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Kripke Models

Theoretical role: the semantic framework for a variety of logics
Modal Logics
Description Logics
Temporal Logics
...

Practical role: used to describe reactive systems:
nonterminating systems with infinite behaviors
(e.g. communication protocols, hardware circuits);
represent the dynamic evolution of modeled systems;
a state includes values to state variables, program counters, content of communication channels.
can be animated and validated before their actual implementation
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Kripke Model: Formal Definition

A Kripke model 〈S, I,R,AP,L〉 consists of
a finite set of states S;
a set of initial states I ⊆ S;
a set of transitions R ⊆ S × S;
a set of atomic propositions AP;
a labeling function L : S 7−→ 2AP .

We assume R total: for every state s, there exists (at least) one
state s′ s.t. (s, s′) ∈ R
Sometimes we use variables with discrete bounded values
vi ∈ {d1, ...,dk} (can be encoded with dlog(k)e Boolean
variables)

p

q

1

2

3

4

p

Remark
Unlike with other types of Automata (e.g., Buechi), in Kripke models the values of all variables
are always assigned in each state.
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Kripke Structures: Two Alternative Representations:

each state identifies univocally the values of the atomic propositions which hold there
each state is labeled by a bit vector

{ } {q}

{p} {p, q}

0 0 0 1

1 11 0
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Example: a Kripke model for mutual exclusion

N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

N = noncritical,  T = trying,  C = critical User 1 User 2
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Path in a Kripke Model

A path in a Kripke model M is an infinite sequence of states

π = s0, s1, s2, . . . ∈ Sω

such that s0 ∈ I and (si , si+1) ∈ R.

N1, N2

turn=0

N1, N2

turn=0

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

turn=1

turn=1 turn=1

turn=1

T1, T2

C1, T2

C1, N2

T1, N2

turn=1

turn=2

turn=2

turn=2turn=1 turn=1

turn=1

turn=2

T1, C2

N1, C2T1, T2T1, T2

N1, T2

C1, T2

C1, N2

T1, N2

A state s is reachable in M if there is a path from the initial states to s.
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Composing Kripke Models

Complex Kripke Models are tipically obtained by composition of smaller ones
Components can be combined via

asynchronous composition.
synchronous composition,
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Asynchronous Composition

Interleaving of evolution of components.
At each time instant, one component is selected to perform a transition.

x = 1x = 0
y = b y = b

x = 0
y = a

x = 1
y = a

y = by = a

x = 1x = 0
asynchronous

composition

Typical example: communication protocols.
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Asynchronous Composition/Product: formal definition

Asynchronous product of Kripke models

Let M1
def
= 〈S1, I1,R1,AP1,L1〉, M2

def
= 〈S2, I2,R2,AP2,L2〉. Then the asynchronous product

M def
= M1||M2 is M def

= 〈S, I,R,AP,L〉, where
S ⊆ S1 × S2 s.t., ∀〈s1, s2〉 ∈ S, ∀l ∈ AP1 ∩ AP2, l ∈ L1(s1) iff l ∈ L2(s2)

I ⊆ I1 × I2 s.t. I ⊆ S
R(〈s1, s2〉, 〈t1, t2〉) iff (R1(s1, t1) and s2 = t2) or (s1 = t1 and R2(s2, t2))

AP = AP1 ∪ AP2

L : S 7−→ 2AP s.t. L(〈s1, s2〉)
def
= L1(s1) ∪ L2(s2).

Note: combined states must agree on the values of Boolean variables.

Asynchronous composition is associative:
(...(M1||M2)||...)||Mn) = (M1||(M2||(...||Mn)...) = M1||M2||...||Mn
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Asynchronous Composition: Example 1

1

3 4

2 1

3 4

2A A

AA

B B

BB

C C

CC

A B

C

1

3 4

2

1

3 4

2
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Asynchronous Composition: Example 2

1

3 4

2 A A

A B

C C

C

A B

C

4

1

3

2

x=0 x=0

x=0

x=0

x=0

x=1

x=1

1

3

2

non−reachable state

x=0 x=0

x=0

x=0

x=0x=0

x=1
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Asynchronous Composition: Example 2

1

3 4

2 A A

A

C C

C

A B

C

1

3

2

x=0 x=0

x=0

x=0

x=0

x=1

x=1

1

3

2

x=0 x=0

x=0

x=0

x=0x=0

.
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Synchronous Composition

Components evolve in parallel.
At each time instant, every component performs a transition.

