvements and results over the last decades
- historically, "explicit-state" search style, based on DBMs
- notable examples: Kronos, Uppaal
- More recently, symbolic verification techniques:
- extensions of decision diagrams
- CDD, DDD, RED, ...
- Key problem: potential blow up in size
- A more recent and viable alternative to Binary Decision Diagrams: SAT-based MC
- Bounded Model Checking (BMC), K-induction, IC3/PDR, ...

Context

```
First Idea: SMT-based BMC of Timed Systems
[Audemard et al. 2002], [Sorea, MTCS'02], [Niebert et al.,FTRTFT'02]
Leverage the SAT-based BMC approach to Timed Systems by means of SMT Solvers
```

Extensions
We restrict to BMC for Timed/Hybrid Systems only

Context

First Idea: SMT-based BMC of Timed Systems

[Audemard et al. 2002], [Sorea, MTCS'02], [Niebert et al.,FTRTFT'02]
Leverage the SAT-based BMC approach to Timed Systems by means of SMT Solvers

Extensions

- SMT eventually applied to other SAT-based MC techniques
- K-Induction
- interpolant-based
- IC3/PDR
- SMT applied to a variety of domains
- hybrid systems
- verification of SW (loop invariants/proof obbligations, ...)
- hardware verification
- Nowadays SMT leading backend technology for FV

We restrict to BMC for Timed/Hybrid Systems only

Context

First Idea: SMT-based BMC of Timed Systems
 [Audemard et al. 2002], [Sorea, MTCS'02], [Niebert et al.,FTRTFT'02]
 Leverage the SAT-based BMC approach to Timed Systems by means of SMT Solvers

Extensions

- SMT eventually applied to other SAT-based MC techniques
- K-Induction
- interpolant-based
- IC3/PDR
- SMT applied to a variety of domains:
- hybrid systems
- verification of SW (loop invariants/proof obbligations, ...)
- hardware verification
- Nowadays SMT leading backend technology for FV

We restrict to BMC for Timed/Hybrid Systems only

Context

First Idea: SMT-based BMC of Timed Systems
 [Audemard et al. 2002], [Sorea, MTCS'02], [Niebert et al.,FTRTFT'02]
 Leverage the SAT-based BMC approach to Timed Systems by means of SMT Solvers

Extensions

- SMT eventually applied to other SAT-based MC techniques
- K-Induction
- interpolant-based
- IC3/PDR
- SMT applied to a variety of domains:
- hybrid systems
- verification of SW (loop invariants/proof obbligations, ...)
- hardware verification
- Nowadays SMT leading backend technology for FV

```
We restrict to BMC for Timed/Hybrid Systems only
```


Context

First Idea: SMT-based BMC of Timed Systems
 [Audemard et al. 2002], [Sorea, MTCS'02], [Niebert et al.,FTRTFT'02]
 Leverage the SAT-based BMC approach to Timed Systems by means of SMT Solvers

Extensions

- SMT eventually applied to other SAT-based MC techniques
- K-Induction
- interpolant-based
- IC3/PDR
- SMT applied to a variety of domains:
- hybrid systems
- verification of SW (loop invariants/proof obbligations, ...)
- hardware verification
- Nowadays SMT leading backend technology for FV

We restrict to BMC for Timed/Hybrid Systems only

Outline

（1）Motivations \＆Context
（2）Background（from previous chapters）
（3）SMT－Based Bounded Model Checking of Timed Systems
－Basic Ideas
－Basic Encoding
－Improved \＆Extended Encoding
－A Case－Study
4 SMT－Based Bounded Model Checking of Linear Hybrid Systems（hints）
（5）Proposed Exercises

Bounded Model Checking［Biere et al．，TACAs＇99］

－Given a Kripke Structure M ，an LTL property f and an integer bound k ，is there an execution path of M of length（up to）k satisfying f ？$\left(M \models_{k} E f\right)$
－Problem converted into the satisfiability of the Boolean formula：

$$
[[M]]_{k}^{f}:=I\left(s^{(0)}\right) \wedge \bigwedge_{i=0}^{k-1} R\left(s^{(i)}, s^{(i+1)}\right) \wedge\left(\neg L_{k} \wedge[[f]]_{k}^{0}\right) \vee \bigvee_{I=0}^{k}\left(, L_{k} \wedge I[[f]]_{k}^{0}\right)
$$

s．t．$\quad, L_{k} \stackrel{\text { def }}{=} R\left(s^{(k)}, s^{(l)}\right), L_{k} \stackrel{\text { def }}{=} \bigvee_{l=0}^{k}, L_{k}$
－A satisfying assignment represents a satisfying execution path．
－Test repeated for increasing values of k
－Incomplete
－Very effective for debugging，alternative to OBDDs
－Complemented with K－Induction［Sheeran et al．2000］
－Further developments：IC3／PDR［Bradley，VMCAI 2011］

General Encoding for LTL Formulae

f	$[[f]]_{k}^{\prime}$	$\left.{ }_{\text {L }}[f f]\right]_{k}^{\prime}$
p	$p^{(i)}$	$p^{(i)}$
$\neg p$	$\neg p^{(1)}$	$\neg p^{(1)}$
$h \wedge g$	$[[h]]_{k}^{]_{k}} \wedge[[g]]_{k}^{i}$	$\left.{ }_{1}[[h]]_{k}^{]_{k} \wedge} \stackrel{l}{ }[g]\right]_{k}^{i}$
$h \vee g$	$[[h]]_{k}^{1} \vee[[g]]_{k}^{\prime}$	${ }_{1}[[h]]_{k}^{1} \vee{ }_{1}[[g]]_{k}^{\prime}$
Xg	$[[g]]_{k}^{i+1}$ if $i<k$ otherwise.	$l[[g]]_{k}^{l+1}$ if $i<k$ $i[[g]]_{k}^{T}$ otherwise.
Gg	\perp	$\left.\bigwedge_{j=\text { min }(i, 1)}^{k}, l[g]\right]_{k}^{j}$
Fg	$\mathrm{V}_{j=i}^{k}[[g]]_{k}^{j}$	$\mathrm{V}_{j=\text { min }(i, 1)}^{k}, l[\mathrm{~g}]_{k}^{j}$
$h \mathrm{U} g$	$\bigvee_{j=i}^{k}\left([[g]]_{k}^{j} \wedge \bigwedge_{n=i}^{j-1}[[h]]_{k}^{n}\right)$	
hRg	$\bigvee_{j=i}^{k}\left([[h]]_{k}^{j} \wedge \bigwedge_{n=i}^{j}[[g]]_{k}^{n}\right)$	

Timed Automata [Alur and Dill, Tcs'94; Alur, CAV'99]

- Clocks: real variables (ex. x)
- Locations:
- label: (ex. I_{1}),
- invariants: (conjunctive) constraints on clocks values (ex. $x \leq 2$)
- Switches:
- event labels (ex. a),
- clock constraints (ex. $x \geq 1$),
- reset statements (ex. $x:=0$)

- Time elapse: all clocks are increased by the same amount

$\mathcal{L} \mathcal{R} \mathcal{A}$-Formulae

[Audemard et al., CADE'02]; [Sorea, MTCS'02]; [Niebert et al.,FTRTFT'02]

- $\mathcal{L R} \mathcal{A}$-formulae are Boolean combinations of
- Boolean variables and
- linear constraints over real variables (equalities and differences)
- e.g., $(x-2 \cdot y \geq 4) \wedge((x=y) \vee \neg A)$
- An interpretation \mathcal{I} for a $\mathcal{L R} \mathcal{A}$ formula assigns
- truth values to Boolean variables
- real values to numerical variables and constants
- e.g., $\mathcal{I}(x)=3, \mathcal{I}(y)=-1, \mathcal{I}(A)=\perp$
- \mathcal{I} satisfies a $\mathcal{L R} \mathcal{A}$-formula ϕ, written " $\mathcal{I} \models \phi$ ", iff $\mathcal{I}(\phi)$ evaluates to true under the standard semantics of Boolean and mathematical operators.
- E.g., $\mathcal{I}((x-2 \cdot y \geq 4) \wedge((x=y) \vee \neg A))=\top$

The MathSAT Solver [Audemard et al., CADE'02]

- Bottom level: a \mathcal{T}-Solver for sets of $\mathcal{L} \mathcal{R} \mathcal{A}$ constraints
- E.g. $\left\{\ldots, z_{1}-x_{1} \leq 6, z_{2}-x_{2} \geq 8, x_{1}=x_{2}, z_{1}=z_{2}, \ldots\right\} \Longrightarrow$ unsat.
- Combination of symbolic and numerical algorithms (equivalence class building, Belman-Ford, Simplex)
- Top level: a CDCL procedure for propositional satisfiability
- mathematical predicates treated as propositional atoms
- invokes \mathcal{T}-Solver on every assignment found
- used as an enumerator of assignments
- lots of enhancements
(see chapter on SMT)

Outline

(1) Motivations \& Context
(2) Background (from previous chapters)

3 SMT-Based Bounded Model Checking of Timed Systems

- Basic Ideas
- Basic Encoding
- Improved \& Extended Encoding
- A Case-Study

4. SMT-Based Bounded Model Checking of Linear Hybrid Systems (hints)
(5) Proposed Exercises

Outline

(1) Motivations \& Context
(2) Background (from previous chapters)
(3) SMT-Based Bounded Model Checking of Timed Systems

- Basic Ideas
- Basic Encoding
- Improved \& Extended Encoding
- A Case-Study
(4) SMT-Based Bounded Model Checking of Linear Hybrid Systems (hints)
(5) Proposed Exercises

SMT-Based BMC for Timed Systems

Independently developed approaches (2002):

- [Audemard et al. FORTE'02]: encoding into $\mathcal{L R} \mathcal{A}$
- all LTL properties
- [Sorea, MTCS'02]: encoding into $\mathcal{L R} \mathcal{A}$
- based on automata-theoretic approach for LTL
- [Niebert et al.,FTRTFT'02]: encoding into $\mathcal{D} \mathcal{L}$
- limited to reachability

```
Disclaimer
These slides are adapted from [Audemard et al. FORTE'02]
G. Audemard, A. Cimatti, A. Kornilowicz, R. Sebastiani
Bounded Model Checking for Timed Systems,
proc. FORTE 2002, Springer
freely available as \(h\)
(with some simplification in the notation)
```


SMT-Based BMC for Timed Systems

Independently developed approaches (2002):

- [Audemard et al. FORTE'02]: encoding into $\mathcal{L R} \mathcal{A}$
- all LTL properties
- [Sorea, MTCS'02]: encoding into $\mathcal{L R} \mathcal{A}$
- based on automata-theoretic approach for LTL
- [Niebert et al.,FTRTFT'02]: encoding into $\mathcal{D L}$
- limited to reachability

Disclaimer

These slides are adapted from [Audemard et al. FORTE'02]:
G. Audemard, A. Cimatti, A. Kornilowicz, R. Sebastiani Bounded Model Checking for Timed Systems,
proc. FORTE 2002, Springer
freely available as http://eprints.biblio.unitn.it/124/
(with some simplification in the notation).

