Formal Methods Module II: Formal Verification Ch. 08: Abstraction in Model Checking

Roberto Sebastiani

DISI, Università di Trento, Italy - roberto.sebastiani@unitn.it
URL: http://disi.unitn.it/rseba/DIDATTICA/fm2022/
Teaching assistant: Giuseppe Spallitta - giuseppe.spallitta@unitn.it

M.S. in Computer Science, Mathematics, \& Artificial Intelligence Systems

Academic year 2021-2022
last update: Friday $6^{\text {th }}$ May, 2022, 18:20
Copyright notice: some material (text, figures) displayed in these slides is courtesy of R. Alur, M. Benerecetti, A. Cimatti, M. Di Natale, P. Pandya, M. Pistore, M. Roveri, C. Tinelli, and S. Tonetta, who detain its copyright. Some exampes displayed in these slides are taken from [Clarke, Grunberg \& Peled, "Model Checking", MIT Press], and their copyright is detained by the authors. All the other material is copyrighted by Roberto Sebastiani. Every commercial use of this material is strictly forbidden by the copyright laws without the authorization of the authors. No copy of these slides can be displayed in public without containing this copyright notice.

Outline

(1) Abstraction
(2) Abstraction-Based Symbolic Model Cheching

- Abstraction
- Checking the counter-examples
- Refinement
(3) Exercises

Outline

(1) Abstraction

(2) Abstraction-Based Symbolic Model Cheching

- Abstraction
- Checking the counter-examples
- Refinement
(3) Exercises

Model Checking Safety Properties: $M \models \mathbf{G} \neg B A D$

Add reachable states until reaching a fixed-point or a "bad" state

[^0]
Model Checking Safety Properties: $M \models \mathbf{G} \neg B A D$

Add reachable states until reaching a fixed-point or a "bad" state

[^1]
Model Checking Safety Properties: $M \models \mathbf{G} \neg B A D$

Add reachable states until reaching a fixed-point or a "bad" state

Problem: too many states to handle! (even for symbolic MC)

Model Checking Safety Properties: $M \models \mathbf{G} \neg B A D$

Add reachable states until reaching a fixed-point or a "bad" state

Problem: too many states to handle! (even for symbolic MC)

Model Checking Safety Properties: $M \models \mathbf{G} \neg B A D$

Add reachable states until reaching a fixed-point or a "bad" state

Problem: too many states to handle! (even for symbolic MC)

Model Checking Safety Properties: $M \models \mathbf{G} \neg B A D$

Add reachable states until reaching a fixed-point or a "bad" state

Problem: too many states to handle! (even for symbolic MC)

Model Checking Safety Properties: $M \models \mathbf{G} \neg B A D$

Add reachable states until reaching a fixed-point or a "bad" state

Problem: too many states to handle! (even for symbolic MC)

Model Checking Safety Properties: $M \models \mathbf{G} \neg B A D$

Add reachable states until reaching a fixed-point or a "bad" state

Problem: too many states to handle! (even for symbolic MC)

Model Checking Safety Properties: $M \models \mathbf{G} \neg B A D$

Add reachable states until reaching a fixed-point or a "bad" state

Problem: too many states to handle! (even for symbolic MC)

Idea: Abstraction

Apply a (non-injective) Abstraction Function h to M
\Longrightarrow Build an abstract (and much smaller) system M'

Abstraction \& Refinement

Abstraction \& Refinement

- Let S be the ground (concrete) state space
- Let S^{\prime} be the abstract state space
- Abstraction: a (typically non-injective) map $h: S \longmapsto S^{\prime}$
- h typically a many-to-one function
- Refinement: a map $r: S^{\prime} \longmapsto 2^{S}$ s.t. $r\left(s^{\prime}\right) \stackrel{\text { def }}{=}\left\{s \in S \mid s^{\prime}=h(s)\right\}$