y = by = a

x = 1x = 0
synchronous

composition

x = 0
y = a

x = 1x = 0

x = 1
y = a

y = b y = b

Typical example: sequential hardware circuits.
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Synchronous Composition/Product: formal definition

Synchronous product of Kripke models

Let M1
def
= 〈S1, I1,R1,AP1,L1〉, M2

def
= 〈S2, I2,R2,AP2,L2〉. Then the synchronous product

M def
= M1 ×M2 is M def

= 〈S, I,R,AP,L〉, where
S ⊆ S1 × S2 s.t., ∀〈s1, s2〉 ∈ S, ∀l ∈ AP1 ∩ AP2, l ∈ L1(s1) iff l ∈ L2(s2)

I ⊆ I1 × I2 s.t. I ⊆ S
R(〈s1, s2〉, 〈t1, t2〉) iff (R1(s1, t1) and R2(s2, t2))

AP = AP1 ∪ AP2

L : S 7−→ 2AP s.t. L(〈s1, s2〉)
def
= L1(s1) ∪ L2(s2).

Note: combined states must agree on the values of Boolean variables.

Synchronous composition is associative:
(...(M1 ×M2)× ...)×Mn) = (M1× (M2 × (...×Mn)...) = M1 ×M2 × ...×Mn
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Synchronous Composition: Example 1

1

3 4

2

A B

C

A A

AA

BB

BB

C C

CC

1

3 4

2 1

3 4

2

1

3 4

2
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Synchronous Composition: Example 2

1

3 4

2

A B

C

A A

A B

C C

C

1

3

2

4

1

3

2

x=0 x=0

x=0

x=0

x=0

x=1

x=1

x=1

x=0 x=0

x=0

x=0 x=0

x=0

NON−reachable state
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Synchronous Composition: Example 2 (cont.)

1

3 4

2

A B

C

A

A B

C C

C

1

3 4

1

3

2

x=0 x=0

x=0

x=0

x=0

x=1

x=1

x=1

x=0

x=0

x=0 x=0

x=0
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Description languages for Kripke Model

Most often a Kripke model is not given explicitly (states, arcs),...
... rather it is usually presented in a structured language
(e.g., SMV, PROMELA, StateCharts, VHDL, ...)

even a piece of SW can be seen as a Kripke model!

Each component is presented by specifying
state variables: determine the set of atomic propositions AP, the state space S and the labeling L.
initial values of variables V : determine the set of initial states I.

described as a relation I(V0) in terms of state variables at step 0
instructions: determine the transition relation R.

described as a relation R(V ,V ′) in terms of current state variables V and next state variables V ′

Aka as symbolic representation of a Kripke model

Remark
Tipically symbolic description are much more compact (and intuitive) than the explicit
representation of the Kripke model.
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The SMV language

The input language of the SMV M.C. (and NUSMV)
Booleans, enumerative and bounded integers as data types
now enriched with other constructs, e.g. in NuXMV language
An SMV program consists of:

Declarations of the state variables (e.g., b0);
Assignments that define the initial states
(e.g., init(b0) := 0).
Assignments that define the transition relation
(e.g., next(b0) := !b0).

Allows for both synchronous and asyncronous composition of modules (though synchronous
interaction more natural)
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Example: a Simple Counter Circuit
MODULE main
VAR

v0 : boolean;
v1 : boolean;
out : 0..3;

ASSIGN
init(v0) := 0;
next(v0) := !v0;
init(v1) := 0;
next(v1) := (v0 xor v1);
out := toint(v0) + 2*toint(v1);

v
0

v1

v1 v0 v ′
1 v ′

0
0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

00

11

01

10

I(V ) = (¬v0 ∧ ¬v1)
R(V ,V ′) = (v ′

0 ↔ ¬v0) ∧ (v ′
1 ↔ v0

⊕
v1)
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Standard Programming Languages

Standard programming languages are typically sequential
=⇒ Transition relation defined in terms also of the program counter

Numbers & values Booleanized

...
10. i = 0;
11. acc = 0.0;
12. while (i<dim) {
13. acc += V[i];
14. i++;
15. }
...

