Formal Methods:
 Module I: Automated Reasoning Ch. 04: Automata-Theoretic LTL Reasoning

Roberto Sebastiani and Stefano Tonetta
DISI, Università di Trento, Italy - roberto.sebastiani@unitn.it
URL: http://disi.unitn.it/rseba/DIDATTICA/fm2022/
Teaching assistant: Giuseppe Spallitta - giuseppe.spallitta@unitn.it
M.S. in Computer Science, Mathematics, \& Artificial Intelligence Systems
Academic year 2021-2022
last update: Wednesday $13^{\text {th }}$ April, 2022, 10:16

Outline

(1) Büchi Automata
(2) The Automata-Theoretic Approach to LTL Reasoning

- General Ideas
- Language-Emptiness Checking of Büchi Automata
- From Kripke Models to Büchi Automata
- From LTL Formulas to Büchi Automata
- Complexity
(3) Exercises

Outline

(1) Büchi Automata
(2) The Automata-Theoretic Approach to LTL Reasoning

- General Ideas
- Language-Emptiness Checking of Büchi Automata
- From Kripke Models to Büchi Automata
- From LTL Formulas to Büchi Automata
- Complexity
(3) Exercises

Infinite Word Languages

Modeling infinite computations of reactive systems
Given an Alphabet $\Sigma(e . g . \Sigma \stackrel{\text { def }}{=}\{a, b\})$

- An ω-word α over Σ is an infinite sequence

Formally, $\alpha: \mathbb{N} \rightarrow \Sigma$.

- The set of all infinite words is denoted by Σ
- A ω-language L is collection of ω-words, i.e. $L \subseteq \Sigma^{\omega}$
- Example: All words over $\{a, b\}$ with infinitely many a's.

Notation

Infinite Word Languages

Modeling infinite computations of reactive systems
Given an Alphabet $\Sigma(e . g . \Sigma \stackrel{\text { def }}{=}\{a, b\})$

- An ω-word α over Σ is an infinite sequence

$$
a_{0}, a_{1}, a_{2} .
$$

Formally, $\alpha: \mathbb{N} \rightarrow \Sigma$.

- The set of all infinite words is denoted by Σ^{ω}.
- A ω-language L is collection of ω-words, i.e. $L \subseteq \Sigma^{\omega}$
- Example: All words over $\{a, b\}$ with infinitely many a's.

Infinite Word Languages

Modeling infinite computations of reactive systems
Given an Alphabet $\Sigma(e . g . \Sigma \stackrel{\text { def }}{=}\{a, b\})$

- An ω-word α over Σ is an infinite sequence

$$
a_{0}, a_{1}, a_{2} \ldots
$$

Formally, $\alpha: \mathbb{N} \rightarrow \Sigma$.

- The set of all infinite words is denoted by Σ^{ω}.
- A ω-language L is collection of ω-words, i.e. $L \subseteq \Sigma^{\omega}$.
- Example: All words over $\{a, b\}$ with infinitely many a's.

Notation:

Infinite Word Languages

Modeling infinite computations of reactive systems
Given an Alphabet $\Sigma(e . g . \Sigma \stackrel{\text { def }}{=}\{a, b\})$

- An ω-word α over Σ is an infinite sequence

$$
a_{0}, a_{1}, a_{2}
$$

Formally, $\alpha: \mathbb{N} \rightarrow \Sigma$.

- The set of all infinite words is denoted by Σ^{ω}.
- A ω-language L is collection of ω-words, i.e. $L \subseteq \Sigma^{\omega}$.
- Example: All words over $\{a, b\}$ with infinitely many a's.

Infinite Word Languages

Modeling infinite computations of reactive systems
Given an Alphabet $\Sigma(e . g . \Sigma \stackrel{\text { def }}{=}\{a, b\})$

- An ω-word α over Σ is an infinite sequence

$$
a_{0}, a_{1}, a_{2} \ldots
$$

Formally, $\alpha: \mathbb{N} \rightarrow \Sigma$.

- The set of all infinite words is denoted by Σ^{ω}.
- A ω-language L is collection of ω-words, i.e. $L \subseteq \Sigma^{\omega}$.
- Example: All words over $\{a, b\}$ with infinitely many a's.

```
Notation:
omega words }\alpha,\beta,\gamma\in\mp@subsup{\Sigma}{}{\omega}
omega-languages L, L_ \subseteq \Sigma }\mp@subsup{}{}{\omega
For }u\in\mp@subsup{\Sigma}{}{+}\mathrm{ , let }\mp@subsup{u}{}{\omega}=u.u.u..
```


Omega-Automata

- We consider automaton running over infinite words.

- Let $\alpha=$ aabbbb

There are several (in finite) possible runs.
Run $p_{1}=S_{1}, S_{1}, S_{1}, S_{1}, S_{2}, S_{2}$
Run $\rho_{2}=s_{1}, s_{1}, s_{1}, s_{1}, s_{1}, s_{1}$

- Acceptance Conditions: Büchi (Muller, Rabin, Street):

Acceptance is based on states occurring infinitely often

- Notation Let $\rho \in Q^{\omega}$. Then,
$\operatorname{lnf}(\rho)=\left\{s \in Q \mid \exists^{\infty} i \in \mathbb{N} . \rho(i)=s\right\}$.
(The set of states occurring infinitely many times in ρ.)

Omega-Automata

- We consider automaton running over infinite words.

- Let $\alpha=$ aabbbb....

There are several (infinite) possible runs.
Run $\rho_{1}=s_{1}, s_{1}, s_{1}, s_{1}, s_{2}, s_{2} \ldots$
Run $\rho_{2}=s_{1}, s_{1}, s_{1}, s_{1}, s_{1}, s_{1} \ldots$

- Acceptance Conditions: Büchi (Muller, Rabin, Street):

Acceptance is based on states occurring infinitely often

- Notation Let $\rho \in Q^{\omega}$. Then, $\operatorname{lnf}(\rho)=\{s \in Q \mid \exists$
(The set of states occurring infinitely many times in ρ.)

Omega-Automata

- We consider automaton running over infinite words.

- Let $\alpha=$ aabbbb....

There are several (infinite) possible runs.
Run $\rho_{1}=s_{1}, s_{1}, s_{1}, s_{1}, s_{2}, s_{2} \ldots$
Run $\rho_{2}=s_{1}, s_{1}, s_{1}, s_{1}, s_{1}, s_{1} \ldots$

- Acceptance Conditions: Büchi (Muller, Rabin, Street):

Acceptance is based on states occurring infinitely often

- Notation Let $\rho \in Q^{\omega}$. Then,
(The set of states occurring infinitely many times in ρ.)

Omega-Automata

- We consider automaton running over infinite words.

- Let $\alpha=$ aabbbb....

There are several (infinite) possible runs.
Run $\rho_{1}=s_{1}, s_{1}, s_{1}, s_{1}, s_{2}, s_{2} \ldots$
Run $\rho_{2}=s_{1}, s_{1}, s_{1}, s_{1}, s_{1}, s_{1} \ldots$

- Acceptance Conditions: Büchi (Muller, Rabin, Street):

Acceptance is based on states occurring infinitely often

- Notation Let $\rho \in Q^{\omega}$. Then,

$$
\operatorname{Inf}(\rho)=\{s \in Q \mid \exists \infty i \in \mathbb{N} . \rho(i)=s\}
$$

(The set of states occurring infinitely many times in ρ.)

Büchi Automata

Nondeterministic Büchi Automaton

- A Nondeterministic Büchi Automaton (NBA) is $(Q, \Sigma, \delta, I, F)$ s.t.
- Q Finite set of states.
- Σ is a finite alphabet
- $I \subseteq Q$ set of initial states.
- $F \subseteq Q$ set of accepting states.
- $\delta \subseteq Q \times \Sigma \times Q$ transition relation (edges).
- A Deterministic Büchi Automaton (DBA) is an NBA s.t. the transition relation is functional: $\delta: Q \times \Sigma \longmapsto Q$

Runs and Language of NBAs

Büchi Automata

Nondeterministic Büchi Automaton

- A Nondeterministic Büchi Automaton (NBA) is $(Q, \Sigma, \delta, I, F)$ s.t.
- Q Finite set of states.
- Σ is a finite alphabet
- $I \subseteq Q$ set of initial states.
- $F \subseteq Q$ set of accepting states.
- $\delta \subseteq Q \times \Sigma \times Q$ transition relation (edges).
- A Deterministic Büchi Automaton (DBA) is an NBA s.t. the transition relation is functional: $\delta: Q \times \Sigma \longmapsto Q$

Runs and Language of NBAs

Büchi Automata

Nondeterministic Büchi Automaton

- A Nondeterministic Büchi Automaton (NBA) is $(Q, \Sigma, \delta, I, F)$ s.t.
- Q Finite set of states.
- Σ is a finite alphabet
- $I \subseteq Q$ set of initial states.
- $F \subseteq Q$ set of accepting states.
- $\delta \subseteq Q \times \Sigma \times Q$ transition relation (edges).
- A Deterministic Büchi Automaton (DBA) is an NBA s.t. the transition relation is functional: $\delta: Q \times \Sigma \longmapsto Q$

Runs and Language of NBAs

- A run ρ of A on ω-word $\alpha=a_{0}, a_{1}, a_{2}, \ldots$ is an infinite sequence
and $q_{i} \xrightarrow{a_{i}} q_{i+1}$ for 0
- The run n is accenting if
- The language accepted by A
$\mathcal{L}(A)=\left\{\alpha \in \Sigma^{\omega} \mid \quad A\right.$ has an eccepting run on $\left.\alpha\right\}$

Büchi Automata

Nondeterministic Büchi Automaton

- A Nondeterministic Büchi Automaton (NBA) is $(Q, \Sigma, \delta, I, F)$ s.t.
- Q Finite set of states.
- Σ is a finite alphabet
- $I \subseteq Q$ set of initial states.
- $F \subseteq Q$ set of accepting states.
- $\delta \subseteq Q \times \Sigma \times Q$ transition relation (edges).
- A Deterministic Büchi Automaton (DBA) is an NBA s.t. the transition relation is functional: $\delta: Q \times \Sigma \longmapsto Q$

Runs and Language of NBAs

- A run ρ of A on ω-word $\alpha=a_{0}, a_{1}, a_{2}, \ldots$ is an infinite sequence $\rho=q_{0}, q_{1}, q_{2}, \ldots$ s.t. $q_{0} \in I$ and $q_{i} \xrightarrow{a_{i}} q_{i+1}$ for $0 \leq i$.
- The run ρ is accepting if
- The language accepted by A
$\mathcal{L}(A)=\left\{\alpha \in \Sigma^{\omega} \mid \quad A\right.$ has an eccepting run on $\left.\alpha\right\}$

Büchi Automata

Nondeterministic Büchi Automaton

- A Nondeterministic Büchi Automaton (NBA) is $(Q, \Sigma, \delta, I, F)$ s.t.
- Q Finite set of states.
- Σ is a finite alphabet
- $I \subseteq Q$ set of initial states.
- $F \subseteq Q$ set of accepting states.
- $\delta \subseteq Q \times \Sigma \times Q$ transition relation (edges).
- A Deterministic Büchi Automaton (DBA) is an NBA s.t. the transition relation is functional: $\delta: Q \times \Sigma \longmapsto Q$

Runs and Language of NBAs

- A run ρ of A on ω-word $\alpha=a_{0}, a_{1}, a_{2}, \ldots$ is an infinite sequence $\rho=q_{0}, q_{1}, q_{2}, \ldots$ s.t. $q_{0} \in I$ and $q_{i} \xrightarrow{a_{i}} q_{i+1}$ for $0 \leq i$.
- The run ρ is accepting if

$$
\operatorname{lnf}(\rho) \cap F \neq \emptyset
$$

- The language accepted by A
$\mathcal{L}(A)=\left\{\alpha \in \Sigma^{\omega} \mid \quad A\right.$ has an accepting run on $\left.\alpha\right\}$

Büchi Automata

Nondeterministic Büchi Automaton

- A Nondeterministic Büchi Automaton (NBA) is $(Q, \Sigma, \delta, I, F)$ s.t.
- Q Finite set of states.
- Σ is a finite alphabet
- $I \subseteq Q$ set of initial states.
- $F \subseteq Q$ set of accepting states.
- $\delta \subseteq Q \times \Sigma \times Q$ transition relation (edges).
- A Deterministic Büchi Automaton (DBA) is an NBA s.t. the transition relation is functional: $\delta: Q \times \Sigma \longmapsto Q$

Runs and Language of NBAs

- A run ρ of A on ω-word $\alpha=a_{0}, a_{1}, a_{2}, \ldots$ is an infinite sequence $\rho=q_{0}, q_{1}, q_{2}, \ldots$ s.t. $q_{0} \in I$ and $q_{i} \xrightarrow{a_{i}} q_{i+1}$ for $0 \leq i$.
- The run ρ is accepting if

$$
\operatorname{lnf}(\rho) \cap F \neq \emptyset .
$$

- The language accepted by A

$$
\mathcal{L}(A)=\left\{\alpha \in \Sigma^{\omega} \mid A \text { has an accepting run on } \alpha\right\}
$$

Büchi Automaton: Example

Let $\Sigma=\{a, b\}$.
Let a Deterministic Büchi Automaton (DBA) A_{1} be

- With $F=\left\{s_{1}\right\}$ the automaton recognizes words with infinitely many a's.
- With $F=\left\{s_{2}\right\}$ the automaton recognizes words with infinitely many b's.

Büchi Automaton: Example

Let $\Sigma=\{a, b\}$.
Let a Deterministic Büchi Automaton (DBA) A_{1} be

- With $F=\left\{s_{1}\right\}$ the automaton recognizes words with infinitely many a's.
- With $F=\left\{s_{2}\right\}$ the automaton recognizes words with infinitely many b's.

Büchi Automaton: Example

Let $\Sigma=\{a, b\}$.
Let a Deterministic Büchi Automaton (DBA) A_{1} be

- With $F=\left\{s_{1}\right\}$ the automaton recognizes words with infinitely many a's.
- With $F=\left\{s_{2}\right\}$ the automaton recognizes words with infinitely many b's.

Büchi Automaton: Example (2)

Let a Nondeterministic Büchi Automaton (NBA) A_{2} be

With $F=\left\{s_{2}\right\}$, the automaton A_{2} recognizes words with finitely many a. Thus, $\mathcal{L}\left(A_{2}\right)=\overline{\mathcal{L}\left(A_{1}\right)}$.

Deterministic vs. Nondeterministic Büchi Automata

Theorem

$D B A$ s are strictly less powerful than NBAs.

Remark
The subset construction of standard Final-State automata does not work!

Deterministic vs. Nondeterministic Büchi Automata

Theorem

$D B A$ s are strictly less powerful than NBAs.

Remark:

The subset construction of standard Final-State automata does not work!
Let $D A_{2}$ be

- $D A_{2}$ is not equivalent to A_{2} (e.g., it recognizes (b.a) ${ }^{\omega}$)
- There is no DBA equivalent to A_{2}

Deterministic vs. Nondeterministic Büchi Automata

Theorem

$D B A$ s are strictly less powerful than NBAs.

Remark:

The subset construction of standard Final-State automata does not work!
Let $D A_{2}$ be

- $D A_{2}$ is not equivalent to A_{2} (e.g., it recognizes (b.a) ${ }^{\omega}$)
- There is no DBA equivalent to A_{2}

Deterministic vs. Nondeterministic Büchi Automata

Theorem

$D B A$ s are strictly less powerful than NBAs.

Remark:

The subset construction of standard Final-State automata does not work!
Let $D A_{2}$ be

- $D A_{2}$ is not equivalent to A_{2} (e.g., it recognizes (b.a) ${ }^{\omega}$)
- There is no DBA equivalent to A_{2}

Closure Properties

Theorem (union, intersection)
For the NBAs A_{1}, A_{2} we can construct

- the NBA A s.t. $\mathcal{L}(A)=\mathcal{L}\left(A_{1}\right) \cup \mathcal{L}\left(A_{2}\right)$.
- the NBA A s.t. $\mathcal{L}(A)=\mathcal{L}\left(A_{1}\right) \cap \mathcal{L}\left(A_{2}\right)$.

Closure Properties

Theorem (union, intersection)
For the NBAs A_{1}, A_{2} we can construct

- the NBA A s.t. $\mathcal{L}(A)=\mathcal{L}\left(A_{1}\right) \cup \mathcal{L}\left(A_{2}\right) .|A|=\left|A_{1}\right|+\left|A_{2}\right|$
- the NBA A s.t. $\mathcal{L}(A)=\mathcal{L}\left(A_{1}\right) \cap \mathcal{L}\left(A_{2}\right)$

Closure Properties

Theorem (union, intersection)
For the NBAs A_{1}, A_{2} we can construct

- the NBA A s.t. $\mathcal{L}(A)=\mathcal{L}\left(A_{1}\right) \cup \mathcal{L}\left(A_{2}\right) .|A|=\left|A_{1}\right|+\left|A_{2}\right|$
- the NBA A s.t. $\mathcal{L}(A)=\mathcal{L}\left(A_{1}\right) \cap \mathcal{L}\left(A_{2}\right) .|A| \leq\left|A_{1}\right| \cdot\left|A_{2}\right| \cdot 2$.