Simulation and Bisimulation

Simulation

Let $M_{1} \stackrel{\text { def }}{=}\left\langle S_{1}, I_{1}, R_{1}, A P_{1}, L_{1}\right\rangle$ and $M_{2} \stackrel{\text { def }}{=}\left\langle S_{2}, I_{2}, R_{2}, A P_{2}, L_{2}\right\rangle$. //Then $p \subseteq S_{1} \times S_{2}$ is a simulation between M_{1} and $M_{2}\left(M_{1}\right.$ simulates M_{2}) iff

- for every $s_{2} \in I_{2}$ exists $s_{1} \in I_{1}$ s.t. $\left\langle s_{1}, s_{2}\right\rangle \in p$
- for every $\left\langle s_{1}, s_{2}\right\rangle \in p$:
- for every $\left\langle s_{2}, t_{2}\right\rangle \in R_{2}$, exists $\left\langle s_{1}, t_{1}\right\rangle \in R_{1}$ s.t. $\left\langle t_{1}, t_{2}\right\rangle \in p$
(Intuitively, for every transition in M_{2} there is a corresponding transition in M_{1}.)
Example of p (spy game): "follower M_{1} keeps escaper M_{2} at eyesight"

Bisimulation

P is a bisimulation between M and M^{\prime} iff it is both a simulation between M and M^{\prime} and between M^{\prime} and M.
We say that M and M^{\prime} bisimulate each other.

Example I

- Does M simulate M'? No: e.g., no arc from S23 to any S3i.
- Does M' simulate M? Yes

Example II

- Does M simulate M'? Yes
- Does M' simulate M? No: e.g., no arc from T4 to $T 3$.

Example III

- Does M simulate M'? Yes
- Does M' simulate M? Yes

Existential Abstraction (Over-Approximation)

An Abstraction from M to M^{\prime} is an Existential Abstraction (aka Over-Approximation) iff M^{\prime} simulates M

Ground
System

Abstract
System
M'

Model Checking with Existential Abstractions

Preservation Theorem

- Let φ be a universally-quantified property (e.g., in LTL or ACTL)
- Let M^{\prime} simulate M

Then we have that

$$
M^{\prime} \models \varphi \Longrightarrow M \models \varphi
$$

- Intuition: if M has a countermodel, then M ' simulates it
- The converse does not hold

$$
M \models \varphi \nRightarrow M^{\prime} \models \varphi
$$

\Longrightarrow The abstract counter-example may be spurious (e.g., in previous figure, $T 1 \rightarrow T 2 \rightarrow T 3 \rightarrow T 4 \rightarrow T 5 \rightarrow T 6$)

Bisimulation Abstraction

An Abstraction from M to M^{\prime} is a Bisimulation Abstraction iff M simulates M^{\prime} and M^{\prime} simulates M

Model Checking with Bisimulation Abstractions

Preservation Theorem

- Let φ be any ACTL/LTL property
- Let M simulate M^{\prime} and M^{\prime} simulate M

Then we have that

$$
M^{\prime} \models \varphi \Longleftrightarrow M \models \varphi
$$

Outline

(2) Abstraction-Based Symbolic Model Cheching

- Abstraction
- Checking the counter-examples
- Refinement

Counter-Example Guided Abstraction Refinement - CEGAR

General Schema:

Outline

(2) Abstraction-Based Symbolic Model Cheching

- Abstraction
- Checking the counter-examples
- Refinement

Counter-Example Guided Abstraction Refinement

General Schema:

Counter-Example Guided Abstraction Refinement

General Schema:

A Popular Abstraction for Symbolic MC of $\mathbf{G} \neg B A D$ I

- A.k.a. "Localization Reduction"
- Partition Boolean variables into visible (V) and invisible (I) ones
- The abstract model built on visible variables only.
- Invisible variables are made inputs (no updates in the transition relation)
- All variables occurring in " $\neg B A D$ " must be visible
- The abstraction function maps each state to its projection over V.
\Longrightarrow Group ground states with same visible part to a single abstract state.