....
(pc = 10) → ((i ′ = 0) ∧ (pc′ = 11))
(pc = 11) → ((acc′ = 0.0) ∧ (pc′ = 12))
(pc = 12) → ((i < dim) → (pc′ = 13))
(pc = 12) → (¬(i < dim) → (pc′ = 16))
(pc = 13) → ((acc′ = acc + read(V , i)) ∧ (pc′ = 14))
(pc = 14) → (i ′ = i + 1) ∧ (pc′ = 15))
(pc = 15) → (pc′ = 16))
...
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Safety Properties

Bad events never happen
deadlock: two processes waiting for input from each other,
the system is unable to perform a transition.
no reachable state satisfies a “bad” condition,
e.g. never two processes in critical section at the same time

Can be refuted by a finite behaviour
Ex.: it is never the case that p.

p
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Liveness Properties

Something desirable will eventually happen
sooner or later this will happen

Can be refuted by infinite behaviour

−p −p
−p

−p −p
−p

−p

−p

an infinite behaviour can be typically presented as a loop

29 / 95



Fairness Properties

Something desirable will happen infinitely often
important subcase of liveness
whenever a subroutine takes control, it will always return it (sooner or later)

Can be refuted by infinite behaviour
a subroutine takes control and never returns it

p

p

p

p

p

p

p

p

an infinite behaviour can be typically presented as a loop
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Computation tree vs. computation paths

Consider the following Kripke structure:

done!done

Its execution can be seen as:
an infinite set of
computation paths

done done done!done

!done

!done

!done

donedone

done!done !done

!done !done !done

!done

.....

an infinite
computation tree

done

done

done done done

done

!done

!done

!done

!done
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Temporal Logics

Express properties of “Reactive Systems”
nonterminating behaviours,
without explicit reference to time.

Linear Temporal Logic (LTL)
interpreted over each path of the Kripke structure
linear model of time
temporal operators
“Medieval”: “since birth, one’s destiny is set”.

Computation Tree Logic (CTL)
interpreted over computation tree of Kripke model
branching model of time
temporal operators plus path quantifiers
“Humanistic”: “one makes his/her own destiny step-by-step”.
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Linear Temporal Logic (LTL): Syntax

An atomic proposition is a LTL formula;
if ϕ1 and ϕ2 are LTL formulae, then ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2, ϕ1 ↔ ϕ2, ϕ1 ⊕ ϕ2 are
LTL formulae;
if ϕ1 and ϕ2 are LTL formulae, then Xϕ1, Gϕ1, Fϕ1, ϕ1Uϕ2 are LTL formulae, where X, G, F,
U are the “next”, “globally”, “eventually”,“until” temporal operators respectively.
Another operator R “releases” (the dual of U) is used sometimes.
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LTL semantics: intuitions

LTL is given by the standard boolean logic enhanced with the following temporal operators,
which operate through paths 〈s0, s1, ..., sk , ...〉:

“Next” X: Xϕ is true in st iff ϕ is true in st+1

“Finally” (or “eventually”) F: Fϕ is true in st iff ϕ is true in some st′ with t ′ ≥ t
“Globally” (or “henceforth”) G: Gϕ is true in st iff ϕ is true in all st′ with t ′ ≥ t
“Until” U: ϕUψ is true in st iff, for some state st′ s.t t ′ ≥ t :

ψ is true in st′ and
ϕ is true in all states st′′ s.t. t ≤ t ′′ < t ′

“Releases” R: ϕRψ is true in st iff, for all states st′ s.t. t ′ ≥ t :
ψ is true or
ϕ is true in some states st′′ with t ≤ t ′′ < t ′

“ψ can become false only if ϕ becomes true first"
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LTL semantics: intuitions

Pfinally

F P

Pglobally

PG

PX

Pnext P until q

P U q
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LTL: Some Noteworthy Examples

Safety: “it never happens that a train is arriving and the bar is up”

G(¬(train_arriving ∧ bar_up))

Liveness: “if input, then eventually output”

G(input→ Foutput)

Releases: “the device is not working if you don’t first repair it”

(repair_device R ¬working_device)

Fairness: “infinitely often send ”
GFsend

Strong fairness: “infinitely often send implies infinitely often recv.”