BMC for Timed Systems

Basic ingredients:

- An extension of propositional logic expressive enough to represent timed information: " $\mathcal{L} \mathcal{R} \mathcal{A}$-formulae"
- A SMT(LRAA) solver for deciding $\mathcal{L R} \mathcal{A}$-formulae \Longrightarrow e.g., the MATHSAT solver
- An encoding from timed BMC problems into $\mathcal{L R} A$-formulae - $\mathcal{L R} \mathcal{A}$-satisfiable iff an execution path within the bound exists

BMC for Timed Systems

Basic ingredients:

- An extension of propositional logic expressive enough to represent timed information: " $\mathcal{L R} \mathcal{A}$-formulae"
- A SMT $(\mathcal{L R} \mathcal{A})$ solver for deciding $\mathcal{L R} \mathcal{A}$-formulae \Longrightarrow e.g., the MATHSAT solver
- An encoding from timed BMC problems into $\mathcal{L \mathcal { R } \mathcal { A } \text { -formulae }}$ - $\mathcal{L} \mathcal{R} \mathcal{A}$-satisfiable iff an execution path within the bound exists

BMC for Timed Systems

Basic ingredients:

- An extension of propositional logic expressive enough to represent timed information: " $\mathcal{L R} \mathcal{A}$-formulae"
- A SMT $(\mathcal{L R} \mathcal{A})$ solver for deciding $\mathcal{L R} \mathcal{A}$-formulae \Longrightarrow e.g., the MATHSAT solver
- An encoding from timed BMC problems into $\mathcal{L R} \mathcal{A}$-formulae
- $\mathcal{L R} \mathcal{A}$-satisfiable iff an execution path within the bound exists

Outline

(1) Motivations \& Context
(2) Background (from previous chapters)

3 SMT-Based Bounded Model Checking of Timed Systems

- Basic Ideas
- Basic Encoding
- Improved \& Extended Encoding
- A Case-Study

4 SMT-Based Bounded Model Checking of Linear Hybrid Systems (hints)
(3roposed Exercises

The encoding

Given a timed automaton A and a LTL formula f :

- The encoding $[[A, f]]_{k}$ is obtained following the same schema as in propositional BMC:

$$
[[A, f]]_{k}:=I\left(s^{(0)}\right) \wedge \bigwedge_{i=0}^{k-1} R\left(s^{(i)}, s^{(i+1)}\right) \wedge\left(\neg L_{k} \wedge[[f]]_{k}^{0}\right) \vee \bigvee_{l=0}^{k}\left(, L_{k} \wedge,[[f]]_{k}^{0}\right)
$$

- $[[M, f]]_{k}$ is a $\mathcal{L R} \mathcal{A}$-formula, where
- Boolean variables encode the discrete part of the state of the automaton
- constraints on real variables represent the temporal part of the state

Encoding: Boolean Variables

- Locations: an array I of $n \stackrel{\text { def }}{=}\left\lceil\log _{2}(|L|)\right\rceil$ Boolean variables
- $l_{\underline{i}}$ holds iff the system is in the location l_{i}
- ex: " $\neg l_{\underline{I}}[3] \wedge \underline{l}_{\underline{i}}[2] \wedge \neg l_{i}[1] \wedge \underline{l}_{\underline{i}}[0]$ " means "the system is in location $\underline{l_{3}}$ "
- "($\left(\underline{I}_{i}=\underline{I}_{\underline{j}}\right)$ " stands for " $\wedge_{n}\left(l_{\underline{i}}[n] \leftrightarrow \underline{l}_{\underline{j}}[n]\right)$ ",
- "primed" variables $\underline{l}_{\underline{\prime}}$ to represent location after transition
- Events: for each event $a \in \Sigma$, a Boolean variable a
- \underline{a} holds iff the system executes a switch with event a.
- Switches: for each switch $\left\langle I_{i}, a, \varphi, \lambda, I_{i}\right\rangle \in E$, a Boolean variable T,
- T holds iff the system executes the corresponding switch
- Time elapse and null transitions: two variables T_{δ} and $T_{\text {null }}^{j}$
- T_{δ} holds iff time elapses by some $\delta>0$
- $T_{\text {null }}^{j}$ holds if and only A_{j} does nothing (specific for automaton A_{j})

[^0]
Encoding: Boolean Variables

- Locations: an array I of $n \stackrel{\text { def }}{=}\left\lceil\log _{2}(|L|)\right\rceil$ Boolean variables
- $l_{\underline{i}}$ holds iff the system is in the location l_{i}
- ex: " $\neg l_{i}[3] \wedge \underline{l}_{\underline{i}}[2] \wedge \neg l_{i}[1] \wedge l_{i}[0]$ " means "the system is in location $\underline{l_{3}}$ "
- " ($\left.\underline{I}_{i}=\underline{I}_{\underline{j}}\right)$ " stands for " $\wedge_{n}\left(I_{i}[n] \leftrightarrow l_{j}[n]\right)$ ",
- "primed" variables $\underline{l}_{\underline{\prime}}$ to represent location after transition
- Events: for each event $a \in \Sigma$, a Boolean variable a
- \underline{a} holds iff the system executes a switch with event a.
- Switches: for each switch $\left\langle l_{i}, a, \varphi, \lambda, l_{j}\right\rangle \in E$, a Boolean variable T,
- T holds iff the system executes the corresponding switch
- Time elanse and null transitions: two variables T_{s} and T^{j}.
- T_{δ} holds iff time elapses by some $\delta>0$
- $T_{\text {null }}^{j}$ holds if and only A_{j} does nothing (specific for automaton A_{j})

[^1]
Encoding: Boolean Variables

- Locations: an array I of $n \stackrel{\text { def }}{=}\left\lceil\log _{2}(|L|)\right\rceil$ Boolean variables
- $l_{\underline{i}}$ holds iff the system is in the location l_{i}
- ex: " $\neg l_{i}[3] \wedge \underline{l}_{\underline{i}}[2] \wedge \neg l_{i}[1] \wedge \underline{l}_{i}[0]$ " means "the system is in location $\underline{l_{3}}$ "
- "($\left.\underline{I}_{\underline{i}}=\underline{I}_{\underline{j}}\right)$ " stands for " $\wedge_{n}\left(I_{\underline{I}}[n] \leftrightarrow{ }_{\underline{l_{i}}}[n]\right)$ ",
- "primed" variables $\underline{l}_{\underline{\prime}}$ 'to represent location after transition
- Events: for each event $a \in \Sigma$, a Boolean variable a
- \underline{a} holds iff the system executes a switch with event a.
- Switches: for each switch $\left\langle l_{i}, a, \varphi, \lambda, l_{j}\right\rangle \in E$, a Boolean variable T,
- T holds iff the system executes the corresponding switch
- Time elapse and null transitions: two variables T_{δ} and $T_{\text {null }}^{j}$
- T_{δ} holds iff time elapses by some $\delta>0$
- $T_{\text {null }}^{j}$ holds if and only A_{j} does nothing (specific for automaton A_{j})

```
Note: also for events, switches\&transitions it is possible to use arrays of Boolean variables of size \(\left\lceil\log _{2}(|\Sigma|)\right\rceil,\left\lceil\log _{2}(|E|+2)\right\rceil\) respectively
```


Encoding: Boolean Variables

- Locations: an array I of $n \stackrel{\text { def }}{=}\left\lceil\log _{2}(|L|)\right\rceil$ Boolean variables
- $l_{\underline{i}}$ holds iff the system is in the location l_{i}
- ex: " $\neg l_{i}[3] \wedge \underline{l}_{\underline{i}}[2] \wedge \neg l_{i}[1] \wedge \underline{l}_{i}[0]$ " means "the system is in location $\underline{l_{3}}$ "
- " ($\left.l_{i}=\underline{l}_{\underline{j}}\right)$ " stands for " $\wedge_{n}\left(l_{i}[n] \leftrightarrow{ }_{\underline{I}}[n]\right)$ ",
- "primed" variables $\underline{l}_{\underline{\prime}}$ 'to represent location after transition
- Events: for each event $a \in \Sigma$, a Boolean variable a
- \underline{a} holds iff the system executes a switch with event a.
- Switches: for each switch $\left\langle l_{i}, a, \varphi, \lambda, l_{j}\right\rangle \in E$, a Boolean variable T,
- T holds iff the system executes the corresponding switch
- Time elapse and null transitions: two variables T_{δ} and $T_{\text {null }}^{j}$
- T_{δ} holds iff time elapses by some $\delta>0$
- $T_{\text {null }}^{j}$ holds if and only A_{j} does nothing (specific for automaton A_{j})

```
Note: also for events, switches\&transitions it is possible to use arrays of Boolean variables of size \(\left\lceil\log _{2}(|\Sigma|)\right\rceil,\left\lceil\log _{2}(|E|+2)\right\rceil\) respectively
```


Encoding: Boolean Variables

- Locations: an array I of $n \stackrel{\text { def }}{=}\left\lceil\log _{2}(|L|)\right\rceil$ Boolean variables
- $l_{\underline{i}}$ holds iff the system is in the location l_{i}
- ex: " $\neg l_{i}[3] \wedge \underline{l}_{\underline{i}}[2] \wedge \neg l_{i}[1] \wedge l_{i}[0]$ " means "the system is in location $\underline{l_{3}}$ "
- "($\left.\underline{I}_{\underline{i}}=\underline{I}_{\underline{j}}\right)$ " stands for " $\wedge_{n}\left(\underline{I}_{\underline{I}}[n] \leftrightarrow{ }_{\underline{l_{i}}}[n]\right)$ ",
- "primed" variables $\underline{l}_{\underline{i}}$ ' to represent location after transition
- Events: for each event $a \in \Sigma$, a Boolean variable a
- \underline{a} holds iff the system executes a switch with event a.
- Switches: for each switch $\left\langle l_{i}, a, \varphi, \lambda, l_{j}\right\rangle \in E$, a Boolean variable T,
- T holds iff the system executes the corresponding switch
- Time elapse and null transitions: two variables T_{δ} and $T_{\text {null }}^{j}$
- T_{δ} holds iff time elapses by some $\delta>0$
- $T_{\text {null }}^{j}$ holds if and only A_{j} does nothing (specific for automaton A_{j})