$\left[\right.$| | visible | | invisible | |
| :--- | :--- | :--- | :--- | :--- |
| | x_{1} | x_{2} | x_{3} | x_{4} |
| $S_{11}:$ | 0 | 0 | 0 | 0 |
| $S_{12}:$ | 0 | 0 | 0 | 1 |
| $S_{13}:$ | 0 | 0 | 1 | 0 |
| $S_{14}:$ | 0 | 0 | 1 | 1 |$]$

A Popular Abstraction for Symbolic MC of $\mathbf{G} \neg B A D$ I

- A.k.a. "Localization Reduction"
- Partition Boolean variables into visible (V) and invisible (I) ones
- The abstract model built on visible variables only.
- Invisible variables are made inputs (no updates in the transition relation)
- All variables occurring in " $\neg B A D$ " must be visible
- The abstraction function maps each state to its projection over V.
\Longrightarrow Group ground states with same visible part to a single abstract state.

$\left[\right.$| | visible | | | invisible | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | x_{1} | x_{2} | x_{3} | x_{4} | |
| $S_{11}:$ | 0 | 0 | 0 | 0 | |
| $S_{12}:$ | 0 | 0 | 0 | 1 | |
| $S_{13}:$ | 0 | 0 | 1 | 0 | |
| $S_{14}:$ | 0 | 0 | 1 | 1 | |$]$

A Popular Abstraction for Symbolic MC of $\mathbf{G} \neg B A D$ I

- A.k.a. "Localization Reduction"
- Partition Boolean variables into visible (V) and invisible (I) ones
- The abstract model built on visible variables only.
- Invisible variables are made inputs (no updates in the transition relation)
- All variables occurring in " $\neg B A D$ " must be visible
- The abstraction function maps each state to its projection over V.
\Longrightarrow Group ground states with same visible part to a single abstract state.

$\left[\right.$| | visible | | | invisible | |
| :--- | :--- | :--- | :--- | :--- | :---: |
| | x_{1} | x_{2} | x_{3} | x_{4} | |
| $S_{11}:$ | 0 | 0 | 0 | 0 | |
| $S_{12}:$ | 0 | 0 | 0 | 1 | |
| $S_{13}:$ | 0 | 0 | 1 | 0 | |
| $S_{14}:$ | 0 | 0 | 1 | 1 | |$]$

A Popular Abstraction for Symbolic MC of $G \neg B A D$ II

M' can be computed efficiently if M is in functional form
(e.g. sequential circuits).

$$
\left[\begin{array}{l}
\operatorname{next}\left(x_{1}\right):=f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
\operatorname{next}\left(x_{2}\right):=f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
\operatorname{next}\left(x_{3}\right):=f_{3}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
\operatorname{next}\left(x_{4}\right):=f_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{array}\right] \Longrightarrow\left[\begin{array}{l}
\operatorname{next}\left(x_{1}\right):=f_{1}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
\operatorname{next}\left(x_{2}\right):=f_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
\end{array}\right]
$$

Note: The next values of invisible variables, $\operatorname{next}\left(x_{3}\right)$ and $\operatorname{next}\left(x_{4}\right)$, can assume every value nondeterministically
\Longrightarrow do not constrain the transition relation

Since M^{\prime} obviously simulates M, this is an Existential Abstraction

- $M^{\prime} \models \varphi \Longrightarrow M \models \varphi$
- may produce spurious counter-examples

Outline

2 Abstraction-Based Symbolic Model Cheching

- Abstraction
- Checking the counter-examples
- Refinement
(3) Exercises

Counter-Example Guided Abstraction Refinement

General Schema:

Counter-Example Guided Abstraction Refinement

General Schema:

Checking the Abstract Counter-Example I

The problem

- Let c_{0}, \ldots, c_{m} counter-example in the abstract space
- Note: each c_{i} is a truth assignment on the visible variables
- Problem: check if there exist a corresponding ground counterexample s_{0}, \ldots, s_{m} s.t. $c_{i}=h\left(s_{i}\right)$, for every i