GFsend→ GFrecv
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LTL Formal Semantics

π, si |= a iff a ∈ L(si)
π, si |= ¬ϕ iff π, si 6|= ϕ
π, si |= ϕ ∧ ψ iff π, si |= ϕ and

π, si |= ψ
π, si |= Xϕ iff π, si+1 |= ϕ
π, si |= Fϕ iff for some j ≥ i : π, sj |= ϕ
π, si |= Gϕ iff for all j ≥ i : π, sj |= ϕ
π, si |= ϕUψ iff for some j ≥ i : (π, sj |= ψ and

for all k s.t . i ≤ k < j : π, sk |= ϕ)
π, si |= ϕRψ iff for all j ≥ i : (π, sj |= ψ or

for some k s.t . i ≤ k < j : π, sk |= ϕ)

40 / 95



LTL Formal Semantics (cont.)

LTL properties are evaluated over paths, i.e., over infinite, linear sequences of states:
π = s0 → s1 → · · · → st → st+1 → · · ·
Given an infinite sequence π = s0, s1, s2, . . .

π, si |= φ if φ is true in state si of π.
π |= φ if φ is true in the initial state s0 of π.

The LTL model checking problemM |= φ

check if π |= φ for every path π of the Kripke structureM (e.g., φ = Fdone)

done!done

done done done!done

!done

!done

!done

donedone

done!done !done

!done !done !done

!done

.....
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The LTL model checking problemM |= φ: remark

The LTL model checking problemM |= φ

π |= φ for every path π of the Kripke structureM

Important Remark

M 6|= φ 6=⇒M |= ¬φ (!!)
E.g. if φ is a LTL formula and two paths π1 and π2 are s.t. π1 |= φ and π2 |= ¬φ.
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Example: M 6|= φ 6=⇒M |= ¬φ

Let π1
def
= {s1}ω, π2

def
= {s2}ω.

M 6|= Gp, in fact:
π1 6|= Gp
π2 |= Gp

M 6|= ¬Gp, in fact:
π1 |= ¬Gp
π2 6|= ¬Gp

pq
s0

¬p¬q
s1

p¬q
s2
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Syntactic properties of LTL operators

ϕ1 ∨ ϕ2 ⇐⇒ ¬(¬ϕ1 ∧ ¬ϕ2)
...
F ϕ1 ⇐⇒ >Uϕ1
G ϕ1 ⇐⇒ ⊥Rϕ1
Fϕ1 ⇐⇒ ¬G¬ϕ1
Gϕ1 ⇐⇒ ¬F¬ϕ1
¬Xϕ1 ⇐⇒ X¬ϕ1
ϕ1Rϕ2 ⇐⇒ ¬(¬ϕ1U¬ϕ2)
ϕ1Uϕ2 ⇐⇒ ¬(¬ϕ1R¬ϕ2)

Note
LTL can be defined in terms of ∧, ¬, X, U only

Exercise

Prove that ϕ1Rϕ2 ⇐⇒ Gϕ2 ∨ ϕ2U(ϕ1 ∧ ϕ2)
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Proof of ϕRψ ⇔ (Gψ ∨ ψU(ϕ ∧ ψ))

[Solution proposed by the student Samuel Valentini, 2016]

(All state indexes below are implicitly assumed to be ≥ 0.)
⇒: Let π be s.t. π, s0 |= ϕRψ

If ∀j , π, sj |= ψ, then π, s0 |= Gψ.
Otherwise, let sk be the first state s.t. π, sk 6|= ψ.
Since π, s0 |= ϕRψ, then k > 0 and exists k ′ < k s.t. π,Sk′ |= ϕ
By construction, π, sk′ |= ϕ ∧ ψ and, for every w < k ′, π, sw |= ψ,
so that π, s0 |= ψU(ϕ ∧ ψ).
Thus, π, s0 |= Gψ ∨ ψU(ϕ ∧ ψ)

⇐: Let π be s.t. π, s0 |= Gψ ∨ ψU(ϕ ∧ ψ)
If π, s0 |= Gψ, then ∀j , π, sj |= ψ, so that π, s0 |= ϕRψ.
Otherwise, π, s0 |= ψU(ϕ ∧ ψ).
Let sk be the first state s.t. π, sk 6|= ψ.
by construction, ∃k ′ such that π,Sk′ |= ϕ ∧ ψ
by the definition of k , we have that k ′ < k and ∀w < k , π,Sw |= ψ.
Thus π, s0 |= ϕRψ
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Strength of LTL operators