Union of two NBAs

Definition: union of NBAs

Let $A_{1}=\left(Q_{1}, \Sigma_{1}, \delta_{1}, l_{1}, F_{1}\right), A_{2}=\left(Q_{2}, \Sigma_{2}, \delta_{2}, l_{2}, F_{2}\right)$.
Then $A=A_{1} \cup A_{2}=(Q, \Sigma, \delta, I, F)$ is defined as follows

Theorem

Note
 \boldsymbol{A} is an automaton which just runs nondeterministically either A_{1} or A_{2} (same construction as with ordinary automata)

Union of two NBAs

Definition: union of NBAs

Let $A_{1}=\left(Q_{1}, \Sigma_{1}, \delta_{1}, l_{1}, F_{1}\right), A_{2}=\left(Q_{2}, \Sigma_{2}, \delta_{2}, l_{2}, F_{2}\right)$.
Then $A=A_{1} \cup A_{2}=(Q, \Sigma, \delta, I, F)$ is defined as follows

- $Q:=Q_{1} \cup Q_{2}, I:=I_{1} \cup I_{2}, F:=F_{1} \cup F_{2}$

Theorem

Note
 A is an automaton which just runs nondeterministically either A_{1} or A_{2} (same construction as with ordinary automata)

Union of two NBAs

Definition: union of NBAs
Let $A_{1}=\left(Q_{1}, \Sigma_{1}, \delta_{1}, l_{1}, F_{1}\right), A_{2}=\left(Q_{2}, \Sigma_{2}, \delta_{2}, l_{2}, F_{2}\right)$.
Then $A=A_{1} \cup A_{2}=(Q, \Sigma, \delta, l, F)$ is defined as follows

- $Q:=Q_{1} \cup Q_{2}, I:=I_{1} \cup I_{2}, F:=F_{1} \cup F_{2}$
- $R\left(s, s^{\prime}\right):=\left\{\begin{array}{l}R_{1}\left(s, s^{\prime}\right) \text { if } s \in Q_{1} \\ R_{2}\left(s, s^{\prime}\right) \text { if } s \in Q_{2}\end{array}\right.$

Theorem

-

Note
A is an automaton which just runs nondeterministically either A_{1} or A_{2} (same construction as with ordinary automata)

Union of two NBAs

Definition: union of NBAs

Let $A_{1}=\left(Q_{1}, \Sigma_{1}, \delta_{1}, l_{1}, F_{1}\right), A_{2}=\left(Q_{2}, \Sigma_{2}, \delta_{2}, l_{2}, F_{2}\right)$.
Then $A=A_{1} \cup A_{2}=(Q, \Sigma, \delta, I, F)$ is defined as follows

- $Q:=Q_{1} \cup Q_{2}, I:=I_{1} \cup I_{2}, F:=F_{1} \cup F_{2}$
- $R\left(s, s^{\prime}\right):=\left\{\begin{array}{l}R_{1}\left(s, s^{\prime}\right) \text { if } s \in Q_{1} \\ R_{2}\left(s, s^{\prime}\right) \text { if } s \in Q_{2}\end{array}\right.$

```
Theorem
- \(\mathcal{L}(A)=\mathcal{L}\left(A_{1}\right) \cup \mathcal{L}\left(A_{2}\right)\)
- \(|A|=\left|A_{1}\right|+\left|A_{2}\right|\)
```

[^0]
Union of two NBAs

Definition: union of NBAs

Let $A_{1}=\left(Q_{1}, \Sigma_{1}, \delta_{1}, l_{1}, F_{1}\right), A_{2}=\left(Q_{2}, \Sigma_{2}, \delta_{2}, l_{2}, F_{2}\right)$.
Then $A=A_{1} \cup A_{2}=(Q, \Sigma, \delta, l, F)$ is defined as follows

- $Q:=Q_{1} \cup Q_{2}, I:=I_{1} \cup I_{2}, F:=F_{1} \cup F_{2}$
- $R\left(s, s^{\prime}\right):=\left\{\begin{array}{l}R_{1}\left(s, s^{\prime}\right) \text { if } s \in Q_{1} \\ R_{2}\left(s, s^{\prime}\right) \text { if } s \in Q_{2}\end{array}\right.$

Theorem

- $\mathcal{L}(A)=\mathcal{L}\left(A_{1}\right) \cup \mathcal{L}\left(A_{2}\right)$
- $|A|=\left|A_{1}\right|+\left|A_{2}\right|$

Note

A is an automaton which just runs nondeterministically either A_{1} or A_{2} (same construction as with ordinary automata)

Synchronous Product of NBAs

Definition: synchronous product of NBAs

Let $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, l_{1}, F_{1}\right)$ and $A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, l_{2}, F_{2}\right)$.
Then, $A_{1} \times A_{2}=(Q, \Sigma, \delta, I, F)$, where

$$
Q=Q_{1} \times Q_{2} \times\{1,2\}
$$

$$
I=I_{1} \times I_{2} \times\{1\} .
$$

$$
F=F_{1} \times Q_{2} \times\{1\}
$$

$\langle p, q, 1\rangle \xrightarrow{a}\left\langle p^{\prime}, q^{\prime}, 1\right\rangle$ iff $p \xrightarrow{a} p^{\prime}$ and $q \xrightarrow{a} q^{\prime}$ and $p \notin F_{1}$.
$\langle p, q, 1\rangle \xrightarrow{a}\left\langle p^{\prime}, q^{\prime}, 2\right\rangle$ iff $p \xrightarrow{a} p^{\prime}$ and $q \xrightarrow{a} q^{\prime}$ and $p \in F_{1}$.
$\langle p, q, 2\rangle \xrightarrow{a}\left\langle p^{\prime}, q^{\prime}, 2\right\rangle$ iff $p \xrightarrow{a} p^{\prime}$ and $q \xrightarrow{a} q^{\prime}$ and $q \notin F_{2}$.
$\langle p, q, 2\rangle \xrightarrow{a}\left\langle p^{\prime}, q^{\prime}, 1\right\rangle$ iff $p \xrightarrow{a} p^{\prime}$ and $q \xrightarrow{a} q^{\prime}$ and $q \in F_{2}$.

Synchronous Product of NBAs

Definition: synchronous product of NBAs

Let $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, l_{1}, F_{1}\right)$ and $A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, l_{2}, F_{2}\right)$.
Then, $A_{1} \times A_{2}=(Q, \Sigma, \delta, I, F)$, where

$$
\begin{aligned}
& Q=Q_{1} \times Q_{2} \times\{1,2\} . \\
& I=I_{1} \times I_{2} \times\{1\} . \\
& F=F_{1} \times Q_{2} \times\{1\} .
\end{aligned}
$$

$\langle p, q, 1\rangle \xrightarrow{a}\left\langle p^{\prime}, q^{\prime}, 1\right\rangle$ iff $p \xrightarrow{a} p^{\prime}$ and $q \xrightarrow{a} q^{\prime}$ and $p \notin F_{1}$.
$\langle p, q, 1\rangle \xrightarrow{a}\left\langle p^{\prime}, q^{\prime}, 2\right\rangle$ iff $p \xrightarrow{a} p^{\prime}$ and $q \xrightarrow{a} q^{\prime}$ and $p \in F_{1}$.
$\langle p, q, 2\rangle \xrightarrow{a}\left\langle p^{\prime}, q^{\prime}, 2\right\rangle$ iff $p \xrightarrow{a} p^{\prime}$ and $q \xrightarrow{a} q^{\prime}$ and $q \notin F_{2}$.
$\langle p, q, 2\rangle \xrightarrow{a}\left\langle p^{\prime}, q^{\prime}, 1\right\rangle$ iff $p \xrightarrow{a} p^{\prime}$ and $q \xrightarrow{a} q^{\prime}$ and $q \in F_{2}$.

Theorem

- $\mathcal{L}\left(A_{1} \times A_{2}\right)=\mathcal{L}\left(A_{1}\right) \cap \mathcal{L}\left(A_{2}\right)$.
- $\left|A_{1} \times A_{2}\right| \leq 2 \cdot\left|A_{1}\right| \cdot\left|A_{2}\right|$.

Synchronous Product of NBAs: Intuition

- The automaton remembers two tracks, one for each source NBA, and it points to one of the two tracks
- As soon as it goes through an accepting state of the current track, it switches to the other track
to visit infinitely often a state in F (i.e., F_{1}), it must visit infinitely often some state also in F_{2}
- Important subcase: If $F_{2}=Q_{2}$, then

Synchronous Product of NBAs: Intuition

- The automaton remembers two tracks, one for each source NBA, and it points to one of the two tracks
- As soon as it goes through an accepting state of the current track, it switches to the other track
\Longrightarrow to visit infinitely often a state in F (i.e., F_{1}), it must visit infinitely often some state also in F_{2}
- Important subcase: If $F_{2}=Q_{2}$, then

Synchronous Product of NBAs: Intuition

- The automaton remembers two tracks, one for each source NBA, and it points to one of the two tracks
- As soon as it goes through an accepting state of the current track, it switches to the other track
\Longrightarrow to visit infinitely often a state in F (i.e., F_{1}), it must visit infinitely often some state also in F_{2}
- Important subcase: If $F_{2}=Q_{2}$, then

$$
\begin{aligned}
& Q=Q_{1} \times Q_{2} \\
& I=I_{1} \times I_{2} \\
& F=F_{1} \times Q_{2}
\end{aligned}
$$

Synchronous Product of NBAs: Example

Synchronous Product of NBAs: Example

Closure Properties (2)

Theorem (complementation) [Safra, MacNaughten]
For the NBA A_{1} we can construct an NBA A_{2} such that $\mathcal{L}\left(A_{2}\right)=\overline{\mathcal{L}\left(A_{1}\right)}$.
$\left|A_{2}\right|=O\left(2^{\left|A_{1}\right| \cdot \log \left(\left|A_{1}\right|\right)}\right)$.
Method: (hint)

Closure Properties (2)

Theorem (complementation) [Safra, MacNaughten]
For the NBA A_{1} we can construct an NBA A_{2} such that $\mathcal{L}\left(A_{2}\right)=\overline{\mathcal{L}\left(A_{1}\right)}$. $\left|A_{2}\right|=O\left(2^{\left|A_{1}\right| \cdot \log \left(\left|A_{1}\right|\right)}\right)$.

Method: (hint)
(i) convert a Büchi automaton into a Non-Deterministic Rabin automaton
(ii) determinize and Complement the Rabin automaton
(iii) convert the Rabin automaton into a Büchi automaton.

Closure Properties (2)

Theorem (complementation) [Safra, MacNaughten]
For the NBA A_{1} we can construct an NBA A_{2} such that $\mathcal{L}\left(A_{2}\right)=\overline{\mathcal{L}\left(A_{1}\right)}$. $\left|A_{2}\right|=O\left(2^{\left|A_{1}\right| \cdot \log \left(\left|A_{1}\right|\right)}\right)$.

Method: (hint)
(i) convert a Büchi automaton into a Non-Deterministic Rabin automaton
(ii) determinize and Complement the Rabin automaton
(iii) convert the Rabin automaton into a Büchi automaton.

Closure Properties (2)

Theorem (complementation) [Safra, MacNaughten]

For the NBA A_{1} we can construct an NBA A_{2} such that $\mathcal{L}\left(A_{2}\right)=\overline{\mathcal{L}\left(A_{1}\right)}$. $\left|A_{2}\right|=O\left(2^{\left|A_{1}\right| \cdot \log \left(\left|A_{1}\right|\right)}\right)$.

Method: (hint)
(i) convert a Büchi automaton into a Non-Deterministic Rabin automaton
(ii) determinize and Complement the Rabin automaton
(iii) convert the Rabin automaton into a Büchi automaton.

Closure Properties (2)

Theorem (complementation) [Safra, MacNaughten]

For the NBA A_{1} we can construct an NBA A_{2} such that $\mathcal{L}\left(A_{2}\right)=\overline{\mathcal{L}\left(A_{1}\right)}$. $\left|A_{2}\right|=O\left(2^{\left|A_{1}\right| \cdot \log \left(\left|A_{1}\right|\right)}\right)$.

Method: (hint)

(i) convert a Büchi automaton into a Non-Deterministic Rabin automaton
(ii) determinize and Complement the Rabin automaton
(iii) convert the Rabin automaton into a Büchi automaton.

Generalized Büchi Automaton

Definition

- A Generalized Büchi Automaton is a tuple $A:=(Q, \Sigma, \delta, I, F T)$ where $F T=\left\langle F_{1}, F_{2}, \ldots, F_{k}\right\rangle$ with $F_{i} \subseteq Q$.
- A run ρ of A is accepting if $\operatorname{Inf}(\rho) \cap F_{i} \neq \emptyset$ for each $1 \leq i \leq k$.

Theorem
 For every Generalized Büchi Automaton we can construct a language equivalent plain Büchi Automaton.

Intuition

The automaton remains in phase i till it visits a state in F_{i}. Then, it moves to $(i \bmod K)+1$ mode.

Generalized Büchi Automaton

Definition

- A Generalized Büchi Automaton is a tuple $A:=(Q, \Sigma, \delta, I, F T)$ where $F T=\left\langle F_{1}, F_{2}, \ldots, F_{k}\right\rangle$ with $F_{i} \subseteq Q$.
- A run ρ of A is accepting if $\operatorname{Inf}(\rho) \cap F_{i} \neq \emptyset$ for each $1 \leq i \leq k$.

Theorem

For every Generalized Büchi Automaton we can construct a language equivalent plain Büchi Automaton.

```
Intuition
The automaton remains in phase i till it visits a state in Fi. Then, it moves to (i mod K) + 1 mode.
```


Generalized Büchi Automaton

Definition

- A Generalized Büchi Automaton is a tuple $A:=(Q, \Sigma, \delta, I, F T)$ where $F T=\left\langle F_{1}, F_{2}, \ldots, F_{k}\right\rangle$ with $F_{i} \subseteq Q$.
- A run ρ of A is accepting if $\operatorname{Inf}(\rho) \cap F_{i} \neq \emptyset$ for each $1 \leq i \leq k$.

Theorem

For every Generalized Büchi Automaton we can construct a language equivalent plain Büchi Automaton.

Intuition

Let $Q^{\prime}=Q \times\{1, \ldots, K\}$.
The automaton remains in phase i till it visits a state in F_{i}. Then, it moves to $(i \bmod K)+1$ mode.

De-generalization of a generalized NBA

Definition: De-generalization of a generalized NBA

Let $A \stackrel{\text { def }}{=}(Q, \Sigma, \delta, I, F T)$ a generalized BA s.f. $F T \stackrel{\text { def }}{=}\left\{F_{1}, \ldots, F_{K}\right\}$.
Then a language-equivalent $\mathrm{BA} A^{\prime} \stackrel{\text { def }}{=}\left(Q^{\prime}, \Sigma, \delta^{\prime}, I^{\prime}, F^{\prime}\right)$ is built as follows

$$
\begin{aligned}
& Q^{\prime}=Q_{1} \times\{1, \ldots, K\} . \\
& I^{\prime}=I \times\{1\} . \\
& F^{\prime}=F_{1} \times\{1\} . \\
& \delta^{\prime} \text { is s.t., for every } i \in[1, \ldots, K] \text { : }
\end{aligned}
$$

$$
\begin{array}{lll}
\langle p, i\rangle \xrightarrow{a}\langle q, i\rangle & \text { iff } p \xrightarrow{a} q \in \delta \quad \text { and } \quad p \notin F_{i} . \\
\langle p, i\rangle \xrightarrow{a}\langle q,(i \bmod K)+1\rangle & \text { iff } p \xrightarrow{a} q \in \delta \quad \text { and } p \in F_{i} .
\end{array}
$$

De-generalization of a generalized NBA

Definition: De-generalization of a generalized NBA

Let $A \stackrel{\text { def }}{=}(Q, \Sigma, \delta, I, F T)$ a generalized BA s.f. $F T \stackrel{\text { def }}{=}\left\{F_{1}, \ldots, F_{K}\right\}$.
Then a language-equivalent BA $A^{\prime} \stackrel{\text { det }}{=}\left(Q^{\prime}, \Sigma, \delta^{\prime}, l^{\prime}, F^{\prime}\right)$ is built as follows

$$
\begin{aligned}
& Q^{\prime}=Q_{1} \times\{1, \ldots, K\} . \\
& I^{\prime}=I \times\{1\} . \\
& F^{\prime}=F_{1} \times\{1\} . \\
& \delta^{\prime} \text { is s.t., for every } i \in[1, \ldots, K] \text { : }
\end{aligned}
$$

$$
\begin{array}{llll}
\langle p, i\rangle \xrightarrow{a}\langle q, i\rangle & \text { iff } p \xrightarrow{a} q \in \delta \quad \text { and } \quad p \notin F_{i} . \\
\langle p, i\rangle \xrightarrow{a}\langle q,(i \bmod K)+1\rangle & \text { iff } p \xrightarrow{a} q \in \delta \quad \text { and } p \in F_{i} .
\end{array}
$$

Theorem
 - $\mathcal{L}\left(A^{\prime}\right)=\mathcal{L}(A)$.
 - $\left|A^{\prime}\right| \leq K \cdot|A|$.

Degeneralizing a Büchi automaton: Example

Degeneralizing a Büchi automaton: Example

Omega-regular Expressions

Definition

A language is called ω-regular if it has the form $\cup_{i=1}^{n} U_{i} \cdot\left(V_{i}\right)^{\omega}$ where U_{i}, V_{i} are regular languages.

Theorem
 A language L is ω-regular iff it is NBA-recognizable.

Omega-regular Expressions

Definition

A language is called ω-regular if it has the form $\cup_{i=1}^{n} U_{i} \cdot\left(V_{i}\right)^{\omega}$ where U_{i}, V_{i} are regular languages.

Theorem

A language L is ω-regular iff it is NBA-recognizable.

Outline

（1）Büchi Automata
（2）The Automata－Theoretic Approach to LTL Reasoning
－General Ideas
－Language－Emptiness Checking of Büchi Automata
－From Kripke Models to Büchi Automata
－From LTL Formulas to Büchi Automata
－Complexity
（3）Exercises

Outline

（1）Büchi Automata
（2）The Automata－Theoretic Approach to LTL Reasoning
－General Ideas
－Language－Emptiness Checking of Büchi Automata
－From Kripke Models to Büchi Automata
－From LTL Formulas to Büchi Automata
－Complexity
（3）Exercises

Automata-Theoretic LTL Satisfiability and Entailment

LTL Validity/Satisfiability

- Let ψ be an LTL formula
$\Longleftrightarrow \neg \psi$ unsat
- $A_{\neg \psi}$ is a Büchi Automaton which represents all and only the paths that satisfy $\neg \psi$ (do not satisfy ψ)

[^1]
Automata-Theoretic LTL Satisfiability and Entailment

LTL Validity/Satisfiability

- Let ψ be an LTL formula

$$
\vDash \psi \quad(\mathrm{LTL})
$$

$\Longleftrightarrow \neg \psi$ unsat

- $A_{\neg \psi}$ is a Büchi Automaton which represents all and only the paths that satisfy $\neg \psi$ (do not satisfy ψ)

Automata-Theoretic LTL Satisfiability and Entailment

LTL Validity/Satisfiability

- Let ψ be an LTL formula
$\vDash \psi \quad$ (LTL)
$\Longleftrightarrow \neg \psi$ unsat
$\Longleftrightarrow \mathcal{L}\left(A_{\neg \psi}\right)=\emptyset$
- $A_{\neg \psi}$ is a Büchi Automaton which represents all and only the paths that satisfy $\neg \psi$ (do not satisfy ψ)

Automata-Theoretic LTL Satisfiability and Entailment

LTL Validity/Satisfiability

- Let ψ be an LTL formula
$\vDash \psi \quad(\mathrm{LTL})$
$\Longleftrightarrow \neg \psi$ unsat
$\Longleftrightarrow \mathcal{L}\left(A_{\neg \psi}\right)=\emptyset$
- $A_{\neg \psi}$ is a Büchi Automaton which represents all and only the paths that satisfy $\neg \psi$ (do not satisfy ψ)

LTL Entailment

- Let φ, ψ be an LTL formula

\square is a Büchi Automaton which represents all and only the paths that satisfy $\varphi \wedge \neg \psi$ (satisfy φ and do not satisfy ψ)

Automata-Theoretic LTL Satisfiability and Entailment

LTL Validity/Satisfiability

- Let ψ be an LTL formula
$=\psi \quad(\mathrm{LTL})$
$\Longleftrightarrow \neg \psi$ unsat
$\Longleftrightarrow \mathcal{L}\left(A_{\neg \psi}\right)=\emptyset$
- $A_{\neg \psi}$ is a Büchi Automaton which represents all and only the paths that satisfy $\neg \psi$ (do not satisfy ψ)

LTL Entailment

- Let φ, ψ be an LTL formula
$\varphi \models \psi \quad($ LTL $)$
$\vDash \varphi \rightarrow \psi \quad$ (LTL)
$\Longleftrightarrow \varphi \wedge \neg \psi$ unsat
-

is a Büchi Automaton which represents all and only the paths that satisfy $\varphi \wedge \neg \psi$ (sa sfy φ and do not satisfy ψ)

Automata-Theoretic LTL Satisfiability and Entailment

LTL Validity/Satisfiability

- Let ψ be an LTL formula
$=\psi \quad(\mathrm{LTL})$
$\Longleftrightarrow \neg \psi$ unsat
$\Longleftrightarrow \mathcal{L}\left(A_{\neg \psi}\right)=\emptyset$
- $A_{\neg \psi}$ is a Büchi Automaton which represents all and only the paths that satisfy $\neg \psi$ (do not satisfy ψ)

LTL Entailment

- Let φ, ψ be an LTL formula

$$
\varphi \models \psi \quad(\mathrm{LTL})
$$

$\vDash \varphi \rightarrow \psi \quad$ (LTL)
$\Longleftrightarrow \varphi \wedge \neg \psi$ unsat
$\Longleftrightarrow \mathcal{L}\left(A_{\varphi \wedge \neg \psi}\right)=\emptyset$

- $A_{\varphi \wedge \neg \psi}$ is a Büchi Automaton which represents all and only the paths that satisfy $\varphi \wedge \neg \psi$ (satisfy φ and do not satisfy ψ)