Checking the Abstract Counter-Example II

Idea

- Simulate the counterexample on the concrete model
- Use Bounded Model Checking:

$$
\Phi \stackrel{\text { def }}{=} I\left(s_{0}\right) \wedge \bigwedge_{i=0}^{m-1} R\left(s_{i}, s_{i+1}\right) \wedge \bigwedge_{i=0}^{m} \operatorname{visible}\left(s_{i}\right)=c_{i}
$$

If satisfiable, the counter example is real, otherwise it is spurious

Note: much more efficient than the direct BMC problem:

$$
\Phi \stackrel{\text { det }}{=} I\left(s_{0}\right) \wedge \bigwedge_{i=0}^{m-1} R\left(s_{i}, s_{i+1}\right) \wedge \bigvee_{i=0}^{m} \neg B A D_{i}
$$

\Longrightarrow cuts a $2^{(m+1) \cdot|V|}$ factor from the Boolean search space.

Outline

(2) Abstraction-Based Symbolic Model Cheching

- Abstraction
- Checking the counter-examples
- Refinement

Counter-Example Guided Abstraction Refinement

Counter-Example Guided Abstraction Refinement

The cause of spurious counter-examples I

Problem

There is a state in the abstract counter-example (failure state) s.t. two different and un-connected kinds of ground states are mapped into it:

- Deadend states: reachable states which do not allow to proceed along a refinement of the abstract counter-example
- Bad states: un-reachable states which allow to proceed along a refinement of the abstract counter-example

The cause of spurious counter-examples II
For the spurious counter-example: $T 1 \rightarrow T 2 \rightarrow T 3 \rightarrow T 4 \rightarrow T 5 \rightarrow T 6$

Ground System M

Abstract System M'

The cause of spurious counter-examples II
For the spurious counter-example: $T 1 \rightarrow T 2 \rightarrow T 3 \rightarrow T 4 \rightarrow T 5 \rightarrow T 6$

Ground System M

Abstract System M'

The cause of spurious counter-examples II
For the spurious counter-example: $T 1 \rightarrow T 2 \rightarrow T 3 \rightarrow T 4 \rightarrow T 5 \rightarrow T 6$

Ground
System
M

Abstract System M'

The cause of spurious counter-examples II
For the spurious counter-example: $T 1 \rightarrow T 2 \rightarrow T 3 \rightarrow T 4 \rightarrow T 5 \rightarrow T 6$

Abstract System M'

The cause of spurious counter-examples III

Problem

There is a state in the abstract counter-example (failure state) s.t. two different and un-connected kinds of ground states are mapped into it:

- Deadend states: reachable states which do not allow to proceed along a refinement of the abstract counter-example
- Bad states: un-reachable states which allow to proceed along a refinement of the abstract counter-example

Solution: Refine the abstraction function.

1. identify the failure state and its deadend and bad states
2. refine the abstraction function s.t. deadend and bad states are mapped into different abstract state

Identify the failure state and its deadend \& bad states

- The failure state is the state of maximum index f in the abstract counter-example s.t. the following formula is satisfiable:

$$
\Phi_{D} \stackrel{\text { def }}{=} I\left(s_{0}\right) \wedge \bigwedge_{i=0}^{f-1} R\left(s_{i}, s_{i+1}\right) \wedge \bigwedge_{i=0}^{f} \text { visible }\left(s_{i}\right)=c_{i}
$$

- The (restriction on index f of the) models of Φ_{D} identify the deadend states $\left\{d_{1}, \ldots, d_{k}\right\}$
- The bad states $\left\{b_{1}, \ldots, b_{n}\right\}$ are identified by the (restriction on index f of the) models of the following formula:

$$
\Phi_{B} \stackrel{\text { def }}{=} R\left(s_{f}, s_{f+1}\right) \wedge \operatorname{visible}\left(s_{f}\right)=c_{f} \wedge \operatorname{visible}\left(s_{f+1}\right)=c_{f+1}
$$

Identify the failure state and its deadend \& bad states

For the spurious counter-example: $T 1 \rightarrow T 2 \rightarrow T 3 \rightarrow T 4 \rightarrow T 5 \rightarrow T 6$