Gϕ |= ϕ |= Fϕ
Gϕ |= Xϕ |= Fϕ
Gϕ |= XX...Xϕ |= Fϕ
ϕUψ |= Fψ
Gψ |= ϕRψ
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LTL tableaux rules

Let ϕ1 and ϕ2 be LTL formulae:

Fϕ1 ⇐⇒ (ϕ1 ∨ XFϕ1)
Gϕ1 ⇐⇒ (ϕ1 ∧ XGϕ1)

ϕ1Uϕ2 ⇐⇒ (ϕ2 ∨ (ϕ1 ∧ X(ϕ1Uϕ2)))
ϕ1Rϕ2 ⇐⇒ (ϕ2 ∧ (ϕ1 ∨ X(ϕ1Rϕ2)))

If applied recursively, rewrite an LTL formula in terms of atomic and X-formulas:

(pUq) ∧ (G¬p) =⇒ (q ∨ (p ∧ X(pUq))) ∧ (¬p ∧ XG¬p)
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Tableaux Rules: a Quote

“After all... tomorrow is another day."
[Scarlett O’Hara, “Gone with the Wind”]
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Example 1: mutual exclusion (safety)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= G¬(C1 ∧ C2) ?

YES: There is no reachable state in which (C1 ∧ C2) holds!
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Example 2: liveness

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= FC1 ?

NO: there is an infinite cyclic solution in which C1 never holds!
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Example 3: liveness

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= G(T1 → FC1) ?

YES: every path starting from each state where T1 holds passes through a state where C1 holds.
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Example 4: fairness

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= GFC1 ?

NO: e.g., in the initial state, there is an infinite cyclic solution in which C1 never holds!

53 / 95



Example 5: strong fairness

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= GFT1 → GFC1 ?

YES: every path which visits T1 infinitely often also visits C1 infinitely often
(see liveness property of previous example).
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Example 6: blocking

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= G(N1 → F T1) ?

NO: e.g., in the initial state, there is an infinite cyclic solution in which N1 holds and T1 never
holds!
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Example 7: Releases

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= T1R¬C1 ?

YES: C1 in paths only strictly after T1 has occured.
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Example 8: XF

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= XF(turn = 0) ?

NO: a counter-example is the∞-shaped loop:
(N1,N2), {(T1,N2), (C1,N2), (C1,T 2), (N1,T 2), (N1,C2), (T 1,C2)}ω
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Example: G(T → FC) vs. GFT → GFC

G(T → FC) =⇒ GFT → GFC ?
YES: if M |= G(T → FC), then M |= GFT → GFC !
let M |= G(T → FC).
let π ∈ M s.t. π |= GFT
=⇒ π, si |= FT for each si ∈ π
=⇒ π, sj |= T for each si ∈ π and for some sj ∈ π s.t .j ≥ i
=⇒ π, sj |= FC for each si ∈ π and for some sj ∈ π s.t .j ≥ i
=⇒ π, sk |= C for each si ∈ π, for some sj ∈ π s.t .j ≥ i and for some k ≥ j
=⇒ π, sk |= C for each si ∈ π and for some k ≥ i
=⇒ π |= GFC
=⇒ M |= GFT → GFC.
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Example: G(T → FC) vs. GFT → GFC

G(T → FC) ⇐= GFT → GFC ?
NO!.
Counter example:

  ¬C, ¬T¬C, T

GFT → GFC is satisfied
G(T → FC) is not satisfied

(Counter-example proposed by the student Vaishak Belle, 2008)
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Computational Tree Logic (CTL): Syntax

An atomic proposition is a CTL formula;
if ϕ1 and ϕ2 are CTL formulae, then ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, ϕ1 → ϕ2, ϕ1 ↔ ϕ2 are CTL
formulae;
if ϕ1 and ϕ2 are CTL formulae, then AXϕ1, A(ϕ1Uϕ2), AGϕ1, AFϕ1, EXϕ1, E(ϕ1Uϕ2),
EGϕ1, EFϕ1,, are CTL formulae.
(E(ϕ1Rϕ2) and A(ϕ1Rϕ2) never used in practice.)
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CTL semantics: intuitions

CTL is given by the standard boolean logic enhanced with the operators AX, AG, AF, AU, EX,
EG, EF, EU:

“Necessarily Next” AX: AXϕ is true in st iff ϕ is true in every successor state st+1

“Possibly Next” EX: EXϕ is true in st iff ϕ is true in one successor state st+1

“Necessarily in the future” (or “Inevitably”) AF: AFϕ is true in st iff ϕ is inevitably true in
some st′ with t ′ ≥ t
“Possibly in the future” (or “Possibly”) EF: EFϕ is true in st iff ϕ may be true in some st′ with
t ′ ≥ t
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CTL semantics: intuitions [cont.]