Automata-Theoretic LTL Satisfiability and Entailment

 Two steps for checking $\models \psi[$ resp. $\varphi \models \psi]$(i) Compute $A_{-\psi}$ [resp. $A_{\varphi \wedge-\psi}$]
(ii) Check the emptiness of $\mathcal{L}\left(A_{-\psi}\right)$ [resp. $\left.\mathcal{L}\left(A_{\varphi \wedge-\psi}\right)\right]$

Automata-Theoretic LTL Satisfiability and Entailment

Two steps for checking $\models \psi$ [resp. $\varphi \models \psi$]
(i) Compute $A_{\neg \psi}\left[\right.$ resp. $\left.A_{\varphi \wedge \neg \psi}\right]$
(ii) Check the emptiness of $\mathcal{L}\left(A_{-\psi}\right)$ [resp. $\left.\mathcal{L}\left(A_{\varphi \wedge \neg \psi}\right)\right]$

Automata-Theoretic LTL Satisfiability and Entailment

Two steps for checking $\models \psi$ [resp. $\varphi \models \psi$]
(i) Compute $A_{\neg \psi}\left[\right.$ resp. $\left.A_{\varphi \wedge \neg \psi}\right]$
(ii) Check the emptiness of $\mathcal{L}\left(A_{\neg \psi}\right)$ [resp. $\mathcal{L}\left(A_{\varphi \wedge \neg \psi}\right)$]

Automata-Theoretic LTL Model Checking

LTL Model Checking

- Let M be a Kripke model and ψ be an LTL formula
$M \models \psi \quad(\mathrm{LTL})$
$\Longleftrightarrow \mathcal{L}(M) \subseteq \mathcal{L}(\psi)$
$\Longleftrightarrow \mathcal{L}(M) \cap \overline{\mathcal{L}(\psi)}=\emptyset$
$\Longleftrightarrow \mathcal{L}(M) \cap \mathcal{L}(\neg \psi)=\emptyset$
- A_{M} is a Büchi Automaton equivalent to M (which represents all and only the executions of M)
- $A_{\neg \psi}$ is a Büchi Automaton which represents all and only the paths that satisfy $\neg \psi$ (do not satisfy ψ)
$A_{M} \times A_{-\psi}$ represents all and only the paths appearing in M and not in ψ

Automata-Theoretic LTL Model Checking

LTL Model Checking

- Let M be a Kripke model and ψ be an LTL formula
$M \equiv \psi \quad(\mathrm{LTL})$
$\Longleftrightarrow \mathcal{L}(M) \subseteq \mathcal{L}(\psi)$
$\Longleftrightarrow \mathcal{L}(M) \cap \overline{\mathcal{L}(\psi)}=\emptyset$
$\Longleftrightarrow \mathcal{L}(M) \cap \mathcal{L}(\neg \psi)=\emptyset$
$\Longleftrightarrow \mathcal{L}\left(A_{M}\right) \cap \mathcal{L}\left(A_{\neg \psi}\right)=\emptyset$
- A_{M} is a Büchi Automaton equivalent to M (which represents all and only the executions of M)
- $A_{\neg \psi}$ is a Büchi Automaton which represents all and only the paths that satisfy $\neg \psi$ (do not satisfy ψ)

Automata-Theoretic LTL Model Checking

LTL Model Checking

- Let M be a Kripke model and ψ be an LTL formula
$M \models \psi \quad(\mathrm{LTL})$
$\Longleftrightarrow \mathcal{L}(M) \subseteq \mathcal{L}(\psi)$
$\Longleftrightarrow \mathcal{L}(M) \cap \overline{\mathcal{L}(\psi)}=\emptyset$
$\Longleftrightarrow \mathcal{L}(M) \cap \mathcal{L}(\neg \psi)=\emptyset$
$\Longleftrightarrow \mathcal{L}\left(A_{M}\right) \cap \mathcal{L}\left(A_{\neg \psi}\right)=\emptyset$
$\Longleftrightarrow \mathcal{L}\left(A_{M} \times A_{\neg \psi}\right)=\emptyset$
- A_{M} is a Büchi Automaton equivalent to M (which represents all and only the executions of M)
- $A_{\neg \psi}$ is a Büchi Automaton which represents all and only the paths that satisfy $\neg \psi$ (do not satisfy ψ)
$\Longrightarrow A_{M} \times A_{\neg \psi}$ represents all and only the paths appearing in M and not in ψ.

Automata-Theoretic LTL Model Checking

```
Four steps
Let }\varphi\stackrel{\mathrm{ def }}{=}\neg\psi\mathrm{ :
(i) Compute }\mp@subsup{A}{M}{
(ii) Compute A
(iii) Compute the product AM
(iv) Check the emptiness of L}\mathcal{L}(\mp@subsup{A}{M}{}\times\mp@subsup{A}{\varphi}{}
```


Automata-Theoretic LTL Model Checking

```
Four steps
Let }\varphi\stackrel{\mathrm{ def }}{=}\neg\psi\mathrm{ :
(i) Compute }\mp@subsup{A}{M}{
(ii) Compute A
(iii) Compute the product }\mp@subsup{A}{M}{
(iv) Check the emptiness of L}\mathcal{L}(AM\times\mp@subsup{A}{A}{}
```


Automata-Theoretic LTL Model Checking

```
Four steps
Let }\varphi\stackrel{\mathrm{ dof }}{=}\neg\psi\mathrm{ :
(i) Compute }\mp@subsup{A}{M}{
(ii) Compute A
(iii) Compute the product }\mp@subsup{A}{M}{
(iv) Check the emptiness of L}\mathcal{L}(\mp@subsup{A}{M}{}\times\mp@subsup{A}{\varphi}{}
```


Automata-Theoretic LTL Model Checking

```
Four steps
Let }\varphi\stackrel{\mathrm{ dof }}{=}\neg\psi\mathrm{ :
(i) Compute }\mp@subsup{A}{M}{
(ii) Compute \(A_{\varphi}\)
(iii) Compute the product \(A_{M} \times A_{\varphi}\)
```

(iv) Check the emptiness of $\mathcal{L}\left(A_{M} \times A_{\varphi}\right)$

Automata-Theoretic LTL Model Checking

```
Four steps
Let }\varphi\stackrel{\mathrm{ dof }}{=}\neg\psi\mathrm{ :
(i) Compute }\mp@subsup{A}{M}{
(ii) Compute \(A_{\varphi}\)
(iii) Compute the product \(A_{M} \times A_{\varphi}\)
(iv) Check the emptiness of \(\mathcal{L}\left(A_{M} \times A_{\varphi}\right)\)
```


Outline

(2) The Automata-Theoretic Approach to LTL Reasoning

- General Ideas
- Language-Emptiness Checking of Büchi Automata
- From Kripke Models to Büchi Automata
- From LTL Formulas to Büchi Automata
- Complexity
(3) Exercises

NBA emptiness checking

- Find an accepting cycle reachable from an initial state.
- A naive algorithm:

Complexity: $O\left(n^{2}\right)$

- SCC-based algorithm:

Complexity: $O(n)$

- Drawbacks: it stores too much information and does not find directly a counterexample.

NBA emptiness checking

- Find an accepting cycle reachable from an initial state.
- A naive algorithm:
(i) a DFS finds the final states f reachable from an initial state;
(ii) for each f, a second DFS finds if it can reach f
(i.e., if there exists a loop)

Complexity: $O\left(n^{2}\right)$

- SCC-based algorithm:

Complexity: $O(n)$

- Drawbacks: it stores too much information and does not find directly a counterexample.

NBA emptiness checking

- Find an accepting cycle reachable from an initial state.
- A naive algorithm:
(i) a DFS finds the final states f reachable from an initial state;
(ii) for each f, a second DFS finds if it can reach f
(i.e., if there exists a loop)

Complexity: $O\left(n^{2}\right)$

- SCC-based algorithm:

Complexity: $O(n)$

- Drawbacks: it stores too much information and does not find directly a counterexample.

NBA emptiness checking

- Find an accepting cycle reachable from an initial state.
- A naive algorithm:
(i) a DFS finds the final states f reachable from an initial state;
(ii) for each f, a second DFS finds if it can reach f
(i.e., if there exists a loop)

Complexity: $O\left(n^{2}\right)$

- SCC-based algorithm:

Complexity: $O(n)$

- Drawbacks: it stores too much information and does not find directly a counterexample.

NBA emptiness checking

- Find an accepting cycle reachable from an initial state.
- A naive algorithm:
(i) a DFS finds the final states f reachable from an initial state;
(ii) for each f, a second DFS finds if it can reach f
(i.e., if there exists a loop)

Complexity: $O\left(n^{2}\right)$

- SCC-based algorithm:

Complexity: $O(n)$

- Drawbacks: it stores too much information and does not find directly a counterexample.

NBA emptiness checking

- Find an accepting cycle reachable from an initial state.
- A naive algorithm:
(i) a DFS finds the final states f reachable from an initial state;
(ii) for each f, a second DFS finds if it can reach f
(i.e., if there exists a loop)

Complexity: $O\left(n^{2}\right)$

- SCC-based algorithm:
(i) Tarjan's algorithm uses a DFS to find the SCCs in linear time;
(ii) drop all SCCs which do not have at least one arc, and which do not contain at least one accepting
state f
(iii) another DFS finds if the union of non-trivial SCCs is reachable from an initial state.

Complexity: $O(n)$

- Drawbacks: it stores too much information and does not find directly a counterexample.

NBA emptiness checking

- Find an accepting cycle reachable from an initial state.
- A naive algorithm:
(i) a DFS finds the final states f reachable from an initial state;
(ii) for each f, a second DFS finds if it can reach f
(i.e., if there exists a loop)

Complexity: $O\left(n^{2}\right)$

- SCC-based algorithm:
(i) Tarjan's algorithm uses a DFS to find the SCCs in linear time;
drop all SCCs which do not have at least one arc, and which do not contain at least one accepting
state f
(iii) another DFS finds if the union of non-trivial SCCs is reachable from an initial state.

Complexity: $O(n)$

- Drawbacks: it stores too much information and does not find directly a counterexample.

NBA emptiness checking

- Find an accepting cycle reachable from an initial state.
- A naive algorithm:
(i) a DFS finds the final states f reachable from an initial state;
(ii) for each f, a second DFS finds if it can reach f
(i.e., if there exists a loop)

Complexity: $O\left(n^{2}\right)$

- SCC-based algorithm:
(i) Tarjan's algorithm uses a DFS to find the SCCs in linear time;
(ii) drop all SCCs which do not have at least one arc, and which do not contain at least one accepting state f
(iii) another DFS finds if the union of non-trivial SCCs is reachable from an initial state.

Complexity: $O(n)$

- Drawbacks: it stores too much information and does not find directly a counterexample.

NBA emptiness checking

- Find an accepting cycle reachable from an initial state.
- A naive algorithm:
(i) a DFS finds the final states f reachable from an initial state;
(ii) for each f, a second DFS finds if it can reach f
(i.e., if there exists a loop)

Complexity: $O\left(n^{2}\right)$

- SCC-based algorithm:
(i) Tarjan's algorithm uses a DFS to find the SCCs in linear time;
(ii) drop all SCCs which do not have at least one arc, and which do not contain at least one accepting state f
(iii) another DFS finds if the union of non-trivial SCCs is reachable from an initial state.

Complexity: O(n)

- Drawbacks: it stores too much information and does not find directly a counterexample.

NBA emptiness checking

- Find an accepting cycle reachable from an initial state.
- A naive algorithm:
(i) a DFS finds the final states f reachable from an initial state;
(ii) for each f, a second DFS finds if it can reach f
(i.e., if there exists a loop)

Complexity: $O\left(n^{2}\right)$

- SCC-based algorithm:
(i) Tarjan's algorithm uses a DFS to find the SCCs in linear time;
(ii) drop all SCCs which do not have at least one arc, and which do not contain at least one accepting state f
(iii) another DFS finds if the union of non-trivial SCCs is reachable from an initial state.

Complexity: $O(n)$

- Drawbacks: it stores too much information and does not find directly a counterexample.

NBA emptiness checking

- Find an accepting cycle reachable from an initial state.
- A naive algorithm:
(i) a DFS finds the final states f reachable from an initial state;
(ii) for each f, a second DFS finds if it can reach f
(i.e., if there exists a loop)

Complexity: $O\left(n^{2}\right)$

- SCC-based algorithm:
(i) Tarjan's algorithm uses a DFS to find the SCCs in linear time;
(ii) drop all SCCs which do not have at least one arc, and which do not contain at least one accepting state f
(iii) another DFS finds if the union of non-trivial SCCs is reachable from an initial state.

Complexity: $O(n)$

- Drawbacks: it stores too much information and does not find directly a counterexample.

Double Nested DFS algorithm

Double Nested DFS

- Two nested DFSs
- DFS1 finds the final states f reachable from an initial state
- for each \mathfrak{f}, DFS2 finds if it can reach f (i.e., if there exists a loop)
- Two Hash tables:
- T1: reachable states
- T2: states reachable from a reachable final state
- Two stacks:
- S1: current branch of states reachable
- S2: current branch of states reachable from final state f
- It stops as soon as it finds a counterexample.
- The counterexample is given by
- the stack of DFS2 (an accepting, preceded by cycle)
- the stack of DFS1 (a path from an initial state to the cycle)
- DFS1 invokes DFS2 on each f_{i} only after popping it (postorder)
- T2 passed by reference, is not reset at each call of DFS2 !

Double Nested DFS algorithm

Double Nested DFS

- Two nested DFSs
- DFS1 finds the final states f reachable from an initial state
- for each \mathfrak{f}, DFS2 finds if it can reach f (i.e., if there exists a loop)
- Two Hash tables:
- T1: reachable states
- т2: states reachable from a reachable final state
- Two stacks:
- S1: current branch of states reachable
- S2: current branch of states reachable from final state f
- It stops as soon as it finds a counterexample.
- The counterexample is given by
- the stack of DFS2 (an accepting, preceded by cycle)
- the stack of DFS1 (a path from an initial state to the cycle)
- DFS1 invokes DFS2 on each f_{i} only after popping it (postorder)
- T2 passed by reference, is not reset at each call of DFS2!

Double Nested DFS algorithm

Double Nested DFS

- Two nested DFSs
- DFS1 finds the final states f reachable from an initial state
- for each \mathfrak{f}, DFS2 finds if it can reach f (i.e., if there exists a loop)
- Two Hash tables:
- T1: reachable states
- т2: states reachable from a reachable final state
- Two stacks:
- S1: current branch of states reachable
- S2: current branch of states reachable from final state f
- It stops as soon as it finds a counterexample.
- The counterexample is given by
- the stack of DFS2 (an accepting, preceded by cycle)
- the stack of DES1 (a path from an initial state to the cycle)
- DFS1 invokes DFS2 on each f_{i} only after popping it (postorder)
- T2 passed by reference, is not reset at each call of DFS2 !

Double Nested DFS algorithm

Double Nested DFS

- Two nested DFSs
- DFS1 finds the final states f reachable from an initial state
- for each \mathfrak{f}, DFS2 finds if it can reach f (i.e., if there exists a loop)
- Two Hash tables:
- T1: reachable states
- т2: states reachable from a reachable final state
- Two stacks:
- S1: current branch of states reachable
- S2: current branch of states reachable from final state f
- It stops as soon as it finds a counterexample.
- The counterexample is given by
- the stack of DFS2 (an accepting, preceded by cycle)
- the stack of DES1 (a path from an initial state to the cycle)
- DFS1 invokes DFS2 on each f_{i} only after popping it (postorder)
- T2 passed by reference, is not reset at each call of DFS2 !

Double Nested DFS algorithm

Double Nested DFS

- Two nested DFSs
- DFS1 finds the final states f reachable from an initial state
- for each \mathfrak{f}, DFS2 finds if it can reach f (i.e., if there exists a loop)
- Two Hash tables:
- T1: reachable states
- т2: states reachable from a reachable final state
- Two stacks:
- S1: current branch of states reachable
- S2: current branch of states reachable from final state f
- It stops as soon as it finds a counterexample.
- The counterexample is given by
- the stack of DFS2 (an accepting, preceded by cycle)
- the stack of DFS1 (a path from an initial state to the cycle)
- DFS1 invokes DFS2 on each f_{i} only after popping it (postorder)
- T2 passed by reference, is not reset at each call of DFS2!

Double Nested DFS algorithm

Double Nested DFS

- Two nested DFSs
- DFS1 finds the final states f reachable from an initial state
- for each \mathfrak{f}, DFS2 finds if it can reach f (i.e., if there exists a loop)
- Two Hash tables:
- T1: reachable states
- T2: states reachable from a reachable final state
- Two stacks:
- S1: current branch of states reachable
- S 2 : current branch of states reachable from final state f
- It stops as soon as it finds a counterexample.
- The counterexample is given by
- the stack of DFS2 (an accepting, preceded by cycle)
- the stack of DFS1 (a path from an initial state to the cycle)
- DFS1 invokes DFS2 on each f_{i} only after popping it (postorder)
- T2 passed by reference, is not reset at each call of DFS2!

Double Nested DFS - First DFS

```
// returns True if empty language, false otherwise
Bool DFS1(NBA A) {
    stack S1=I; stack S2=\emptyset;
    Hashtable T1=I; Hashtable T2=\emptyset;
    while S1!=\emptyset {
        v=top(S1);
        if \existsw s.t. w\in \delta(v) && T1 (w)==0 {
            hash(w,T1);
            push(w,S1);
            } else {
            pop(S1);
            if (v\inF && !DFS2(v,S2,T2,A))
                return False;
    }
    return True;
}
```


Double Nested DFS - Second DFS

```
Bool DFS2(state f, stack & S, Hashtable & T, NBA A) {
    hash(f,T);
    S = {f}
    while S!=\emptyset {
        v=top(S);
        if f\in 
        if \existsw s.t. w\in \delta(v) && T(w)==0 {
            hash(w);
            push(w);
        } else pop(S);
    }
    return True;
}
```

Remark: T passed by reference, is not reset at each call of DFS2 !

Double nested DFS: Intuition

DFS1 invokes DFS2 on each f_{1}, \ldots, f_{n} only after popping it (postorder):

- suppose DFS2 is invoked on f_{j} before than on f_{i}
f_{i} not reachable from (any state s which is reachable from) f_{j}
- If during $\operatorname{DFS} 2\left(f_{i}, \ldots\right)$ it is encountered a state S which has already been explored by DFS2 $\left(f_{j}, \ldots\right)$ for some f_{j},

Double nested DFS: Intuition

DFS1 invokes DFS2 on each f_{1}, \ldots, f_{n} only after popping it (postorder):

- suppose DFS2 is invoked on f_{j} before than on f_{i}
f_{i} not reachable from (any state s which is reachable from) f_{j}
- If during $D F S 2\left(f_{i}, \ldots\right)$ it is encountered a state S which has already been explored by $\operatorname{DFS} 2\left(f_{j}, \ldots\right)$ for some f_{j},

Double nested DFS: Intuition

DFS1 invokes DFS2 on each f_{1}, \ldots, f_{n} only after popping it (postorder):

- suppose DFS2 is invoked on f_{j} before than on f_{i}
$\Longrightarrow f_{i}$ not reachable from (any state s which is reachable from) f_{j}
- If during DFS2 $\left(f_{i}, \ldots\right)$ it is encountered a state S which has already been explored by $\operatorname{DFS2}\left(f_{j}, \ldots\right)$ for some f_{j},

Double nested DFS: Intuition

DFS1 invokes DFS2 on each f_{1}, \ldots, f_{n} only after popping it (postorder):

- suppose DFS2 is invoked on f_{j} before than on f_{i}
$\Longrightarrow f_{i}$ not reachable from (any state s which is reachable from) f_{j}
- If during $\operatorname{DFS2}\left(f_{i}, \ldots\right)$ it is encountered a state S which has already been explored by $\operatorname{DFS2}\left(f_{j}, \ldots\right)$ for some f_{j},
- can we reach f_{i} from S ?
- No, because f_{i} is not reachable from f_{j} !