Ground
System
M

Abstract System M'

Refinement: Separate deadend \& bad states

The state separation problem

- Input: sets $D \stackrel{\text { def }}{=}\left\{d_{1}, \ldots, d_{k}\right\}$ and $B \stackrel{\text { def }}{=}\left\{b_{1}, \ldots, b_{n}\right\}$ of states
- Output: (possibly smallest) set $U \in I$ of invisible variables s.t.

$$
\forall d_{i} \in D, \forall b_{j} \in B, \exists u \in U \text { s.t. } d_{i}(u) \neq b_{j}(u)
$$

\Longrightarrow the truth values of U allow for separating each pair $\left\langle d_{i}, b_{j}\right\rangle$
\Longrightarrow The refinement h^{\prime} is obtained by adding U to V .

Example

visible, invisible

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
d_{1}	0	1	0	0	1	0	1
d_{2}	0	1	0	1	1	1	0
b_{1}	0	1	0	1	1	1	1
b_{2}	0	1	0	0	0	0	1

- differentiating d_{1}, b_{1} : make x_{4} visible
- differentiating d_{1}, b_{2} : make x_{5} visible
- differentiating d_{2}, b_{1} : make x_{7} visible
- differentiating d_{2}, b_{2} : already different
$U=\left\{x_{4}, x_{5}, x_{7}\right\}, h^{\prime}$ keeps only x_{6} invisible

Goal: Keep U as small as possible!

Example

visible, invisible

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
d_{1}	0	1	0	0	1	0	1
d_{2}	0	1	0	1	1	1	0
b_{1}	0	1	0	1	1	1	1
b_{2}	0	1	0	0	0	0	1

- differentiating d_{1}, b_{1} : make x_{4} visible
- differentiating d_{1}, b_{2} : make x_{5} visible
- differentiating d_{2}, b_{1} : make x_{7} visible
- differentiating d_{2}, b_{2} : already different
$U=\left\{x_{4}, x_{5}, x_{7}\right\}, h^{\prime}$ keeps only x_{6} invisible

Goal: Keep U as small as possible!

Example

visible, invisible

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
d_{1}	0	1	0	0	1	0	1
d_{2}	0	1	0	1	1	1	0
b_{1}	0	1	0	1	1	1	1
b_{2}	0	1	0	0	0	0	1

- differentiating d_{1}, b_{1} : make x_{4} visible
- differentiating d_{1}, b_{2} : make x_{5} visible
- differentiating d_{2}, b_{1} : make x_{7} visible
- differentiating d_{2}, b_{2} : already different $U=\left\{x_{4}, x_{5}, x_{7}\right\}, h^{\prime}$ keeps only x_{6} invisible

Example

visible, invisible

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
d_{1}	0	1	0	0	1	0	1
d_{2}	0	1	0	1	1	1	0
b_{1}	0	1	0	1	1	1	1
b_{2}	0	1	0	0	0	0	1

- differentiating d_{1}, b_{1} : make x_{4} visible
- differentiating d_{1}, b_{2} : make x_{5} visible
- differentiating d_{2}, b_{1} : make x_{7} visible
- differentiating d_{2}, b_{2} : already different $U=\left\{x_{4}, x_{5}, x_{7}\right\}, h^{\prime}$ keeps only x_{6} invisible

Example

visible, invisible							
	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
d_{1}	0	1	0	0	1	0	1
d_{2}	0	1	0	1	1	1	0
b_{1}	0	1	0	1	1	1	1
b_{2}	0	1	0	0	0	0	1

- differentiating d_{1}, b_{1} : make x_{4} visible
- differentiating d_{1}, b_{2} : make x_{5} visible
- differentiating d_{2}, b_{1} : make x_{7} visible
- differentiating d_{2}, b_{2} : already different

Example

visible, invisible							
	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
d_{1}	0	1	0	0	1	0	1
d_{2}	0	1	0	1	1	1	0
b_{1}	0	1	0	1	1	1	1
b_{2}	0	1	0	0	0	0	1