“Globally” (or “always”) AG: AGϕ is true in st iff ϕ is true in all st′ with t ′ ≥ t
“Possibly henceforth” EG: EGϕ is true in st iff ϕ is possibly true henceforth
“Necessarily Until” AU: A(ϕUψ) is true in st iff necessarily ϕ holds until ψ holds.
“Possibly Until” EU: E(ϕUψ) is true in st iff possibly ϕ holds until ψ holds.
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CTL semantics: intuitions [cont.]

Pfinally Pglobally Pnext P until q

PEF PEX P U q]E[PEG

AFP AXP P U qA[ ]AGP
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CTL Formal Semantics

Let (si , si+1, . . .) be a path outgoing from state si in M

M, si |= a iff a ∈ L(si)
M, si |= ¬ϕ iff M, si 6|= ϕ
M, si |= ϕ ∨ ψ iff M, si |= ϕ or

M, si |= ψ
M, si |= AXϕ iff for all (si , si+1, . . .), M, si+1 |= ϕ
M, si |= EXϕ iff for some (si , si+1, . . .), M, si+1 |= ϕ
M, si |= AGϕ iff for all (si , si+1, . . .), for all j ≥ i.M, sj |= ϕ
M, si |= EGϕ iff for some (si , si+1, . . .), for all j ≥ i.M, sj |= ϕ
M, si |= AFϕ iff for all (si , si+1, . . .), for some j ≥ i.M, sj |= ϕ
M, si |= EFϕ iff for some (si , si+1, . . .), for some j ≥ i.M, sj |= ϕ
M, si |= A(ϕUψ) iff for all (si , si+1, . . .), for some j ≥ i.

(M, sj |= ψ and
forall k s.t . i ≤ k < j.M, sk |= ϕ)

M, si |= E(ϕUψ) iff for some (si , si+1, . . .), for some j ≥ i.
(M, sj |= ψ and
forall k s.t . i ≤ k < j.M, sk |= ϕ)
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Formal Semantics (cont.)

CTL properties (e.g. AFdone) are evaluated over trees.

done!done

done

done

done done done

done

!done

!done

!done

!done

Every temporal operator (F,G,X,U) is preceded by a path quantifier (A or E).
Universal modalities (AF,AG,AX,AU): the temporal formula is true in all the paths starting
in the current state.
Existential modalities (EF,EG,EX,EU): the temporal formula is true in some path starting in
the current state.
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The CTL model checking problemM |= φ

The CTL model checking problemM |= φ

M, s |= φ for every initial state s ∈ I of the Kripke structure

Important Remark

M 6|= φ 6=⇒M |= ¬φ (!!)
E.g. if φ is a universal formula A... and two initial states s0, s1 are s.t. M, s0 |= φ and
M, s1 6|= φ

M 6|= φ =⇒M |= ¬φ ifM has only one initial state
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Example: M 6|= φ 6=⇒M |= ¬φ

M 6|= AGp, in fact:
M, s1 6|= AGp
(e.g., {s1, ...} is a counter-example)
M, s2 |= AGp

M 6|= ¬AGp, in fact:
M, s1 |= ¬AGp
(i.e.,M, s1 |= EF¬p)
M, s2 6|= ¬AGp
(i.e.,M, s2 6|= EF¬p)

pq
s0

¬p¬q
s1

p¬q
s2
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Syntactic properties of CTL operators

ϕ1 ∨ ϕ2 ⇐⇒ ¬(¬ϕ1 ∧ ¬ϕ2)
...