Double nested DFS: Intuition

DFS1 invokes DFS2 on each f_{1}, \ldots, f_{n} only after popping it (postorder):

- suppose DFS2 is invoked on f_{j} before than on f_{i}
$\Longrightarrow f_{i}$ not reachable from (any state s which is reachable from) f_{j}
- If during $\operatorname{DFS2}\left(f_{i}, \ldots\right)$ it is encountered a state S which has already been explored by DFS2 $\left(f_{j}, \ldots\right)$ for some f_{j},
- can we reach f_{i} from S ?
- No, because f_{i} is not reachable from f_{j} !

Double nested DFS: Intuition

DFS1 invokes DFS2 on each f_{1}, \ldots, f_{n} only after popping it (postorder):

- suppose DFS2 is invoked on f_{j} before than on f_{i}
$\Longrightarrow f_{i}$ not reachable from (any state s which is reachable from) f_{j}
- If during $\operatorname{DFS2}\left(f_{i}, \ldots\right)$ it is encountered a state S which has already been explored by DFS2 $\left(f_{j}, \ldots\right)$ for some f_{j},
- can we reach f_{i} from S ?
- No, because f_{i} is not reachable from f_{j} !

Double nested DFS: Intuition

DFS1 invokes DFS2 on each f_{1}, \ldots, f_{n} only after popping it (postorder):

- suppose DFS2 is invoked on f_{j} before than on f_{i}
$\Longrightarrow f_{i}$ not reachable from (any state s which is reachable from) f_{j}
- If during $\operatorname{DFS2}\left(f_{i}, \ldots\right)$ it is encountered a state S which has already been explored by DFS2 $\left(f_{j}, \ldots\right)$ for some f_{j},
- can we reach f_{i} from S ?
- No, because f_{i} is not reachable from f_{j} !
\Longrightarrow It is safe to backtrack!

Double Nested DFS: example

Double Nested DFS: example

T1 1234
T2 34
S1 12
S2 34

Double Nested DFS: example

T1 1234
T2 34
S1 12
S2 3

Double Nested DFS: example

T1 1234
S1 12
T2 34
S2

Double Nested DFS: example

$\begin{array}{ll}\text { T1 } 1234 & \text { T2 } 34 \\ \text { S1 1 } & \text { S2 }\end{array}$

Double Nested DFS: example

Double Nested DFS: example

Double Nested DFS: example

T1 123456
T2 34 S1 15
S2

Double Nested DFS: example

Double Nested DFS: example

$$
\begin{array}{ll}
\text { T1 123456 } & \text { T2 } 345 \\
\text { S1 1 } & \text { S2 } 5
\end{array}
$$

Double Nested DFS: example

T1 123456
T2 3452
S1 1
S2 52

Double Nested DFS: example

$$
\begin{array}{ll}
\text { T1 } 123456 & \text { T2 } 3452 \\
\text { S1 1 } & \text { S2 } 5
\end{array}
$$

Double Nested DFS: example

$$
\begin{array}{ll}
\text { T1 } 123456 & \text { T2 } 34526 \\
\text { S1 1 } & \text { S2 } 56
\end{array}
$$

Double Nested DFS: example

$$
\begin{array}{ll}
\text { T1 } 123456 & \text { T2 } 345261 \\
\text { S1 1 } & \text { S2 } 561
\end{array}
$$

Outline

(1) Büchi Automata
(2) The Automata-Theoretic Approach to LTL Reasoning

- General Ideas
- Language-Emptiness Checking of Büchi Automata
- From Kripke Models to Büchi Automata
- From LTL Formulas to Büchi Automata
- Complexity
(3) Exercises

Computing an NBA A_{M} from a Kripke Structure M

- Transform a Kripke model $M=\left\langle S, S_{0}, R, L, A P\right\rangle$ into an NBA $A_{M}=\langle Q, \Sigma, \delta, I, F\rangle$ s.t.:
- States: $Q:=S \cup\{$ init $\}$, init being a new initial state
- Alphabet: Σ
- Initial State:
- Accepting States: $F:=Q=S U\{$ init $\}$
- Transitions:
$q \xrightarrow{a} q^{\prime}$ iff $\left(q, q^{\prime}\right) \in R$ and $L\left(q^{\prime}\right)=$
init $\xrightarrow{a} q$ iff $q \in S_{0}$ and $L(q)=a$
- $\mathcal{L}\left(A_{M}\right)=\mathcal{L}(M)$
-

Computing an NBA A_{M} from a Kripke Structure M

- Transform a Kripke model $M=\left\langle S, S_{0}, R, L, A P\right\rangle$ into an NBA $A_{M}=\langle Q, \Sigma, \delta, I, F\rangle$ s.t.:
- States: $Q:=S \cup\{$ init $\}$, init being a new initial state
- Alphabet: Σ
- Initial State:
- Accepting States: $F:=Q=S \cup\{$ init $\}$
- Transitions:
$q \xrightarrow{a} q^{\prime}$ iff $\left(q, q^{\prime}\right) \in R$ and $L\left(q^{\prime}\right)=$
init $\xrightarrow{a} q$ iff $q \in S_{0}$ and $L(q)=a$
- $\mathcal{L}\left(A_{M}\right)=\mathcal{L}(M)$
- $\mid A_{M}$

Computing an NBA A_{M} from a Kripke Structure M

- Transform a Kripke model $M=\left\langle S, S_{0}, R, L, A P\right\rangle$ into an NBA $A_{M}=\langle Q, \Sigma, \delta, I, F\rangle$ s.t.:
- States: $Q:=S \cup\{$ init $\}$, init being a new initial state
- Alphabet: $\Sigma:=2^{A P}$
- Initial State:
- Accepting States: $F:=Q=S \cup\{$ init $\}$
- Transitions:
$q \xrightarrow{a} q^{\prime}$ iff $\left(q, q^{\prime}\right) \in R$ and $L\left(q^{\prime}\right)=$
init $\xrightarrow{a} q$ iff $q \in S_{0}$ and $L(q)=a$
- $\mathcal{L}\left(A_{M}\right)=\mathcal{L}(M)$
- $\mid A_{M}$

Computing an NBA A_{M} from a Kripke Structure M

- Transform a Kripke model $M=\left\langle S, S_{0}, R, L, A P\right\rangle$ into an NBA $A_{M}=\langle Q, \Sigma, \delta, I, F\rangle$ s.t.:
- States: $Q:=S \cup\{$ init $\}$, init being a new initial state
- Alphabet: $\Sigma:=2^{A P}$
- Initial State: $I:=\{$ init $\}$
- Accepting States: $F:=Q=S \cup\{$ init $\}$
- Transitions:
$q \xrightarrow{a} q^{\prime}$ iff $\left(q, q^{\prime}\right) \in R$ and $L\left(q^{\prime}\right)=a$
init $\xrightarrow{a} q$ iff $q \in S_{0}$ and $L(q)=a$
- $\mathcal{L}\left(A_{M}\right)=\mathcal{L}(M)$
- | A_{M}

Computing an NBA A_{M} from a Kripke Structure M

- Transform a Kripke model $M=\left\langle S, S_{0}, R, L, A P\right\rangle$ into an NBA $A_{M}=\langle Q, \Sigma, \delta, I, F\rangle$ s.t.:
- States: $Q:=S \cup\{$ init $\}$, init being a new initial state
- Alphabet: $\Sigma:=2^{A P}$
- Initial State: $I:=\{$ init $\}$
- Accepting States: $F:=Q=S \cup\{$ init $\}$
- Transitions:
$q \xrightarrow{a} q^{\prime}$ iff $\left(q, q^{\prime}\right) \in R$ and $L\left(q^{\prime}\right)=a$
- $\mathcal{L}\left(A_{M}\right)=\mathcal{L}(M)$
init $\xrightarrow{a} q$ iff $q \in S_{0}$ and $L(q)=a$

Computing an NBA A_{M} from a Kripke Structure M

- Transform a Kripke model $M=\left\langle S, S_{0}, R, L, A P\right\rangle$ into an NBA $A_{M}=\langle Q, \Sigma, \delta, I, F\rangle$ s.t.:
- States: $Q:=S \cup\{$ init $\}$, init being a new initial state
- Alphabet: $\Sigma:=2^{A P}$
- Initial State: $I:=\{$ init $\}$
- Accepting States: $F:=Q=S \cup\{$ init $\}$
- Transitions:

$$
\begin{aligned}
\delta: & q \xrightarrow{a} q^{\prime} \text { iff }\left(q, q^{\prime}\right) \in R \text { and } L\left(q^{\prime}\right)=a \\
& \text { init } \xrightarrow{a} q \text { iff } q \in S_{0} \text { and } L(q)=a
\end{aligned}
$$

- $\mathcal{L}\left(A_{M}\right)=\mathcal{L}(M)$
-

Computing an NBA A_{M} from a Kripke Structure M

- Transform a Kripke model $M=\left\langle S, S_{0}, R, L, A P\right\rangle$ into an NBA $A_{M}=\langle Q, \Sigma, \delta, I, F\rangle$ s.t.:
- States: $Q:=S \cup\{$ init $\}$, init being a new initial state
- Alphabet: $\Sigma:=2^{A P}$
- Initial State: $I:=\{$ init $\}$
- Accepting States: $F:=Q=S \cup\{$ init $\}$
- Transitions:

$$
\begin{aligned}
\delta: & q \xrightarrow{a} q^{\prime} \text { iff }\left(q, q^{\prime}\right) \in R \text { and } L\left(q^{\prime}\right)=a \\
& \text { init } \xrightarrow{\longrightarrow} q \text { iff } q \in S_{0} \text { and } L(q)=a
\end{aligned}
$$

- $\mathcal{L}\left(A_{M}\right)=\mathcal{L}(M)$

Computing an NBA A_{M} from a Kripke Structure M

- Transform a Kripke model $M=\left\langle S, S_{0}, R, L, A P\right\rangle$ into an NBA $A_{M}=\langle Q, \Sigma, \delta, I, F\rangle$ s.t.:
- States: $Q:=S \cup\{$ init $\}$, init being a new initial state
- Alphabet: $\Sigma:=2^{A P}$
- Initial State: $I:=\{$ init $\}$
- Accepting States: $F:=Q=S \cup\{$ init $\}$
- Transitions:

$$
\begin{aligned}
\delta: & q \xrightarrow{a} q^{\prime} \text { iff }\left(q, q^{\prime}\right) \in R \text { and } L\left(q^{\prime}\right)=a \\
& \text { init } \xrightarrow{\longrightarrow} q \text { iff } q \in S_{0} \text { and } L(q)=a
\end{aligned}
$$

- $\mathcal{L}\left(A_{M}\right)=\mathcal{L}(M)$
- $\left|A_{M}\right|=|M|+1$

Computing a NBA A_{M} from a Kripke Structure M: Example

\Longrightarrow Substantially, add one initial state, move labels from states to incoming edges, set all states as accepting states

Labels on Kripke Structures and BA's - Remark

Note that the labels of a Büchi Automaton are different from the labels of a Kripke Structure. Also graphically, they are interpreted differently:

p
- in a Kripke Structure, it means that p is true and all other propositions are false;
- in a Büchi Automaton, it means that p is true and all other propositions are irrelevant ("don't care"), i.e. they can be either true or false.

Labels on Kripke Structures and BA's - Remark

Note that the labels of a Büchi Automaton are different from the labels of a Kripke Structure. Also graphically, they are interpreted differently:

p

- in a Kripke Structure, it means that p is true and all other propositions are false;
- in a Büchi Automaton, it means that p is true and all other propositions are irrelevant ("don't care"), i.e. they can be either true or false.

Labels on Kripke Structures and BA's - Remark

Note that the labels of a Büchi Automaton are different from the labels of a Kripke Structure. Also graphically, they are interpreted differently:

- in a Kripke Structure, it means that p is true and all other propositions are false;
- in a Büchi Automaton, it means that p is true and all other propositions are irrelevant ("don't care"), i.e. they can be either true or false.

Outline

（2）The Automata－Theoretic Approach to LTL Reasoning
－General Ideas
－Language－Emptiness Checking of Büchi Automata
－From Kripke Models to Büchi Automata
－From LTL Formulas to Büchi Automata
－Complexity
（3）Exercises

Translation problem

Problem

Given an LTL formula ϕ, find a Büchi Automaton that accepts the same language of ϕ.

- It is a fundamental problem in LTL validity/satisfiability/entailment e model checking
- We translate an LTL formula into a Generalized Büchi Automata (GBA), then into an NBA

Translation problem

Problem

Given an LTL formula ϕ, find a Büchi Automaton that accepts the same language of ϕ.

- It is a fundamental problem in LTL validity/satisfiability/entailment e model checking
- We translate an LTL formula into a Generalized Büchi Automata (GBA), then into an NBA

Translation problem

Problem

Given an LTL formula ϕ, find a Büchi Automaton that accepts the same language of ϕ.

- It is a fundamental problem in LTL validity/satisfiability/entailment e model checking
- We translate an LTL formula into a Generalized Büchi Automata (GBA), then into an NBA

LTL Negative Normal Form (NNF)

- Every LTL formula φ can be written into an equivalent formula φ^{\prime} using only the operators \wedge, $\checkmark, \mathbf{X}, \mathbf{U}, \mathbf{R}$ on propositional literals.
- Done by pushing negations down to literal level:

The resulting formula is expressed in terms of $\vee, \wedge, X, \mathbf{U}, \mathbf{R}$ and literals (Negative Normal Form, NNF).

- encoding linear if a DAG representation is used
- In the construction of A_{φ} we now assume that φ is in NNF.
\Longrightarrow every non-atomic subformula occurs positively in φ
- For convenience, we still use F's and G's as shortcuts: F φ for TU φ and G φ for $\perp \mathbf{R} \varphi$

LTL Negative Normal Form (NNF)

- Every LTL formula φ can be written into an equivalent formula φ^{\prime} using only the operators \wedge, $\checkmark, \mathbf{X}, \mathbf{U}, \mathbf{R}$ on propositional literals.
- Done by pushing negations down to literal level:

$$
\begin{array}{ll}
\neg\left(\varphi_{1} \vee \varphi_{2}\right) & \Longrightarrow \\
\neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right) \\
\left.\neg \mathbf{\varphi _ { 1 }} \wedge \varphi_{2}\right) & \Longrightarrow \\
\neg \varphi_{1} & \left.\Longrightarrow \neg \varphi_{1} \vee \neg \varphi_{2}\right) \\
\neg\left(\varphi_{1} \mathbf{U} \varphi_{2}\right) & \Longrightarrow \mathbf{X} \neg \varphi_{1} \\
\neg\left(\varphi_{1} \mathbf{R} \varphi_{2}\right) & \Longrightarrow\left(\neg \varphi_{1} \mathbf{R} \neg \varphi_{2}\right) \\
\left(\neg \varphi_{1} \mathbf{U} \neg \varphi_{2}\right)
\end{array}
$$

\Longrightarrow The resulting formula is expressed in terms of $\vee, \wedge, X, \mathbf{U}, \mathbf{R}$ and literals (Negative Normal Form, NNF).

- encoding linear if a DAG representation is used
- In the construction of A_{φ} we now assume that φ is in NNF. \Longrightarrow every non-atomic subformula occurs positively in φ
- For convenience, we still use F's and G's as shortcuts: F φ for $T U \varphi$ and $G \varphi$ for $\perp R \varphi$

LTL Negative Normal Form (NNF)

- Every LTL formula φ can be written into an equivalent formula φ^{\prime} using only the operators \wedge, $\checkmark, \mathbf{X}, \mathbf{U}, \mathbf{R}$ on propositional literals.
- Done by pushing negations down to literal level:

$$
\begin{array}{lll}
\neg\left(\varphi_{1} \vee \varphi_{2}\right) & \Longrightarrow & \left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right) \\
\neg\left(\varphi_{1} \wedge \varphi_{2}\right) & \Longrightarrow & \left(\neg \varphi_{1} \vee \neg \varphi_{2}\right) \\
\neg \mathbf{X} \varphi_{1} & \Longrightarrow & \mathbf{X} \neg \varphi_{1} \\
\neg\left(\varphi_{1} \mathbf{U} \varphi_{2}\right) & \Longrightarrow & \left(\neg \varphi_{1} \mathbf{R} \neg \varphi_{2}\right) \\
\neg\left(\varphi_{1} \mathbf{R} \varphi_{2}\right) & \Longrightarrow & \left(\neg \varphi_{1} \mathbf{U} \neg \varphi_{2}\right)
\end{array}
$$

\Longrightarrow The resulting formula is expressed in terms of $\vee, \wedge, X, \mathbf{U}, \mathbf{R}$ and literals (Negative Normal Form, NNF).

- encoding linear if a DAG representation is used
- In the construction of A_{φ} we now assume that φ is in NNF. \Longrightarrow every non-atomic subformula occurs positively in φ
- For convenience, we still use F's and G's as shortcuts: $\mathrm{F} \varphi$ for $\operatorname{TU} \varphi$ and $\mathrm{G} \varphi$ for $\perp \mathbf{R} \varphi$

LTL Negative Normal Form (NNF)

- Every LTL formula φ can be written into an equivalent formula φ^{\prime} using only the operators \wedge, $\checkmark, \mathbf{X}, \mathbf{U}, \mathbf{R}$ on propositional literals.
- Done by pushing negations down to literal level:

$$
\left.\begin{array}{ll}
\neg\left(\varphi_{1} \vee \varphi_{2}\right) & \Longrightarrow \\
\neg\left(\neg \varphi_{1} \wedge \neg \varphi_{2}\right) \\
\neg \mathbf{X} \varphi_{1} & \left.\Longrightarrow \varphi_{2}\right)
\end{array}\right)\left(\neg \varphi_{1} \vee \neg \varphi_{2}\right),\left(\boldsymbol{X}_{1}\right)
$$

\Longrightarrow The resulting formula is expressed in terms of $\vee, \wedge, X, \mathbf{U}, \mathbf{R}$ and literals (Negative Normal Form, NNF).

- encoding linear if a DAG representation is used
- In the construction of A_{φ} we now assume that φ is in NNF. \Longrightarrow every non-atomic subformula occurs positively in φ
- For convenience, we still use F's and G's as shortcuts: $\mathbf{F} \varphi$ for $T \mathbf{U} \varphi$ and $\mathbf{G} \varphi$ for $\perp \mathbf{R} \varphi$

On-the-fly Construction of A_{φ} (Intuition)

Apply recursively the following steps:
Step 1: Apply the tableau expansion rules to φ :
$\psi_{1} \mathbf{U} \psi_{2} \Longrightarrow \psi_{2} \vee\left(\psi_{1} \wedge \mathbf{X}\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right)$ [and $\mathbf{F} \psi \Longrightarrow \psi \vee \mathbf{X F} \psi$]
$\psi_{1} \mathbf{R} \psi_{2} \Longrightarrow \psi_{2} \wedge\left(\psi_{1} \vee \mathbf{X}\left(\psi_{1} \mathbf{R} \psi_{2}\right)\right)$ [and $\mathbf{G} \psi \Longrightarrow \psi \wedge \mathbf{X G} \psi$]
until we get a Boolean combination of elementary subformulas of φ
(An elementary formula is a proposition or a \mathbf{X}-formula.)

Tableaux Rules: a Quote

"After all... tomorrow is another day."
[Scarlett O'Hara, "Gone with the Wind"]

On-the-fly Construction of A_{φ} (Intuition) [cont.]