- differentiating d_{1}, b_{1} : make x_{4} visible
- differentiating d_{1}, b_{2} : make x_{5} visible
- differentiating d_{2}, b_{1} : make x_{7} visible
- differentiating d_{2}, b_{2} : already different
$\Longrightarrow U=\left\{x_{4}, x_{5}, x_{7}\right\}, h^{\prime}$ keeps only x_{6} invisible

Example

visible, invisible							
	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
d_{1}	0	1	0	0	1	0	1
d_{2}	0	1	0	1	1	1	0
b_{1}	0	1	0	1	1	1	1
b_{2}	0	1	0	0	0	0	1

- differentiating d_{1}, b_{1} : make x_{4} visible
- differentiating d_{1}, b_{2} : make x_{5} visible
- differentiating d_{2}, b_{1} : make x_{7} visible
- differentiating d_{2}, b_{2} : already different
$\Longrightarrow U=\left\{x_{4}, x_{5}, x_{7}\right\}, h^{\prime}$ keeps only x_{6} invisible

Two Separation Methods

- Separation based on Decision-Tree Learning
- Not optimal.
- Polynomial.
- ILP-based separation
- Minimal separating set.
- Computationally expensive.

Separation with decision tree (Example)

Idea: expand the decision tree until no $\left\langle d_{i}, b_{j}\right\rangle$ pair belongs to set.

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
d_{1}	0	1	0	0	1	0	1
d_{2}	0	1	0	1	1	1	0
b_{1}	0	1	0	1	1	1	1
b_{2}	0	1	0	0	0	0	1

$\left\{d_{1}, d_{2}, b_{1}, b_{2}\right\}$

- differentiating $d_{1}, b_{1}: x_{4}$
- differentiating $d_{1}, b_{2}: x_{5}$
- differentiating $d_{2}, b_{1}: x_{7}$ $\Longrightarrow U=\left\{x_{4}, x_{5}, x_{7}\right\}$

Separation with decision tree (Example)

Idea: expand the decision tree until no $\left\langle d_{i}, b_{j}\right\rangle$ pair belongs to set.

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
d_{1}	0	1	0	0	1	0	1
d_{2}	0	1	0	1	1	1	0
b_{1}	0	1	0	1	1	1	1
b_{2}	0	1	0	0	0	0	1

- differentiating $d_{1}, b_{1}: x_{4}$
- differentiating $d_{1}, b_{2}: x_{5}$
- differentiating $d_{2}, b_{1}: x_{7}$ $\Longrightarrow U=\left\{x_{4}, x_{5}, x_{7}\right\}$

Separation with decision tree (Example)

Idea: expand the decision tree until no $\left\langle d_{i}, b_{j}\right\rangle$ pair belongs to set.

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
d_{1}	0	1	0	0	1	0	1
d_{2}	0	1	0	1	1	1	0
b_{1}	0	1	0	1	1	1	1
b_{2}	0	1	0	0	0	0	1

- differentiating $d_{1}, b_{1}: x_{4}$
- differentiating $d_{1}, b_{2}: x_{5}$
- differentiating $d_{2}, b_{1}: x_{7}$ $\Longrightarrow U=\left\{x_{4}, x_{5}, x_{7}\right\}$

Separation with decision tree (Example)

Idea: expand the decision tree until no $\left\langle d_{i}, b_{j}\right\rangle$ pair belongs to set.