Note: also for events, switches\&transitions it is possible to use arrays of Boolean variables of size $\left\lceil\log _{2}(|\Sigma|)\right\rceil,\left\lceil\log _{2}(|E|+2)\right\rceil$ respectively

Encoding: Clock Values and Constraints

- Clocks values x are "normalized" wrt absolute time $(t-x)$:
- a clock value x is written as difference $t-x$
- t represents the absolute time
- "offset" variable x represents the absolute time when the clock was reset last time
- Clock constraints reduce to
- Clock reset conditions reduce to
- Clock equalities like $\left(x_{k}=x_{1}\right)$ reduce to $\left(t_{k}-x_{k}=t_{1}-x_{1}\right)$
- appear only in loops
- only place where full $\mathcal{L R} \mathcal{A}$ is needed (rather than $\mathcal{D} \mathcal{L}$)
for invariant checking (no loops) $\mathcal{D L}$ suffices
- Encoding the effect of transitions:

Encoding: Clock Values and Constraints

- Clocks values x are "normalized" wrt absolute time $(t-x)$:
- a clock value x is written as difference $t-x$
- t represents the absolute time
- "offset" variable x represents the absolute time when the clock was reset last time
- Clock constraints reduce to $(t-x \bowtie c), \bowtie \in\{\leq, \geq,<,>\}, c \in \mathbb{Z}$
- Clock reset conditions reduce to
- Clock equalities like $\left(x_{k}=x_{l}\right)$ reduce to $\left(t_{k}-x_{k}=t_{l}-x_{l}\right)$
- appear only in loops
- only place where full $\mathcal{L \mathcal { R } \mathcal { A }}$ is needed (rather than $\mathcal{D L}$) for invariant checking (no loops) $\mathcal{D L}$ suffices
- Encoding the effect of transitions:

Encoding: Clock Values and Constraints

- Clocks values x are "normalized" wrt absolute time $(t-x)$:
- a clock value x is written as difference $t-x$
- t represents the absolute time
- "offset" variable x represents the absolute time when the clock was reset last time
- Clock constraints reduce to $(t-x \bowtie c), \bowtie \in\{\leq, \geq,<,>\}, c \in \mathbb{Z}$
- Clock reset conditions reduce to $(x:=t)$
- Clock equalities like $\left(x_{k}=x_{l}\right)$ reduce to $\left(t_{k}-x_{k}=t_{l}-x_{l}\right)$
- appear only in loops
- only place where full $\mathcal{L R} A$ is needed (rather than $\mathcal{D L}$) for invariant checking (no loops) $\mathcal{D L}$ suffices
- Encoding the effect of transitions:

Encoding: Clock Values and Constraints

- Clocks values x are "normalized" wrt absolute time $(t-x)$:
- a clock value x is written as difference $t-x$
- t represents the absolute time
- "offset" variable x represents the absolute time when the clock was reset last time
- Clock constraints reduce to $(t-x \bowtie c), \bowtie \in\{\leq, \geq,<,>\}, c \in \mathbb{Z}$
- Clock reset conditions reduce to $(x:=t)$
- Clock equalities like $\left(x_{k}=x_{l}\right)$ reduce to $\left(t_{k}-x_{k}=t_{l}-x_{l}\right)$
- appear only in loops
- only place where full $\mathcal{L R A}$ is needed (rather than $\mathcal{D L}$)
\Longrightarrow for invariant checking (no loops) $\mathcal{D} \mathcal{L}$ suffices
- Encoding the effect of transitions:

Encoding: Clock Values and Constraints

- Clocks values x are "normalized" wrt absolute time $(t-x)$:
- a clock value x is written as difference $t-x$
- t represents the absolute time
- "offset" variable x represents the absolute time when the clock was reset last time
- Clock constraints reduce to $(t-x \bowtie c), \bowtie \in\{\leq, \geq,<,>\}, c \in \mathbb{Z}$
- Clock reset conditions reduce to $(x:=t)$
- Clock equalities like $\left(x_{k}=x_{l}\right)$ reduce to $\left(t_{k}-x_{k}=t_{l}-x_{l}\right)$
- appear only in loops
- only place where full $\mathcal{L R A}$ is needed (rather than $\mathcal{D L}$)
\Longrightarrow for invariant checking (no loops) $\mathcal{D} \mathcal{L}$ suffices
- Encoding the effect of transitions:
- with a time elapse transition
- $t^{\prime}>t$, and
- otherwise:

Encoding: Clock Values and Constraints

- Clocks values x are "normalized" wrt absolute time $(t-x)$:
- a clock value x is written as difference $t-x$
- t represents the absolute time
- "offset" variable x represents the absolute time when the clock was reset last time
- Clock constraints reduce to $(t-x \bowtie c), \bowtie \in\{\leq, \geq,<,>\}, c \in \mathbb{Z}$
- Clock reset conditions reduce to $(x:=t)$
- Clock equalities like $\left(x_{k}=x_{l}\right)$ reduce to $\left(t_{k}-x_{k}=t_{l}-x_{l}\right)$
- appear only in loops
- only place where full $\mathcal{L R} \mathcal{A}$ is needed (rather than $\mathcal{D} \mathcal{L}$)
\Longrightarrow for invariant checking (no loops) $\mathcal{D} \mathcal{L}$ suffices
- Encoding the effect of transitions:
- with a time elapse transition
- $t^{\prime}>t$, and $x^{\prime}=x$
- otherwise:

Encoding: Clock Values and Constraints

- Clocks values x are "normalized" wrt absolute time $(t-x)$:
- a clock value x is written as difference $t-x$
- t represents the absolute time
- "offset" variable x represents the absolute time when the clock was reset last time
- Clock constraints reduce to $(t-x \bowtie c), \bowtie \in\{\leq, \geq,<,>\}, c \in \mathbb{Z}$
- Clock reset conditions reduce to $(x:=t)$
- Clock equalities like $\left(x_{k}=x_{l}\right)$ reduce to $\left(t_{k}-x_{k}=t_{l}-x_{l}\right)$
- appear only in loops
- only place where full $\mathcal{L R A}$ is needed (rather than $\mathcal{D L}$)
\Longrightarrow for invariant checking (no loops) $\mathcal{D} \mathcal{L}$ suffices
- Encoding the effect of transitions:
- with a time elapse transition
- $t^{\prime}>t$, and $x^{\prime}=x$
- otherwise:
- $t^{\prime}=t$, absolute time does not elapse
- $x^{\prime}=t^{\prime}$, if the clock is reset
- $x^{\prime}=x$, if the clock is not reset

Encoding: Clock Values and Constraints

- Clocks values x are "normalized" wrt absolute time $(t-x)$:
- a clock value x is written as difference $t-x$
- t represents the absolute time
- "offset" variable x represents the absolute time when the clock was reset last time
- Clock constraints reduce to $(t-x \bowtie c), \bowtie \in\{\leq, \geq,<,>\}, c \in \mathbb{Z}$
- Clock reset conditions reduce to $(x:=t)$
- Clock equalities like $\left(x_{k}=x_{l}\right)$ reduce to $\left(t_{k}-x_{k}=t_{l}-x_{l}\right)$
- appear only in loops
- only place where full $\mathcal{L R A}$ is needed (rather than $\mathcal{D L}$)
\Longrightarrow for invariant checking (no loops) $\mathcal{D} \mathcal{L}$ suffices
- Encoding the effect of transitions:
- with a time elapse transition
- $t^{\prime}>t$, and $x^{\prime}=x$
- otherwise:
- $t^{\prime}=t$, absolute time does not elapse
- $x^{\prime}=t^{\prime}$, if the clock is reset
- $x^{\prime}=x$, if the clock is not reset

Encoding: Clock Values and Constraints

- Clocks values x are "normalized" wrt absolute time $(t-x)$:
- a clock value x is written as difference $t-x$
- t represents the absolute time
- "offset" variable x represents the absolute time when the clock was reset last time
- Clock constraints reduce to $(t-x \bowtie c), \bowtie \in\{\leq, \geq,<,>\}, c \in \mathbb{Z}$
- Clock reset conditions reduce to $(x:=t)$
- Clock equalities like $\left(x_{k}=x_{l}\right)$ reduce to $\left(t_{k}-x_{k}=t_{l}-x_{l}\right)$
- appear only in loops
- only place where full $\mathcal{L R A}$ is needed (rather than $\mathcal{D L}$)
\Longrightarrow for invariant checking (no loops) $\mathcal{D} \mathcal{L}$ suffices
- Encoding the effect of transitions:
- with a time elapse transition
- $t^{\prime}>t$, and $x^{\prime}=x$
- otherwise:
- $t^{\prime}=t$, absolute time does not elapse
- $x^{\prime}=t^{\prime}$, if the clock is reset
- $x^{\prime}=x$, if the clock is not reset

Encoding: Initial Conditions

```
Initial condition I(s):
```

- Initially, the automaton is in an initial location:
- Initially, clocks have a null value:

Encoding: Initial Conditions

Initial condition I(s):

- Initially, the automaton is in an initial location:

$$
\bigvee_{I_{i} \in L^{0}} \underline{I_{i}}
$$

- Initially, clocks have a null value:

Encoding: Initial Conditions

Initial condition I(s):

- Initially, the automaton is in an initial location:

$$
\bigvee_{I_{i} \in L^{0}} \underline{I_{i}}
$$

- Initially, clocks have a null value:

$$
\bigwedge_{x \in X}(x=t)
$$

Encoding: Invariants

Transition relation $R\left(s, s^{\prime}\right)$: Invariants

- Always, being in a location implies the corresponding invariant constraints:

$$
\bigwedge_{l_{i} \in L}\left(I_{i} \rightarrow \bigwedge_{\psi \in I\left(I_{i}\right)} \psi\right),
$$

Encoding: Transitions

Transition relation $T\left(s, s^{\prime}\right)$:

- Switches:
- Time elapse:
- Null transition:

Encoding: Transitions

Transition relation $T\left(s, s^{\prime}\right)$:

- Switches:

$$
\bigwedge_{\left.\substack{\text { def }} l_{i}, a, \varphi, \lambda, \lambda, l_{j}\right\rangle \in E} T \rightarrow\left(\underline{I_{i}} \wedge \underline{a} \wedge \varphi \wedge \underline{\underline{l}}_{\underline{\prime}}^{\prime} \wedge\left(t^{\prime}=t\right) \wedge \bigwedge_{x \in \lambda}\left(x^{\prime}=t^{\prime}\right) \wedge \bigwedge_{x \notin \lambda}\left(x^{\prime}=x\right)\right)
$$

- Time elapse:
- Null transition:

Encoding: Transitions

Transition relation $T\left(s, s^{\prime}\right)$:

- Switches:

$$
\bigwedge_{\left.\substack{\text { def }} l_{l}, a, \varphi, \lambda, \lambda, \underline{j}\right\rangle \in E} T \rightarrow\left(\underline{l_{i}} \wedge \underline{a} \wedge \varphi \wedge \underline{\underline{l}}_{\underline{j}}^{\prime} \wedge\left(t^{\prime}=t\right) \wedge \bigwedge_{x \in \lambda}\left(x^{\prime}=t^{\prime}\right) \wedge \bigwedge_{x \notin \lambda}\left(x^{\prime}=x\right)\right)
$$

- Time elapse:

$$
T_{\delta} \rightarrow\left(\left(I_{-}^{\prime}=\underline{I}\right) \wedge\left(t^{\prime}-t>0\right) \wedge \bigwedge_{x \in X}\left(x^{\prime}=x\right) \wedge \bigwedge_{a \in \Sigma} \neg \underline{a}\right)
$$

- Null transition:

Encoding: Transitions

Transition relation $T\left(s, s^{\prime}\right)$:

- Switches:

$$
\bigwedge_{\left.\substack{\text { def }} l_{i}, a, \varphi, \lambda, \lambda, \underline{j}\right\rangle \in E} T \rightarrow\left(\underline{l_{i}} \wedge \underline{a} \wedge \varphi \wedge \underline{\underline{l}}_{\underline{j}}^{\prime} \wedge\left(t^{\prime}=t\right) \wedge \bigwedge_{x \in \lambda}\left(x^{\prime}=t^{\prime}\right) \wedge \bigwedge_{x \notin \lambda}\left(x^{\prime}=x\right)\right)
$$

- Time elapse:

$$
T_{\delta} \rightarrow\left(\left(I_{-}^{\prime}=\underline{I}\right) \wedge\left(t^{\prime}-t>0\right) \wedge \bigwedge_{x \in X}\left(x^{\prime}=x\right) \wedge \bigwedge_{a \in \Sigma} \neg \underline{a}\right)
$$

- Null transition:

$$
T_{\text {null }}^{j} \rightarrow\left(\left(I_{-}^{\prime}=\underline{I}\right) \wedge\left(t^{\prime}=t\right) \wedge \bigwedge_{x \in X}\left(x^{\prime}=x\right) \wedge \bigwedge_{a \in \Sigma} \neg \underline{a}\right)
$$

Encoding: Relations between Transitions

- Mutual exclusion between events:
- At least one transition takes place:
- Mutual exclusion between transitions:

If events and transitions are encoded via arrays of Booleans, mutual exclusion constraints are not needed

Encoding: Relations between Transitions

- Mutual exclusion between events:

$$
\bigwedge_{a_{k}, a_{r} \in \Sigma, a_{k} \neq a_{r}}\left(\neg \underline{a}_{k} \vee \neg \underline{a}_{r}\right)
$$

- At least one transition takes place:
- Mutual exclusion between transitions:

If events and transitions are encoded via arrays of Booleans, mutual exclusion constraints are not needed

Encoding: Relations between Transitions

- Mutual exclusion between events:

$$
a_{k}, a_{r} \in \Sigma, a_{k} \neq a_{r}
$$

- At least one transition takes place:

$$
T_{\text {null }}^{j} \vee T_{\delta} \vee \bigvee_{T \in E} T
$$

- Mutual exclusion between transitions:

If events and transitions are encoded via arrays of Booleans, mutual exclusion constraints are

 not needed
Encoding: Relations between Transitions

- Mutual exclusion between events:

$$
\bigwedge_{a_{k}, a_{r} \in \Sigma, a_{k} \neq a_{r}}\left(\neg \underline{a}_{k} \vee \neg \underline{a}_{r}\right)
$$

- At least one transition takes place:

$$
T_{\text {null }}^{j} \vee T_{\delta} \vee \bigvee_{T \in E} T
$$

- Mutual exclusion between transitions:

$$
\bigwedge_{T_{k}, T_{r} \in E \cup\left\{T_{\text {null }}^{j}\right\} \cup\left\{T_{\delta}\right\}, T_{k} \neq T_{r}}\left(\neg T_{k} \vee \neg T_{r}\right)
$$

Encoding: Relations between Transitions

- Mutual exclusion between events:

$$
\bigwedge_{a_{k}, a_{r} \in \Sigma, a_{k} \neq a_{r}}\left(\neg \underline{a}_{k} \vee \neg \underline{a}_{r}\right)
$$

- At least one transition takes place:

$$
T_{\text {null }}^{j} \vee T_{\delta} \vee \bigvee_{T \in E} T
$$

- Mutual exclusion between transitions:

$$
\bigwedge_{T_{k}, T_{r} \in E \cup\left\{T_{\text {null }}^{j}\right\} \cup\left\{T_{\delta}\right\}, T_{k} \neq T_{r}}\left(\neg T_{k} \vee \neg T_{r}\right)
$$

If events and transitions are encoded via arrays of Booleans, mutual exclusion constraints are not needed

Automata Product Construction

- The encoding is compositional wrt. product of automata
- The encoding of $A=A_{1} \| A_{2}$ is given by the conjunction of the encodings of A_{1} and A_{2}, plus a few extra axioms
- Mutual exclusion between events that are local
- Forcing system activity:
- one distinct $T_{\text {null }}^{j}$ for each automaton A_{j}
- T_{δ} is common to all automata A_{j}

Automata Product Construction

- The encoding is compositional wrt. product of automata
- The encoding of $A=A_{1} \| A_{2}$ is given by the conjunction of the encodings of A_{1} and A_{2}, plus a few extra axioms
- Mutual exclusion between events that are local
- Forcing system activity:
- one distinct $T_{\text {null }}^{j}$ for each automaton A_{j}
- T_{δ} is common to all automata A_{j}

Automata Product Construction

- The encoding is compositional wrt. product of automata
- The encoding of $A=A_{1} \| A_{2}$ is given by the conjunction of the encodings of A_{1} and A_{2}, plus a few extra axioms
- Mutual exclusion between events that are local

$$
\bigwedge_{a_{1} \in \Sigma_{1} \backslash \Sigma_{2}}^{a_{2} \in \Sigma_{2} \backslash \Sigma_{1}}\left(\neg \underline{a}_{1} \vee \neg \underline{a}_{2}\right)
$$

- Forcing system activity:
- one distinct $T_{\text {null }}^{j}$ for each automaton A_{j}
- T_{δ} is common to all automata A_{j}

Automata Product Construction

- The encoding is compositional wrt. product of automata
- The encoding of $A=A_{1} \| A_{2}$ is given by the conjunction of the encodings of A_{1} and A_{2}, plus a few extra axioms
- Mutual exclusion between events that are local

$$
\bigwedge_{\substack{a_{1} \in \Sigma_{1} \backslash \Sigma_{2} \\ a_{2} \in \Sigma_{2} \backslash \Sigma_{1}}}\left(\neg \underline{a}_{1} \vee \neg \underline{a}_{2}\right)
$$

- Forcing system activity:

$$
\bigvee_{j=0}^{N-1} \neg T_{\text {null }}^{j}
$$

- one distinct $T_{\text {null }}^{j}$ for each automaton A_{j}
- T_{δ} is common to all automata A_{j}

A Simple Example

A Simple Example

A Simple Example

Outline

（1）Motivations \＆Context
（2）Background（from previous chapters）
（3）SMT－Based Bounded Model Checking of Timed Systems
－Basic Ideas
－Basic Encoding
－Improved \＆Extended Encoding
－A Case－Study
4 SMT－Based Bounded Model Checking of Linear Hybrid Systems（hints）
（3）Proposed Exercises

Encoding: Extension

Adding Global Variables

Dealing with some global variable v on discrete domain:

- A switch $T \stackrel{\text { def }}{=}\left\langle l_{i}, a, \varphi, \lambda, l_{j}\right\rangle$ can
- be subject to a condition $\psi(v)$
add T
- assign v to some value n or keep its value
- T_{δ} mantains the value of v :
- $T_{\text {null }}^{j}$ imposes no constraint on v :

Encoding: Extension

Adding Global Variables

Dealing with some global variable v on discrete domain:

- A switch $T \stackrel{\text { def }}{=}\left\langle l_{i}, a, \varphi, \lambda, l_{j}\right\rangle$ can
- be subject to a condition $\psi(v)$
- assign v to some value n or keep its value
- T_{δ} mantains the value of v :
- $T_{\text {null }}^{j}$ imposes no constraint on v :

Encoding: Extension

Adding Global Variables

Dealing with some global variable v on discrete domain:

- A switch $T \stackrel{\text { def }}{=}\left\langle l_{i}, a, \varphi, \lambda, l_{j}\right\rangle$ can
- be subject to a condition $\psi(v)$
\Longrightarrow add $T \rightarrow \psi(v)$
- assign v to some value n or keep its value
- T_{δ} mantains the value of v :
- $T_{\text {null }}^{j}$ imposes no constraint on v :

Encoding: Extension

Adding Global Variables

Dealing with some global variable v on discrete domain:

- A switch $T \stackrel{\text { def }}{=}\left\langle l_{i}, a, \varphi, \lambda, l_{j}\right\rangle$ can
- be subject to a condition $\psi(v)$
\Longrightarrow add $T \rightarrow \psi(v)$
- assign v to some value n or keep its value
- T_{δ} mantains the value of v :
- $T_{\text {null }}^{j}$ imposes no constraint on v :

Encoding: Extension

Adding Global Variables

Dealing with some global variable v on discrete domain:

- A switch $T \stackrel{\text { def }}{=}\left\langle l_{i}, a, \varphi, \lambda, l_{j}\right\rangle$ can
- be subject to a condition $\psi(v)$
\Longrightarrow add $T \rightarrow \psi(v)$
- assign v to some value n or keep its value
\Longrightarrow add $T \rightarrow\left(v^{\prime}=n\right)$ or add $T \rightarrow\left(v^{\prime}=v\right)$
- T_{δ} mantains the value of v :
- $T_{\text {null }}^{j}$ imposes no constraint on v :