Step 2: Convert all formulas into Disjunctive Normal Form, and then push the conjunctions inside the next:

$$
\varphi \Longrightarrow \bigvee_{i}\left(\bigwedge_{j} I_{i j} \wedge \bigwedge_{k} \mathbf{x} \psi_{i k}\right) \Longrightarrow \bigvee_{i}\left(\bigwedge_{j} I_{i j} \wedge \mathbf{X} \bigwedge_{k} \psi_{i k}\right)
$$

- Each disjunct ($\left.\bigwedge I_{i j} \wedge \mathbf{X} \bigwedge \psi_{i k}\right)$ represents a state:

On-the-fly Construction of A_{φ} (Intuition) [cont.]

Step 2: Convert all formulas into Disjunctive Normal Form, and then push the conjunctions inside the next:

$$
\varphi \Longrightarrow \bigvee_{i}\left(\bigwedge_{j} I_{i j} \wedge \bigwedge_{k} \mathbf{x} \psi_{i k}\right) \Longrightarrow \bigvee_{i}\left(\bigwedge_{j} I_{i j} \wedge \mathbf{X} \bigwedge_{k} \psi_{i k}\right)
$$

- Each disjunct $\overbrace{\bigwedge_{j} l_{i j}}^{\text {labels }} \wedge \overbrace{\mathbf{X} \bigwedge_{k} \psi_{i k}}^{\text {next }})$ represents a state:
- the conjunction of literals $\Lambda_{j} l_{i j}$ represents a set of labels in Σ
(e.g., if $\operatorname{Vars}(\varphi)=\{p, q, r\}, p \wedge \neg q$ represents the two labels $\{p, \neg q, r\}$ and $\{p, \neg q, \neg r\}$)
- $\mathbf{X} \wedge_{k} \psi_{i k}$ represents the next part of the state
(obbligations for the successors)
- N.B., if no next part occurs, XT is implicitly assumed

On-the-fly Construction of A_{φ} (Intuition) [cont.]

Step 2: Convert all formulas into Disjunctive Normal Form, and then push the conjunctions inside the next:

$$
\varphi \Longrightarrow \bigvee_{i}\left(\bigwedge_{j} I_{i j} \wedge \bigwedge_{k} \mathbf{x} \psi_{i k}\right) \Longrightarrow \bigvee_{i}\left(\bigwedge_{j} I_{i j} \wedge \mathbf{X} \bigwedge_{k} \psi_{i k}\right)
$$

- Each disjunct $(\overbrace{\bigwedge_{j} l_{i j}}^{\text {labels }} \wedge \overbrace{\mathbf{X} \bigwedge_{k} \psi_{i k}}^{\text {next }})$ represents a state:
- the conjunction of literals $\bigwedge_{j} l_{i j}$ represents a set of labels in Σ (e.g., if $\operatorname{Vars}(\varphi)=\{p, q, r\}, p \wedge \neg q$ represents the two labels $\{p, \neg q, r\}$ and $\{p, \neg q, \neg r\}$)
- $\mathrm{X} \wedge_{k} \psi_{i k}$ represents the next part of the state (obbligations for the successors)
- N.B., if no next part occurs, XT is implicitly assumed

On-the-fly Construction of A_{φ} (Intuition) [cont.]

Step 2: Convert all formulas into Disjunctive Normal Form, and then push the conjunctions inside the next:

$$
\varphi \Longrightarrow \bigvee_{i}\left(\bigwedge_{j} I_{i j} \wedge \bigwedge_{k} \mathbf{x} \psi_{i k}\right) \Longrightarrow \bigvee_{i}\left(\bigwedge_{j} I_{i j} \wedge \mathbf{X} \bigwedge_{k} \psi_{i k}\right)
$$

- Each disjunct $(\overbrace{\bigwedge_{j} l_{i j}}^{\text {labels }} \overbrace{\mathbf{X} \bigwedge_{k} \psi_{i k}}^{\text {next part }})$ represents a state:
- the conjunction of literals $\bigwedge_{j} l_{i j}$ represents a set of labels in Σ (e.g., if $\operatorname{Vars}(\varphi)=\{p, q, r\}, p \wedge \neg q$ represents the two labels $\{p, \neg q, r\}$ and $\{p, \neg q, \neg r\}$)
- $\mathbf{X} \bigwedge_{k} \psi_{i k}$ represents the next part of the state (obbligations for the successors)
- N.B., if no next part occurs, XT is implicitly assumed

On-the-fly Construction of A_{φ} (Intuition) [cont.]

Step 2: Convert all formulas into Disjunctive Normal Form, and then push the conjunctions inside the next:

$$
\varphi \Longrightarrow \bigvee_{i}\left(\bigwedge_{j} I_{i j} \wedge \bigwedge_{k} \mathbf{x} \psi_{i k}\right) \Longrightarrow \bigvee_{i}\left(\bigwedge_{j} I_{i j} \wedge \mathbf{X} \bigwedge_{k} \psi_{i k}\right)
$$

- Each disjunct $(\overbrace{\bigwedge_{j} l_{i j}}^{\text {labels }} \overbrace{\mathbf{X} \bigwedge_{k} \psi_{i k}}^{\text {next part }})$ represents a state:
- the conjunction of literals $\bigwedge_{j} l_{i j}$ represents a set of labels in Σ (e.g., if $\operatorname{Vars}(\varphi)=\{p, q, r\}, p \wedge \neg q$ represents the two labels $\{p, \neg q, r\}$ and $\{p, \neg q, \neg r\}$)
- $\mathbf{X} \bigwedge_{k} \psi_{i k}$ represents the next part of the state (obbligations for the successors)
- N.B., if no next part occurs, $X T$ is implicitly assumed

On-the-fly Construction of A_{φ} (Intuition) [cont.]

Step 3: For every state S_{i} represented by $(\bigwedge_{j} l_{i j} \wedge \mathbf{X} \overbrace{\bigwedge_{k} \psi_{i k}}^{\varphi_{i}})$

- label the incoming edges of S_{i} with $\bigwedge_{j} l_{i j}$
- mark that the state S_{i} satisfies φ
- apply recursively steps 1-2-3 to
- rewrite φ_{i} into $\bigvee_{i^{\prime}}\left(\bigwedge_{j} l_{i^{\prime} j}^{\prime} \wedge \mathbf{X} \bigwedge_{k} \psi_{i k}^{\prime}\right)$
- from each disjunct $\left(\Lambda_{j} l_{i j} \wedge X \wedge_{k} \psi_{i}^{\prime} k\right)$ generate a new state $S_{i j}$ (if not already present) and label it as satisfying $\varphi_{i} \stackrel{\text { def }}{=} \bigwedge_{k} \psi_{i k}$
- draw an edge from S_{i} to all states $S_{i j}$ which satisfy $\wedge_{k} \psi_{i k}$
- (if no next part occurs, $X T$ is implicitly assumed, so that an edge to a "true" node is drawn)

On-the-fly Construction of A_{φ} (Intuition) [cont.]

Step 3: For every state S_{i} represented by $(\bigwedge_{j} l_{i j} \wedge \mathbf{X} \overbrace{\bigwedge_{k} \psi_{i k}}^{\varphi_{i}})$

- label the incoming edges of S_{i} with $\bigwedge_{j} l_{i j}$
- mark that the state S_{i} satisfies φ
- apply recursively steps 1-2-3 to
- rewrite φ_{i} into $\bigvee_{i^{\prime}}\left(\bigwedge_{j} l_{i^{\prime} j}^{\prime} \wedge \mathbf{X} \bigwedge_{k} \psi_{i^{\prime} k}^{\prime}\right)$
- from each disjunct $\left(\bigwedge_{i} l_{i^{\prime} j}^{\prime} \wedge \mathbf{X} \bigwedge_{k} \psi_{i^{\prime} k}^{\prime}\right)$ generate a new state $S_{i j}$ (if not already present) and label it as satisfying $\varphi_{i} \stackrel{\text { def }}{=} \bigwedge_{k} \psi_{i k}$
- draw an edge from S_{i} to all states $S_{i i^{\prime}}$ which satisfy $\bigwedge_{k} \psi_{i k}$
- (if no next part occurs, $\mathbf{X} T$ is implicitly assumed, so that an ϵ dge to a "true" node is drawn)

On-the-fly Construction of A_{φ} (Intuition) [cont.]

Step 3: For every state S_{i} represented by $(\bigwedge_{j} l_{i j} \wedge \mathbf{X} \overbrace{\bigwedge_{k} \psi_{i k}}^{\varphi_{i}})$

- label the incoming edges of S_{i} with $\bigwedge_{j} l_{i j}$
- mark that the state S_{i} satisfies φ
- apply recursively steps 1-2-3 to $\varphi_{i} \stackrel{\text { def }}{=} \bigwedge_{k} \psi_{i k}$,
- rewrite φ_{i} into $\bigvee_{i^{\prime}}\left(\bigwedge_{j} l_{i^{\prime} j}^{\prime} \wedge \mathbf{X} \bigwedge_{k} \psi_{i^{\prime} k}^{\prime}\right)$
- from each disjunct ($\bigwedge_{j} l_{i^{\prime} j}^{\prime} \wedge \mathbf{X} \bigwedge_{k} \psi_{i^{\prime} k}^{\prime}$) generate a new state $S_{i i^{\prime}}$ (if not already present) and label it as satisfying $\varphi_{i} \stackrel{\text { def }}{=} \bigwedge_{k} \psi_{i k}$
- draw an edge from S_{i} to all states $S_{i j}$ which satisfy $\bigwedge_{k} \psi_{i k}$
- (if no next part occurs, $X T$ is implicitly assumed, so that an edge to a "true" node is drawn)

On-the-fly Construction of A_{φ} (Intuition) [cont.]

Step 3: For every state S_{i} represented by $(\bigwedge_{j} l_{i j} \wedge \mathbf{X} \overbrace{\bigwedge_{k} \psi_{i k}}^{\varphi_{i}})$

- label the incoming edges of S_{i} with $\bigwedge_{j} l_{i j}$
- mark that the state S_{i} satisfies φ
- apply recursively steps 1-2-3 to $\varphi_{i} \stackrel{\text { def }}{=} \bigwedge_{k} \psi_{i k}$,
- rewrite φ_{i} into $\bigvee_{i^{\prime}}\left(\bigwedge_{j} l_{i^{\prime} j}^{\prime} \wedge \mathbf{X} \bigwedge_{k} \psi_{i^{\prime} k}^{\prime}\right)$
- from each disjunct ($\bigwedge_{j} l_{i^{\prime} j}^{\prime} \wedge \mathbf{X} \bigwedge_{k} \psi_{i^{\prime} k}^{\prime}$) generate a new state $S_{i i^{\prime}}$ (if not already present) and label it as satisfying $\varphi_{i} \stackrel{\text { def }}{=} \bigwedge_{k} \psi_{\text {ik }}$
- draw an edge from S_{i} to all states $S_{i i^{\prime}}$ which satisfy $\bigwedge_{k} \psi_{i k}$
- (if no next part occurs, XT is implicitly assumed, so that an edge to a "true" node is drawn)

On-the-fly Construction of A_{φ} (Intuition) [cont.]

Step 3: For every state S_{i} represented by $(\bigwedge_{j} l_{i j} \wedge \mathbf{X} \overbrace{\bigwedge_{k} \psi_{i k}}^{i})$

- label the incoming edges of S_{i} with $\bigwedge_{j} l_{i j}$
- mark that the state S_{i} satisfies φ
- apply recursively steps 1-2-3 to $\varphi_{i} \stackrel{\text { def }}{=} \bigwedge_{k} \psi_{i k}$,
- rewrite φ_{i} into $\bigvee_{i^{\prime}}\left(\bigwedge_{j} l_{i^{\prime} j}^{\prime} \wedge \mathbf{X} \bigwedge_{k} \psi_{i^{\prime} k}^{\prime}\right)$
- from each disjunct ($\bigwedge_{j} l_{i^{\prime} j}^{\prime} \wedge \mathbf{X} \bigwedge_{k} \psi_{i^{\prime} k}^{\prime}$) generate a new state $S_{i i^{\prime}}$ (if not already present) and label it as satisfying $\varphi_{i} \stackrel{\text { def }}{=} \bigwedge_{k} \psi_{\text {ik }}$
- draw an edge from S_{i} to all states $S_{i i^{\prime}}$ which satisfy $\bigwedge_{k} \psi_{i k}$
- (if no next part occurs, $\mathbf{X} \top$ is implicitly assumed, so that an edge to a "true" node is drawn)

On-the-fly Construction of A_{φ} (Intuition) [cont.]

On-the-fly Construction of A_{φ} (Intuition) [cont.]

$$
V_{i}\left(\wedge_{j} l_{j j} \wedge \mathbf{x} \bigwedge_{k} \psi_{i k}\right)!
$$

On-the-fly Construction of A_{φ} (Intuition) [cont.]

$$
V_{i}\left(\wedge_{j} l_{j j} \wedge \mathbf{x} \bigwedge_{k} \psi_{i k}\right)!
$$

On-the-fly Construction of A_{φ} (Intuition) [cont.]

On-the-fly Construction of A_{φ} (Intuition) [cont.]

On-the-fly Construction of A_{φ} (Intuition) [cont.]

$$
V_{i}\left(\Lambda_{j} l_{i j} \wedge \mathbf{x} \bigwedge_{k} \psi_{i k}\right)!
$$

On-the-fly Construction of A_{φ} (Intuition) [cont.]

On-the-fly Construction of A_{φ} (Intuition) [cont.]

When the recursive applications of steps 1-3 has terminated and the automata graph has been built, then apply the following:

Step 4: For every $\psi_{i} \mathbf{U} \varphi_{i}$, for every state q_{j}, mark q_{j} with F_{i} iff $\left(\psi_{i} \mathbf{U} \varphi_{i}\right) \notin q_{j}$ or $\varphi_{i} \in q_{j}$ (If there is no \mathbf{U}-subformulas, then mark all states with F_{1}一i.e., $F T \stackrel{\text { def }}{=}\{Q\}$).

Remark
The fact that we initially converted the formula into NNF guarantees that only positive
U/F-subformulas and negative R-/G-subformulas are considered here

On-the-fly Construction of A_{φ} (Intuition) [cont.]

When the recursive applications of steps 1-3 has terminated and the automata graph has been built, then apply the following:

Step 4: For every $\psi_{i} \mathbf{U} \varphi_{i}$, for every state q_{j}, mark q_{j} with F_{i} iff $\left(\psi_{i} \mathbf{U} \varphi_{i}\right) \notin q_{j}$ or $\varphi_{i} \in q_{j}$ (If there is no \mathbf{U}-subformulas, then mark all states with F_{1}一i.e., $F T \stackrel{\text { def }}{=}\{Q\}$).

Remark

The fact that we initially converted the formula into NNF guarantees that only positive U/F-subformulas and negative R-/G-subformulas are considered here

Dealing with U-subformulas: Intuition

- Tableaux rules: $\varphi_{1} \mathbf{U} \varphi_{2} \Longleftrightarrow\left(\varphi_{2} \vee\left(\varphi_{1} \wedge \mathbf{X} \varphi_{1} \mathbf{U} \varphi_{2}\right)\right)$
are a property, not a definition of \mathbf{U} :
\Longrightarrow they implicitly admit a "weaker" semantics of $\varphi_{1} \mathbf{U} \varphi_{2}$, in which $\varphi_{1} \mathbf{U}_{\varphi_{2}}$ always holds and φ_{2} never holds
- It cannot happen that we get into a state s^{\prime} from which we can enter a path π^{\prime} in which $\varphi_{1} \mathbf{U} \varphi_{2}$ holds forever and φ_{2} never holds.
every legal path must touch infinitely often a state where $\left.\neg\left(\varphi_{1} \mathbf{U} \varphi_{2}\right) \vee \varphi_{2}\right)$ holds - In LTL: GF $\left(\neg\left(\varphi_{1} \cup \varphi_{2}\right) \vee \varphi_{2}\right)$ ("avoid bad loop")

Dealing with U-subformulas: Intuition

- Tableaux rules: $\varphi_{1} \mathbf{U} \varphi_{2} \Longleftrightarrow\left(\varphi_{2} \vee\left(\varphi_{1} \wedge \mathbf{X} \varphi_{1} \mathbf{U} \varphi_{2}\right)\right)$ are a property, not a definition of \mathbf{U} :
\Longrightarrow they implicitly admit a "weaker" semantics of $\varphi_{1} \mathbf{U} \varphi_{2}$, in which $\varphi_{1} \mathbf{U}_{\varphi_{2}}$ always holds and φ_{2} never holds
- It cannot happen that we get into a state s^{\prime} from which we can enter a path π^{\prime} in which $\varphi_{1} \mathbf{U} \varphi_{2}$ holds forever and φ_{2} never holds.

every legal path must touch infinitely often a state where $\left.\neg\left(\varphi_{1} \mathbf{U} \varphi_{2}\right) \vee \varphi_{2}\right)$ holds

Dealing with U-subformulas: Intuition

- Tableaux rules: $\varphi_{1} \mathbf{U} \varphi_{2} \Longleftrightarrow\left(\varphi_{2} \vee\left(\varphi_{1} \wedge \mathbf{X} \varphi_{1} \mathbf{U} \varphi_{2}\right)\right)$ are a property, not a definition of \mathbf{U} :
\Longrightarrow they implicitly admit a "weaker" semantics of $\varphi_{1} \mathbf{U} \varphi_{2}$, in which $\varphi_{1} \mathbf{U}_{\varphi_{2}}$ always holds and φ_{2} never holds
- It cannot happen that we get into a state s^{\prime} from which we can enter a path π^{\prime} in which $\varphi_{1} \bigcup_{\varphi_{2}}$ holds forever and φ_{2} never holds.

\Longrightarrow every legal path must touch infinitely often a state where $\left.\neg\left(\varphi_{1} \mathbf{U} \varphi_{2}\right) \vee \varphi_{2}\right)$ holds
- In LTL: GF

Dealing with U-subformulas: Intuition

- Tableaux rules: $\varphi_{1} \mathbf{U} \varphi_{2} \Longleftrightarrow\left(\varphi_{2} \vee\left(\varphi_{1} \wedge \mathbf{X} \varphi_{1} \mathbf{U} \varphi_{2}\right)\right)$ are a property, not a definition of \mathbf{U} :
\Longrightarrow they implicitly admit a "weaker" semantics of $\varphi_{1} \mathbf{U} \varphi_{2}$, in which $\varphi_{1} \mathbf{U}_{\varphi_{2}}$ always holds and φ_{2} never holds
- It cannot happen that we get into a state s^{\prime} from which we can enter a path π^{\prime} in which $\varphi_{1} \bigcup_{\varphi_{2}}$ holds forever and φ_{2} never holds.

\Longrightarrow every legal path must touch infinitely often a state where $\left.\neg\left(\varphi_{1} \mathbf{U} \varphi_{2}\right) \vee \varphi_{2}\right)$ holds
- In LTL: $\operatorname{GF}\left(\neg\left(\varphi_{1} \mathbf{U} \varphi_{2}\right) \vee \varphi_{2}\right)$ ("avoid bad loop")

On-the-fly Construction of A_{φ} - State

- Henceforth, a state is represented by a tuple $s:=\langle\lambda, \chi, \sigma\rangle$ where:
- λ is the set of labels
- χ is the next part, i.e. the set of X-formulas satisfied by s
- σ is the set of the subformulas of φ satisfied by s (necessary for the fairness definition)
- Given a set of LTL formulas $\psi \stackrel{\text { def }}{=}\left\{\psi_{1}, \ldots, \psi_{k}\right\}$, we define $\operatorname{Cover}(\psi) \stackrel{\text { def }}{=}$ Expand $(\psi,\langle\emptyset,(\theta, \theta\rangle)$ to be the set of initial states of the Buchi automaton representing $\bigwedge_{j} \psi_{j}$.