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
d_{1}	0	1	0	0	1	0	1
d_{2}	0	1	0	1	1	1	0
b_{1}	0	1	0	1	1	1	1
b_{2}	0	1	0	0	0	0	1

- differentiating $d_{1}, b_{1}: x_{4}$
- differentiating $d_{1}, b_{2}: x_{5}$
- differentiating $d_{2}, b_{1}: x_{7}$ $\Longrightarrow U=\left\{x_{4}, x_{5}, x_{7}\right\}$

Separation with 0-1 ILP

Idea

- Encode the problem as a 0-1 ILP problem

$$
\begin{array}{ll}
\min \sum_{\substack{x_{k} \in I}} v_{k}, & \text { subject to : } \\
\sum_{\substack{x_{k} \in I \\
d\left(x_{k}\right) \neq b\left(x_{k}\right)}} v_{k} \geq 1 & \forall d \in D, \forall b \in B,
\end{array}
$$

- intuition: $v_{k}=\top$ iff x_{k} must me made visible
- one constraint for every pair $\left\langle d_{i}, b_{j}\right\rangle$

Separation with 0-1 ILP: Example

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
d_{1}	0	1	0	0	1	0	1
d_{2}	0	1	0	1	1	1	0
b_{1}	0	1	0	1	1	1	1
b_{2}	0	1	0	0	0	0	1

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
d_{1}	0	1	0	0	1	0	1
d_{2}	0	1	0	1	1	1	0
b_{1}	0	1	0	1	1	1	1
b_{2}	0	1	0	0	0	0	1

$$
\begin{aligned}
& \min \left\{v_{4}+v_{5}+v_{6}+v_{7}\right\} \quad \text { subject to : } \\
& \left\{\begin{array}{cccccc}
v_{4}+ & & v_{6} & & \geq 1 & / / \text { separating } d_{1}, b_{1} \\
& v_{5} & & & \geq 1 & / / \text { separating } d_{1}, b_{2} \\
& & & v_{7} & \geq 1 & / / \text { separating } d_{2}, b_{1} \\
v_{4}+ & v_{5}+ & v_{6}+ & v_{7} & \geq 1 & / / \text { separating } d_{2}, b_{2}
\end{array}\right.
\end{aligned}
$$

Outline

(1) Abstraction

(2) Abstraction-Based Symbolic Model Cheching

- Abstraction
- Checking the counter-examples
- Refinement
(3) Exercises

Ex: Simulation

Consider the following pair of ground and abstract machines M and M^{\prime}, and the abstraction $\alpha: M \longmapsto M^{\prime}$ which, for every $j \in\{1, \ldots, 6\}$, maps $S j 1, S j 2, S j 3$ into $T j$.

Abstract System

M

Ex: Simulation [cont.]

For each of the following facts, say which is true and which is false.
(a) M simulates M^{\prime}.
[Solution: False. E.g.,: if M is in $S 23, M^{\prime}$ is in $T 2$ and M^{\prime} switches to $T 3$, there is no transition in M from $S 23$ to any state $S 3 i, i \in\{1,2,3\}$.]
(b) M^{\prime} simulates M.
[Solution: true]
(c) for every $j \in\{1, \ldots, 6\}$ and $i \in\{1, \ldots, 3\}$, if $T j$ is reachable in M^{\prime}, then $S j i$ is reachable in M [Solution: False. E.g., $T 4$ is reachable but $S 42$ is not.]
(d) for every $j \in\{1, \ldots, 6\}$ and $i \in\{1, \ldots, 3\}$, if $S j i$ is reachable in M, then $T j$ is reachable in M^{\prime}. [Solution: true]

Ex: Abstraction-based MC

Consider the following pair of ground and abstract machines M and M^{\prime}, and the abstraction $\alpha: M \longmapsto M^{\prime}$ which makes the variable z invisible.

```
M:
MODULE main
VAR
    x : boolean;
    y : boolean;
    z : boolean;
ASSIGN
    init(x) := FALSE;
    init(y) := FALSE;
    init(z) := TRUE;
TRANS
    (next(x) <-> y) &
    (next(y) <-> z) &
    (next(z) <-> x)
```


M^{\prime} :

MODULE main

VAR
x : boolean;
y : boolean;
z : boolean;
ASSIGN
init(x) := FALSE;
init(y) := FALSE;
TRANS
(next (x) <-> y) \&
(next (y) <-> z)

Ex: Abstraction-based MC [cont.]