Encoding: Extension

Adding Global Variables

Dealing with some global variable v on discrete domain:

- A switch $T \stackrel{\text { def }}{=}\left\langle l_{i}, a, \varphi, \lambda, l_{j}\right\rangle$ can
- be subject to a condition $\psi(v)$
\Longrightarrow add $T \rightarrow \psi(v)$
- assign v to some value n or keep its value
\Longrightarrow add $T \rightarrow\left(v^{\prime}=n\right)$ or add $T \rightarrow\left(v^{\prime}=v\right)$
- T_{δ} mantains the value of v :
- $T_{\text {null }}^{j}$ imposes no constraint on v :

Encoding: Extension

Adding Global Variables

Dealing with some global variable v on discrete domain:

- A switch $T \stackrel{\text { def }}{=}\left\langle l_{i}, a, \varphi, \lambda, l_{j}\right\rangle$ can
- be subject to a condition $\psi(v)$
\Longrightarrow add $T \rightarrow \psi(v)$
- assign v to some value n or keep its value
\Longrightarrow add $T \rightarrow\left(v^{\prime}=n\right)$ or add $T \rightarrow\left(v^{\prime}=v\right)$
- T_{δ} mantains the value of v :
\Longrightarrow add $T_{\delta} \rightarrow\left(v^{\prime}=v\right)$
- $T_{\text {null }}^{J}$ imposes no constraint on v :

Encoding: Extension

Adding Global Variables

Dealing with some global variable v on discrete domain:

- A switch $T \stackrel{\text { def }}{=}\left\langle l_{i}, a, \varphi, \lambda, l_{j}\right\rangle$ can
- be subject to a condition $\psi(v)$
\Longrightarrow add $T \rightarrow \psi(v)$
- assign v to some value n or keep its value
\Longrightarrow add $T \rightarrow\left(v^{\prime}=n\right)$ or add $T \rightarrow\left(v^{\prime}=v\right)$
- T_{δ} mantains the value of v :

$$
\Longrightarrow \text { add } T_{\delta} \rightarrow\left(v^{\prime}=v\right)
$$

- $T_{\text {null }}^{j}$ imposes no constraint on v :
add nothing (for A_{j})

Encoding: Extension

Adding Global Variables

Dealing with some global variable v on discrete domain:

- A switch $T \stackrel{\text { def }}{=}\left\langle l_{i}, a, \varphi, \lambda, l_{j}\right\rangle$ can
- be subject to a condition $\psi(v)$
\Longrightarrow add $T \rightarrow \psi(v)$
- assign v to some value n or keep its value
\Longrightarrow add $T \rightarrow\left(v^{\prime}=n\right)$ or add $T \rightarrow\left(v^{\prime}=v\right)$
- T_{δ} mantains the value of v :
\Longrightarrow add $T_{\delta} \rightarrow\left(v^{\prime}=v\right)$
- $T_{\text {null }}^{j}$ imposes no constraint on v :
\Longrightarrow add nothing (for A_{j})

MathSAT: Optimizations

Customization of MATHSAT

- Limit Boolean variable-selection heuristic to pick transition variables, in forward order

Encoding: Optimizations

Boolean Propagation of Math Constraints:

Idea: add small and mathematically-obvious lemmas

$$
\begin{array}{rcc}
\neg\left(t^{\prime}=t\right) & \leftrightarrow & \left(t^{\prime}-t>0\right) \\
\bigwedge_{x \in X}(\neg(x=t) & \leftrightarrow & (t-x>0)) \\
\bigwedge_{x \in X} \neg\left(x^{\prime}=x\right) & \leftrightarrow & \left(x^{\prime}-x>0\right)
\end{array}
$$

$$
\begin{array}{llclllr}
\bigwedge_{x \in X}((x=t) & \wedge & \left(x^{\prime}=x\right) & \wedge & \left.\left(t^{\prime}=t\right)\right) & \rightarrow & \left(x^{\prime}=t^{\prime}\right) \\
\bigwedge_{x \in X}(\neg(x=t) & \wedge & \left(x^{\prime}=x\right) & \wedge & \left.\left(t^{\prime}=t\right)\right) & \rightarrow & \rightarrow\left(x^{\prime}=t^{\prime}\right) \\
\bigwedge_{x \in X}((x=t) & \wedge & \neg\left(x^{\prime}=x\right) & \wedge & \left.\left(t^{\prime}=t\right)\right) & \rightarrow & \rightarrow\left(x^{\prime}=t^{\prime}\right) \\
\bigwedge_{x \in X}((x=t) & \wedge & \left(x^{\prime}=x\right) & \wedge & \left.\neg\left(t^{\prime}=t\right)\right) & \rightarrow & \neg\left(x^{\prime}=t^{\prime}\right) \\
\bigwedge_{x \in X}\left(\left(x^{\prime}=x\right)\right. & \wedge & \left(t^{\prime}-t>0\right) & \wedge & (t-x>0)) & \rightarrow & \left(t^{\prime}-x^{\prime}>0\right) \\
\bigwedge_{x \in X}\left(\left(t^{\prime}=t\right)\right. & \wedge & \neg(t-x>0) & \wedge & \left.\left(x^{\prime}-x>0\right)\right) & \rightarrow & \neg\left(t^{\prime}-x^{\prime}>0\right) \\
\bigwedge_{x \in X}((t-x \bowtie c) & \wedge & \left(x^{\prime}=x\right) & \wedge & \left.\left(t^{\prime}=t\right)\right) & \rightarrow & \left(t^{\prime}-x^{\prime} \bowtie c\right) \\
\bigwedge_{x \in X}(\neg(t-x \bowtie c) & \wedge & \left(x^{\prime}=x\right) & \wedge & \left.\left(t^{\prime}=t\right)\right) & \rightarrow & \neg\left(t^{\prime}-x^{\prime} \bowtie c\right)
\end{array}
$$

\Longrightarrow force assignments by unit-propagation,
\Longrightarrow saves calls to the \mathcal{T}-Solvers

Encoding Variants

Shortening counter-examples:

- Collapsing consequent time elapsing transitions:
- $s \stackrel{\delta}{\longmapsto} s, s \stackrel{\delta^{\prime}}{\longmapsto} s$ reduced to $s \stackrel{\delta+\delta^{\prime}}{\longmapsto} s$
- add $\neg T_{\delta} \vee \neg T_{\delta}^{\prime}$ to transition relation $R\left(s, s^{\prime}\right)$
\Longrightarrow implements the notion of "non-Zeno-ness" (see previous chapter)
- Allow multiple parallel transitions
- remove mutex between labels local to processes allows a form of parallel progression

Remark: may change the notion of "next step"

Encoding Variants

Shortening counter-examples:

- Collapsing consequent time elapsing transitions:
- $s \stackrel{\delta}{\longmapsto} s, s \stackrel{\delta^{\prime}}{\longrightarrow} s$ reduced to $s \stackrel{\delta+\delta^{\prime}}{\longrightarrow} s$
- add $\neg T_{\delta} \vee \neg T_{\delta}^{\prime}$ to transition relation $R\left(s, s^{\prime}\right)$
\Longrightarrow implements the notion of "non-Zeno-ness" (see previous chapter)
- Allow multiple parallel transitions
- remove mutex between labels local to processes
\Longrightarrow allows a form of parallel progression

Remark: may change the notion of "next step"

Encoding Variants

Shortening counter-examples:

- Collapsing consequent time elapsing transitions:
- $s \stackrel{\delta}{\longmapsto} s, s \stackrel{\delta^{\prime}}{\longmapsto} s$ reduced to $s \stackrel{\delta+\delta^{\prime}}{\longmapsto} s$
- add $\neg T_{\delta} \vee \neg T_{\delta}^{\prime}$ to transition relation $R\left(s, s^{\prime}\right)$
\Longrightarrow implements the notion of "non-Zeno-ness" (see previous chapter)
- Allow multiple parallel transitions
- remove mutex between labels local to processes
\Longrightarrow allows a form of parallel progression

Remark: may change the notion of "next step"

Encoding Variants (cont.)

A limited form of symmetry reduction

If N automata are symmetric (frequent with protocol verification):

- Intuition: restrict executions s.t.
- At step 0 only A_{0} can move
- At step 1 only A_{0}, A_{1} can move
- At step 2 only A_{0}, A_{1}, A_{2} can move
- ...
\Longrightarrow we name "0" the first automata who acts, " 1 " the second one, etc.
- for step $i<N-1$, we drop the disjunct $\neg T_{\text {null }}^{i+1}$
set
drops "symmetric" executions
reduces the search space of a ui to $2^{N(N-1) / 2}$ factor

Encoding Variants (cont.)

A limited form of symmetry reduction

If N automata are symmetric (frequent with protocol verification):

- Intuition: restrict executions s.t.
- At step 0 only A_{0} can move
- At step 1 only A_{0}, A_{1} can move
- At step 2 only A_{0}, A_{1}, A_{2} can move
- ...
\Longrightarrow we name " 0 " the first automata who acts, " 1 " the second one, etc.
- for step $i<N-1$, we drop the disjunct $\neg T_{\text {null }}^{i+1}{ }^{(i)} \vee \ldots \vee \neg T_{\text {null }}{ }^{N-1}{ }^{(i)}$:

$$
\text { set } \bigvee_{j=0}^{\min (i, N-1)} \neg T_{\text {null }}^{j(i)} \text { rather than } \bigvee_{j=0}^{N-1} \neg T_{\text {null }}^{j(i)}
$$

drops "symmetric" executions
reduces the search space of a up to $2^{N(N-1) / 2}$ factor!