On-the-fly Construction of A_{φ} - State

- Henceforth, a state is represented by a tuple $s:=\langle\lambda, \chi, \sigma\rangle$ where:
- λ is the set of labels
- χ is the next part, i.e. the set of X-formulas satisfied by s
- σ is the set of the subformulas of φ satisfied by s (necessary for the fairness definition)
 to be the set of initial states of the Buchi automaton representing $\Lambda_{j} \psi_{j}$.

On-the-fly Construction of A_{φ} - State

- Henceforth, a state is represented by a tuple $s:=\langle\lambda, \chi, \sigma\rangle$ where:
- λ is the set of labels
- χ is the next part, i.e. the set of X-formulas satisfied by s
- σ is the set of the subformulas of φ satisfied by s (necessary for the fairness definition)
- Given a set of LTL formulas $\psi \stackrel{\text { def }}{=}\left\{\psi_{1}, \ldots, \psi_{k}\right\}$, we define $\operatorname{Cover}(\psi) \stackrel{\text { def }}{=} \operatorname{Expand}(\psi,\langle\emptyset, \emptyset, \emptyset\rangle)$ to be the set of initial states of the Buchi automaton representing $\bigwedge_{j} \psi_{j}$.

On-the-fly Construction of A_{φ} - State

- Henceforth, a state is represented by a tuple $s:=\langle\lambda, \chi, \sigma\rangle$ where:
- λ is the set of labels
- χ is the next part, i.e. the set of X-formulas satisfied by s
- σ is the set of the subformulas of φ satisfied by s (necessary for the fairness definition)
- Given a set of LTL formulas $\psi \stackrel{\text { def }}{=}\left\{\psi_{1}, \ldots, \psi_{k}\right\}$, we define $\operatorname{Cover}(\psi) \stackrel{\text { dot }}{=} \operatorname{Expand}(\psi,\langle\theta, \varphi, \theta\rangle)$
to be the set of initial states of the Buchi automaton representing to be the set of initial states of the Buchi automaton representing $\bigwedge_{j} \psi_{j}$

On-the-fly Construction of A_{φ} - State

- Henceforth, a state is represented by a tuple $s:=\langle\lambda, \chi, \sigma\rangle$ where:
- λ is the set of labels
- χ is the next part, i.e. the set of X-formulas satisfied by s
- σ is the set of the subformulas of φ satisfied by s (necessary for the fairness definition)
- Given a set of $L T L$ formulas $\psi \stackrel{\text { def }}{=}\left\{\psi_{1}, \ldots, \psi_{k}\right\}$, we define $\operatorname{Cover}(\Psi) \stackrel{\text { def }}{=} \operatorname{Expand}(\Psi,\langle\emptyset, \emptyset, \emptyset\rangle)$ to be the set of initial states of the Buchi automaton representing $\Lambda_{j} \psi_{j}$.
- Expand (Ψ, s) takes as input:
- a set of LTL formulas $\psi \stackrel{\text { def }}{=}\left\{\psi_{1}, \ldots, \psi_{k}\right\}$ to be expanded
- a state $s \stackrel{\text { def }}{=}\langle\lambda, \chi, \sigma\rangle$ under construction
and returns a set of states $\left\{\left\langle\lambda_{i}, \chi_{i}, \sigma_{i}\right\rangle\right\}_{i}$ representing te expansion of ψ
- Combines steps 1. and 2. of previous slides

On-the-fly Construction of A_{φ} - State

- Henceforth, a state is represented by a tuple $s:=\langle\lambda, \chi, \sigma\rangle$ where:
- λ is the set of labels
- χ is the next part, i.e. the set of X-formulas satisfied by s
- σ is the set of the subformulas of φ satisfied by s (necessary for the fairness definition)
- Given a set of LTL formulas $\psi \stackrel{\text { def }}{=}\left\{\psi_{1}, \ldots, \psi_{k}\right\}$, we define $\operatorname{Cover}(\Psi) \stackrel{\text { def }}{=} \operatorname{Expand}(\Psi,\langle\emptyset, \emptyset, \emptyset\rangle)$ to be the set of initial states of the Buchi automaton representing $\Lambda_{j} \psi_{j}$.
- Expand (Ψ, s) takes as input:
- a set of LTL formulas $\psi \stackrel{\text { def }}{=}\left\{\psi_{1}, \ldots, \psi_{k}\right\}$ to be expanded
- a state $s \stackrel{\text { def }}{=}\langle\lambda, \chi, \sigma\rangle$ under construction
and returns a set of states $\left\{\left\langle\lambda_{i}, \chi_{i}, \sigma_{i}\right\rangle\right\}_{i}$ representing te expansion of ψ
- Combines steps 1. and 2. of previous slides

On-the-fly Construction of A_{φ} - State

- Henceforth, a state is represented by a tuple $s:=\langle\lambda, \chi, \sigma\rangle$ where:
- λ is the set of labels
- χ is the next part, i.e. the set of X-formulas satisfied by s
- σ is the set of the subformulas of φ satisfied by s (necessary for the fairness definition)
- Given a set of LTL formulas $\psi \stackrel{\text { def }}{=}\left\{\psi_{1}, \ldots, \psi_{k}\right\}$, we define $\operatorname{Cover}(\Psi) \stackrel{\text { def }}{=} \operatorname{Expand}(\Psi,\langle\emptyset, \emptyset, \emptyset\rangle)$ to be the set of initial states of the Buchi automaton representing $\Lambda_{j} \psi_{j}$.
- Expand (Ψ, s) takes as input:
- a set of LTL formulas $\psi \stackrel{\text { def }}{=}\left\{\psi_{1}, \ldots, \psi_{k}\right\}$ to be expanded
- a state $s \stackrel{\text { def }}{=}\langle\lambda, \chi, \sigma\rangle$ under construction
and returns a set of states $\left\{\left\langle\lambda_{i}, \chi_{i}, \sigma_{i}\right\rangle\right\}_{i}$ representing te expansion of ψ
- Combines steps 1. and 2. of previous slides

On－the－fly Construction of A_{φ}－Expand

Given $\psi \stackrel{\text { def }}{=}\left\{\psi_{1}, \ldots, \psi_{k}\right\}$ and $s \stackrel{\text { def }}{=}\langle\lambda, \chi, \sigma\rangle$ ，we define $\operatorname{Expand}(\psi, s)$ recursively as follows：
o if $\Psi=\emptyset$, Expand $(\Psi, S)=\{$
o if $\perp \in \Psi$ ，Expand $(\Psi, S)=\ell$
－if $T \in \Psi$ and $s=$
Expand $(\Psi, s)=$ Expand $(\Psi$
－if $I \in \Psi$ and $s=\langle\lambda, \chi, \sigma\rangle, I$ propositional literal
Expand $(\Psi, s)=$ Expand $(\Psi \backslash\{I\},\langle\lambda \cup\{I\}, \chi, \sigma \cup\{/\}\rangle)$
（add $/$ to the labels of s and to set of satisfied formulas）
－if $\mathbf{X} \psi \in \Psi$ and $s=\langle\lambda, \chi, \sigma\rangle$ ，
Expand $(\Psi, S)=$ Expand $(\Psi \backslash\{X \psi\},\langle\lambda, \chi \cup\{\psi\}, \sigma \cup\{\mathbf{X} \psi\}\rangle)$
（add ψ to the next part of s and $\mathbf{X} \psi$ to set of satisfied formulas）
－if $\psi_{1} \wedge \psi_{2} \in \Psi$ and $s=\langle\lambda, \chi, \sigma\rangle$ ，
Expand $(\Psi, s)=$ Expand $(\Psi L$
（process both ψ_{1} and ψ_{2} and add $\psi_{1} \wedge \psi_{2}$ to σ ）

On-the-fly Construction of A_{φ} - Expand

Given $\psi \stackrel{\text { def }}{=}\left\{\psi_{1}, \ldots, \psi_{k}\right\}$ and $s \stackrel{\text { def }}{=}\langle\lambda, \chi, \sigma\rangle$, we define $\operatorname{Expand}(\psi, s)$ recursively as follows:

- if $\psi=\emptyset, \operatorname{Expand}(\Psi, s)=\{s\}$
- if
- if $T \in \Psi$ and s

Expand $(\Psi, s)=$ Expand (Ψ)

- if $I \in \Psi$ and $s=\langle\lambda, \chi, \sigma\rangle, I$ propositional literal

Expand $(\Psi, s)=$ Expand $(\Psi \backslash\{I\},\langle\lambda \cup\{I\}, \chi, \sigma \cup\{/\}\rangle)$
(add $/$ to the labels of s and to set of satisfied formulas)

- if $\mathbf{X} /, \in \Psi$ and $s=\langle\lambda, \chi, \sigma\rangle$,

Expand $(\Psi, S)=$ Expand $(\Psi \backslash\{X \psi\}$
(add ψ to the next part of s and $\mathbf{X} \psi$ to set of satisfied formulas)

- if

Expand $(\Psi, s)=$ Expand $(\Psi \cup$
(process both ψ_{1} and ψ_{2} and add $\psi_{1} \wedge \psi_{2}$ to σ)

On-the-fly Construction of A_{φ} - Expand

Given $\psi \stackrel{\text { def }}{=}\left\{\psi_{1}, \ldots, \psi_{k}\right\}$ and $s \stackrel{\text { def }}{=}\langle\lambda, \chi, \sigma\rangle$, we define $\operatorname{Expand}(\psi, s)$ recursively as follows:

- if $\psi=\emptyset$, $\operatorname{Expand}(\Psi, s)=\{s\}$
- if $\perp \in \Psi, \operatorname{Expand}(\Psi, s)=\emptyset$
- if $T \in \Psi$ and $s=$

Expand $(\Psi, s)=$ Expand $(\Psi \backslash$

- if $I \in \Psi$ and $s=\langle\lambda, v, \sigma\rangle, I$ nronositional literal

Expand $(\Psi, s)=$ Expand (Ψ)
(add $/$ to the labels of s and to set of satisfied formulas)

- if $\mathbf{X} \psi \in \Psi$ and $s=\langle\lambda, \chi, \sigma\rangle$.

Expand $(\Psi, S)=$ Expand $(\Psi \backslash\{X \psi\}$
(add ψ to the next part of s and $\mathbf{X} \psi$ to set of satisfied formulas)

- if $v_{1} \wedge \psi_{2} \in \psi$ and $s=\langle\lambda, \chi, \sigma\rangle$.

Expand $(\Psi, s)=$ Expand $(\Psi \cup$
(process both ψ_{1} and ψ_{2} and add $\psi_{1} \wedge \psi_{2}$ to σ)

On-the-fly Construction of A_{φ} - Expand

Given $\psi \stackrel{\text { def }}{=}\left\{\psi_{1}, \ldots, \psi_{k}\right\}$ and $s \stackrel{\text { def }}{=}\langle\lambda, \chi, \sigma\rangle$, we define $\operatorname{Expand}(\psi, s)$ recursively as follows:

- if $\Psi=\emptyset, \operatorname{Expand}(\Psi, s)=\{s\}$
- if $\perp \in \Psi$, Expand $(\Psi, s)=\emptyset$
- if $T \in \Psi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Psi, s)=\operatorname{Expand}(\Psi \backslash\{\top\},\langle\lambda, \chi, \sigma \cup\{\top\}\rangle)$
- if $I \in \Psi$ and $s=\langle\lambda, \chi, \sigma\rangle, I$ propositional literal

Expand $(\Psi, s)=$ Expand $(\Psi$
(add / to the labels of s and to set of satisfied formulas)

- if $\mathbf{X} \psi \in \psi$ and $s=\langle\lambda, \chi, \sigma\rangle$,

Expand $(\psi, s)=$ Expand $(\Psi \backslash\{X \psi\},\langle\lambda, \chi \cup\{\psi\}, \sigma \cup\{\mathbf{X} \psi\}\rangle)$
(add ψ to the next part of s and $\mathbf{X} \psi$ to set of satisfied formulas)
Expand $(\Psi, s)=$ Expand $(\Psi L$
(process both ψ_{1} and ψ_{2} and add $\psi_{1} \wedge \psi_{2}$ to σ)

On-the-fly Construction of A_{φ} - Expand

Given $\psi \stackrel{\text { def }}{=}\left\{\psi_{1}, \ldots, \psi_{k}\right\}$ and $s \stackrel{\text { def }}{=}\langle\lambda, \chi, \sigma\rangle$, we define $\operatorname{Expand}(\psi, s)$ recursively as follows:

- if $\Psi=\emptyset$, Expand $(\Psi, s)=\{s\}$
- if $\perp \in \Psi$, Expand $(\Psi, s)=\emptyset$
- if $T \in \Psi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Psi, s)=\operatorname{Expand}(\Psi \backslash\{\top\},\langle\lambda, \chi, \sigma \cup\{T\}\rangle)$
- if $I \in \Psi$ and $s=\langle\lambda, \chi, \sigma\rangle$, I propositional literal
$\operatorname{Expand}(\Psi, s)=\operatorname{Expand}(\Psi \backslash\{\mid\},\langle\lambda \cup\{/\}, \chi, \sigma \cup\{/\}\rangle)$
(add $/$ to the labels of s and to set of satisfied formulas)

Expand $(\Psi, s)=$ Expand $(\Psi \backslash\{X \psi\}$,
(add ψ to the next part of s and $\mathbf{X} \psi$ to set of satisfied formulas)
Expand $\psi, s)$ Expand $(\psi, \sigma\rangle$,
(process both ψ_{1} and ψ_{2} and add $\psi_{1} \wedge \psi_{2}$ to σ)

On-the-fly Construction of A_{φ} - Expand

Given $\psi \stackrel{\text { def }}{=}\left\{\psi_{1}, \ldots, \psi_{k}\right\}$ and $s \stackrel{\text { def }}{=}\langle\lambda, \chi, \sigma\rangle$, we define $\operatorname{Expand}(\psi, s)$ recursively as follows:

- if $\Psi=\emptyset$, Expand $(\Psi, s)=\{s\}$
- if $\perp \in \Psi$, Expand $(\Psi, s)=\emptyset$
- if $T \in \Psi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Psi, s)=\operatorname{Expand}(\Psi \backslash\{\top\},\langle\lambda, \chi, \sigma \cup\{T\}\rangle)$
- if $I \in \Psi$ and $s=\langle\lambda, \chi, \sigma\rangle$, I propositional literal
$\operatorname{Expand}(\Psi, s)=\operatorname{Expand}(\Psi \backslash\{I\},\langle\lambda \cup\{I\}, \chi, \sigma \cup\{/\}\rangle)$
(add I to the labels of s and to set of satisfied formulas)
- if $\mathbf{X} \psi \in \psi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Psi, s)=\operatorname{Expand}(\Psi \backslash\{X \psi\},\langle\lambda, \chi \cup\{\psi\}, \sigma \cup\{\mathbf{X} \psi\}\rangle)$
(add ψ to the next part of s and $\mathbf{X} \psi$ to set of satisfied formulas)

Expand $(\Psi, s)=$ Expand $(\Psi$
(process both ψ_{1} and ψ_{2} and add $\psi_{1} \wedge \psi_{2}$ to σ)

On-the-fly Construction of A_{φ} - Expand

Given $\psi \stackrel{\text { def }}{=}\left\{\psi_{1}, \ldots, \psi_{k}\right\}$ and $s \stackrel{\text { def }}{=}\langle\lambda, \chi, \sigma\rangle$, we define $\operatorname{Expand}(\psi, s)$ recursively as follows:

- if $\Psi=\emptyset$, Expand $(\Psi, s)=\{s\}$
- if $\perp \in \Psi$, Expand $(\Psi, s)=\emptyset$
- if $T \in \Psi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Psi, s)=\operatorname{Expand}(\Psi \backslash\{\top\},\langle\lambda, \chi, \sigma \cup\{\top\}\rangle)$
- if $I \in \Psi$ and $s=\langle\lambda, \chi, \sigma\rangle$, I propositional literal
$\operatorname{Expand}(\Psi, s)=\operatorname{Expand}(\Psi \backslash\{I\},\langle\lambda \cup\{I\}, \chi, \sigma \cup\{/\}\rangle)$
(add I to the labels of s and to set of satisfied formulas)
- if $\mathbf{X} \psi \in \psi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Psi, s)=\operatorname{Expand}(\Psi \backslash\{X \psi\},\langle\lambda, \chi \cup\{\psi\}, \sigma \cup\{\mathbf{X} \psi\}\rangle)$ (add ψ to the next part of s and $\mathbf{X} \psi$ to set of satisfied formulas)
- if $\psi_{1} \wedge \psi_{2} \in \psi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Psi, s)=\operatorname{Expand}\left(\psi \cup\left\{\psi_{1}, \psi_{2}\right\} \backslash\left\{\psi_{1} \wedge \psi_{2}\right\},\left\langle\lambda, \chi, \sigma \cup\left\{\psi_{1} \wedge \psi_{2}\right\}\right\rangle\right)$ (process both ψ_{1} and ψ_{2} and add $\psi_{1} \wedge \psi_{2}$ to σ)

On-the-fly Construction of A_{φ} - Expand

Given $\psi \stackrel{\text { def }}{=}\left\{\psi_{1}, \ldots, \psi_{k}\right\}$ and $s \stackrel{\text { def }}{=}\langle\lambda, \chi, \sigma\rangle$, we define $\operatorname{Expand}(\psi, s)$ recursively as follows:

- ...
- if $\psi_{1} \vee \psi_{2} \in \Psi$ and $s=\langle\lambda, \chi, \sigma\rangle$,

Expand $(\Psi, s)=$ Expand $\left(\Psi \cup\left\{\psi_{1}\right\} \backslash\left\{\psi_{1} \vee \psi_{2}\right\},\left\langle\lambda, \chi, \sigma \cup\left\{\psi_{1} \vee \psi_{2}\right\}\right\rangle\right)$
\cup Expand $\left(\Psi \cup\left\{\psi_{2}\right\} \backslash\left\{\psi_{1} \vee \psi_{2}\right\},\left\langle\lambda, \chi, \sigma \cup\left\{\psi_{1} \vee \psi_{2}\right\}\right\rangle\right)$
(split s into two copies, process ψ_{2} on the first, ψ_{1} on the second, add $\psi_{1} \vee \psi_{2}$ to σ)

Expand (Ψ, s)
(split s into two copies and process ψ_{1} on the first, ψ_{2} on the second, add $\psi_{1} \mathbf{U} \psi_{2}$ to σ)

- if $\psi_{1} \mathbf{R} \psi_{2} \in \Psi$ and $s=\langle\lambda, \chi, \sigma\rangle$,

Expand $(\Psi, s)=\operatorname{Expand}\left(\Psi \cup\left\{\psi_{2}\right\} \backslash\left\{\psi_{1} R \psi_{2}\right\},\left\langle\lambda, \chi \cup\left\{\psi_{1} R \psi_{2}\right\}, \sigma \cup\left\{\psi_{1} R \psi_{2}\right\}\right)\right.$
(split s into two copies and process ψ_{1} on the first, ψ_{2} on the second, add $\psi_{1} \mathbf{R} \psi_{2}$ to σ)

On-the-fly Construction of A_{φ} - Expand

Given $\psi \stackrel{\text { def }}{=}\left\{\psi_{1}, \ldots, \psi_{k}\right\}$ and $s \stackrel{\text { def }}{=}\langle\lambda, \chi, \sigma\rangle$, we define $\operatorname{Expand}(\psi, s)$ recursively as follows:

- ...
- if $\psi_{1} \vee \psi_{2} \in \psi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Psi, s)=\operatorname{Expand}\left(\Psi \cup\left\{\psi_{1}\right\} \backslash\left\{\psi_{1} \vee \psi_{2}\right\},\left\langle\lambda, \chi, \sigma \cup\left\{\psi_{1} \vee \psi_{2}\right\}\right\rangle\right)$

```
Expand}(\Psi\cup{\mp@subsup{\psi}{2}{}}\{\mp@subsup{\psi}{1}{}\vee\mp@subsup{\psi}{2}{}},\langle\lambda,\chi,\sigma\cup{\mp@subsup{\psi}{1}{}\vee\mp@subsup{\psi}{2}{}}\rangle
```

(split s into two copies, process ψ_{2} on the first, ψ_{1} on the second, add $\psi_{1} \vee \psi_{2}$ to σ)

- if $\psi_{1} \mathbf{U} \psi_{2} \in \psi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Psi, s)=\operatorname{Expand}\left(\Psi \cup\left\{\psi_{1}\right\} \backslash\left\{\psi_{1} \mathbf{U} \psi_{2}\right\},\left\langle\lambda, \chi \cup\left\{\psi_{1} \mathbf{U} \psi_{2}\right\}, \sigma \cup\left\{\psi_{1} \mathbf{U} \psi_{2}\right\}\right\rangle\right)$
$\cup \operatorname{Expand}\left(\Psi \cup\left\{\psi_{2}\right\} \backslash\left\{\psi_{1} \mathbf{U} \psi_{2}\right\},\left\langle\lambda, \chi, \sigma \cup\left\{\psi_{1} \mathbf{U} \psi_{2}\right\}\right\rangle\right)$
(split s into two copies and process ψ_{1} on the first, ψ_{2} on the second, add $\psi_{1} \mathbf{U} \psi_{2}$ to σ)
- if $\psi_{1} \mathbf{R} \psi_{2} \in \psi$ and $s=\langle\lambda$
Expand $(\psi, s)=$ Expand (ψ)

Uxpand (ψ)
(split s into two copies and process ψ_{1} on the first, ψ_{2} on the second, add $\psi_{1} \mathbf{R} \psi_{2}$ to σ)

On-the-fly Construction of A_{φ} - Expand

Given $\psi \stackrel{\text { def }}{=}\left\{\psi_{1}, \ldots, \psi_{k}\right\}$ and $s \stackrel{\text { def }}{=}\langle\lambda, \chi, \sigma\rangle$, we define $\operatorname{Expand}(\psi, s)$ recursively as follows:

- ...
- if $\psi_{1} \vee \psi_{2} \in \psi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Psi, s)=\operatorname{Expand}\left(\Psi \cup\left\{\psi_{1}\right\} \backslash\left\{\psi_{1} \vee \psi_{2}\right\},\left\langle\lambda, \chi, \sigma \cup\left\{\psi_{1} \vee \psi_{2}\right\}\right\rangle\right)$

$$
\cup \text { Expand }\left(\Psi \cup\left\{\psi_{2}\right\} \backslash\left\{\psi_{1} \vee \psi_{2}\right\},\left\langle\lambda, \chi, \sigma \cup\left\{\psi_{1} \vee \psi_{2}\right\}\right\rangle\right)
$$

(split s into two copies, process ψ_{2} on the first, ψ_{1} on the second, add $\psi_{1} \vee \psi_{2}$ to σ)

- if $\psi_{1} \mathbf{U} \psi_{2} \in \psi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Psi, s)=\operatorname{Expand}\left(\Psi \cup\left\{\psi_{1}\right\} \backslash\left\{\psi_{1} \mathbf{U} \psi_{2}\right\},\left\langle\lambda, \chi \cup\left\{\psi_{1} \mathbf{U} \psi_{2}\right\}, \sigma \cup\left\{\psi_{1} \mathbf{U} \psi_{2}\right\}\right\rangle\right)$
$\cup \operatorname{Expand}\left(\Psi \cup\left\{\psi_{2}\right\} \backslash\left\{\psi_{1} \mathbf{U} \psi_{2}\right\},\left\langle\lambda, \chi, \sigma \cup\left\{\psi_{1} \mathbf{U} \psi_{2}\right\}\right\rangle\right)$
(split s into two copies and process ψ_{1} on the first, ψ_{2} on the second, add $\psi_{1} \mathbf{U} \psi_{2}$ to σ)
- if $\psi_{1} \mathbf{R} \psi_{2} \in \psi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Psi, s)=\operatorname{Expand}\left(\Psi \cup\left\{\psi_{2}\right\} \backslash\left\{\psi_{1} \mathbf{R} \psi_{2}\right\},\left\langle\lambda, \chi \cup\left\{\psi_{1} \mathbf{R} \psi_{2}\right\}, \sigma \cup\left\{\psi_{1} \mathbf{R} \psi_{2}\right\}\right\rangle\right)$
$\cup \operatorname{Expand}\left(\Psi \cup\left\{\psi_{1}, \psi_{2}\right\} \backslash\left\{\psi_{1} \mathbf{R} \psi_{2}\right\},\left\langle\lambda, \chi, \sigma \cup\left\{\psi_{1} \mathbf{R} \psi_{2}\right\}\right\rangle\right)$
(split s into two copies and process ψ_{1} on the first, ψ_{2} on the second, add $\psi_{1} \mathbf{R} \psi_{2}$ to σ)

On-the-fly Construction of A_{φ} - Expand

Two relevant subcases: $\mathbf{F} \psi \stackrel{\text { def }}{=} T \mathbf{U} \psi$ and $\mathbf{G} \psi \stackrel{\text { def }}{=} \perp \mathbf{R} \psi$

On-the-fly Construction of A_{φ} - Expand

Two relevant subcases: $\mathbf{F} \psi \stackrel{\text { def }}{=} T \mathbf{U} \psi$ and $\mathbf{G} \psi \stackrel{\text { def }}{=} \perp \mathbf{R} \psi$

- if $\mathbf{F} \psi \in \Psi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Psi, s)=\operatorname{Expand}(\Psi \backslash\{\mathbf{F} \psi\},\langle\lambda, \chi \cup\{\mathbf{F} \psi\}, \sigma \cup\{\mathbf{F} \psi\}\rangle)$
\cup Expand $(\Psi \cup\{\psi\} \backslash\{\mathbf{F} \psi\},\langle\lambda, \chi, \sigma \cup\{\mathbf{F} \psi\}\rangle)$
- if $\mathbf{G} \psi \in \psi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Psi, s)=\operatorname{Expand}(\Psi$
(Note: Expand $(\Psi \cup\{\perp, \psi\} \backslash\{\mathbf{G} \psi\}, \ldots)=0$.

On-the-fly Construction of A_{φ} - Expand

Two relevant subcases: $\mathbf{F} \psi \stackrel{\text { def }}{=} T \mathbf{U} \psi$ and $\mathbf{G} \psi \stackrel{\text { def }}{=} \perp \mathbf{R} \psi$

- if $\mathbf{F} \psi \in \Psi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Psi, s)=\operatorname{Expand}(\Psi \backslash\{\mathbf{F} \psi\},\langle\lambda, \chi \cup\{\mathbf{F} \psi\}, \sigma \cup\{\mathbf{F} \psi\}\rangle)$
$\cup \operatorname{Expand}(\Psi \cup\{\psi\} \backslash\{\mathbf{F} \psi\},\langle\lambda, \chi, \sigma \cup\{\mathbf{F} \psi\}\rangle)$
- if $\mathbf{G} \psi \in \Psi$ and $s=\langle\lambda, \chi, \sigma\rangle$,
$\operatorname{Expand}(\Psi, s)=\operatorname{Expand}(\psi \cup\{\psi\} \backslash\{\mathbf{G} \psi\},\langle\lambda, \chi \cup\{\mathbf{G} \psi\}, \sigma \cup\{\mathbf{G} \psi\}\rangle)$
(Note: Expand $(\Psi \cup\{\perp, \psi\} \backslash\{\mathbf{G} \psi\}, \ldots)=\emptyset$.)

Definition of A_{φ}

Given a set of LTL formulas Ψ, we define $\operatorname{Cover}(\Psi) \stackrel{\text { def }}{=} \operatorname{Expand}(\Psi,\langle\emptyset, \emptyset, \emptyset\rangle)$.
For an LTL formula φ, we construct a Generalized $\operatorname{NBA} A_{\varphi}=(Q, \Sigma, \delta, I, F T)$ as follows:

Definition of A_{φ}

Given a set of LTL formulas Ψ, we define $\operatorname{Cover}(\Psi) \stackrel{\text { def }}{=} \operatorname{Expand}(\Psi,\langle\emptyset, \emptyset, \emptyset\rangle)$.
For an LTL formula φ, we construct a Generalized $\operatorname{NBA} A_{\varphi}=(Q, \Sigma, \delta, I, F T)$ as follows:

- $\Sigma=3^{\operatorname{vars}(\varphi)}(v \in\{T, \perp, *\}$, "*" is "don't care")
- Q is the smallest set such that
- $Q_{0}=\operatorname{Cover}(\{\varphi\})$.
- $s \xrightarrow{\prime} \cdot s^{\prime}-\delta:$ iff, $\left.s={ }^{\prime} \lambda, \lambda, \sigma\right\rangle, s^{\prime}=\left\langle\lambda^{\prime} \cdot \lambda^{\prime} \cdot \sigma^{\prime}\right\rangle$ and $s^{\prime} \in \operatorname{Cover}(\lambda)$
- $F T=\left\langle F_{1}, F_{2}, \ldots, F_{k}\right\rangle$ where, for all $\left(\psi_{i} \cup \varphi_{i}\right)$ occurring positively in φ,
(If there is no \mathbf{U}-subformulas, then $F T \stackrel{\text { del }}{=}\{Q\}$).

Definition of A_{φ}

Given a set of LTL formulas Ψ, we define $\operatorname{Cover}(\Psi) \stackrel{\text { def }}{=} \operatorname{Expand}(\Psi,\langle\emptyset, \emptyset, \emptyset\rangle)$.
For an LTL formula φ, we construct a Generalized $\operatorname{NBA} A_{\varphi}=(Q, \Sigma, \delta, I, F T)$ as follows:

- $\Sigma=3^{\text {vars }(\varphi)}(v \in\{\top, \perp, *\}$, "*" is "don't care")
- Q is the smallest set such that
- Cover $(\{\varphi\}) \subseteq Q$
- if $\langle\lambda, \chi, \sigma\rangle \in Q$, then $\operatorname{Cover}(\chi) \in Q$
- $Q_{0}=\operatorname{Cover}(\{\varphi\})$.
 (If there is no \mathbf{U}-subformulas, then $F T \stackrel{\text { def }}{=}\{Q\}$).

Definition of A_{φ}

Given a set of LTL formulas Ψ, we define $\operatorname{Cover}(\Psi) \stackrel{\text { def }}{=} \operatorname{Expand}(\Psi,\langle\emptyset, \emptyset, \emptyset\rangle)$.
For an LTL formula φ, we construct a Generalized $\operatorname{NBA} A_{\varphi}=(Q, \Sigma, \delta, I, F T)$ as follows:

- $\Sigma=3^{\operatorname{vars}(\varphi)}(v \in\{\top, \perp, *\}$, "*" is "don't care")
- Q is the smallest set such that
- $\operatorname{Cover}(\{\varphi\}) \subseteq Q$
- $Q_{0}=\operatorname{Cover}(\{\varphi\})$.
o $F=\left(F_{1}, F_{2}, \ldots, F_{k}\right)$ where, for all $\left(\psi, \psi_{i} \varphi_{i}\right)$ occurring positively in φ, (If there is no U-subformulas, then $F T \stackrel{\text { def }}{=}\{Q\}$).

Definition of A_{φ}

Given a set of LTL formulas Ψ, we define Cover $(\Psi) \stackrel{\text { def }}{=} \operatorname{Expand}(\Psi,\langle\emptyset, \emptyset, \emptyset\rangle)$.
For an LTL formula φ, we construct a Generalized $\operatorname{NBA} A_{\varphi}=(Q, \Sigma, \delta, I, F T)$ as follows:

- $\Sigma=3^{\operatorname{vars}(\varphi)}(v \in\{\top, \perp, *\}$, "*" is "don't care")
- Q is the smallest set such that
- Cover $(\{\varphi\}) \subseteq Q$
- if $\langle\lambda, \chi, \sigma\rangle \in Q$, then $\operatorname{Cover}(\chi) \in Q$

- $s \xrightarrow{\lambda} s^{\prime} \in \delta$ iff, $s=$
and $s^{\prime} \in \operatorname{Cover}(\chi)$
- $F T=\left\langle F_{1}, F_{2}, \ldots, F_{k}\right\rangle$ where, for all $(\psi, U \varphi)$ occurring positively in φ, (If there is no U-subformulas, then $F T \stackrel{\text { def }}{=}\{Q\}$).

Definition of A_{φ}

Given a set of LTL formulas Ψ, we define $\operatorname{Cover}(\Psi) \stackrel{\text { def }}{=} \operatorname{Expand}(\Psi,\langle\emptyset, \emptyset, \emptyset\rangle)$.
For an LTL formula φ, we construct a Generalized $\operatorname{NBA} A_{\varphi}=(Q, \Sigma, \delta, I, F T)$ as follows:

- $\Sigma=3^{\operatorname{vars}(\varphi)}(v \in\{T, \perp, *\}$, "*" is "don't care")
- Q is the smallest set such that
- Cover $(\{\varphi\}) \subseteq Q$
- if $\langle\lambda, \chi, \sigma\rangle \in Q$, then $\operatorname{Cover}(\chi) \in Q$
- $Q_{0}=\operatorname{Cover}(\{\varphi\})$.
$\begin{aligned} \text { - } F T & =\left\langle F_{1}, F_{2}, \ldots, F_{k}\right\rangle \text { where, for all }\left(\psi_{i} U \varphi_{i}\right) \text { occurring positively in } \varphi, \\ F_{i} & =\{\langle\lambda, \chi, \sigma\rangle \in Q\end{aligned}$ (If there is no \mathbf{U}-subformulas, then $F T \stackrel{\text { def }}{=}\{Q\}$).

Definition of A_{φ}

Given a set of LTL formulas Ψ, we define $\operatorname{Cover}(\Psi) \stackrel{\text { def }}{=} \operatorname{Expand}(\Psi,\langle\emptyset, \emptyset, \emptyset\rangle)$.
For an LTL formula φ, we construct a Generalized $\operatorname{NBA} A_{\varphi}=(Q, \Sigma, \delta, I, F T)$ as follows:

- $\Sigma=3^{\operatorname{vars}(\varphi)}(v \in\{T, \perp, *\}$, "*" is "don't care")
- Q is the smallest set such that
- Cover $(\{\varphi\}) \subseteq Q$
- if $\langle\lambda, \chi, \sigma\rangle \in Q$, then $\operatorname{Cover}(\chi) \in Q$
- $Q_{0}=\operatorname{Cover}(\{\varphi\})$.
- $s \xrightarrow{\lambda^{\prime}} s^{\prime} \in \delta$ iff, $s=\langle\lambda, \chi, \sigma\rangle, s^{\prime}=\left\langle\lambda^{\prime}, \chi^{\prime}, \sigma^{\prime}\right\rangle$ and $s^{\prime} \in \operatorname{Cover}(\chi)$
- $F T=\left\langle F_{1}, F_{2}, \ldots, F_{k}\right\rangle$ where, for all $\left(\psi_{i} \cup \varphi_{i}\right)$ occurring positively in φ, (If there is no \mathbf{U}-subformulas, then $F T \stackrel{\text { def }}{=}\{Q\}$).

Definition of A_{φ}

Given a set of LTL formulas Ψ, we define $\operatorname{Cover}(\Psi) \stackrel{\text { def }}{=} \operatorname{Expand}(\Psi,\langle\emptyset, \emptyset, \emptyset\rangle)$.
For an LTL formula φ, we construct a Generalized $\operatorname{NBA} A_{\varphi}=(Q, \Sigma, \delta, I, F T)$ as follows:

- $\Sigma=3^{\operatorname{varr}(\varphi)}(v \in\{T, \perp, *\}$, "*" is "don't care")
- Q is the smallest set such that
- Cover $(\{\varphi\}) \subseteq Q$
- if $\langle\lambda, \chi, \sigma\rangle \in Q$, then $\operatorname{Cover}(\chi) \in Q$
- $Q_{0}=\operatorname{Cover}(\{\varphi\})$.
- $s \xrightarrow{\lambda^{\prime}} s^{\prime} \in \delta$ iff, $s=\langle\lambda, \chi, \sigma\rangle, s^{\prime}=\left\langle\lambda^{\prime}, \chi^{\prime}, \sigma^{\prime}\right\rangle$ and $s^{\prime} \in \operatorname{Cover}(\chi)$
- $F T=\left\langle F_{1}, F_{2}, \ldots, F_{k}\right\rangle$ where, for all $\left(\psi_{i} \mathbf{U}_{i}\right)$ occurring positively in φ, $F_{i}=\left\{\langle\lambda, \chi, \sigma\rangle \in Q \mid\left(\psi_{i} \mathbf{U}_{i}\right) \notin \sigma\right.$ or $\left.\varphi_{i} \in \sigma\right\}$.
(If there is no \mathbf{U}-subformulas, then $F T \stackrel{\text { def }}{=}\{Q\}$).

Example: $\varphi=\mathbf{F G} p$

- Cover(\{FGp\})
$=\operatorname{Expand}(\{\mathbf{F G p}\},\langle\emptyset, \emptyset, \emptyset\rangle)$
$=\operatorname{Expand}(\emptyset,\langle\emptyset,\{\mathbf{F G} p\},\{\mathbf{F G} p\}\rangle) \cup \operatorname{Expand}(\{\mathbf{G} p\},\langle\emptyset, \emptyset,\{\mathbf{F G p}\}\rangle)$
$=\{\langle\emptyset,\{\mathbf{F G p}\},\{\mathbf{F G} p\}\rangle\} \cup \operatorname{Expand}(\{p\},\langle\emptyset,\{\mathbf{G} p\},\{\mathbf{F G} p, \mathbf{G} p\}\rangle)$
$=\{\langle\emptyset,\{\mathbf{F G p}\},\{\mathbf{F G} p\}\rangle\} \cup \operatorname{Expand}(\emptyset,\langle\{p\},\{\mathbf{G} p\},\{\mathbf{F G} p, \mathbf{G} p, p\}\rangle)$
$=\{\langle\emptyset,\{\mathbf{F G} p\},\{\mathbf{F G} p\}\rangle,\langle\{p\},\{\mathbf{G} p\},\{\mathbf{F G} p, \mathbf{G} p, p\}\rangle\}$
- Cover(\{Gp\}) = Expand $(\{\mathbf{G} p\},\langle\emptyset, \emptyset, \emptyset\rangle)$
$=\operatorname{Expand}(\{p\},\langle\emptyset,\{\mathbf{G} p\},\{\mathbf{G} p\}\rangle)$
$=\operatorname{Expand}(\emptyset,\langle\{p\},\{\mathbf{G} p\},\{\mathbf{G} p, p\}\rangle)$
$=\{\langle\{\boldsymbol{p}\},\{\mathbf{G} p\},\{\mathbf{G} p, \boldsymbol{p}\}\rangle\}$
- Optimization:
merge $\langle\{p\},\{\mathbf{G} p\},\{\mathbf{F G} p, \mathbf{G} p, p\}\rangle$ and $\langle\{p\},\{\mathbf{G} p\},\{\mathbf{G} p, p\}\rangle$

Example: $\varphi=$ FGp

- Call $s_{1}=\langle\emptyset,\{\mathbf{F G} p\},\{\mathbf{F G} p\}\rangle, s_{2}=\langle\{p\},\{\mathbf{G} p\},\{\mathbf{F G} p, \mathbf{G} p, p\}\rangle$
- $Q=\left\{s_{1}, s_{2}\right\}$
- $Q_{0}=\left\{s_{1}, s_{2}\right\}$.
- $T: s_{1} \rightarrow\left\{s_{1}, s_{2}\right\}$, $s_{2} \rightarrow\left\{s_{2}\right\}$
- $F T=\left\langle F_{1}\right\rangle$ where $F_{1}=\left\{s_{2}\right\}$.