(a) Draw the FSM's for M and M^{\prime} (n.b.: in M^{\prime} only v_{1} and v_{2} are state variables).
[Solution: (We label states with $x y z$ and $x y$. respectively. " $z=0$ " and " $z=1$ " are comments.)
M

M'

(b) Does M simulate M^{\prime} ? [Solution: No. E.g. the M^{\prime} execution looping on (00) cannot be simulated in M.]
(c) Does M^{\prime} simulate M ? [Solution: Yes]
(d) Is α a suitable abstraction for solving the MC problem $M \models \mathbf{G} \neg\left(v_{1} \wedge v_{2}\right)$?

If yes, explain why. If no, produce a spurious counter-example.
[Solution: No, since $M \models \mathbf{G} \neg\left(v_{1} \wedge v_{2}\right)$ but $M^{\prime} \not \models \mathbf{G} \neg\left(v_{1} \wedge v_{2}\right)$. A spurious counter-example is $C \stackrel{\text { def }}{=}(00) \Longrightarrow(01) \Longrightarrow(11)$]

Ex: Abstraction-based MC [cont.]

(e) Use the SAT-based refinement technique to show that the abstract counter-example $C \stackrel{\text { def }}{=}(00) \Longrightarrow(01) \Longrightarrow(11)$ is spurious.
[Solution: We generate the following formula and feed it to a SAT solver:

$$
\begin{array}{lll}
\left(\neg x_{0} \wedge \neg y_{0} \wedge z_{0}\right) & \wedge & / / I\left(x_{0}, y_{0}, z_{0}\right) \wedge \\
\left(\left(x_{1} \leftrightarrow y_{0}\right) \wedge\left(y_{1} \leftrightarrow z_{0}\right) \wedge\left(z_{1} \leftrightarrow x_{0}\right)\right) & \wedge & / / T\left(x_{0}, y_{0}, z_{0}, x_{1}, y_{1}, z_{1}\right) \wedge \\
\left(\left(x_{2} \leftrightarrow y_{1}\right) \wedge\left(y_{2} \leftrightarrow z_{1}\right) \wedge\left(z_{2} \leftrightarrow x_{1}\right)\right) & \wedge & / / T\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right) \wedge \\
\left(\neg x_{0} \wedge \neg y_{0}\right) & \wedge & / /\left(\operatorname{visible}\left(s_{0}\right)=c_{0}\right) \wedge \\
\left(\neg x_{1} \wedge y_{1}\right) & \wedge & / /\left(\operatorname{visible}\left(s_{1}\right)=c_{1}\right) \wedge \\
\left(x_{2} \wedge y_{2}\right) & & / /\left(\operatorname{visible}\left(s_{2}\right)=c_{2}\right)
\end{array}
$$

$\Longrightarrow\left\{\neg x_{0}, \neg y_{0}, \quad z_{0}, \neg x_{1}, \quad y_{1}, \neg z_{1}, \quad x_{2}, \neg y_{2}, \neg z_{2}\right\}$ are unit-propagated due to the first three rows
\Longrightarrow UNSAT
\Longrightarrow spurious counter-example.
]

Ex: Separation problem

In a counter-example-guided-abstraction-refinement model checking process using localization reduction, variables $x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}$ are made invisible.
Suppose the process has identified a spurious counterexample with an abstract failure state [00], two ground deadend states d_{1}, d_{2} and two ground bad states b_{1}, b_{2} as described in the following table:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}
d_{1}	0	0	0	0	0	1	1	1
d_{2}	0	0	0	1	1	1	1	0
b_{1}	0	0	1	1	1	1	0	1
b_{2}	0	0	0	1	0	0	0	0

Identify a minimum-size subset of invisible variables which must be made visible in the next abstraction to avoid the above failure. Briefly explain why.
[Solution: The minimum-size subset is $\left\{x_{7}\right\}$. In fact, if x_{7} is made visible, then both d_{1}, d_{2} are made different from both b_{1}, b_{2}.]

[^0]: Problem: too many states to handle! (even for symbolic MC)

[^1]: Problem: too many states to handle! (even for symbolic MC)