Encoding Variants（cont．）

A limited form of symmetry reduction

If N automata are symmetric（frequent with protocol verification）：
－Intuition：restrict executions s．t．
－At step 0 only A_{0} can move
－At step 1 only A_{0}, A_{1} can move
－At step 2 only A_{0}, A_{1}, A_{2} can move
－．．．
\Longrightarrow we name＂ 0 ＂the first automata who acts，＂ 1 ＂the second one，etc．
－for step $i<N-1$ ，we drop the disjunct $\neg T_{\text {null }}^{i+1}{ }^{(i)} \vee \ldots \vee \neg T_{\text {null }}^{N-1}{ }^{(i)}$ ：

$$
\text { set } \bigvee_{j=0}^{\min (i, N-1)} \neg T_{\text {null }}^{j(i)} \text { rather than } \bigvee_{j=0}^{N-1} \neg T_{\text {null }}^{j(i)}
$$

\Longrightarrow drops＂symmetric＂executions
\Longrightarrow reduces the search space of a up to $2^{N(N-1) / 2}$ factor！

Outline

(1) Motivations \& Context
(2) Background (from previous chapters)
(3) SMT-Based Bounded Model Checking of Timed Systems

- Basic Ideas
- Basic Encoding
- Improved \& Extended Encoding
- A Case-Study

4. SMT-Based Bounded Model Checking of Linear Hybrid Systems (hints)
(5) Proposed Exercises

A Case-study: Fischer's Protocol

A Mutual-Exclusion Real-Time Protocol

- N identical processes accessing one critical section
- shared variable id $\in\{0,1,2, \ldots, N\}$: process identifier (0: none)
- when entering wait state C_{j}, agent A_{j} writes its code on id
- if $i d=j$ after δ, then A_{j} can enter the critical session
- Two properties under test

A Case-study: Fischer's Protocol

A Mutual-Exclusion Real-Time Protocol

- N identical processes accessing one critical section
- shared variable id $\in\{0,1,2, \ldots, N\}$: process identifier (0 : none)
- when entering wait state C_{j}, agent A_{j} writes its code on id
- if id $=j$ after δ, then A_{j} can enter the critical session

- Two properties under test

A Case-study: Fischer's Protocol

A Mutual-Exclusion Real-Time Protocol

- N identical processes accessing one critical section
- shared variable id $\in\{0,1,2, \ldots, N\}$: process identifier (0 : none)
- when entering wait state C_{j}, agent A_{j} writes its code on id
- if id $=j$ after δ, then A_{j} can enter the critical session
- Two properties under test
- Reachability: EF $\wedge_{i} P_{i} . C$ (reached in $N+1$ steps)
- Fairness: E $\neg\left(G F P_{i} . B \rightarrow\right.$ GFP $\left.P_{i} . C S\right)$ (reached in $N+5$ steps)

A Case-study: Fischer's Protocol

A Mutual-Exclusion Real-Time Protocol

- N identical processes accessing one critical section
- shared variable id $\in\{0,1,2, \ldots, N\}$: process identifier (0 : none)
- when entering wait state C_{j}, agent A_{j} writes its code on id
- if id $=j$ after δ, then A_{j} can enter the critical session
- Two properties under test
- Reachability: $\mathrm{EF} \bigwedge_{i} P_{i} . C$ (reached in $\mathrm{N}+1$ steps)
- Fairness: $E-\left(G F P_{i}, B \rightarrow\right.$ GFPI.CS) (reached in $N+5$ steps)

A Case-study: Fischer's Protocol

A Mutual-Exclusion Real-Time Protocol

- N identical processes accessing one critical section
- shared variable id $\in\{0,1,2, \ldots, N\}$: process identifier (0 : none)
- when entering wait state C_{j}, agent A_{j} writes its code on id
- if id $=j$ after δ, then A_{j} can enter the critical session
- Two properties under test
- Reachability: EF $\bigwedge_{i} P_{i} . C$ (reached in $\mathrm{N}+1$ steps)
- Fairness: $\mathrm{E} \neg\left(\mathbf{G F P} P_{i} . B \rightarrow \mathbf{G F} P_{i} . C S\right)$ (reached in $\mathrm{N}+5$ steps)

Fischer's protocol: (cont.)

Exercise:

- Why is $\mathrm{EF} \bigwedge_{i} P_{i} . C$ reached in $\mathrm{N}+1$ steps?

(See [Audemard et al, FORTE'02] for the solution.)

Fischer's protocol: (reachability)

$$
M \models_{k} \mathbf{E F} \bigwedge_{i} P_{i} . C
$$

MATHSAT			MATHSAT,Sym		DDD		UPPAL		KRONOS		RED		Red, Sym	
N	Time	Size												
3	0.05	2.9	0.04	2.9	0.11	106	0.01	1.7	0.01	0.8	0.23	2.0	0.19	2.0
4	0.09	3.0	0.08	3.0	0.14	106	0.02	1.9	0.02	2.2	1.00	2.1	0.70	2.1
5	0.20	3.2	0.16	3.2	0.24	106	0.21	1.9	0.09	19	3.70	2.2	2.00	2.4
6	0.60	3.7	0.23	3.7	0.47	106	3.44	6.7	0.39	236	12.00	2.7	5.20	3.1
7	3.20	4.2	0.36	4.2	1.30	106	153	54		MEM	38	4.0	12	4.7
8	29	4.9	0.52	4.9	3.96	106	TIME				121	7.6	26	7.8
9	343	5.9	0.75	5.9	14	106					416	16.6	49	13.3
10	3331	6.5	1.01	6.5	62	106					1382	39	90	23
11	TIME		1.39	7.0		106					TIME		157	38
12			1.89	7.5		MEM							266	63
13			2.44	8.2									439	100
14			3.24	8.9									709	155
15			4.11	9.7									1118	225
16			5.10	10.7									1717	342
17			6.30	11.7									2582	492
18			8.00	12.9									TIME	
19			9.50	14.2										

(MATHSAT times are sum of all instances up to k)

Fischer's protocol (liveness violation)

$$
M \models_{k} \mathbf{E} \neg\left(\mathbf{G F} P_{i} . B \rightarrow \mathbf{G F} P_{i} . C S\right)
$$

	MATHSAT						MATHSAT with Boenm heuristic			
$k \backslash N$	2	3	4	5	6	2	3	4	5	6
2	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.02
3	0.01	0.02	0.01	0.01	0.03	0.01	0.01	0.02	0.03	0.04
4	0.01	0.02	0.02	0.02	0.04	0.01	0.02	0.04	0.07	0.17
5	0.02	0.03	0.05	0.09	0.18	0.01	0.03	0.09	0.30	1.16
6	0.03	0.10	0.21	0.54	1.35	0.02	0.07	0.31	1.52	7.74
7	0.04	0.26	0.97	3.20	9.83	0.02	0.18	1.19	7.14	45.00
8		0.65	4.80	19.72	70.70		0.06	4.70	33.50	242.00
9			5.55	112.17	478.00			0.61	165.90	1348.00
10				303.17	3086.00				9.92	7824.00
11					5002.00					252.00
Σ	0.12	1.08	11.62	438.93	8648.15	0.07	0.37	6.98	218.40	9720.13

Outline

```
4. Motivations & Context
(2) Background (from previous chapters)
3) SMT-Based Bounded Model Checking of Timed Systems
- Basic Ideas
- Basic Encoding
- Improved & Extended Encoding
- A Case-Study
```

4 SMT-Based Bounded Model Checking of Linear Hybrid Systems (hints)

(5) Proposed Exercises

The encoding

Given a Linear hybrid automaton A and a LTL formula f :

- The encoding $[[A, f]]_{k}$ is obtained following the same schema as in propositional BMC:

$$
[[A, f]]_{k}:=I\left(s^{(0)}\right) \wedge \bigwedge_{i=0}^{k-1} R\left(s^{(i)}, s^{(i+1)}\right) \wedge\left(\neg L_{k} \wedge[[f]]_{k}^{0}\right) \vee \bigvee_{l=0}^{k}\left(, L_{k} \wedge,[[f]]_{k}^{0}\right)
$$

- $[[M, f]]_{k}$ is a $\mathcal{L R} \mathcal{A}$-formula, where
- Boolean variables encode the discrete part of the state of the automaton
- a real variable t (rational for rectangular automata) encodes absolute time elapse
- real (rational) variables $x \in X$ encode continuous variables
- constraints on real (rational) variables represent the continuous flow part of the state

The encoding

Given a Linear hybrid automaton A and a LTL formula f :

- The encoding $[[A, f]]_{k}$ is obtained following the same schema as in propositional BMC:

$$
[[A, f]]_{k}:=I\left(s^{(0)}\right) \wedge \bigwedge_{i=0}^{k-1} R\left(s^{(i)}, s^{(i+1)}\right) \wedge\left(\neg L_{k} \wedge[[f]]_{k}^{0}\right) \vee \bigvee_{I=0}^{k}\left(, L_{k} \wedge I[[f]]_{k}^{0}\right)
$$

- $[[M, f]]_{k}$ is a $\mathcal{L R} \mathcal{A}$-formula, where
- Boolean variables encode the discrete part of the state of the automaton
- a real variable t (rational for rectangular automata) encodes absolute time elapse
- real (rational) variables $x \in X$ encode continuous variables
- constraints on real (rational) variables represent the continuous flow part of the state

Encoding: Boolean Variables

- Locations: \underline{I}, as with timed systems
- Events: $a \in \Sigma$, as with timed systems
- Switches: T, as with timed systems
- Time elapse and null transitions: T_{δ} and $T_{\text {null }}^{j}$, as with timed systems

Encoding: Continuous variables and constraints

- Continuous variables:
- t represents the absolute time
- real (rational) variables x represent continuous values
- Continuous constraints (initial, guards, invariants) reduce to linear constraints on X : $\sum_{x_{i} \in X} a_{i} x_{i} \bowtie c$ s.t. $\bowtie \in\{\leq, \geq,<,>\}, c \in \mathbb{Q}$
- Jump relations reduce to Linear transformations $\bigwedge_{x_{i} \in X}\left(x_{j}^{\prime}:=\sum_{i} a_{i j} x_{i}+c_{j}\right)$
- Encoding the effect of time-elapse transitions:
- Encoding the effect of discrete transitions:

Encoding: Continuous variables and constraints

- Continuous variables:
- t represents the absolute time
- real (rational) variables x represent continuous values
- Continuous constraints (initial, guards, invariants) reduce to linear constraints on X : $\sum_{x_{i} \in X} a_{i} x_{i} \bowtie c$ s.t. $\bowtie \in\{\leq, \geq,<,>\}, c \in \mathbb{Q}$
- $x_{i} \bowtie c_{i}$ with rectangular automata
- Jump relations reduce to Linear transformations \bigwedge
- Encoding the effect of time-elapse transitions:
- Encoding the effect of discrete transitions:

Encoding: Continuous variables and constraints

- Continuous variables:
- t represents the absolute time
- real (rational) variables x represent continuous values
- Continuous constraints (initial, guards, invariants) reduce to linear constraints on X : $\sum_{x_{i} \in X} a_{i} x_{i} \bowtie c$ s.t. $\bowtie \in\{\leq, \geq,<,>\}, c \in \mathbb{Q}$
- $x_{i} \bowtie c_{i}$ with rectangular automata
- Jump relations reduce to Linear transformations \wedge
- Encoding the effect of time-elapse transitions:
- Encoding the effect of discrete transitions:

Encoding: Continuous variables and constraints

- Continuous variables:
- t represents the absolute time
- real (rational) variables x represent continuous values
- Continuous constraints (initial, guards, invariants) reduce to linear constraints on X : $\sum_{x_{i} \in X} a_{i} x_{i} \bowtie c$ s.t. $\bowtie \in\{\leq, \geq,<,>\}, c \in \mathbb{Q}$
- $x_{i} \bowtie c_{i}$ with rectangular automata
- Jump relations reduce to Linear transformations $\bigwedge_{x_{j} \in X}\left(x_{j}^{\prime}:=\sum_{i} a_{i j} x_{i}+c_{j}\right)$
- $\bigwedge_{x_{i} \in x}\left(x_{i}^{\prime}:=c_{i}\right)$ with rectangular automata
- Encoding the effect of time-elapse transitions:
- Encoding the effect of discrete transitions:

Encoding: Continuous variables and constraints

- Continuous variables:
- t represents the absolute time
- real (rational) variables x represent continuous values
- Continuous constraints (initial, guards, invariants) reduce to linear constraints on X : $\sum_{x_{i} \in X} a_{i} x_{i} \bowtie c$ s.t. $\bowtie \in\{\leq, \geq,<,>\}, c \in \mathbb{Q}$
- $x_{i} \bowtie c_{i}$ with rectangular automata
- Jump relations reduce to Linear transformations $\bigwedge_{x_{j} \in X}\left(x_{j}^{\prime}:=\sum_{i} a_{i j} x_{i}+c_{j}\right)$
- $\bigwedge_{x_{i} \in X}\left(x_{i}^{\prime}:=c_{i}\right)$ with rectangular automata
- Encoding the effect of time-elapse transitions:
- Encoding the effect of discrete transitions:

Encoding: Continuous variables and constraints

- Continuous variables:
- t represents the absolute time
- real (rational) variables x represent continuous values
- Continuous constraints (initial, guards, invariants) reduce to linear constraints on X : $\sum_{x_{i} \in X} a_{i} x_{i} \bowtie c$ s.t. $\bowtie \in\{\leq, \geq,<,>\}, c \in \mathbb{Q}$
- $x_{i} \bowtie c_{i}$ with rectangular automata
- Jump relations reduce to Linear transformations $\bigwedge_{x_{j} \in X}\left(x_{j}^{\prime}:=\sum_{i} a_{i j} x_{i}+c_{j}\right)$
- $\bigwedge_{x_{i} \in X}\left(x_{i}^{\prime}:=c_{i}\right)$ with rectangular automata
- Encoding the effect of time-elapse transitions:
- $t^{\prime}>t$
- Some $\wedge_{j} \Psi_{j}\left(X, t, X^{\prime}, t\right) \geq 0\left(\Psi_{j}\right.$ may be non-linear $)$
- Encoding the effect of discrete transitions:

Encoding: Continuous variables and constraints

- Continuous variables:
- t represents the absolute time
- real (rational) variables x represent continuous values
- Continuous constraints (initial, guards, invariants) reduce to linear constraints on X : $\sum_{x_{i} \in X} a_{i} x_{i} \bowtie c$ s.t. $\bowtie \in\{\leq, \geq,<,>\}, c \in \mathbb{Q}$
- $x_{i} \bowtie c_{i}$ with rectangular automata
- Jump relations reduce to Linear transformations $\bigwedge_{x_{j} \in X}\left(x_{j}^{\prime}:=\sum_{i} a_{i j} x_{i}+c_{j}\right)$
- $\bigwedge_{x_{i} \in X}\left(x_{i}^{\prime}:=c_{i}\right)$ with rectangular automata
- Encoding the effect of time-elapse transitions:
- $t^{\prime}>t$
- Some $\bigwedge_{j} \Psi_{j}\left(X, t, X^{\prime}, t\right) \geq 0$ (Ψ_{j} may be non-linear)
- with rectangular automata:
- Encoding the effect of discrete transitions:

Encoding: Continuous variables and constraints

- Continuous variables:
- t represents the absolute time
- real (rational) variables x represent continuous values
- Continuous constraints (initial, guards, invariants) reduce to linear constraints on X : $\sum_{x_{i} \in X} a_{i} x_{i} \bowtie c$ s.t. $\bowtie \in\{\leq, \geq,<,>\}, c \in \mathbb{Q}$
- $x_{i} \bowtie c_{i}$ with rectangular automata
- Jump relations reduce to Linear transformations $\bigwedge_{x_{j} \in X}\left(x_{j}^{\prime}:=\sum_{i} a_{i j} x_{i}+c_{j}\right)$
- $\bigwedge_{x_{i} \in X}\left(x_{i}^{\prime}:=c_{i}\right)$ with rectangular automata
- Encoding the effect of time-elapse transitions:
- $t^{\prime}>t$
- Some $\bigwedge_{j} \Psi_{j}\left(X, t, X^{\prime}, t\right) \geq 0$ (Ψ_{j} may be non-linear)
- with rectangular automata:

$$
\left(x_{i}^{\prime}-x_{i} \leq c_{i}^{M}\left(t^{\prime}-t\right)+b_{i}^{M}\right),\left(x_{i}^{\prime}-x_{i} \geq c_{i}^{m}\left(t^{\prime}-t\right)+b_{i}^{m}\right) \text { s.t. } c_{i}^{M} \stackrel{\text { def }}{=} \max \left\{\frac{d x_{i}}{d t}\right\}, c_{i}^{m} \stackrel{\text { def }}{=} \min \left\{\frac{d x_{i}}{d t}\right\}
$$

- Encoding the effect of discrete transitions:

Encoding: Continuous variables and constraints

- Continuous variables:
- t represents the absolute time
- real (rational) variables x represent continuous values
- Continuous constraints (initial, guards, invariants) reduce to linear constraints on X : $\sum_{x_{i} \in X} a_{i} x_{i} \bowtie c$ s.t. $\bowtie \in\{\leq, \geq,<,>\}, c \in \mathbb{Q}$
- $x_{i} \bowtie c_{i}$ with rectangular automata
- Jump relations reduce to Linear transformations $\bigwedge_{x_{j} \in X}\left(x_{j}^{\prime}:=\sum_{i} a_{i j} x_{i}+c_{j}\right)$
- $\bigwedge_{x_{i} \in X}\left(x_{i}^{\prime}:=c_{i}\right)$ with rectangular automata
- Encoding the effect of time-elapse transitions:
- $t^{\prime}>t$
- Some $\bigwedge_{j} \Psi_{j}\left(X, t, X^{\prime}, t\right) \geq 0$ (Ψ_{j} may be non-linear $)$
- with rectangular automata:

$$
\left(x_{i}^{\prime}-x_{i} \leq c_{i}^{M}\left(t^{\prime}-t\right)+b_{i}^{M}\right),\left(x_{i}^{\prime}-x_{i} \geq c_{i}^{m}\left(t^{\prime}-t\right)+b_{i}^{m}\right) \text { s.t. } c_{i}^{M} \stackrel{\text { def }}{=} \max \left\{\frac{d x_{i}}{d t}\right\}, c_{i}^{m} \stackrel{\text { def }}{=} \min \left\{\frac{d x_{i}}{d t}\right\},
$$

- Encoding the effect of discrete transitions:
- $t^{\prime}=t$, absolute time does not elapse
- Jump relations

Encoding: Continuous variables and constraints

- Continuous variables:
- t represents the absolute time
- real (rational) variables x represent continuous values
- Continuous constraints (initial, guards, invariants) reduce to linear constraints on X : $\sum_{x_{i} \in X} a_{i} x_{i} \bowtie c$ s.t. $\bowtie \in\{\leq, \geq,<,>\}, c \in \mathbb{Q}$
- $x_{i} \bowtie c_{i}$ with rectangular automata
- Jump relations reduce to Linear transformations $\bigwedge_{x_{j} \in X}\left(x_{j}^{\prime}:=\sum_{i} a_{i j} x_{i}+c_{j}\right)$
- $\bigwedge_{x_{i} \in X}\left(x_{i}^{\prime}:=c_{i}\right)$ with rectangular automata
- Encoding the effect of time-elapse transitions:
- $t^{\prime}>t$
- Some $\bigwedge_{j} \Psi_{j}\left(X, t, X^{\prime}, t\right) \geq 0$ (Ψ_{j} may be non-linear $)$
- with rectangular automata:

$$
\left(x_{i}^{\prime}-x_{i} \leq c_{i}^{M}\left(t^{\prime}-t\right)+b_{i}^{M}\right),\left(x_{i}^{\prime}-x_{i} \geq c_{i}^{m}\left(t^{\prime}-t\right)+b_{i}^{m}\right) \text { s.t. } c_{i}^{M} \stackrel{\text { def }}{=} \max \left\{\frac{d x_{i}}{d t}\right\}, c_{i}^{m} \stackrel{\text { def }}{=} \min \left\{\frac{d x_{i}}{d t}\right\},
$$

- Encoding the effect of discrete transitions:
- $t^{\prime}=t$, absolute time does not elapse
- Jump relations $\bigwedge_{j} x_{j}^{\prime}:=\sum_{i} a_{i j} x_{i}+c_{j}$

Encoding: Initial Conditions and Invariants

Initial condition $I(s)$:

- Initially, the automaton is in an initial location:
- Initially, clocks comply with initial conditions:

Transition relation $R\left(s, s^{\prime}\right)$: Invariants

- Always, being in a location implies the corresponding invariant constraints:

Encoding: Initial Conditions and Invariants

Initial condition $I(s)$:

- Initially, the automaton is in an initial location:

$$
t=0 \rightarrow \bigvee_{l_{i} \in L^{0}} \underline{I_{i}}
$$

- Initially, clocks comply with initial conditions:

Transition relation $R\left(s, s^{\prime}\right)$: Invariants

- Almays, being in a Iocation implies the corresponding invariant constraints:

Encoding: Initial Conditions and Invariants

Initial condition $I(s)$:

- Initially, the automaton is in an initial location:

$$
t=0 \rightarrow \bigvee_{l_{i} \in L^{0}} \underline{I_{i}}
$$

- Initially, clocks comply with initial conditions:

$$
t=0 \rightarrow \bigwedge_{l_{i} \in L^{0}}\left(\underline{I_{i}} \rightarrow \operatorname{Init} t_{/}(X)\right)
$$

Transition relation $R\left(s, s^{\prime}\right)$: Invariants

- Always, being in a location implies the corresponding invariant constraints:

Encoding: Initial Conditions and Invariants

Initial condition $I(s)$:

- Initially, the automaton is in an initial location:

$$
t=0 \rightarrow \bigvee_{l_{i} \in L^{0}} \underline{I_{i}}
$$

- Initially, clocks comply with initial conditions:

$$
t=0 \rightarrow \bigwedge_{l_{i} \in L^{\circ}}\left(\underline{I}_{i} \rightarrow \operatorname{Init} t_{/}(X)\right)
$$

Transition relation $R\left(s, s^{\prime}\right)$: Invariants

- Always, being in a location implies the corresponding invariant constraints:

$$
\bigwedge_{I_{i} \in L}\left(\underline{I_{i}} \rightarrow \bigwedge_{\psi \in I\left(l_{i}\right)} \psi\right)
$$

Encoding (linear automata): Transitions

Transition relation $T\left(s, s^{\prime}\right)$:

- Switches:
- Time elapse:
- Null transition:

Encoding (linear automata): Transitions

Transition relation $T\left(s, s^{\prime}\right)$:

- Switches:

$$
\bigwedge_{T^{\text {ded }}\left(\left\{l_{i}, a, \varphi, \varphi, J, l_{j}\right\rangle \in E\right.} T \rightarrow\left(\underline{I}_{\underline{i}} \wedge \underline{\mathrm{a}} \wedge \varphi \wedge \underline{\underline{l}}_{j}^{\prime} \wedge\left(t^{\prime}=t\right) \wedge \bigwedge_{x_{j} \in X}\left(x_{j}^{\prime}:=\sum_{i} a_{i j} x_{i}+c_{j}\right)\right)
$$

- Time elapse:

- Null transition:

Encoding (linear automata): Transitions

Transition relation $T\left(s, s^{\prime}\right)$:

- Switches:
- Time elapse:

$$
T_{\delta} \rightarrow\left(\left(\underline{I^{\prime}}=\underline{l}\right) \wedge\left(t^{\prime}-t>0\right) \wedge\left(\bigwedge_{j} \Psi_{j}\left(X, t, X^{\prime}, t\right) \geq 0\right) \wedge \bigwedge_{a \in \Sigma} \neg \underline{a}\right)
$$

- Null transition:
$T_{\text {null }}^{j} \rightarrow\left(\left(I^{\prime}=I\right) \wedge\left(t^{\prime}=t\right) \wedge \bigwedge_{x_{i} \in X}\left(x_{i}^{\prime}=x_{i}\right) \wedge \bigwedge_{a \in \Sigma} \neg a\right)$

Encoding (linear automata): Transitions

Transition relation $T\left(s, s^{\prime}\right)$:

- Switches:

$$
\bigwedge_{T^{\text {ded }}\left(\left\{l_{i}, a, \varphi, \varphi, J, l_{j}\right\rangle \in E\right.} T \rightarrow\left(\underline{I}_{\underline{i}} \wedge \underline{a} \wedge \varphi \wedge \underline{\underline{l}}_{j}^{\prime} \wedge\left(t^{\prime}=t\right) \wedge \bigwedge_{x_{j} \in X}\left(x_{j}^{\prime}:=\sum_{i} a_{i j} x_{i}+c_{j}\right)\right)
$$

- Time elapse:

$$
T_{\delta} \rightarrow\left(\left(\underline{I^{\prime}}=\underline{l}\right) \wedge\left(t^{\prime}-t>0\right) \wedge\left(\bigwedge_{j} \Psi_{j}\left(X, t, X^{\prime}, t\right) \geq 0\right) \wedge \bigwedge_{a \in \Sigma} \neg \underline{a}\right)
$$

- Null transition:

$$
T_{\text {null }}^{j} \rightarrow\left(\left(\underline{I^{\prime}}=\underline{I}\right) \wedge\left(t^{\prime}=t\right) \wedge \bigwedge_{x_{i} \in X}\left(x_{i}^{\prime}=x_{i}\right) \wedge \bigwedge_{a \in \Sigma} \neg \underline{a}\right)
$$

Encoding (rectangular automata): Transitions

- Null transition:

Encoding (rectangular automata): Transitions

Transition relation $T\left(s, s^{\prime}\right)$:

- Switches:

$$
\bigwedge_{\substack{ \\T_{\overline{\text { def }}}\left\langle l_{i}, a, \varphi, \varphi, \lambda, \boldsymbol{l}_{j}\right\rangle \in E}} T \rightarrow\left(\underline{I_{i}} \wedge \underline{a} \wedge \varphi \wedge \underline{I}_{\underline{I_{2}^{\prime}}} \wedge\left(t^{\prime}=t\right) \wedge \bigwedge_{x_{i} \in X}\left(x_{i}^{\prime}:=c_{i}\right)\right)
$$

- Time elapse:
- Null transition:

Encoding (rectangular automata): Transitions

Transition relation $T\left(s, s^{\prime}\right)$:

- Switches:

$$
\bigwedge_{\substack{\left.\underline{\text { def }} \\ l_{i}, a, \varphi, \varphi, \lambda, l_{j}\right\rangle \in E}} T \rightarrow\left(\underline{I_{i}} \wedge \underline{a} \wedge \varphi \wedge \underline{\underline{l}}_{\underline{\prime}}^{\prime} \wedge\left(t^{\prime}=t\right) \wedge \bigwedge_{x_{i} \in X}\left(x_{i}^{\prime}:=c_{i}\right)\right)
$$

- Time elapse:
$T_{\delta} \rightarrow\left(\left(I_{-}^{\prime}=\underline{I}\right) \wedge\left(t^{\prime}-t>0\right) \wedge \bigwedge_{x_{i} \in X}\left(x_{i}^{\prime}-x_{i} \leq c_{i}^{M}\left(t^{\prime}-t\right)+b_{i}^{M}\right) \wedge\left(x_{i}^{\prime}-x_{i} \geq c_{i}^{m}\left(t^{\prime}-t\right)+b_{i}^{m}\right) \wedge \bigwedge_{a \in \Sigma} \neg \underline{a}\right)$
- Null transition:

Encoding (rectangular automata): Transitions

Transition relation $T\left(s, s^{\prime}\right)$:

- Switches:

$$
\bigwedge_{\substack{\left.\underline{\operatorname{det}} \\ l_{i}, a, \varphi, \varphi, \lambda, \boldsymbol{l}_{j}\right\rangle \in E}} T \rightarrow\left(\underline{\underline{l}}_{\underline{\prime}} \wedge \underline{a} \wedge \varphi \wedge \underline{\underline{l}}_{\dot{\prime}}^{\prime} \wedge\left(t^{\prime}=t\right) \wedge \bigwedge_{x_{i} \in X}\left(x_{i}^{\prime}:=c_{i}\right)\right)
$$

- Time elapse:
$T_{\delta} \rightarrow\left(\left(I_{-}^{\prime}=\underline{I}\right) \wedge\left(t^{\prime}-t>0\right) \wedge \bigwedge_{x_{i} \in X}\left(x_{i}^{\prime}-x_{i} \leq c_{i}^{M}\left(t^{\prime}-t\right)+b_{i}^{M}\right) \wedge\left(x_{i}^{\prime}-x_{i} \geq c_{i}^{m}\left(t^{\prime}-t\right)+b_{i}^{m}\right) \wedge \bigwedge_{a \in \Sigma} \neg \underline{a}\right)$
- Null transition:

$$
T_{\text {null }}^{j} \rightarrow\left(\left(I_{-}^{\prime}=\underline{I}\right) \wedge\left(t^{\prime}=t\right) \wedge \bigwedge_{x_{i} \in X}\left(x_{i}^{\prime}=x_{i}\right) \wedge \bigwedge_{a \in \Sigma} \neg \underline{a}\right)
$$

Outline

（1）Motivations \＆Context
（2）Background（from previous chapters）
（3）SMT－Based Bounded Model Checking of Timed Systems
－Basic Ideas
－Basic Encoding
－Improved \＆Extended Encoding
－A Case－Study
（ SMT－Based Bounded Model Checking of Linear Hybrid Systems（hints）
（5）Proposed Exercises

Proposed Exercise

Proposed Exercise

- Consider the Train-gate-controller example from [Alur CAV'99] (see previous chapter)
- Encode the Initial state formula
- Encode the transition relation
- Encode the BMC problem for the formula $\mathbf{G}\left(s_{2} \rightarrow t_{2}\right)$
- As above, reducing the delay time for the controller from 1 to 0.5
- what happens?
- in how many steps?
- Encode the above into MathSAT

Proposed Exercise

Proposed Exercise

- Consider the Train-gate-controller example from [Alur CAV'99] (see previous chapter)
- Encode the Initial state formula
- Encode the transition relation
- Encode the BMC problem for the formula $\mathbf{G}\left(s_{2} \rightarrow t_{2}\right)$
- As above, reducing the delay time for the controller from 1 to 0.5
- what happens?
- in how many steps?
- Encode the above into MathSAT

Proposed Exercise

Proposed Exercise

- Consider the Train-gate-controller example from [Alur CAV'99] (see previous chapter)
- Encode the Initial state formula
- Encode the transition relation
- Encode the BMC problem for the formula $\mathbf{G}\left(s_{2} \rightarrow t_{2}\right)$
- As above, reducing the delay time for the controller from 1 to 0.5
- what happens?
- in how many steps?
- Encode the above into MathSAT

Proposed Exercise

Proposed Exercise

- Consider the rectangular automaton of the Train-gate example (see previous chapter)
- Encode the Initial state formula $I\left(s^{(0)}\right)$
- Encode the transition relation $R\left(s^{(i)}, s^{(i+1)}\right)$

[^0]: Note: also for events, switches\&transitions it is possible to use arrays of Boolean variables of size $\left\lceil\log _{2}(|\Sigma|)\right\rceil,\left\lceil\log _{2}(|E|+2)\right\rceil$ respectively

[^1]: Note: also for events, switches\&transitions it is possible to use arrays of Boolean variables of size $\left\lceil\log _{2}(|\Sigma|)\right\rceil,\left\lceil\log _{2}(|E|+2)\right\rceil$ respectively