Example: $\varphi=p \mathbf{U} q$

- Cover(\{puq\})
$=\operatorname{Expand}(\{p \mathbf{q} q\},\langle\emptyset, \emptyset, \emptyset\rangle)$
$=\operatorname{Expand}(\{p\},\langle\emptyset,\{p \mathbf{U} q\},\{p \mathbf{U} q\}\rangle) \cup \operatorname{Expand}(\{q\},\langle\emptyset, \emptyset,\{p \mathbf{U} q\}\rangle)$
$=\operatorname{Expand}(\emptyset,\langle\{p\},\{p \mathbf{q}\},,\{p \mathbf{U} q, p\}\rangle) \cup \operatorname{Expand}(\emptyset,\langle\{q\}, \emptyset,\{p \mathbf{U}, q\}\rangle)$
$=\{\langle\{p\},\{p \mathbf{q}\},\{p \mathbf{q} q, p\}\rangle\} \cup\{\langle\{q\},\{T\},\{p \mathbf{Q} q, q\}\rangle\}$
- $\operatorname{Cover}(\{T\})=\{\langle\emptyset,\{T\},\{T\}\rangle\}$

Example: $\varphi=p \mathbf{U} q$

- Let $s_{1}=\operatorname{def}\langle\{p\},\{p \mathbf{U} q\},\{p \mathbf{U} q, p\}\rangle, s_{2}=\operatorname{def}\langle\{q\},\{T\},\{p \mathbf{U} q, q\}\rangle, s_{3}=\operatorname{def}\langle 0,\{T\},\{T\}\rangle$.
- $Q=\left\{s_{1}, s_{2}, s_{3}\right\}$,
- $Q_{0}=\left\{s_{1}, s_{2}\right\}$,
- $\quad T: s_{1} \rightarrow\left\{s_{1}, s_{2}\right\}$,
$s_{2} \rightarrow\left\{s_{3}\right\}$
$s_{3} \rightarrow\left\{s_{3}\right\}$
- $F T=\left\langle F_{1}\right\rangle$ where $F_{1}=\left\{s_{2}, s_{3}\right\}$.

Example: $\varphi=\mathbf{G F} p$

```
Cover({GFp})
    = E({GFp}, \langle\emptyset,\emptyset,\emptyset\rangle)
    = E({\mathbf{Fp}},\langle\emptyset,{\mathbf{GFp}},{\mathbf{GFp}}\rangle)
```



```
    = E({},\langle\emptyset,{\mathbf{GFp, F}p},{\mathbf{GFp,Fp}}\rangle)\cupE({},{{p},{\mathbf{GFp}},{\mathbf{GFp,Fp,p}\rangle)})
    = {\langle\emptyset,{\mathbf{GFp, Fp}},{\mathbf{GFp, Fp}}\rangle}\cup{\langle{p},{\mathbf{GFp}p,{\mathbf{GFp},\mathbf{F}p,p}\rangle}
Note: GFp^Fp\LongleftrightarrowGFp, s.t. Cover(GFp^Fp)=\operatorname{Cover}(\mathbf{GFp})
```


Example: GFp

- Let $s_{1}={ }_{\operatorname{def}}\left\langle\{p\},\{\mathbf{G F p} p,\{\mathbf{G F} p, \mathbf{F} p, p\}\rangle, \boldsymbol{s}_{2}=\operatorname{def}\langle\emptyset,\{\mathbf{G F} p, \mathbf{F} p\},\{\mathbf{G F} p, \mathbf{F} p\}\rangle\right.$,
- $Q=\left\{s_{1}, s_{2}\right\}$,
- $Q_{0}=\left\{s_{1}, s_{2}\right\}$,
- $T: s_{1} \rightarrow\left\{s_{1}, s_{2}\right\}$,
$s_{2} \rightarrow\left\{s_{1}, s_{2}\right\}$
- $F T=\left\langle F_{1}\right\rangle$ where $F_{1}=\left\{s_{1}\right\}$.

NBAs of disjunctions of formulas

Remark

If $\varphi \stackrel{\text { def }}{=}\left(\varphi_{1} \vee \varphi_{2}\right)$ and $\boldsymbol{A}_{\varphi_{1}}, \boldsymbol{A}_{\varphi_{2}}$ are NBAs encoding φ_{1} and φ_{2} resp., then $\mathcal{L}(\varphi)=\mathcal{L}\left(\varphi_{1}\right) \cup \mathcal{L}\left(\varphi_{2}\right)$, so that $A_{\varphi} \stackrel{\text { def }}{=} A_{\varphi_{1}} \cup A_{\varphi_{2}}$ is an NBA encoding φ

- A_{φ} non necessarily the smallest/best NBA encoding φ

NBAs of disjunctions of formulas

Remark

If $\varphi \stackrel{\text { def }}{=}\left(\varphi_{1} \vee \varphi_{2}\right)$ and $\boldsymbol{A}_{\varphi_{1}}, \boldsymbol{A}_{\varphi_{2}}$ are NBAs encoding φ_{1} and φ_{2} resp., then $\mathcal{L}(\varphi)=\mathcal{L}\left(\varphi_{1}\right) \cup \mathcal{L}\left(\varphi_{2}\right)$, so that $A_{\varphi} \stackrel{\text { def }}{=} A_{\varphi_{1}} \cup A_{\varphi_{2}}$ is an NBA encoding φ

- A_{φ} non necessarily the smallest/best NBA encoding φ

Example

Let $\varphi \stackrel{\text { def }}{=}(\mathbf{G F} p \rightarrow \mathbf{G F q})$, i.e., $\varphi \equiv(\mathbf{F G} \neg p \vee \mathbf{G F} q)$.
Then $A_{\mathrm{FG} \neg p} \cup A_{\mathrm{GF} q}$ encodes φ :

Suggested Exercises:

- Find an NBA encoding:
- p
- $(p \wedge q) \vee(\neg p \wedge \neg q)$
- Fp
- Gp
- $p \mathbf{R} q$
- $(\mathbf{G F} p \wedge \mathbf{G F} q) \rightarrow \mathbf{G} r$

Outline

(1) Büchi Automata
(2) The Automata-Theoretic Approach to LTL Reasoning

- General Ideas
- Language-Emptiness Checking of Büchi Automata
- From Kripke Models to Büchi Automata
- From LTL Formulas to Büchi Automata
- Complexity
(3) Exercises

Automata-Theoretic LTL Model Checking: Complexity

Four steps:
(i) Compute A_{M} :
(ii) Compute A_{φ}
(iii) Compute the product $A_{M} \times A_{\varphi}$
(iv) Check the emptiness of $\mathcal{L}\left(A_{M} \times A_{\varphi}\right)$:
\Longrightarrow The complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially
wrt. the size of the property φ

Automata-Theoretic LTL Model Checking: Complexity

Four steps:
(i) Compute A_{M} :
(ii) Compute A_{φ} :
(iii) Compute the product $A_{M} \times A^{\prime}$
(iv) Check the emptiness of $\mathcal{L}\left(A_{M}\right.$

The complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially
wrt. the size of the property φ

Automata-Theoretic LTL Model Checking: Complexity

Four steps:
(i) Compute A_{M} :
(ii) Compute A_{φ} :
(iii) Compute the product $A_{M} \times A_{\varphi}$:

(iv) Check the emptiness of $\mathcal{L}\left(A_{M}\right.$

\Longrightarrow The complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially wrt. the size of the property φ

Automata-Theoretic LTL Model Checking: Complexity

Four steps:
(i) Compute A_{M} :
(ii) Compute A_{φ} :
(iii) Compute the product $A_{M} \times A_{\varphi}$:
(iv) Check the emptiness of $\mathcal{L}\left(A_{M} \times A_{\varphi}\right)$:
\Longrightarrow The complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially wrt. the size of the property φ

Automata-Theoretic LTL Model Checking: Complexity

Four steps:
(i) Compute A_{M} :
$\left|A_{M}\right|=O(|M|)$
(ii) Compute A_{φ} :
(iii) Compute the product $A_{M} \times A_{\varphi}$:
(iv) Check the emptiness of $\mathcal{L}\left(A_{M} \times A_{\varphi}\right)$:
\Longrightarrow The complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially wrt. the size of the property φ

Automata-Theoretic LTL Model Checking: Complexity

Four steps:
(i) Compute A_{M} :
$\left|A_{M}\right|=O(|M|)$
(ii) Compute A_{φ} :
$\left|A_{\varphi}\right|=O\left(2^{|\varphi|}\right)$
(iii) Compute the product $A_{M} \times A_{\varphi}$:
(iv) Check the emptiness of $\mathcal{L}\left(A_{M} \times A_{\varphi}\right)$:
\Longrightarrow The complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially wrt. the size of the property φ

Automata-Theoretic LTL Model Checking: Complexity

Four steps:
(i) Compute A_{M} :
$\left|A_{M}\right|=O(|M|)$
(ii) Compute A_{φ} :
$\left|A_{\varphi}\right|=O\left(2^{|\varphi|}\right)$
(iii) Compute the product $A_{M} \times A_{\varphi}$:
$\left|A_{M} \times A_{\varphi}\right|=\left|A_{M}\right| \cdot\left|A_{\varphi}\right|=O\left(|M| \cdot 2^{|\varphi|}\right)$
(iv) Check the emptiness of $\mathcal{L}\left(A_{M} \times A_{\varphi}\right)$:
\Longrightarrow The complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially wrt. the size of the property φ

Automata-Theoretic LTL Model Checking: Complexity

Four steps:
(i) Compute A_{M} :
$\left|A_{M}\right|=O(|M|)$
(ii) Compute A_{φ} :
$\left|A_{\varphi}\right|=O\left(2^{|\varphi|}\right)$
(iii) Compute the product $A_{M} \times A_{\varphi}$:
$\left|A_{M} \times A_{\varphi}\right|=\left|A_{M}\right| \cdot\left|A_{\varphi}\right|=O\left(|M| \cdot 2^{|\varphi|}\right)$
(iv) Check the emptiness of $\mathcal{L}\left(A_{M} \times A_{\varphi}\right)$:
$O\left(\left|A_{M} \times A_{\varphi}\right|\right)=O\left(|M| \cdot 2^{|\varphi|}\right)$
\Longrightarrow The complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially
wrt. the size of the property φ

Automata-Theoretic LTL Model Checking: Complexity

Four steps:
(i) Compute A_{M} :
$\left|A_{M}\right|=O(|M|)$
(ii) Compute A_{φ} :
$\left|A_{\varphi}\right|=O\left(2^{|\varphi|}\right)$
(iii) Compute the product $A_{M} \times A_{\varphi}$:
$\left|A_{M} \times A_{\varphi}\right|=\left|A_{M}\right| \cdot\left|A_{\varphi}\right|=O\left(|M| \cdot 2^{|\varphi|}\right)$
(iv) Check the emptiness of $\mathcal{L}\left(A_{M} \times A_{\varphi}\right)$:
$O\left(\left|A_{M} \times A_{\varphi}\right|\right)=O\left(|M| \cdot 2^{|\varphi|}\right)$
\Longrightarrow The complexity of LTL M.C. grows linearly wrt. the size of the model M and exponentially wrt. the size of the property φ

Final Remarks

- Büchi automata are in general more expressive than LTL!
\Longrightarrow some tools (e.g., Spin) allow specifications to be expressed directly as NBAs
\Longrightarrow complementation of NBA relevanant in general
- For every LTL formula, there are many possible equivalent NBAs
\Longrightarrow lots of research for finding "the best" conversion algorithm
- Performing the product and checking emptiness very relevan lots of techniques developed (e.g., partial order reduction) lots on ongoing research

Final Remarks

- Büchi automata are in general more expressive than LTL!
\Longrightarrow some tools (e.g., Spin) allow specifications to be expressed directly as NBAs
\Longrightarrow complementation of NBA relevanant in general
- For every LTL formula, there are many possible equivalent NBAs
\Longrightarrow lots of research for finding "the best" conversion algorithm
- Performing the product and checking emptiness very relevant lots of techniques developed (e.g., partial order reduction) lots on ongoing research

Final Remarks

- Büchi automata are in general more expressive than LTL!
\Longrightarrow some tools (e.g., Spin) allow specifications to be expressed directly as NBAs
\Longrightarrow complementation of NBA relevanant in general
- For every LTL formula, there are many possible equivalent NBAs
\Longrightarrow lots of research for finding "the best" conversion algorithm
- Performing the product and checking emptiness very relevant
\Longrightarrow lots of techniques developed (e.g., partial order reduction)
\Longrightarrow lots on ongoing research

Outline

(1) Büchi Automata
(2) The Automata-Theoretic Approach to LTL Reasoning

- General Ideas
- Language-Emptiness Checking of Büchi Automata
- From Kripke Models to Büchi Automata
- From LTL Formulas to Büchi Automata
- Complexity
(3) Exercises

Ex：Product of Büchi automata

Given the following two Büchi automata（doubly－circled states represent accepting states，a, b are labels）：

Write the product Büchi automaton $B A 1 \times B A 2$ ．

Ex: Product of Büchi automata

Given the following two Büchi automata (doubly-circled states represent accepting states, a, b are labels):

BA2

Write the product Büchi automaton $B A 1 \times B A 2$.

Ex: Product of Büchi automata

[Solution: The product is:

Ex: Product of Büchi automata

[Solution: The product is:
track 1

$$
a \quad \text { track } 2
$$

]

Ex: De-generalization of Büchi Automata

Given the following generalized Büchi automaton $A \stackrel{\text { def }}{=}\langle Q, \Sigma, \delta, I, F T\rangle$, with two sets of accepting states $F T \stackrel{\text { def }}{=}\{F 1, F 2\}$ s.t. $F 1 \stackrel{\text { def }}{=}\{s 2\}, F 2 \stackrel{\text { def }}{=}\{s 1\}$:

convert it into an equivalent plain Büchi automaton.

Ex: De-generalization of Büchi Automata

[Solution: The result is:
]

Ex: De-generalization of Büchi Automata

[Solution: The result is:

]

Ex: Construction of Büchi Automata

Consider the LTL formula $\varphi \stackrel{\text { def }}{=}\left(\mathbf{G}_{\neg} p\right) \rightarrow(p \mathbf{q} q)$.

Ex: Construction of Büchi Automata

Consider the LTL formula $\varphi \stackrel{\text { def }}{=}(\mathbf{G} \neg p) \rightarrow(p \mathbf{U} q)$.
(a) rewrite φ into Negative Normal Form

Ex: Construction of Büchi Automata

Consider the LTL formula $\varphi \stackrel{\text { def }}{=}(\mathbf{G} \neg p) \rightarrow(p \mathbf{U} q)$.
(a) rewrite φ into Negative Normal Form
[Solution: $(\mathbf{G} \neg p) \rightarrow(p \mathbf{U} q) \Longrightarrow(\neg \mathbf{G} \neg p) \vee(p \mathbf{q} q) \Longrightarrow(\mathbf{F} p) \vee(p \mathbf{U} q)]$

Ex: Construction of Büchi Automata

Consider the LTL formula $\varphi \stackrel{\text { def }}{=}\left(\mathbf{G}_{\neg} p\right) \rightarrow(p \mathbf{~} q)$.
(a) rewrite φ into Negative Normal Form
[Solution: $(\mathbf{G} \neg p) \rightarrow(p \mathbf{U} q) \Longrightarrow(\neg \mathbf{G} \neg p) \vee(p \mathbf{U} q) \Longrightarrow(F p) \vee(p \mathbf{U} q)]$
(b) find the initial states of a corresponding Buchi automaton (for each state, define the labels of the incoming arcs and the "next" section.)

Ex: Construction of Büchi Automata

Consider the LTL formula $\varphi \stackrel{\text { def }}{=}\left(\mathbf{G}_{\neg} p\right) \rightarrow(p \mathbf{~} q)$.
(a) rewrite φ into Negative Normal Form
[Solution: $(\mathbf{G} \neg p) \rightarrow(p \mathbf{U} q) \Longrightarrow(\neg \mathbf{G} \neg p) \vee(p \mathbf{U} q) \Longrightarrow(F p) \vee(p \mathbf{U} q)]$
(b) find the initial states of a corresponding Buchi automaton (for each state, define the labels of the incoming arcs and the "next" section.)
[Solution: Applying tableaux rules we obtain: $p \vee \mathbf{X F p} \vee q \vee(p \wedge \mathbf{X}(p \mathbf{U}))$, which is already in disjunctive normal form. This correspond to the following four initial states:

Ex: Construction of Büchi Automata

Consider the LTL formula $\varphi \stackrel{\text { def }}{=}(\mathbf{G} \neg p) \rightarrow(p \mathbf{U} q)$.
(a) rewrite φ into Negative Normal Form
[Solution: $(\mathbf{G} \neg p) \rightarrow(p \mathbf{U} q) \Longrightarrow(\neg \mathbf{G} \neg p) \vee(p \mathbf{U} q) \Longrightarrow(\mathbf{F} p) \vee(p \mathbf{U} q)$]
(b) find the initial states of a corresponding Buchi automaton (for each state, define the labels of the incoming arcs and the "next" section.)
[Solution: Applying tableaux rules we obtain: $p \vee \mathbf{X F p} \vee q \vee(p \wedge \mathbf{X}(p \mathbf{U}))$, which is already in disjunctive normal form. This correspond to the following four initial states:

[$]$

[Fp]

[$]$

[$p \mathbf{U} q]$
]

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting states):

Say which of the following sentences are true and which are false.

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting states):

Say which of the following sentences are true and which are false.
(a) BA accepts all and only the paths verifying GFq.

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting states):

Say which of the following sentences are true and which are false.
(a) BA accepts all and only the paths verifying GFq. [Solution: false]

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting states):

Say which of the following sentences are true and which are false.
(a) BA accepts all and only the paths verifying GFq. [Solution: false]
(b) BA accepts all and only the paths verifying FGq.

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting states):

Say which of the following sentences are true and which are false.
(a) BA accepts all and only the paths verifying GFq. [Solution: false]
(b) BA accepts all and only the paths verifying FGq. [Solution: true]

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting states):

Say which of the following sentences are true and which are false.
(a) BA accepts all and only the paths verifying GFq. [Solution: false]
(b) BA accepts all and only the paths verifying FGq. [Solution: true]
(c) BA accepts only paths verifying Fq, but not all of them.

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting states):

Say which of the following sentences are true and which are false.
(a) BA accepts all and only the paths verifying GFq. [Solution: false]
(b) BA accepts all and only the paths verifying FGq. [Solution: true]
(c) BA accepts only paths verifying Fq, but not all of them. [Solution: true]

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting states):

Say which of the following sentences are true and which are false.
(a) BA accepts all and only the paths verifying GFq. [Solution: false]
(b) BA accepts all and only the paths verifying FGq. [Solution: true]
(c) BA accepts only paths verifying Fq, but not all of them. [Solution: true]
(d) BA accepts all the paths verifying \mathbf{F} q, but not only them.

Ex: Büchi automaton

Given the following Büchi automaton BA (doubly-circled states represent accepting states):

Say which of the following sentences are true and which are false.
(a) BA accepts all and only the paths verifying GFq. [Solution: false]
(b) BA accepts all and only the paths verifying FGq. [Solution: true]
(c) BA accepts only paths verifying Fq, but not all of them. [Solution: true]
(d) BA accepts all the paths verifying Fq, but not only them. [Solution: false]

[^0]: Note
 A is an automaton which just runs nondeterministically either A_{1} or A_{2}
 (same construction as with ordinary automata)

[^1]: LTL Entailment