A(ϕ1Uϕ2) ⇐⇒ ¬E(¬ϕ2U(¬ϕ1 ∧ ¬ϕ2)) ∧ ¬EG¬ϕ2
EF ϕ1 ⇐⇒ E(>Uϕ1)
AGϕ1 ⇐⇒ ¬EF¬ϕ1
AF ϕ1 ⇐⇒ ¬EG¬ϕ1
AXϕ1 ⇐⇒ ¬EX¬ϕ1

Note
CTL can be defined in terms of ∧, ¬, EX, EG, EU only

Exercise:

prove that A(ϕ1Uϕ2)⇐⇒ ¬EG¬ϕ2 ∧ ¬E(¬ϕ2U(¬ϕ1 ∧ ¬ϕ2))
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Strength of CTL operators

A[OP]ϕ |= E[OP]ϕ, s.t. [OP] ∈ {X,F,G,U}
AGϕ |= ϕ |= AFϕ , EGϕ |= ϕ |= EFϕ
AGϕ |= AXϕ |= AFϕ , EGϕ |= EXϕ |= EFϕ
AGϕ |= AX...AXϕ |= AFϕ , EGϕ |= EX...EXϕ |= EFϕ
A(ϕUψ) |= AFψ, E(ϕUψ) |= EFψ
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CTL tableaux rules

Let ϕ1 and ϕ2 be CTL formulae:

AFϕ1 ⇐⇒ (ϕ1 ∨ AXAFϕ1)
AGϕ1 ⇐⇒ (ϕ1 ∧ AXAGϕ1)

A(ϕ1Uϕ2) ⇐⇒ (ϕ2 ∨ (ϕ1 ∧ AXA(ϕ1Uϕ2)))
EFϕ1 ⇐⇒ (ϕ1 ∨ EXEFϕ1)
EGϕ1 ⇐⇒ (ϕ1 ∧ EXEGϕ1)

E(ϕ1Uϕ2) ⇐⇒ (ϕ2 ∨ (ϕ1 ∧ EXE(ϕ1Uϕ2)))

Recursive definitions of AF, AG, AU, EF, EG, EU.
If applied recursively, rewrite a CTL formula in terms of atomic, AX- and EX-formulas:

A(pUq) ∧ (EG¬p) =⇒ (q ∨ (p ∧ AXA(pUq))) ∧ (¬p ∧ EXEG¬p)
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Tableaux Rules: a Quote

“After all... tomorrow is another day."
[Scarlett O’Hara, “Gone with the Wind”]
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Example 1: mutual exclusion (safety)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= AG¬(C1 ∧ C2) ?

YES: There is no reachable state in which (C1 ∧ C2) holds!
(Same as the G¬(C1 ∧ C2) in LTL.)
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Example 2: liveness

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= AF C1 ?

No: there is an infinite cyclic solution in which C1 never holds!
(Same as FC1 in LTL.)
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Example 3: liveness

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= AG(T1 → AF C1) ?

YES: every path starting from each state where T1 holds passes through a state where C1 holds
(Same as G(T1 → FC1) in LTL.)
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Example 4: fairness

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= AGAFC1 ?

NO: e.g., in the initial state, there is an infinite cyclic solution in which C1 never holds!
(Same as GFC1 in LTL.)
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Example 5: fairness (2)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= AGAF(turn = 0) ?

NO: there is an infinite 8-shaped cyclic solution in which (turn = 0) never holds!
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Example 6: blocking

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= AG(N1 → EF T1) ?

YES: from each state where N1 holds there is a path leading to a state where T1 holds
(No corresponding LTL formula.)
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Example 7: blocking (2)

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= AG(N1 → AF T1) ?

NO: e.g., in the initial state, there is an infinite cyclic solution in which N1 holds and T1 never
holds!
(Same as LTL formula G(N1 → FT1).)
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Example 8:

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= EGN1 ?

YES: there is an infinite cyclic solution where N1 always holds
(No corresponding LTL formula.)
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Example 9:

N1, N2

turn=0

turn=1

C1, T2

turn=1

T1, T2

T1, N2

turn=1

C1, N2

turn=1

T1, T2

turn=2

N = noncritical,  T = trying,  C = critical User 1 User 2

N1, T2

turn=2

T1, C2

turn=2

turn=2

N1, C2

M |= AFEGN1 ?

YES: there is an infinite cyclic solution where N1 always holds, and from every state you
necessarily reach one state of such cycle
(No corresponding LTL formula.)
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LTL vs. CTL: expressiveness

many CTL formulas cannot be expressed in LTL
(e.g., those containing existentially quantified subformulas)
E.g., AG(N1 → EFT1), AFAGϕ
many LTL formulas cannot be expressed in CTL
(e.g. fairness LTL formulas)
E.g., GFT1 → GFC1, FGϕ
some formulas can be expressed both in LTL and in CTL (typically LTL formulas with
operators of nesting depth 1, and/or with operators occurring positively)
E.g., G¬(C1 ∧ C2), FC1, G(T1 → FC1), GFC1

CTLLTL
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Example: AFAGp vs. FGp

(Example developed by the students Andrea Mattioli and Mirko Boniatti, 2005.)
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LTL vs. CTL: M.C. Algorithms

LTL M.C. problems are typically handled with automata- based M.C. approaches
(Wolper & Vardi)
CTL M.C. problems are typically handled with symbolic M.C. approaches
(Clarke & McMillan)
LTL M.C. problems can be reduced to CTL M.C. problems under fairness constraints
(Clarke et al.)
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CTL*

Syntax: let p’s, ϕ’s, ψ’s being propositions, state formulae and path formulae respectively:
p, ¬ϕ, ϕ1 ∧ ϕ2, Aψ, Eψ are state formulae
(properties of the set of paths starting from a state)
ϕ, ¬ψ, ψ1 ∧ ψ2, Xψ, Gψ, Fψ, ψ1Uψ2 are path formulae
(properties of a path)

Semantics: A, E, X, G, F, U as in CTL
A, E: quantify on paths (as in CTL)
X, G, F, U: (as in LTL)
as in CTL, but X, G, F, U not necessarily preceded by A,E

Remark
In principle in CTL* one may have sequences of nested path quantifiers.
In such case, the most internal one dominates:

M, s |= AEψ iff M, s |= Eψ, M, s |= EAψ iff M, s |= Aψ.
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CTL* vs LTL & CTL

CTL* subsumes both CTL and LTL
ϕ in CTL =⇒ ϕ in CTL* (e.g., AG(N1 → EFT1)

ϕ in LTL =⇒ Aϕ in CTL* (e.g., A(GFT1 → GFC1)

LTL ∪ CTL ⊂ CTL* (e.g., E(GFp → GFq) )

CTLLTL

CTL*
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“You have no respect for logic. (...)
I have no respect for those who have no respect for logic.”
https://www.youtube.com/watch?v=uGstM8QMCjQ

(Arnold Schwarzenegger in “Twins”)
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Exercise: LTL Model Checking (path)

Consider the following path π:

¬pq
s1

p¬q
s2

p¬q
s3

p¬q
s4

¬p¬q
s0

For each of the following facts, say if it is true of false in LTL.

(a) π, s0 |= GFq
[ Solution: true ]

(b) π, s0 |= FG(q ↔ ¬p)
[ Solution: true ]

(c) π, s2 |= Gp
[ Solution: false ]

(d) π, s2 |= pUq
[ Solution: true ]
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Ex: LTL Model Checking

Consider the following Kripke Model M:

¬pq
s2

p¬q
s1

pq
s0

For each of the following facts, say if it is true or false in LTL.

(a) M |= (pUq)
[ Solution: true ]

(b) M |= G(¬p → F¬q)
[ Solution: true ]

(c) M |= Gp → Gq
[ Solution: true ]

(d) M |= FGp
[ Solution: false ]

93 / 95



Ex: CTL Model Checking

Consider the following Kripke Model M:

¬pq
s0

p¬q
s1

pq
s2

For each of the following facts, say if it is true or false in CTL.

(a) M |= AF¬p
[ Solution: false ]

(b) M |= EGp
[ Solution: false ]

(c) M |= A(pUq)
[ Solution: true ]

(d) M |= E(pU¬q)
[ Solution: true ]
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Ex: CTL Model Checking

Consider the following Kripke Model M:

pq
s0

¬pq
s2

p¬q
s1

For each of the following facts, say if it is true or false in CTL.

(a) M |= AF¬q
[ Solution: false ]

(b) M |= EGq
[ Solution: false ]

(c) M |= ((AGAFp ∨ AGAFq) ∧ (AGAF¬p ∨ AGAF¬q)) → q
[ Solution: true ]

(d) M |= AFEG(p ∧ q)
[ Solution: false ]
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